JP2004017863A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2004017863A
JP2004017863A JP2002177550A JP2002177550A JP2004017863A JP 2004017863 A JP2004017863 A JP 2004017863A JP 2002177550 A JP2002177550 A JP 2002177550A JP 2002177550 A JP2002177550 A JP 2002177550A JP 2004017863 A JP2004017863 A JP 2004017863A
Authority
JP
Japan
Prior art keywords
groove
tire
axial direction
extending
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002177550A
Other languages
Japanese (ja)
Other versions
JP4122179B2 (en
Inventor
Tadao Matsumoto
松本 忠雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2002177550A priority Critical patent/JP4122179B2/en
Publication of JP2004017863A publication Critical patent/JP2004017863A/en
Application granted granted Critical
Publication of JP4122179B2 publication Critical patent/JP4122179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire improved in uneven-wear resistance and wet performance. <P>SOLUTION: In the pneumatic tire, tow center longitudinal grooves 3a, 3a extending in a tire circumferential direction in both sides of a tire equator C, and outer longitudinal grooves 3b extending in the tire circumferential direction in both sides of the center longitudinal grooves 3a are provided on a tread surface 2. A middle land part 4b id divided between the center longitudinal groove 3a and the outer longitudinal groove 3b. Tilting grooves 5 extending from an inner end 5i, having a small distance A in a tire axial direction from the center longitudinal groove 3a, to the outer longitudinal groove 3b while tilting at angle θof 10 to 45 degrees in regard to the tire circumferential direction without reversing the direction are separated on the middle land part. An inner end 6i in the tire axial direction is provided with an auxiliary groove 6 communicating to a middle portion of the tilting groove 5, extending outwardly in the tire axial direction while tiling in the opposite direction to the tilting groove 5, and communicating to the outer longitudinal groove 3b or another tilting groove 5 adjacent in the tire circumferential direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ウエット性能を向上しうる空気入りタイヤに関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
空気入りタイヤ、とりわけ乗用車用の空気入りラジアルタイヤにあっては、路面上の水膜を破断してその除去効果を高めるべく、図5に示すように、タイヤ周方向に対して比較的小さな角度、例えば10〜45゜程度で傾斜した傾斜溝aを設けることが行われている。また前記傾斜溝aは、例えばタイヤ赤道C上の任意の点を中心として点対称に配置され、車両への装着向きが限定されないよう非方向性パターンとして形成されている。
【0003】
このような空気入りタイヤでは、図に示す回転方向Rとした場合、図5においてタイヤ赤道Cの右側に配された傾斜溝a1は、タイヤ赤道側の内端bから接地を開始するため、トレッド中央部の水膜をタイヤ軸方向外側へと効果的に排出することができる。しかしながら、タイヤ赤道Cの左側に設けられた傾斜溝a2では、タイヤ軸方向の外端cから接地を開始するため、路面の水膜を前記とは逆にトレッド中央部側へと導きやすい。このように、傾斜が比較的急な傾斜溝を非方向性パターンに用いると、タイヤ赤道の一方側では、排水効率の向上が十分に期待できない。
【0004】
本発明は、以上のような問題点に鑑み案出なされたもので、タイヤ周方向に対して10〜45度の角度θでかつ向きを反転することなく傾斜してのびる傾斜溝を隔設するとともに、この傾斜溝の中間部分に連通するとともにタイヤ軸方向外側へ該傾斜溝とは逆向きに傾斜してのびる補助溝を設けることを基本として、とりわけ非方向性パターンにおいて排水性能をさらに向上しうる空気入りタイヤを提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明のうち請求項1記載の発明は、トレッド面に、タイヤ赤道上をのびる1本又はタイヤ赤道の両側をタイヤ周方向にのびる2本からなる中央の縦溝と、この中央の縦溝の両側でタイヤ周方向にのびる外の縦溝とを設けることにより、前記中央の縦溝と前記外の縦溝との間に中間陸部を区画した空気入りタイヤであって、前記中間陸部に、前記中央の縦溝との間にタイヤ軸方向の小距離Aを隔てる内端からタイヤ周方向に対して10〜45度の角度θでかつ向きを反転することなく傾斜してのび前記外の縦溝に連通する傾斜溝を隔設するとともに、この傾斜溝の両端部分を除いた中間部分から該傾斜溝とは逆向きに傾斜してタイヤ軸方向外側にのびしかも前記外の縦溝又はタイヤ周方向に隣り合う他の傾斜溝に連通する補助溝を設けたことを特徴としている。
【0006】
また請求項2記載の発明は、前記中央の縦溝は、その溝巾Wiが前記外の縦溝の溝巾Woの1.0倍よりも大かつ2.5倍以下であることを特徴とする請求項1記載の空気入りタイヤである。
【0007】
また請求項3記載の発明は、前記補助溝は、前記外の縦溝の溝縁から前記中間陸部のタイヤ軸方向の巾Lmの0.3〜0.7倍の距離Lpをタイヤ軸方向内側に隔てる位置で前記傾斜溝に連通することを特徴とする請求項1又は2記載の空気入りタイヤである。
【0008】
また請求項4記載の発明は、前記小距離Aは、前記中央の縦溝の溝巾の10〜40%であることを特徴とする請求項1乃至3のいずれかに記載の空気入りタイヤである。
【0009】
また請求項5記載の発明は、前記中間陸部は、前記傾斜溝のタイヤ軸方向外側の溝壁と、前記補助溝のタイヤ軸方向外側の溝壁とが交わる第1のコーナ部を円弧状に丸めた面取り部とするとともに、前記傾斜溝のタイヤ軸方向外側の溝壁と、前記補助溝のタイヤ軸方向内側の溝壁とが交わる第2のコーナ部を鋭とした非面取り部としたことを特徴とする請求項1乃至4のいずれかに記載の空気入りタイヤである。
【0010】
【発明の実施の形態】
以下本発明の実施の一形態を乗用車用空気入りラジアルタイヤを例にとり図面に基づき説明する。図1は本実施形態の空気入りタイヤ(全体図示せず)のトレッド面2を展開したトレッド面展開図、図2はその右半分を拡大して示す右半分拡大図、図3は同左半分を拡大して示す左半分拡大図をそれぞれ示している。
【0011】
図において、トレッド面2には、タイヤ赤道Cの両側をタイヤ周方向にのびる2本からなる中央の縦溝3a、3aと、この中央の縦溝3aの両側でタイヤ周方向にのびる外の縦溝3b、3bとが設けられている。前記中央の縦溝3a、3a、外の縦溝3b、3bは、それぞれタイヤ赤道Cを中心として実質的に左右対称位置に配されたものを例示する。なお中央の縦溝3aについては、2本設ける形態に代えてタイヤ赤道C上をのびる1本で構成することもできる。また、本実施形態では、ピッチバリエーションなどのピッチ変化を無視した場合、タイヤ赤道Cにより区画される左右のトレッド面は、タイヤ赤道上の点を中心としたほぼ点対称をなし、いわゆる非方向性トレッドパターンで形成されたものを例示している。このようなタイヤは、車両への装着時の向き(換言すれば回転方向)を特定されることなく使用できるため、装着を容易化するのに役立つ。
【0012】
前記中央の縦溝3a、外の縦溝3bは、本例ではいずれもタイヤ周方向に連続して直線状でのびるものが例示される。中央の縦溝3a及び外の縦溝3bの溝巾Wi、Wo(溝巾は、トレッド面2での開口巾であって以下同じ。)は、特に限定はされないが、排水性を考慮して例えばトレッド接地巾TWの2〜7%程度、より好適には2〜5%程度に設定されるのが望ましい。そして本実施形態では中央の縦溝3aの溝巾Wiを、外の縦溝の溝巾Woよりも大で形成したものを示す。これにより、水はけの悪いタイヤ赤道C付近での排水効果をより高めうる。
【0013】
特に好ましくは中央の縦溝3aの溝巾Wiを、外の縦溝3bの溝巾Woの1.0倍よりも大かつ2.5倍以下、さらに好ましくは1.5〜2.0倍とするのが良く、このとき特に好ましくは該中央の縦溝3aの溝巾Wiを5.0〜8.0mmとするのが望ましい。これにより、トレッド中央部の排水性を高めつつ旋回時の剛性感の低下を防止するのに効果がある。
【0014】
なお前記トレッド接地巾TWは、タイヤを正規リムにリム組みしかつ正規内圧を充填するとともに正規荷重を負荷して平面に接地させたときのトレッド接地端E、E間のタイヤ軸方向の距離とする。また「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えばJATMAであれば標準リム、TRAであれば ”Design Rim” 、或いはETRTOであれば ”Measuring Rim”とする。
【0015】
また、「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表 ”TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” に記載の最大値、ETRTOであれば ”INFLATION PRESSURE” とするが、タイヤが乗用車用である場合には180KPaとする。さらに「正規荷重」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表 ”TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” に記載の最大値、ETRTOであれば ”LOAD CAPACITY”とするが、タイヤが乗用車用である場合には、それらの0.88倍の値とする。
【0016】
また各縦溝3a、3bの溝深さが小さすぎると、十分な排水量が確保され難く排水性能が低下し易く、逆に大きすぎても陸部の剛性が低下しやすく操縦安定性を損ね易い。このような観点より、前記中央の縦溝3a、外の縦溝3bの溝深さについては、特に限定はされないが、例えば6.0〜10.0mm、より好ましくは7.0〜9.0mm程度とするのが望ましい。
【0017】
また本実施形態の空気入りタイヤでは、中央の縦溝3aと外の縦溝3bとを設けることにより、トレッド面2に、中央の縦溝3a、3a間に形成される中央陸部4aと、中央の縦溝3aと外の縦溝3bとの間に形成される中間陸部4bと、外の縦溝3bとトレッド接地端Eとの間に形成される外の陸部4cとをそれぞれ区画している。
【0018】
前記中央陸部4aは、本例では実質的にタイヤ周方向に連続するリブで形成されたものを示す。これにより、接地圧が高くなる中央陸部4aの剛性を高め、操縦安定性及び直進時の安定性を高めるのに役立つ。また該リブには、実質的に排水性に関与しないサイピングSやタイヤ軸方向のラグ状の切り込み(図示せず)などを設けることができる。なお、この中央陸部4aのタイヤ軸方向の巾Lcが大きすぎると、タイヤ赤道付近の排水性が悪化する傾向があり、逆に小さすぎても中央陸部4aの剛性が著しく低下し操縦安定性の低下やゴム欠けさらには偏摩耗などを招きやすくなる。このような観点より、中央陸部4aの巾Lcは、例えばトレッド接地巾TWの10〜25%程度、より好ましくは15〜20%程度とするのが望ましい。
【0019】
また前記中間陸部4b、4bには、タイヤ周方向に対して10〜45度の角度θでかつ向きを反転することなく傾斜してのびる傾斜溝5がタイヤ周方向に隔設される。本例では前述のように非方向性パターンとしているため、図1においてタイヤ赤道Cの右側に配された傾斜溝5は、タイヤ軸方向外側に向かって右上がりにのび、他方、タイヤ赤道Cの左側に形成された傾斜溝5は、タイヤ軸方向外側に向かって左下がりにのびるものが例示される。
【0020】
該傾斜溝5は、中央の縦溝3aとの間にタイヤ軸方向の小距離Aを隔てる内端5iを有し、この内端5iからタイヤ軸方向外側へとのび外の縦溝3bに連通している。このように、タイヤ周方向に対して比較的小さな角度で傾いてのびる傾斜溝5は、トレッド面2と路面との間に存在する水膜をタイヤの回転に伴って順次タイヤ軸方向の外側、又は内側へと効率良く導き排出させることができる。
【0021】
具体的には、図2に示すタイヤ赤道Cの右側に設けられた傾斜溝5は、タイヤの回転Rに伴って、その内端5i側から外端5o側へと順次路面と接地する。これにより、傾斜溝5は矢印F1で示す如く、タイヤ赤道C側の水膜を効果的に外の縦溝3b(タイヤ軸方向外側)へ導いて排出しうる。ここで、傾斜溝5の前記角度θが45度よりも大になると、このような排水の流れに大きな抵抗力が作用し易く好ましくない。逆に10度未満では、中間陸部4bの剛性が低下しやすく操縦安定性を悪化させるおそれがある。
【0022】
また図3に示すタイヤ赤道Cの左側に設けられた傾斜溝5は、タイヤの回転Rに伴って、そのタイヤ軸方向の外端5o側から内端5i側へと順次路面と接地する。これにより、この傾斜溝5では矢印F3で示す如く、ショルダ部側の水膜を中央の縦溝3a側へと導いて排出しうる。なお傾斜溝5の内端5iは、中央の縦溝3aとは連通していないが、中央の縦溝3aとの間を小距離Aとすることにより、実質的に中央の縦溝3aを利用して排水の多くを排出できる。ここで、傾斜溝5の内端5iを中央の縦溝3aに連通させることも考えられるが、このような態様では中間陸部4bに、傾斜溝5の内端5iと中央の縦溝3aとで挟まれる剛性の小さな鋭角な陸部が形成され、該中間陸部4bの剛性を低下させ、ひいては操縦安定性の悪化を招くため好ましくない。逆に小距離Aが大きすぎても、トレッド中央部での水膜排出効果が低下しやすくなる。このような観点より、前記小距離Aは、好ましくは中央の縦溝3aの溝巾Wiの10〜40%、より好適には15〜30%とするのが望ましい。
【0023】
本例の傾斜溝5は、タイヤ軸方向内側からタイヤ軸方向外側に向かって前記角度θが漸増する態様を例示している。これにより傾斜溝5の内端5i側では前記角度θを小にでき、タイヤ赤道付近の水膜が傾斜溝5へ流入する際の初期抵抗を減じ、効率良く傾斜溝5へと水を流入させうるととともに、傾斜溝5の角度を滑らかに増すことによって、急激な抵抗を与えることなく排水を外の縦溝3bへ導くのに役立つ。この場合、前記角度θは、傾斜溝5のいずれの位置においても10〜45度、より好ましくは15〜45度の角度を満たすものとし、また前記角度θは、図2に拡大して示すように、傾斜溝5の溝巾の中間線5Cにおいて測定し、該角度θが変化するときには前記中間線5Cに対する接線の傾きにより特定しうる。
【0024】
このような傾斜溝5は、中間陸部4bの剛性を確保しつつ排水性を高めるために、例えば図1に示すようにタイヤ周方向の隔設ピッチNiが傾斜溝5のタイヤ周方向の長さMの0.6〜0.8倍、より好ましくは0.65〜0.75倍とするのが望ましい。
【0025】
また傾斜溝5の溝巾ないし溝深さは、特に限定はされないが、いずれも小さすぎると、十分な排水能力が得られず、逆に大きすぎても中間陸部4bの剛性を低下させ操縦安定性を損ねる傾向がある。このような観点より、該傾斜溝5の溝巾は、例えば2mm以上、より好ましくは4mm以上、さらに好ましくは4〜7mm程度とするのが望ましく、溝深さは3mm以上、より好ましくは5mm以上とし、さらに好ましくは6〜8mmとするのが望ましい。なお溝巾が変化するときには、前記平均の溝巾が上述の範囲に含まれるのが望ましく、とりわけ傾斜溝5の溝巾を本例のように内端5iから外端5o側に向かって漸増させるのが効果的である。
【0026】
また本発明では、前記中間陸部5bに補助溝6を設けている。該補助溝6は、前記傾斜溝5の両端部分(即ち、内端5i、外端5o)を除いた中間部分5P(図2に示す)から該傾斜溝5とは逆向きに傾斜してタイヤ軸方向外側にのびしかも前記外の縦溝3b又はタイヤ周方向に隣り合う他の傾斜溝5に連通して形成される。なお補助溝6は、各傾斜溝5にそれぞれ1本づつ設けられたものを示す。
【0027】
このような補助溝6は、図2に示した右側の中間陸部4bにおいては、タイヤの回転Rに伴い、タイヤ軸方向の外端6o側から内端6i側へと順次路面と接地する。これにより、矢印F2で示すように、外の縦溝3b付近の水膜を傾斜溝5の中間部分へと導き、外の縦溝3bから排出しうる。また図3に示した左側の中間陸部4bにおいては、補助溝6は、タイヤの回転Rに伴い、タイヤ軸方向の内端6i側から外端6o側へと順次路面と接地する。これにより、矢印F4で示すように、タイヤ赤道側の水膜を外の縦溝3bへと導いて排出しうる。またこのとき、傾斜溝5を矢印F3の向きに流れる排水の一部は、補助溝6側へ流れ込み、外の縦溝3b側へと導くことができる。従って、非方向性パターンにおいて、両側の中間陸部4bにタイヤ軸方向外側への排水の流れを形成でき、トレッド中央部での排水性の悪化を防いでより一層排水性能を向上させることができる。
【0028】
補助溝6の外端6oは、外の縦溝3bに連通しても良く、またタイヤ周方向で隣り合う他の傾斜溝5に連通しても良い。後者の場合、できるだけ傾斜溝5の外端5oの近傍に連通させるのが良い。さらには補助溝6の外端6oを、外の縦溝3bと前記他の傾斜溝とが連通する連通部に接続することもでき、本例ではこの態様が例示される。
【0029】
補助溝6の溝巾ないし溝深さも特に限定はされないが、いずれも小さすぎると、十分な排水能力が得られず、逆に大きすぎても中間陸部4bの剛性を低下させ操縦安定性を損ねる傾向がある。このような観点より、該補助溝6の溝巾は、例えば2mm以上、より好ましくは4mm以上、さらに好ましくは4〜7mm程度とするのが望ましく、溝深さは例えば2mm以上、より好ましくは3mm以上、さらに好ましくは4〜6mm程度とするのが望ましい。なお溝巾が変化するときには、前記平均の溝巾が上述の範囲に含まれるのが望ましく、とりわけ傾斜溝5の溝巾を内端5iから外端5o側に向かって漸増させるのが効果的である。
【0030】
また上述の作用をより効果的に達成するために、前記補助溝6のタイヤ周方向に対する角度δ(図2に示す)は、例えば20〜70度、より好ましくは40〜60度とするのが望ましい。該角度δが20度未満になると、傾斜溝5との間に先鋭な陸部を形成するため、中間陸部4bの陸部剛性を不均一化しかつ低下させやすく、逆に70度を超えると、排水性能が低下する傾向がある。なおこの角度δは一定としても良く、またタイヤ軸方向外側に向かって漸減ないし漸増(本例では漸増)するように構成することもできる。
【0031】
また前記補助溝6が連通する傾斜溝5の中間部分5P(各溝の中間縁の交点として定める。)は、特に限定はされないが、好ましくは図2に示す如く、外の縦溝3bのタイヤ軸方向内側の溝縁3beから中間陸部4bのタイヤ軸方向の巾Lmの0.3〜0.7倍の距離Lpをタイヤ軸方向内側に隔てる位置に設けるのが望ましい。前記距離Lpが中間陸部4bの巾Lmの0.3倍未満になると、補助溝6の長さが小さくなり、排水能力が低下しやすく、逆に0.7倍を超えるときには、排水能力は向上しうるが補助溝6の長さが大となり、その結果、中間陸部4bの剛性低下を招きやすく、偏摩耗を招来したり、操縦安定性を悪化させる傾向がある。特に好ましくは、前記距離Lpを中間陸部4bの巾Lmの40〜60%とすることが望ましい。ここで、中間陸部4bの前記巾Lmは、小さすぎると操縦安定性が悪化する傾向があり、大きすぎても他の陸部とのバランスを損ね偏摩耗等を招き易くなる。このような観点より、中間陸部4bの巾Lmは、例えばトレッド接地巾TWの20〜40%、より好ましくは25〜35%とするのが望ましい。
【0032】
さらに、本実施形態の中間陸部4bは、図2に示すように、傾斜溝5のタイヤ軸方向外側の溝壁8と、補助溝6のタイヤ軸方向外側の溝壁7とが交わる第1のコーナ部9を円弧状に丸めた面取り部10として形成したものを例示している。このような面取り部9によって、図2の部分では補助溝6から傾斜溝5への排水の合流、並びに図3の部分では傾斜溝6から補助溝6への排水の合流をより円滑に行わせることができる。従って、さらにウエット性能を向上させ得る。面取り部10の曲率半径rは、例えば10〜30mm程度が好適である。
【0033】
なお傾斜溝5のタイヤ軸方向外側の溝壁8と、前記補助溝6のタイヤ軸方向内側の溝壁11とが交わる第2のコーナ部12は、好ましくは面取りを施さず鋭のままとした非面取り部13とすることが望ましい。これは、図2の部分では、傾斜溝5の内端5iから外端5oに向かう流水の一部が補助溝6側へと逆流するのを防ぐとともに、図3の部分では、補助溝6側へと排水を導くのに役立つ。
【0034】
また本実施形態では、前記外の陸部4cに、一端が外の縦溝3bに連通しかつ他端がトレッド接地端Eで開口する横溝14と、この横溝14、14間に設けられかつトレッド接地端Eからタイヤ軸方向内側にのびて前記外の縦溝3bに連通することなく終端するラグ状溝15とが設けられる。これにより、外の陸部4cにおいて、トレッド接地端E及び外の縦溝3bを利用して効果的な排水効果が得られる。また外の陸部4cのタイヤ軸方向の巾Loは、本例では他の陸部に比べて最も大としており、Lo>Lm>Lcに設定される。この巾Loは、例えばトレッド接地巾TWの20〜40%程度が好適である。
【0035】
以上、本発明の実施形態について詳述したが、本発明は上記実施形態に限定されることなく種々の態様で実施することができる。例えば縦溝3a、3bをジグザグないし波状に屈曲させる態様や、図4に示すように傾斜溝5、補助溝6をタイヤ赤道Cを挟んでハ字状に配した方向性パターンとする態様、トレッド面2に適宜サイピングを付設する態様など種々の実施態様を含む。
【0036】
【実施例】
タイヤサイズが195/65R15の乗用車用ラジアルタイヤを図1のパターンで試作するとともに、ウエット性能、乾燥路面における操縦安定性、耐偏摩耗性能をテストし評価を行った。また比較のために、図5に示したパターンを有する同サイズのタイヤ(従来例)についても併せて試験を行った。なお内部構造も実質的に同一としている。テストの方法は下記の要領で行った。
【0037】
<ウエット性能>
半径100mのアスファルト路面に、水深5mm、長さ20mの水たまりを設けたコース上を、速度を段階的に増加させながら供試タイヤを装着した車両(排気量2000cm3 、リム6J、内圧180kPa)を進入させ、横加速度(横G)を計測し、50〜80km/hの速度における前輪の平均横Gを算出した(ラテラル・ハイドロプレーニングテスト)。結果は、従来例を100とする指数で表示した。数値が大きい程良好である。
【0038】
<操縦安定性能>
上記車両にてタイヤテストコースのドライアスファルト路面上をテスト走行し、ハンドル応答性、剛性感、グリップ等に関する特性をドライバーの官能評価により比較例1を100とする指数で表示している。指数の大きい方が良好である。
【0039】
<耐偏摩耗性能>
上記車両にて高速道路、市街地、山岳路を合計8000km走行し、トレッド面の摩耗状況を目視により観察した。
テスト結果などを表1に示す。
【0040】
【表1】

Figure 2004017863
【0041】
テストの結果、実施例のものは、ウエット性能、操縦安定性能、耐偏摩耗性能をバランス良く向上していることが確認できた。
【0042】
【発明の効果】
以上説明したように、本発明の空気入りタイヤは、偏摩耗や乾燥路面での操縦安定性を損ねることなく耐ハイドロプレニング性能を向上しうる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示すトレッド部の展開図である。
【図2】その右半分を拡大して示す右半分拡大図である。
【図3】図1の左半分を拡大して示す右半分拡大図である。
【図4】本発明の他の実施形態を示すトレッド部の展開図である。
【図5】従来のトレッド部の展開図である。
【符号の説明】
2 トレッド面
3a 中央の縦溝
3b 外の縦溝
4a 中央陸部
4b 中間陸部
4c 外の陸部
5 傾斜溝
5i 傾斜溝の内端
5o 傾斜溝の外端
5P 傾斜溝の中間部
6 補助溝
6i 補助溝の内端
6i 補助溝の外端[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pneumatic tire capable of improving wet performance.
[0002]
Problems to be solved by the prior art and the invention
In the case of pneumatic tires, especially pneumatic radial tires for passenger cars, as shown in FIG. 5, a relatively small angle with respect to the tire circumferential direction is used to break the water film on the road surface and enhance its removal effect. For example, an inclined groove a inclined at about 10 to 45 degrees is provided. The inclined grooves a are arranged symmetrically with respect to an arbitrary point on the tire equator C, for example, and formed as a non-directional pattern so that the mounting direction to the vehicle is not limited.
[0003]
In such a pneumatic tire, when the rotation direction R is as shown in the figure, the inclined groove a1 arranged on the right side of the tire equator C in FIG. The water film at the center can be effectively discharged outward in the tire axial direction. However, in the inclined groove a2 provided on the left side of the tire equator C, since the ground contact is started from the outer end c in the tire axial direction, the water film on the road surface is easily guided to the tread center portion side, contrary to the above. As described above, when the inclined groove having a relatively steep inclination is used for the non-directional pattern, it is not possible to sufficiently improve the drainage efficiency on one side of the tire equator.
[0004]
The present invention has been devised in view of the above-described problems, and has an inclined groove extending at an angle θ of 10 to 45 degrees with respect to the tire circumferential direction and inclined without reversing the direction. In addition, the drainage performance is further improved, especially in a non-directional pattern, based on providing an auxiliary groove communicating with the intermediate portion of the inclined groove and extending in a direction opposite to the inclined groove outward in the tire axial direction. It is an object of the present invention to provide a pneumatic tire.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention is characterized in that, on the tread surface, a central longitudinal groove consisting of one extending on the tire equator or two extending on both sides of the tire equator in the tire circumferential direction, By providing an outer vertical groove extending in the tire circumferential direction on both sides, a pneumatic tire having an intermediate land portion defined between the central vertical groove and the outer vertical groove, , At an angle θ of 10 to 45 degrees with respect to the tire circumferential direction and at an angle θ with respect to the tire circumferential direction from the inner end separating from the center longitudinal groove by a small distance A in the tire axial direction, and extending outward without inversion. The inclined groove communicating with the vertical groove is spaced, and the inclined groove extends in the tire axial direction outward from an intermediate portion excluding both end portions of the inclined groove in a direction opposite to the inclined groove, and the outer vertical groove or the tire. Provision of an auxiliary groove communicating with another inclined groove adjacent in the circumferential direction It is characterized.
[0006]
The invention according to claim 2 is characterized in that the central vertical groove has a groove width Wi that is larger than 1.0 times and 2.5 times or less the groove width Wo of the outer vertical groove. The pneumatic tire according to claim 1, wherein
[0007]
According to a third aspect of the present invention, the auxiliary groove has a distance Lp that is 0.3 to 0.7 times a width Lm of the intermediate land portion in the tire axial direction from a groove edge of the outer vertical groove in the tire axial direction. The pneumatic tire according to claim 1, wherein the tire communicates with the inclined groove at a position separated inward.
[0008]
The invention according to claim 4 is the pneumatic tire according to any one of claims 1 to 3, wherein the small distance A is 10 to 40% of a width of the central vertical groove. is there.
[0009]
According to a fifth aspect of the present invention, in the intermediate land portion, the first corner portion where the groove wall on the tire axial direction outside of the inclined groove and the groove wall on the tire axial direction outside of the auxiliary groove intersects is formed in an arc shape. In addition to the rounded chamfered portion, the second corner portion where the groove wall on the tire axial direction outer side of the inclined groove and the groove wall on the tire axial direction inner side of the auxiliary groove intersect was a sharp non-chamfered portion. The pneumatic tire according to any one of claims 1 to 4, wherein:
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings, taking a pneumatic radial tire for a passenger car as an example. FIG. 1 is a tread surface developed view in which a tread surface 2 of a pneumatic tire (not shown in the entirety) of the present embodiment is developed, FIG. 2 is a right half enlarged view showing an enlarged right half thereof, and FIG. Each of the left half enlarged views shown in an enlarged manner is shown.
[0011]
In the figure, a tread surface 2 has two central longitudinal grooves 3a and 3a extending in the tire circumferential direction on both sides of a tire equator C, and outer vertical grooves extending in the tire circumferential direction on both sides of the central longitudinal groove 3a. Grooves 3b, 3b are provided. The central vertical grooves 3a, 3a and the outer vertical grooves 3b, 3b are illustrated, for example, as being substantially symmetrical with respect to the tire equator C. Note that the central longitudinal groove 3a may be constituted by one extending on the tire equator C instead of the form in which two are provided. Further, in the present embodiment, when a pitch change such as a pitch variation is ignored, the left and right tread surfaces defined by the tire equator C are substantially point-symmetric with respect to a point on the tire equator. The example formed by the tread pattern is illustrated. Such a tire can be used without specifying the orientation (in other words, the rotation direction) when mounted on the vehicle, which is useful for facilitating mounting.
[0012]
In the present embodiment, both the central vertical groove 3a and the outer vertical groove 3b extend linearly in the tire circumferential direction. The groove widths Wi and Wo of the central longitudinal groove 3a and the outer longitudinal groove 3b (the groove width is the opening width on the tread surface 2 and the same applies hereinafter) are not particularly limited, but are taken into consideration in view of drainage. For example, it is desirable to set to about 2 to 7% of the tread contact width TW, more preferably about 2 to 5%. In this embodiment, the width Wi of the central vertical groove 3a is larger than the width Wo of the outer vertical groove. Thereby, the drainage effect in the vicinity of the tire equator C where drainage is poor can be further enhanced.
[0013]
Particularly preferably, the groove width Wi of the central vertical groove 3a is larger than 1.0 times and 2.5 times or less, more preferably 1.5 to 2.0 times, the groove width Wo of the outer vertical groove 3b. In this case, it is particularly preferable that the groove width Wi of the central vertical groove 3a is set to 5.0 to 8.0 mm. This is effective in preventing a decrease in rigidity at the time of turning while improving drainage at the center of the tread.
[0014]
The tread contact width TW is the distance between the tread contact ends E and E in the tire axial direction when the tire is rim-assembled on a regular rim, filled with a regular internal pressure, and a regular load is applied to make contact with a flat surface. I do. The "regular rim" is a rim defined for each tire in a standard system including the standard on which the tire is based. For example, a standard rim for JATMA, a "Design Rim" for TRA, or an ETRTO In that case, “Measuring Rim” is set.
[0015]
The "normal internal pressure" is the air pressure defined for each tire in the standard system including the standard on which the tire is based. For JATMA, the maximum air pressure is used. For TRA, the table "TIRE LOAD LIMITS" is used. The maximum value described in AT VARIOUS COLD INFLATION PRESSURES ”is set to“ INFLASION PRESSURE ”for ETRTO, but is set to 180 KPa when the tire is for a passenger car. Further, the "regular load" is a load defined for each tire in the standard system including the standard on which the tire is based. The maximum load capacity is JATMA, and the table "TIRE LOAD LIMITS" for TRA. The maximum value described in AT VARIOUS COLD INFLATION PRESSURES ”is“ LOAD CAPACITY ”for ETRTO, but when the tire is for a passenger car, the value is 0.88 times the value.
[0016]
Also, if the depth of each of the longitudinal grooves 3a, 3b is too small, a sufficient drainage amount is difficult to secure, and the drainage performance is apt to be deteriorated. . From such a viewpoint, the groove depth of the central vertical groove 3a and the outer vertical groove 3b is not particularly limited, but is, for example, 6.0 to 10.0 mm, and more preferably 7.0 to 9.0 mm. It is desirable to be about.
[0017]
In the pneumatic tire of the present embodiment, by providing the central longitudinal groove 3a and the outer longitudinal groove 3b, the tread surface 2 has a central land portion 4a formed between the central longitudinal grooves 3a, 3a; An intermediate land portion 4b formed between the central vertical groove 3a and the outer vertical groove 3b, and an outer land portion 4c formed between the outer vertical groove 3b and the tread grounding end E are respectively defined. are doing.
[0018]
In this example, the central land portion 4a is formed of a rib that is substantially continuous in the tire circumferential direction. As a result, the rigidity of the central land portion 4a at which the contact pressure becomes high is increased, which is useful for improving the steering stability and the stability when traveling straight. In addition, the rib may be provided with a siping S or a lug-shaped notch (not shown) in the tire axial direction that does not substantially contribute to drainage. If the width Lc of the central land portion 4a in the axial direction of the tire is too large, the drainage property in the vicinity of the tire equator tends to be deteriorated. It is easy to cause deterioration of properties, chipping of rubber, and uneven wear. From such a viewpoint, the width Lc of the central land portion 4a is, for example, preferably about 10 to 25%, more preferably about 15 to 20% of the tread contact width TW.
[0019]
Also, in the intermediate land portions 4b, 4b, inclined grooves 5 extending at an angle θ of 10 to 45 degrees with respect to the tire circumferential direction and inclining without reversing the direction are spaced apart in the tire circumferential direction. In this example, as described above, since the non-directional pattern is used, the inclined groove 5 arranged on the right side of the tire equator C in FIG. 1 extends rightward outward in the tire axial direction. The inclined groove 5 formed on the left side is, for example, one extending downward and left toward the outside in the tire axial direction.
[0020]
The inclined groove 5 has an inner end 5i separated from the central longitudinal groove 3a by a small distance A in the tire axial direction, and communicates with the outer longitudinal groove 3b extending outward from the inner end 5i in the tire axial direction. are doing. As described above, the inclined groove 5 extending at a relatively small angle with respect to the tire circumferential direction causes the water film existing between the tread surface 2 and the road surface to sequentially move outward with respect to the tire axial direction as the tire rotates. Alternatively, it can be efficiently guided to the inside and discharged.
[0021]
Specifically, the inclined groove 5 provided on the right side of the tire equator C shown in FIG. 2 sequentially contacts the road surface from the inner end 5i side to the outer end 5o side with the rotation R of the tire. Thereby, as shown by the arrow F1, the inclined groove 5 can effectively guide the water film on the tire equator C side to the outer longitudinal groove 3b (outside in the tire axial direction) and discharge it. Here, if the angle θ of the inclined groove 5 is larger than 45 degrees, a large resistance force easily acts on such a flow of drainage, which is not preferable. Conversely, if it is less than 10 degrees, the rigidity of the intermediate land portion 4b tends to decrease, and there is a possibility that the steering stability may deteriorate.
[0022]
In addition, the inclined groove 5 provided on the left side of the tire equator C shown in FIG. 3 sequentially contacts the road surface from the outer end 5o side to the inner end 5i side in the tire axial direction with the rotation R of the tire. Thereby, as shown by the arrow F3, the water film on the shoulder side can be guided to the central vertical groove 3a side and discharged from the inclined groove 5 as shown by the arrow F3. Although the inner end 5i of the inclined groove 5 is not communicated with the central vertical groove 3a, the central vertical groove 3a is substantially utilized by setting a small distance A between the central vertical groove 3a. To drain much of the wastewater. Here, it is conceivable that the inner end 5i of the inclined groove 5 communicates with the central vertical groove 3a, but in such a mode, the inner end 5i of the inclined groove 5 and the central vertical groove 3a are connected to the intermediate land portion 4b. Thus, an acute land portion having a small rigidity is formed, which is not preferable because the rigidity of the intermediate land portion 4b is reduced and the steering stability is deteriorated. Conversely, if the small distance A is too large, the effect of discharging the water film at the center of the tread tends to decrease. From such a viewpoint, the small distance A is preferably set to 10 to 40%, more preferably 15 to 30% of the groove width Wi of the central vertical groove 3a.
[0023]
The inclined groove 5 of this example illustrates a mode in which the angle θ gradually increases from the inside in the tire axial direction to the outside in the tire axial direction. Thereby, the angle θ can be reduced on the inner end 5i side of the inclined groove 5, the initial resistance when the water film near the tire equator flows into the inclined groove 5 is reduced, and water flows into the inclined groove 5 efficiently. As well as increasing the angle of the inclined groove 5 smoothly, it helps to guide the drainage to the outer vertical groove 3b without giving a sudden resistance. In this case, the angle θ satisfies the angle of 10 to 45 degrees, more preferably 15 to 45 degrees at any position of the inclined groove 5, and the angle θ is enlarged as shown in FIG. In addition, when the angle θ changes at the intermediate line 5C of the groove width of the inclined groove 5, it can be specified by the inclination of the tangent to the intermediate line 5C.
[0024]
In order to increase the drainage while securing the rigidity of the intermediate land portion 4b, such an inclined groove 5 is, for example, as shown in FIG. It is desirable to set the height M to 0.6 to 0.8 times, more preferably 0.65 to 0.75 times.
[0025]
Further, the groove width or groove depth of the inclined groove 5 is not particularly limited, but if both are too small, a sufficient drainage capacity cannot be obtained, and if too large, the rigidity of the intermediate land portion 4b is reduced and the steering is performed. Tends to impair stability. From such a viewpoint, the groove width of the inclined groove 5 is, for example, preferably 2 mm or more, more preferably 4 mm or more, and still more preferably about 4 to 7 mm, and the groove depth is 3 mm or more, more preferably 5 mm or more. It is more desirable to set it to 6 to 8 mm. When the groove width changes, the average groove width is desirably included in the above-mentioned range. In particular, the groove width of the inclined groove 5 is gradually increased from the inner end 5i to the outer end 5o as in this example. Is effective.
[0026]
In the present invention, an auxiliary groove 6 is provided in the intermediate land portion 5b. The auxiliary groove 6 is inclined in a direction opposite to the inclined groove 5 from an intermediate portion 5P (shown in FIG. 2) excluding both end portions of the inclined groove 5 (that is, the inner end 5i and the outer end 5o). It is formed so as to extend outward in the axial direction and communicate with the outer vertical groove 3b or another inclined groove 5 adjacent in the tire circumferential direction. The auxiliary grooves 6 are provided one by one in each of the inclined grooves 5.
[0027]
In the intermediate land portion 4b on the right side shown in FIG. 2, the auxiliary groove 6 sequentially contacts the road surface from the outer end 6o side to the inner end 6i side in the tire axial direction with the rotation R of the tire. Thereby, as shown by the arrow F2, the water film near the outer vertical groove 3b can be guided to the intermediate portion of the inclined groove 5, and can be discharged from the outer vertical groove 3b. In addition, in the intermediate land portion 4b on the left side shown in FIG. 3, the auxiliary groove 6 comes into contact with the road surface sequentially from the inner end 6i side to the outer end 6o side in the tire axial direction with the rotation R of the tire. Thereby, as shown by the arrow F4, the water film on the tire equator side can be guided to the outer vertical groove 3b and discharged. At this time, part of the drainage flowing in the inclined groove 5 in the direction of the arrow F3 flows into the auxiliary groove 6 and can be guided to the outer vertical groove 3b. Therefore, in the non-directional pattern, the flow of drainage to the outside in the tire axial direction can be formed in the intermediate land portions 4b on both sides, and the drainage performance can be further improved by preventing deterioration of drainage at the center of the tread. .
[0028]
The outer end 6o of the auxiliary groove 6 may communicate with the outer vertical groove 3b, or may communicate with another inclined groove 5 adjacent in the tire circumferential direction. In the latter case, it is preferable to communicate with the vicinity of the outer end 5o of the inclined groove 5 as much as possible. Further, the outer end 6o of the auxiliary groove 6 can be connected to a communicating portion where the outer vertical groove 3b and the other inclined groove communicate with each other. This embodiment is exemplified in this embodiment.
[0029]
The groove width or groove depth of the auxiliary groove 6 is not particularly limited. However, if both are too small, sufficient drainage capacity cannot be obtained, and if too large, the rigidity of the intermediate land portion 4b is reduced and the steering stability is reduced. Tend to spoil. From such a viewpoint, the groove width of the auxiliary groove 6 is, for example, preferably 2 mm or more, more preferably 4 mm or more, and further preferably about 4 to 7 mm, and the groove depth is, for example, 2 mm or more, more preferably 3 mm. As described above, it is more preferable to set the thickness to about 4 to 6 mm. When the groove width changes, the average groove width is desirably included in the above-described range. In particular, it is effective to gradually increase the groove width of the inclined groove 5 from the inner end 5i to the outer end 5o. is there.
[0030]
In order to more effectively achieve the above-described operation, the angle δ (shown in FIG. 2) of the auxiliary groove 6 with respect to the tire circumferential direction is, for example, 20 to 70 degrees, and more preferably 40 to 60 degrees. desirable. When the angle δ is less than 20 degrees, a sharp land portion is formed between the inclined groove 5 and the land portion rigidity of the intermediate land portion 4b is easily made nonuniform and easily reduced. , Drainage performance tends to decrease. The angle δ may be constant, or may be configured to gradually decrease or increase (in this example, gradually increase) outward in the tire axial direction.
[0031]
The intermediate portion 5P of the inclined groove 5 to which the auxiliary groove 6 communicates (defined as the intersection of the intermediate edges of the respective grooves) is not particularly limited, but preferably, as shown in FIG. 2, the tire of the outer vertical groove 3b. It is desirable to provide a distance Lp 0.3 to 0.7 times the width Lm of the intermediate land portion 4b in the tire axial direction from the groove edge 3be on the inner side in the axial direction at a position separated inward in the tire axial direction. When the distance Lp is less than 0.3 times the width Lm of the intermediate land portion 4b, the length of the auxiliary groove 6 is reduced, and the drainage capacity tends to decrease. Although the length of the auxiliary groove 6 can be improved, the length of the auxiliary groove 6 becomes large, and as a result, the rigidity of the intermediate land portion 4b tends to be reduced, which tends to cause uneven wear and deteriorate the steering stability. Particularly preferably, the distance Lp is desirably 40 to 60% of the width Lm of the intermediate land portion 4b. Here, if the width Lm of the intermediate land portion 4b is too small, the steering stability tends to deteriorate. If the width Lm is too large, the balance with other land portions is impaired, and uneven wear and the like are liable to occur. From such a viewpoint, it is desirable that the width Lm of the intermediate land portion 4b be, for example, 20 to 40%, more preferably 25 to 35% of the tread contact width TW.
[0032]
Further, as shown in FIG. 2, the intermediate land portion 4 b of the present embodiment has a first groove wall 8 on the outer side in the tire axial direction of the inclined groove 5 and a first groove wall 7 on the outer side in the tire axial direction of the auxiliary groove 6. Is formed as a chamfered part 10 which is formed by rounding the corner part 9 in an arc shape. By such a chamfered portion 9, the drainage from the auxiliary groove 6 to the inclined groove 5 in the portion of FIG. 2 and the drainage from the inclined groove 6 to the auxiliary groove 6 in the portion of FIG. be able to. Therefore, the wet performance can be further improved. The radius of curvature r of the chamfered portion 10 is preferably, for example, about 10 to 30 mm.
[0033]
The second corner portion 12 where the groove wall 8 on the outer side in the tire axial direction of the inclined groove 5 and the groove wall 11 on the inner side in the tire axial direction of the auxiliary groove 6 intersect preferably remains sharp without chamfering. Desirably, the non-chamfered portion 13 is used. This prevents a part of the flowing water flowing from the inner end 5i to the outer end 5o of the inclined groove 5 from flowing backward to the auxiliary groove 6 in the portion of FIG. 2, and the auxiliary groove 6 in the portion of FIG. Help guide the drainage to
[0034]
In the present embodiment, a lateral groove 14 having one end communicating with the outer vertical groove 3b and the other end opening at the tread grounding end E is provided in the outer land portion 4c. A lug-shaped groove 15 extending from the ground contact end E to the inside in the tire axial direction and terminating without communicating with the outer vertical groove 3b is provided. Thereby, in the outer land part 4c, an effective drainage effect can be obtained by using the tread ground contact end E and the outer vertical groove 3b. Further, the width Lo of the outer land portion 4c in the tire axial direction is the largest in this example as compared with other land portions, and is set to Lo>Lm> Lc. The width Lo is preferably, for example, about 20 to 40% of the tread contact width TW.
[0035]
As described above, the embodiments of the present invention have been described in detail. However, the present invention can be implemented in various modes without being limited to the above embodiments. For example, a mode in which the vertical grooves 3a and 3b are bent in a zigzag or wavy shape, a mode in which the inclined grooves 5 and the auxiliary grooves 6 are arranged in a C-shape with the tire equator C interposed therebetween as shown in FIG. It includes various embodiments such as a mode in which a siping is appropriately attached to the surface 2.
[0036]
【Example】
A radial tire for a passenger car having a tire size of 195 / 65R15 was prototyped with the pattern shown in FIG. 1, and wet performance, steering stability on a dry road surface, and uneven wear resistance were tested and evaluated. For comparison, a test was also performed on a tire of the same size (conventional example) having the pattern shown in FIG. The internal structure is also substantially the same. The test was performed in the following manner.
[0037]
<Wet performance>
A vehicle (displacement: 2000 cm 3 , rim 6J, internal pressure: 180 kPa) equipped with test tires on a course provided with a puddle having a depth of 5 mm and a length of 20 m on an asphalt road surface having a radius of 100 m and increasing the speed in a stepwise manner. The vehicle was entered, the lateral acceleration (lateral G) was measured, and the average lateral G of the front wheels at a speed of 50 to 80 km / h was calculated (lateral hydroplaning test). The results were indicated by an index with the conventional example taken as 100. The higher the value, the better.
[0038]
<Driving stability>
The vehicle was tested on a dry asphalt road surface of a tire test course, and characteristics relating to steering wheel responsiveness, rigidity, grip, and the like were indicated by an index with Comparative Example 1 being 100 based on sensory evaluation of the driver. The larger the index, the better.
[0039]
<Partial wear resistance>
The above-mentioned vehicle traveled a total of 8000 km on a highway, an urban area, and a mountain road, and the state of wear on the tread surface was visually observed.
Table 1 shows the test results and the like.
[0040]
[Table 1]
Figure 2004017863
[0041]
As a result of the test, it was confirmed that in the example, the wet performance, the steering stability performance, and the uneven wear resistance were improved in a well-balanced manner.
[0042]
【The invention's effect】
As described above, the pneumatic tire of the present invention can improve hydroplaning resistance without uneven wear or impairing steering stability on a dry road surface.
[Brief description of the drawings]
FIG. 1 is a development view of a tread portion showing one embodiment of the present invention.
FIG. 2 is a right half enlarged view showing a right half thereof in an enlarged manner.
FIG. 3 is a right half enlarged view showing a left half of FIG. 1 in an enlarged manner.
FIG. 4 is a development view of a tread portion showing another embodiment of the present invention.
FIG. 5 is a development view of a conventional tread portion.
[Explanation of symbols]
2 Tread surface 3a Central longitudinal groove 3b Vertical longitudinal groove 4a Central land portion 4b Intermediate land portion 4c Land portion outside 5 Inclined groove 5i Inner end 5c of inclined groove Outer end 5P of inclined groove Intermediate portion 6 of inclined groove Auxiliary groove 6i Inner end of auxiliary groove 6i Outer end of auxiliary groove

Claims (5)

トレッド面に、タイヤ赤道上をのびる1本又はタイヤ赤道の両側をタイヤ周方向にのびる2本からなる中央の縦溝と、この中央の縦溝の両側でタイヤ周方向にのびる外の縦溝とを設けることにより、前記中央の縦溝と前記外の縦溝との間に中間陸部を区画した空気入りタイヤであって、
前記中間陸部に、前記中央の縦溝との間にタイヤ軸方向の小距離Aを隔てる内端からタイヤ周方向に対して10〜45度の角度θでかつ向きを反転することなく傾斜してのび前記外の縦溝に連通する傾斜溝を隔設するとともに、
この傾斜溝の両端部分を除いた中間部分から該傾斜溝とは逆向きに傾斜してタイヤ軸方向外側にのびしかも前記外の縦溝又はタイヤ周方向に隣り合う他の傾斜溝に連通する補助溝を設けたことを特徴とする空気入りタイヤ。
On the tread surface, a central longitudinal groove consisting of one extending on the tire equator or two extending in the tire circumferential direction on both sides of the tire equator, and an outer longitudinal groove extending in the tire circumferential direction on both sides of the central longitudinal groove. By providing a pneumatic tire having a middle land portion defined between the central longitudinal groove and the outer longitudinal groove,
The intermediate land portion is inclined at an angle θ of 10 to 45 degrees with respect to the tire circumferential direction from the inner end separating a small distance A in the tire axial direction between the central longitudinal groove and the central longitudinal groove without reversing the direction. While extending the inclined groove communicating with the outer vertical groove,
Auxiliary for inclining in the opposite direction to the inclined groove from an intermediate portion excluding both end portions of the inclined groove, extending outward in the tire axial direction, and communicating with the outer vertical groove or another inclined groove adjacent in the tire circumferential direction. A pneumatic tire having a groove.
前記中央の縦溝は、その溝巾Wiが前記外の縦溝の溝巾Woの1.0倍よりも大かつ2.5倍以下であることを特徴とする請求項1記載の空気入りタイヤ。2. The pneumatic tire according to claim 1, wherein the central vertical groove has a groove width Wi that is larger than 1.0 times and 2.5 times or less a groove width Wo of the outer vertical groove. 3. . 前記補助溝は、前記外の縦溝の溝縁から前記中間陸部のタイヤ軸方向の巾Lmの0.3〜0.7倍の距離Lpをタイヤ軸方向内側に隔てる位置で前記傾斜溝に連通することを特徴とする請求項1又は2記載の空気入りタイヤ。The auxiliary groove is formed at the inclined groove at a position spaced apart from the groove edge of the outer vertical groove by 0.3 to 0.7 times the width Lm of the intermediate land portion in the tire axial direction inward in the tire axial direction. The pneumatic tire according to claim 1, wherein the pneumatic tire communicates with the pneumatic tire. 前記小距離Aは、前記中央の縦溝の溝巾の10〜40%であることを特徴とする請求項1乃至3のいずれかに記載の空気入りタイヤ。The pneumatic tire according to any one of claims 1 to 3, wherein the small distance A is 10 to 40% of a width of the central vertical groove. 前記中間陸部は、前記傾斜溝のタイヤ軸方向外側の溝壁と、前記補助溝のタイヤ軸方向外側の溝壁とが交わる第1のコーナ部を円弧状に丸めた面取り部とするとともに、前記傾斜溝のタイヤ軸方向外側の溝壁と、前記補助溝のタイヤ軸方向内側の溝壁とが交わる第2のコーナ部を鋭とした非面取り部としたことを特徴とする請求項1乃至4のいずれかに記載の空気入りタイヤ。The intermediate land portion is a chamfered portion formed by rounding a first corner portion where a groove wall on the tire axial direction outside of the inclined groove and a groove wall on the tire axial direction outside of the auxiliary groove intersects in an arc shape. The non-chamfered portion having a sharp second corner portion where a groove wall on the tire axial direction outside of the inclined groove and a groove wall on the tire axial direction inside of the auxiliary groove intersects with each other. 5. The pneumatic tire according to any one of 4.
JP2002177550A 2002-06-18 2002-06-18 Pneumatic tire Expired - Fee Related JP4122179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177550A JP4122179B2 (en) 2002-06-18 2002-06-18 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177550A JP4122179B2 (en) 2002-06-18 2002-06-18 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2004017863A true JP2004017863A (en) 2004-01-22
JP4122179B2 JP4122179B2 (en) 2008-07-23

Family

ID=31175553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177550A Expired - Fee Related JP4122179B2 (en) 2002-06-18 2002-06-18 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP4122179B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059560A1 (en) * 2004-11-30 2006-06-08 The Yokohama Rubber Co., Ltd. Pneumatic tire
WO2009034959A1 (en) * 2007-09-12 2009-03-19 Kabushiki Kaisha Bridgestone Pneumatic tire
US7631675B2 (en) 2008-01-15 2009-12-15 The Yokohama Rubber Co., Ltd. Pneumatic tire with tread having circumferential grooves and arcuate grooves
JP2010070094A (en) * 2008-09-19 2010-04-02 Bridgestone Corp Pneumatic tire
US7861755B2 (en) 2004-11-30 2011-01-04 The Yokohama Rubber Co., Ltd. Pneumatic tire with tread having middle rib, middle lateral grooves, assistant grooves and lateral narrow grooves
DE112009001452T5 (en) 2008-11-18 2011-04-21 The Yokohama Rubber Co., Ltd. tire
WO2011105281A1 (en) * 2010-02-26 2011-09-01 株式会社ブリヂストン Pneumatic tire
JP2011178213A (en) * 2010-02-26 2011-09-15 Bridgestone Corp Pneumatic tire
EP2463122A2 (en) 2010-12-09 2012-06-13 Sumitomo Rubber Industries, Ltd. Pneumatic tire
US20120273103A1 (en) * 2011-04-27 2012-11-01 Masahiro Ishida Pneumatic tire
KR101269114B1 (en) * 2012-12-27 2013-05-31 한국지질자원연구원 Geological survey device for remote control
JP2013116643A (en) * 2011-12-01 2013-06-13 Bridgestone Corp Pneumatic tire
JP2014218099A (en) * 2013-05-01 2014-11-20 株式会社ブリヂストン Pneumatic tire
JP2016078475A (en) * 2014-10-09 2016-05-16 東洋ゴム工業株式会社 Pneumatic tire
EP3702176A1 (en) * 2019-02-28 2020-09-02 Sumitomo Rubber Industries, Ltd. Tire
JP7409062B2 (en) 2019-02-28 2024-01-09 住友ゴム工業株式会社 tire

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1818189A1 (en) * 2004-11-30 2007-08-15 The Yokohama Rubber Co., Ltd. Pneumatic tire
EP1818189A4 (en) * 2004-11-30 2009-03-04 Yokohama Rubber Co Ltd Pneumatic tire
US7861755B2 (en) 2004-11-30 2011-01-04 The Yokohama Rubber Co., Ltd. Pneumatic tire with tread having middle rib, middle lateral grooves, assistant grooves and lateral narrow grooves
WO2006059560A1 (en) * 2004-11-30 2006-06-08 The Yokohama Rubber Co., Ltd. Pneumatic tire
US8789567B2 (en) 2007-09-12 2014-07-29 Kabushiki Kaisha Bridgestone Pneumatic tire
WO2009034959A1 (en) * 2007-09-12 2009-03-19 Kabushiki Kaisha Bridgestone Pneumatic tire
JP2009067173A (en) * 2007-09-12 2009-04-02 Bridgestone Corp Pneumatic tire
US7631675B2 (en) 2008-01-15 2009-12-15 The Yokohama Rubber Co., Ltd. Pneumatic tire with tread having circumferential grooves and arcuate grooves
JP2010070094A (en) * 2008-09-19 2010-04-02 Bridgestone Corp Pneumatic tire
DE112009001452B4 (en) * 2008-11-18 2015-05-28 The Yokohama Rubber Co., Ltd. tire
DE112009001452T5 (en) 2008-11-18 2011-04-21 The Yokohama Rubber Co., Ltd. tire
US8162015B2 (en) 2008-11-18 2012-04-24 The Yokohama Rubber Co., Ltd. Pneumatic tire having asymmetrical tread pattern
US9481210B2 (en) 2010-02-26 2016-11-01 Bridgestone Corporation Pneumatic tire
CN102770286A (en) * 2010-02-26 2012-11-07 株式会社普利司通 Pneumatic tire
EP2540526A1 (en) * 2010-02-26 2013-01-02 Bridgestone Corporation Pneumatic tire
WO2011105281A1 (en) * 2010-02-26 2011-09-01 株式会社ブリヂストン Pneumatic tire
JP2011178213A (en) * 2010-02-26 2011-09-15 Bridgestone Corp Pneumatic tire
EP2540526A4 (en) * 2010-02-26 2015-11-18 Bridgestone Corp Pneumatic tire
JP2012121491A (en) * 2010-12-09 2012-06-28 Sumitomo Rubber Ind Ltd Pneumatic tire
CN102529594A (en) * 2010-12-09 2012-07-04 住友橡胶工业株式会社 Pneumatic tire
KR101740739B1 (en) * 2010-12-09 2017-05-26 스미토모 고무 고교 가부시키가이샤 Pneumatic tire
EP2463122A3 (en) * 2010-12-09 2012-12-19 Sumitomo Rubber Industries, Ltd. Pneumatic tire
CN102529594B (en) * 2010-12-09 2015-07-08 住友橡胶工业株式会社 Pneumatic tire
US9242511B2 (en) 2010-12-09 2016-01-26 Sumitomo Rubber Industries, Ltd. Pneumatic tire with tread having pitch Pm > pitch Pc > pitch Ps
EP2463122A2 (en) 2010-12-09 2012-06-13 Sumitomo Rubber Industries, Ltd. Pneumatic tire
US8881782B2 (en) * 2011-04-27 2014-11-11 The Yokohama Rubber Co., Ltd. Pneumatic tire
US20120273103A1 (en) * 2011-04-27 2012-11-01 Masahiro Ishida Pneumatic tire
JP2013116643A (en) * 2011-12-01 2013-06-13 Bridgestone Corp Pneumatic tire
KR101269114B1 (en) * 2012-12-27 2013-05-31 한국지질자원연구원 Geological survey device for remote control
JP2014218099A (en) * 2013-05-01 2014-11-20 株式会社ブリヂストン Pneumatic tire
JP2016078475A (en) * 2014-10-09 2016-05-16 東洋ゴム工業株式会社 Pneumatic tire
EP3702176A1 (en) * 2019-02-28 2020-09-02 Sumitomo Rubber Industries, Ltd. Tire
CN111619290A (en) * 2019-02-28 2020-09-04 住友橡胶工业株式会社 Tyre for vehicle wheels
JP7409062B2 (en) 2019-02-28 2024-01-09 住友ゴム工業株式会社 tire
CN111619290B (en) * 2019-02-28 2024-03-22 住友橡胶工业株式会社 Tire with a tire body

Also Published As

Publication number Publication date
JP4122179B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
JP3367927B2 (en) Pneumatic tire
JP4015573B2 (en) Pneumatic tire
AU2013211447B2 (en) Pneumatic tyre
JP4369734B2 (en) Pneumatic tire
JP3678727B2 (en) Pneumatic tire
US9254719B2 (en) Pneumatic tire
JP4410453B2 (en) Pneumatic tire
CN110722934B (en) Vehicle tyre
KR101719836B1 (en) Pneumatic tire
CN108688411B (en) Pneumatic tire
AU2009230798A1 (en) Pneumatic tire with asymmetric tread pattern
CN107757260B (en) Tyre for vehicle wheels
JP4275283B2 (en) Pneumatic tire
JP3949939B2 (en) Pneumatic tire
JP2006224770A (en) Pneumatic tire
JPH0840018A (en) Asymmetrical type tread of tire
JP2009096220A (en) Pneumatic tire
JPH11245625A (en) Pneumatic tire
JP4316569B2 (en) Pneumatic tires for snowy and snowy roads
JP4122179B2 (en) Pneumatic tire
JP2004352023A (en) Pneumatic tire
JP2004352049A (en) Pneumatic tire
JP7163136B2 (en) pneumatic tire
JP4763260B2 (en) Pneumatic tire
JP2004338628A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080501

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees