JP2004014324A - Cooling water circulation/feed system for fuel cell - Google Patents

Cooling water circulation/feed system for fuel cell Download PDF

Info

Publication number
JP2004014324A
JP2004014324A JP2002166949A JP2002166949A JP2004014324A JP 2004014324 A JP2004014324 A JP 2004014324A JP 2002166949 A JP2002166949 A JP 2002166949A JP 2002166949 A JP2002166949 A JP 2002166949A JP 2004014324 A JP2004014324 A JP 2004014324A
Authority
JP
Japan
Prior art keywords
cooling water
fuel cell
valve
ion exchanger
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002166949A
Other languages
Japanese (ja)
Other versions
JP2004014324A5 (en
JP3979581B2 (en
Inventor
Takeshi Ushio
牛尾 健
Mitsuharu Imazeki
今関 光晴
Yoshiro Shimoyama
下山 義郎
Teruaki Kawasaki
河▲さき▼ 輝明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002166949A priority Critical patent/JP3979581B2/en
Publication of JP2004014324A publication Critical patent/JP2004014324A/en
Publication of JP2004014324A5 publication Critical patent/JP2004014324A5/ja
Application granted granted Critical
Publication of JP3979581B2 publication Critical patent/JP3979581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling water circulation/feed system for a fuel cell allowing miniaturization of a valve for controlling a water flow rate to an ion exchanger installed in a passage bypassing a fuel cell, and capable of reducing consumption of driving power for the valve and of improving durability thereof. <P>SOLUTION: This cooling water circulation/feed system 1 for a fuel cell circulates and feeds cooling water to the fuel cell 2 to cool it by forming a circulation passage 3 for circulating the cooling water to the fuel cell 2 and the bypass passage 5 bypassing the fuel cell 2 and by installing the ion exchanger 5a for keeping electric conductivity of the cooling water low, and a valve for controlling a water flow rate to the ion exchanger 5a in the bypass passage 5. The valve for controlling the water flow rate to the ion exchanger 5a is composed of a solenoid valve 5b and a flow limiting orifice 5c in parallel with each other in the bypass passage 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池を冷却する燃料電池用の冷却水循環供給システムに関し、更に詳しくは、冷却水の電気伝導度を低く維持するためにイオン交換器を設けた燃料電池用の冷却水循環供給システムに関する。
【0002】
【従来の技術】
一般に、燃料電池を直接冷却水を用いて冷却する冷却水循環供給システムにおいては、冷却水を介した液絡現象(蒸気と水が一緒に混じった状態で燃料電池からオフガスが排出されるが、この水を通じて燃料電池を支えている構造体と「地絡」を起こす場合がある。この「地絡」を「液絡」という。)を防止するため、冷却水に高度な電気絶縁性が要求される。
そのためイオン交換器を冷却水の循環経路のバイパス経路に設けて、全循環流量のうちの一定割合の冷却水を前記イオン交換器のイオン交換樹脂層に通水・循環させ、冷却水中の電離イオンを冷却水から除去することによって冷却水の電気絶縁性を維持しており、その通水量をシステムの状況に応じて増減することも知られている。
【0003】
冷却水の電気絶縁性を維持するために、イオン交換器に通水・循環させることが必要な流量は、その時点の冷却水の電気伝導度、及びシステム全体から発生するイオン量により決まる。
一般に、冷却水循環供給システム全体から発生するイオン量は、極力少なくなる様に材料仕様等が選定されているため、冷却水の温度が安定し電気伝導度が低い場合には、イオン交換器への通水量は少なくて済む。
【0004】
【発明が解決しようとする課題】
しかしながら、冷却水の電気伝導度が液絡現象により問題が発生する領域内、又はそれに近い場合には速やかに電気伝導度を低下させる必要があるので大量の循環流量が必要となる。
また、冷却水(純水等)には温度上昇に伴い電気伝導度が上昇する特性があるため、システムを起動・暖機する過程での水温上昇に伴い電気伝導度が高くなるときには、問題が発生する領域に達しないように、冷却水を循環させる循環経路の循環流量を増加させることが必要となる。
【0005】
さらに、イオン交換器に使用されるイオン交換樹脂は、一般に高温時に熱分解を起こし、イオン交換容量を減じてしまう性質があるため、電気伝導度に加えて通水温度も考慮した上でイオン交換器への通水・循環流量を制御するのがイオン交換樹脂の寿命の点からは望ましい。
また、従来技術として、冷却水の循環経路のバイパス経路に、イオン交換器と前記イオン交換器への通水量を制御可能な弁とを設け、前記循環経路に設けた電気伝導度検知手段からの電気出力信号に基づき前記弁の開閉制御を行うものがあるが、
▲1▼前記弁装置が大型化して重量が増加したり、
▲2▼弁を閉じたときに冷却水の電気伝導度が上昇するため頻繁に開閉を行う必要があり、前記弁の駆動電力消費量の増加や耐久性の問題を生じる虞があった。
【0006】
本発明は、前記課題を解決するためになされたものであって、燃料電池を迂回するバイパス経路に設けたイオン交換器への通水量を制御する弁を小型化でき、しかも前記弁の駆動電力の消費量低減や耐久性を向上できる燃料電池用の冷却水循環供給システムを提供することを目的とする。
【0007】
【課題を解決するための手段】
前記課題を解決するためになされた請求項1に記載された燃料電池用の冷却水循環供給システムは、燃料電池に対して冷却水を循環させる循環経路と、前記燃料電池を迂回するバイパス経路を設け、このバイパス経路に、冷却水の電気伝導度を低く維持するためのイオン交換器と、前記イオン交換器への通水量を制御する弁とを設け、冷却水を前記燃料電池へ循環供給して冷却する燃料電池用の冷却水循環供給システムにおいて、前記イオン交換器への通水量を制御する弁を、前記バイパス経路に対して並列に電磁弁と流量制限用のオリフィスとで構成したことを特徴とするものである。
【0008】
請求項1に記載された発明によると、
(1)イオン交換器への必要な通水量を、従来のように通水量を制御する弁だけを介してイオン交換器へ供給するのではなく、並列に設けた電磁弁とオリフィスとで通水量を分担して供給するようにしたので、イオン交換器の従来の浄化機能を損なうことなくイオン交換器への通水量を制御する弁を小型・軽量で廉価な電磁弁で代用することができる。
(2)また、オリフィスを電磁弁と並列に設けたことにより、前記電磁弁が全閉状態のときでも定常運転時に必要なイオン交換器への通水量を確保することができるので、冷却水の電気伝導度が低く安定している。そのため、システムが長期間運転を停止した後の起動時や異常時等の冷却水中の電気伝導度が高いときのみ電磁弁を開くだけで電気伝導度を低く維持することができる。
その結果、電磁弁の開閉回数が少なくなるので、弁の駆動電力消費量が低減され、弁の耐久性が向上する。
【0009】
請求項2に記載された燃料電池用の冷却水循環供給システムは、燃料電池に対して冷却水を循環させる循環経路と、前記燃料電池を迂回するバイパス経路を設け、このバイパス経路に、冷却水の電気伝導度を低く維持するためのイオン交換器と、前記イオン交換器への通水量を制御する弁とを設け、冷却水を前記燃料電池へ循環供給して冷却する燃料電池用の冷却水循環供給システムにおいて、前記イオン交換器への通水量を制御する弁を、全閉状態のときでもオリフィス機能を持つ電磁弁で構成したことを特徴とするものである。
【0010】
請求項2に記載された発明によると、
(1)イオン交換器への必要な通水量を、従来のように通水量を制御する弁だけを介してイオン交換器へ供給するのではなく、全閉状態のときでもオリフィス機能を持つ電磁弁で供給するようにしたので、イオン交換器の従来の浄化機能を損なうことなく電磁弁周りの省スペース化が図れると共に、電磁弁の目詰まりを防止することができ、弁の信頼性を向上することができる。
(2)また、全閉状態のときでもオリフィス機能を持つ電磁弁を設けたことにより、前記電磁弁が全閉状態のときでも定常運転時に必要なイオン交換器への通水量を確保することができるので、冷却水の電気伝導度が低く安定している。
そのため、システムが長期間運転を停止した後の起動時や異常時等の冷却水中の電気伝導度が高いときのみ電磁弁を開くだけで電気伝導度を低く維持することができる。
その結果、電磁弁の開閉回数が少なくなるので、弁の駆動電力消費量が低減され、弁の耐久性が向上する。
【0011】
請求項3に記載された燃料電池用の冷却水循環供給システムは、前記循環経路に冷却水の電気伝導度を検知する電気伝導度検知手段及び冷却水の温度を検知する温度検知手段を設け、これらの電気出力信号に基づき前記電磁弁の開閉を制御する開閉制御手段を設けたことを特徴とする請求項1又は請求項2に記載の燃料電池用の冷却水循環供給システムである。
【0012】
請求項3に記載された発明によると、前記循環経路に冷却水の電気伝導度を検知する電気伝導度検知手段及び冷却水の温度を検知する温度検知手段を設け、これらの電気出力信号に基づき前記電磁弁の開閉を制御する開閉制御手段を設けたことにより、冷却水の電気伝導度及び冷却水の温度を好適に維持することができる。
【0013】
請求項4に記載された燃料電池用の冷却水循環供給システムは、前記電磁弁を、前記燃料電池の起動時に開弁することを特徴とする請求項1乃至請求項3のうちの何れか1項に記載の燃料電池用の冷却水循環供給システムである。
【0014】
請求項4に記載された発明によると、燃料電池の停止中は、停止状態(放置時間等)によって配管材料や燃料電池内部から冷却水中へ金属イオン等のイオン溶解成分が多く溶出して来る場合があるので、冷却水の電気伝導度は一般に高くなっている可能性がある。しかし、燃料電池が停止中で電磁弁が全閉状態であってもオリフィスとイオン交換器間が連通しているので、停止中に冷却水中のイオン溶解成分が冷却水から除去されて電気伝導度が低く保たれている。従って、燃料電池の起動時に電磁弁を開弁すれば電気伝導度を簡単に低く維持することができる。
【0015】
請求項5に記載された燃料電池用の冷却水循環供給システムは、前記電磁弁を、前記電気伝導度の増加時に開弁することを特徴とする請求項1乃至請求項3のうちの何れか1項に記載の燃料電池用の冷却水循環供給システムである。
【0016】
請求項5に記載された発明によると、前記電磁弁を、前記電気伝導度の増加時に開弁することで、電気伝導度を低く維持することができる。
【0017】
請求項6に記載された燃料電池用の冷却水循環供給システムは、前記電磁弁を、前記冷却水の温度の上昇時に閉弁することを特徴とする請求項1乃至請求項3のうちの何れか1項に記載の燃料電池用の冷却水循環供給システム。
【0018】
請求項6に記載された発明によると、前記電磁弁を、前記冷却水の温度の上昇時に閉弁することで、高温の冷却水がイオン交換器へ通水される量を減らすことができるので、イオン交換器に充填されているイオン交換樹脂の熱分解による性能劣化を低減することができる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態について図1〜図4を参照して説明する。
尚、図1は、本発明に係る燃料電池用の冷却水循環供給システムの第一実施形態を示す全体の構成図、図2は、第一実施形態の燃料電池用の冷却水循環供給システムを車両に搭載して、電磁弁及び流量制限用のオリフィスを用いてイオン交換器への通水量を制御する場合の一例を示す図である。
また、図3は、本発明に係る燃料電池用の冷却水循環供給システムの第二実施形態を示す全体の構成図、図4は、第二実施形態の燃料電池用の冷却水循環供給システムで使用される電磁弁の構造を示す簡略図である。
【0020】
最初に、第一実施形態の燃料電池用の冷却水循環供給システムについて図1を参照して説明する。
本発明に係る第一実施形態の燃料電池用の冷却水循環供給システム1は、図1に示すように、
アノード極に供給される燃料ガスとカソード極に供給される酸化剤ガスとの電気化学反応により発電する燃料電池2には、前記燃料電池2内へ冷却水を通流させて燃料電池2を冷却するための冷却水の入口2aと出口2bとが設けられている。
この冷却水の入口2aと出口2bには、冷却水を循環させるための循環経路3が接続されている。
【0021】
この循環経路3には、冷却水を循環するための冷却水循環ポンプ3aと、冷却水を冷却する冷却器としてのラジエータ3bと、前記ラジエータ3bへの冷却水の通水量を調節して燃料電池2へ供給する冷却水の温度を調整する温度調整装置としてのサーモスタットバルブ3cとが順番に設けられている。
また、燃料電池2の入口2a近傍の循環経路3には、冷却水の電気伝導度を検知する電気伝導度検知手段としての電気伝導度センサ3e及び冷却水の温度を検知する温度検知手段としての温度センサ3dが設けられている。
【0022】
そして、燃料電池2ヘ供給する冷却水を冷却する必要がない場合(燃料電池2へ循環供給する冷却水が放熱を要求されない場合)には、直接燃料電池2へ冷却水を供給するため、循環経路3にはラジエータ3bの上流で分岐しサーモスタットバルブ3cに接続された第一バイパス経路4が設けられている。
また、冷却水の電気伝導度を低く維持するため、前記サーモスタットバルブ3cの下流側に設けられた前記燃料電池2への流れの一部又は前記燃料電池2からラジエータ3bへの流れの一部を迂回したバイパス経路である第二バイパス経路5には、カチオン交換樹脂及びアニオン交換樹脂を充填したイオン交換器5aと、前記イオン交換器5aへの通水量を制御する電磁弁5bと、前記電磁弁5bに対して並列に流量制限用のオリフィス5cが設けられている。尚、電磁弁5bはON−OFF弁(2位置制御弁)である。
【0023】
さらに電気伝導度センサ3e及び/又は温度センサ3dの電気出力信号に基づいて前記電磁弁5bの開閉を制御する制御装置6が設けられている。ここで使用される制御装置6は、電気的制御回路、又は、RAM、ROM、CPU(又はMPU)及びI/O等を中心として構成されたマイクロコンピュータからなる電子制御装置である。
このように、循環経路3に冷却水の電気伝導度を検知する電気伝導度センサ3e及び冷却水の温度を検知する温度センサ3d設け、これらの電気出力信号に基づき電磁弁5bの開閉を制御するようにすれば、冷却水の電気伝導度及び冷却水の温度を好適に維持することができる。
【0024】
次に、このように構成される第一実施形態の冷却水循環供給システム1を車両に搭載して、第二バイパス経路5に並列に設けた電磁弁5b及び流量制限用のオリフィス5cを用いてイオン交換器5aへの通水量を制御する場合の一例について図1及び図2を参照して説明する。尚、後記する第二実施形態の燃料電池用の冷却水循環供給システムにおいても図2と同様な流量制御特性が得られる。
(1)イグニッションスイッチをONすると、燃料電池2へ燃料ガスと酸化剤ガスとが供給され燃料電池2で発電が開始(起動)する。
(2)このとき冷却水循環ポンプ3aも駆動を開始する。
(3)燃料電池2の起動時は、第二バイパス経路5の電磁弁5bを開いてイオン交換器5aへの通水量を増加させ、起動前に増加していた冷却水中のイオン溶解成分を除去する。このようにすることで冷却水の電気伝導度を簡単に低く維持することができる。
(4)燃料電池2の起動後、冷却水の温度が所定値以上、例えば40℃以上になるか又は所定時間、例えば1分間、が経過したときは電磁弁5bを閉じる。
【0025】
(5)次に、燃料電池2の発熱により冷却水の温度が上昇すると、サーモスタットバルブ3cが作動してラジエータ3b側に冷却水が通水され、冷却水の放熱が開始される。サーモスタットバルブ3cの開度が制御されることで、冷却水の温度が燃料電池2の通常の作動温度(約80℃)に制御される。
(6)冷却水の電気伝導度が所定値以下(冷却水が液絡を起こさない電気伝導度の上限値以下)である通常の状態では、電磁弁5bを閉じてイオン交換器5aへの通水量を最低流量(常時必要な通水量)とし、常時発生する冷却水中のイオン溶解成分が冷却水から除去される。
(7)冷却水の電気伝導度が所定値を超えると電磁弁5bを開いてイオン交換器5aへの通水量を増加させ、イオン溶解成分を冷却水から除去する能力を増加させる。このようにすることで電気伝導度を所定値以下に管理することができる。
(8)外気温度が高いときなどに、図示しないアクセルを全開にして燃料電池2の発電量(発熱量)を増加させるとラジエータ3bの冷却性能を一時的に超えて、冷却水の温度が所定値、例えば80℃以上に上昇する場合がある。
このときは電磁弁5bを閉じてイオン交換器5aへの通水量を最低流量に抑えることによりイオン交換樹脂の熱分解による性能劣化を低減することができるとともに、燃料電池2の冷却に寄与しないイオン交換器5aへの通水量を減少し、燃料電池2への冷却水量を増加させることで燃料電池2の冷却能力を確保することができる。
【0026】
このような構成・作用を有する第一実施形態の燃料電池用の冷却水循環供給システムによれば、
(1)イオン交換器5aへの必要な通水量を、従来のように通水量を制御する弁だけを介してイオン交換器5aへ供給するのではなく、並列に設けた電磁弁5bとオリフィス5cとで通水量を分担して供給するようにしたので、イオン交換器5aの従来の浄化機能を損なうことなくイオン交換器5aへの通水量を制御する弁を小型・軽量で廉価な電磁弁5bで代用することができる。
(2)また、オリフィス5cを電磁弁5bと並列に設けたことにより、前記電磁弁5bが全閉状態のときでも定常運転時に必要なイオン交換器5aへの通水量を確保することができるので、冷却水の電気伝導度が低く安定している。そのため、システムが長期間運転を停止した後の起動時や異常時等の冷却水中の電気伝導度が高いときのみ電磁弁5bを開くだけで電気伝導度を低く維持することができる。その結果、電磁弁5bの開閉回数が少なくなるので、弁の駆動電力消費量が低減され、弁の耐久性が向上する。
【0027】
次に、本発明に係る第二実施形態の燃料電池用の冷却水循環供給システムについて図3及び図4を参照して説明する。第二実施形態の燃料電池用の冷却水循環供給システム10と第一実施形態の燃料電池用の冷却水循環供給システムとの構成の違いは、第二実施形態の燃料電池用の冷却水循環供給システム10は、イオン交換器5aを設けた第二バイパス経路5に、全閉状態のときでもオリフィス機能を持つ電磁弁と流量制限用のオリフィスとを一体化した構造の電磁弁5b′を設けた点である。
尚、第一実施形態の燃料電池用の冷却水循環供給システムと同じ部材に付いては同じ符号を付して説明する。
【0028】
最初に、第二実施形態の燃料電池用の冷却水循環供給システム10で使用される電磁弁と流量制限用のオリフィスとを一体化した電磁弁5b′の構造について図4を参照して説明する。
第二実施形態の冷却水循環供給システムで使用する電磁弁5b′は、図4に示すように、プラグ15をプランジャ12を介して駆動させる駆動部5b′1と冷却水を通流させる弁本体5b′2とから主要部が構成される。
電磁弁5b′は、直動型とパイロット型どちらでも使用できるが本実施形態では直動型を使用している。
駆動部5b′1は、外部から電力を供給されて磁界を形成するコイル11と、前記コイル11の中心部に配設され、前記磁界により上下方向に駆動されるプランジャ12と、前記プランジャ12の上方で駆動部ケ−シング14内に設けられプランジャ12の駆動力を受けるバネ13と、これらを内部に収容する駆動部ケーシング14とから形成される。
一方、弁本体5b′2は、前記プランジャ12の下部に連設して設けられオリフィス通路15aを有するプラグ15と、これらを収納するケーシング16とから形成される。尚、オリフィス通路15aは、電磁弁5b′のプラグ15が全閉状態(入口側を閉鎖した位置)にあるときでも冷却水がプラグ15のオリフィス通路15aの中を流れて通過できるようにするために設けられている。
【0029】
このような構造の電磁弁5b′を備えた第二実施形態の燃料電池用の冷却水循環供給システム10を車両に搭載して、第二バイパス経路5に並列に設けた電磁弁5b及び流量制限用のオリフィス5cを用いてイオン交換器5aへの通水量を制御する場合の制御方法は、第一実施形態の燃料電池用の冷却水循環供給システムと同一なので説明を省略する。
【0030】
このような構成と作用を有する第二実施形態の燃料電池用の冷却水循環供給システムによれば、
(1)イオン交換器5aへの必要な通水量を、従来のように通水量を制御する弁だけを介してイオン交換器5aへ供給するのではなく、全閉状態のときでもオリフィス機能を持つ電磁弁5b′で供給するようにしたので、イオン交換器5aの従来の浄化機能を損なうことなく電磁弁5b′周りの省スペース化が図れると共に、電磁弁5b′の目詰まりを防止することができ、弁の信頼性を向上することができる。
(2)また、全閉状態のときでもオリフィス機能を持つ電磁弁5b′を設けたことにより、前記電磁弁5b′が全閉状態のときでも定常運転時に必要なイオン交換器5aへの通水量を確保することができるので、冷却水の電気伝導度が低く安定している。
そのため、システムが長期間運転を停止した後の起動時や異常時等の冷却水中の電気伝導度が高いときのみ電磁弁5b′を開くだけで電気伝導度を低く維持することができる。その結果、電磁弁5b′の開閉回数が少なくなるので、弁の駆動電力消費量が低減され、弁の耐久性が向上する。
【0031】
以上、第一実施形態の燃料電池用の冷却水循環供給システム及び第二実施形態の燃料電池用の冷却水循環供給システムについて説明したが、本発明に係る燃料電池用の冷却水循環供給システムはこれに限定されるものでなく、本発明の技術的範囲を逸脱しない範囲で適宜変更して実施可能である。
例えば、電気伝導度検知手段及び温度検知手段の電気出力信号を組み合わせて複雑な制御条件で電磁弁の開閉制御を行うこともできる。
また、本実施形態では電磁弁としてON−OFF弁(2位置制御弁)を使用しているが、イオン交換器への通水量を連続的に制御可能な電磁弁を用いることもできる。
【0032】
【発明の効果】
以上の構成と作用からなる本発明によれば、以下の効果を奏する。
1.請求項1に記載された発明によれば、
(1)イオン交換器への必要な通水量を、従来のように通水量を制御する弁だけを介してイオン交換器へ供給するのではなく、並列に設けた電磁弁とオリフィスとで通水量を分担して供給するようにしたので、イオン交換器の従来の浄化機能を損なうことなくイオン交換器への通水量を制御する弁を小型・軽量で廉価な電磁弁で代用することができる。
(2)また、オリフィスを電磁弁と並列に設けたことにより、前記電磁弁が全閉状態のときでも定常運転時に必要なイオン交換器への通水量を確保することができるので、冷却水の電気伝導度が低く安定している。そのため、システムが長期間運転を停止した後の起動時や異常時等の冷却水中の電気伝導度が高いときのみ電磁弁を開くだけで電気伝導度を低く維持することができる。
その結果、電磁弁の開閉回数が少なくなるので、弁の駆動電力消費量が低減され、弁の耐久性が向上する。
2.請求項2に記載された発明によれば、
(1)イオン交換器への必要な通水量を、従来のように通水量を制御する弁だけを介してイオン交換器へ供給するのではなく、全閉状態のときでもオリフィス機能を持つ電磁弁で供給するようにしたので、イオン交換器の従来の浄化機能を損なうことなく電磁弁周りの省スペース化が図れると共に、電磁弁の目詰まりを防止することができ、弁の信頼性を向上することができる。
(2)また、全閉状態のときでもオリフィス機能を持つ電磁弁を設けたことにより、前記電磁弁が全閉状態のときでも定常運転時に必要なイオン交換器への通水量を確保することができるので、冷却水の電気伝導度が低く安定している。
そのため、システムが長期間運転を停止した後の起動時や異常時等の冷却水中の電気伝導度が高いときのみ電磁弁を開くだけで電気伝導度を低く維持することができる。その結果、電磁弁の開閉回数が少なくなるので、弁の駆動電力消費量が低減され、弁の耐久性が向上する。
3.請求項3に記載された発明によれば、冷却水の電気伝導度及び冷却水の温度を好適に維持することができる。
4.請求項4に記載された発明によれば、前記電磁弁を、前記燃料電池の起動時に開弁することで電気伝導度を簡単に低く維持することができる。
5.請求項5に記載された発明によれば、前記電磁弁を、前記電気伝導度の増加時に開弁することで、電気伝導度を低く維持することができる。
6.請求項6に記載された発明によれば、前記電磁弁を、前記冷却水の温度の上昇時に開弁することで、イオン交換器に充填されているイオン交換樹脂の熱分解による性能劣化を低減することができる。
【図面の簡単な説明】
【図1】本発明に係る燃料電池用の冷却水循環供給システムの第一実施形態を示す全体の構成図である。
【図2】第一実施形態の燃料電池用の冷却水循環供給システムを車両に搭載して、電磁弁及び流量制限用のオリフィスを用いてイオン交換器への通水量を制御する場合の一例を示す図である。
【図3】本発明に係る燃料電池用の冷却水循環供給システムの第二実施形態を示す全体の構成図である。
【図4】第二実施形態の燃料電池用の冷却水循環供給システムで使用される電磁弁の構造を示す簡略図である。
【符号の説明】
1,10        燃料電池用の冷却水循環供給システム
2           燃料電池
3           循環経路
3d          温度センサ(温度検知手段)
3e          電気伝導度センサ(電気伝導度検知手段)
5           第二バイパス通路(バイパス経路)
5a          イオン交換器
5b,5b′      電磁弁
5c          オリフィス
6           制御装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cooling water circulating supply system for a fuel cell, which cools a fuel cell, and more particularly, to a cooling water circulating supply system for a fuel cell, which is provided with an ion exchanger to maintain low electric conductivity of the cooling water. .
[0002]
[Prior art]
In general, in a cooling water circulating supply system that directly cools a fuel cell using cooling water, a liquid junction phenomenon through the cooling water (off gas is discharged from the fuel cell in a state where steam and water are mixed together. In order to prevent “ground fault” with the structure supporting the fuel cell through water, this “ground fault” is called “liquid fault”. You.
Therefore, an ion exchanger is provided in a bypass path of the cooling water circulation path, and a certain percentage of the total circulation flow rate of the cooling water is passed and circulated through the ion exchange resin layer of the ion exchanger, and ionized ions in the cooling water are discharged. It is also known that the electrical insulation of the cooling water is maintained by removing the water from the cooling water, and the flow rate of the water is increased or decreased according to the state of the system.
[0003]
In order to maintain the electrical insulation of the cooling water, the flow rate required to flow and circulate the water through the ion exchanger is determined by the electrical conductivity of the cooling water at that time and the amount of ions generated from the entire system.
In general, the material specifications etc. are selected so that the amount of ions generated from the entire cooling water circulating supply system is as small as possible.If the cooling water temperature is stable and the electric conductivity is low, the ion The amount of water flow is small.
[0004]
[Problems to be solved by the invention]
However, when the electric conductivity of the cooling water is in or close to a region where a problem occurs due to the liquid junction phenomenon, it is necessary to rapidly reduce the electric conductivity, so that a large circulation flow rate is required.
In addition, since cooling water (pure water, etc.) has the property of increasing electrical conductivity with increasing temperature, there is a problem when electrical conductivity increases with increasing water temperature during the process of starting and warming up the system. It is necessary to increase the circulation flow rate of the circulation path for circulating the cooling water so as not to reach the area where the cooling water is generated.
[0005]
Furthermore, ion exchange resins used in ion exchangers generally have the property of decomposing at high temperatures and reducing the ion exchange capacity. It is desirable to control the flow rate of water and circulation to the vessel from the viewpoint of the life of the ion exchange resin.
Further, as a conventional technique, an ion exchanger and a valve capable of controlling a flow rate of water to the ion exchanger are provided in a bypass path of a cooling water circulation path, and an electric conductivity detection means provided in the circulation path is provided. Some control the opening and closing of the valve based on an electrical output signal,
{Circle around (1)} The valve device becomes larger and the weight increases,
{Circle around (2)} When the valve is closed, the electric conductivity of the cooling water increases, so that the valve needs to be frequently opened and closed, which may cause an increase in the driving power consumption of the valve and a problem of durability.
[0006]
The present invention has been made in order to solve the above-mentioned problems, and can reduce the size of a valve that controls the amount of water flowing to an ion exchanger provided in a bypass path that bypasses a fuel cell, and furthermore, the driving power of the valve can be reduced. It is an object of the present invention to provide a cooling water circulation supply system for a fuel cell which can reduce the consumption of fuel and improve the durability.
[0007]
[Means for Solving the Problems]
The cooling water circulation supply system for a fuel cell according to claim 1, wherein the circulation path circulates cooling water to the fuel cell, and a bypass path that bypasses the fuel cell are provided. In the bypass path, an ion exchanger for keeping the electric conductivity of the cooling water low, and a valve for controlling the amount of water flowing to the ion exchanger are provided, and the cooling water is circulated and supplied to the fuel cell. In a cooling water circulation supply system for a fuel cell to be cooled, a valve for controlling a flow rate of water to the ion exchanger is constituted by an electromagnetic valve and an orifice for restricting a flow rate in parallel with the bypass path. Is what you do.
[0008]
According to the invention described in claim 1,
(1) The required flow rate to the ion exchanger is not supplied to the ion exchanger only through a valve for controlling the flow rate as in the conventional case, but the flow rate is controlled by a solenoid valve and an orifice provided in parallel. The valve for controlling the flow rate of water to the ion exchanger can be replaced by a small, lightweight and inexpensive solenoid valve without impairing the conventional purification function of the ion exchanger.
(2) Further, by providing the orifice in parallel with the solenoid valve, it is possible to secure a necessary water flow to the ion exchanger during a steady operation even when the solenoid valve is in a fully closed state. Low electric conductivity and stable. Therefore, only when the electric conductivity in the cooling water is high, such as when the system is stopped for a long time and when the system is started up or when an abnormality occurs, the electric conductivity can be kept low only by opening the solenoid valve.
As a result, the number of times the solenoid valve is opened and closed is reduced, so that the driving power consumption of the valve is reduced, and the durability of the valve is improved.
[0009]
The cooling water circulation supply system for a fuel cell according to claim 2 is provided with a circulation path for circulating the cooling water to the fuel cell, and a bypass path bypassing the fuel cell. An ion exchanger for maintaining low electric conductivity, and a valve for controlling a flow rate of water to the ion exchanger, and a cooling water circulating supply for the fuel cell for circulating cooling water to the fuel cell for cooling. In the system, the valve for controlling the flow rate of water to the ion exchanger is constituted by an electromagnetic valve having an orifice function even in a fully closed state.
[0010]
According to the invention described in claim 2,
(1) A solenoid valve having an orifice function even when it is fully closed, instead of supplying the required water flow to the ion exchanger to the ion exchanger only through a valve that controls the water flow as in the conventional case. , The space around the solenoid valve can be saved without impairing the conventional purification function of the ion exchanger, and clogging of the solenoid valve can be prevented, improving the reliability of the valve. be able to.
(2) Further, by providing the solenoid valve having the orifice function even when the solenoid valve is fully closed, it is possible to secure a necessary amount of water flowing to the ion exchanger during steady operation even when the solenoid valve is fully closed. Since it is possible, the electric conductivity of the cooling water is low and stable.
Therefore, only when the electric conductivity in the cooling water is high, such as when the system is stopped for a long time and when the system is started up or when an abnormality occurs, the electric conductivity can be kept low only by opening the solenoid valve.
As a result, the number of times the solenoid valve is opened and closed is reduced, so that the driving power consumption of the valve is reduced, and the durability of the valve is improved.
[0011]
The cooling water circulation supply system for a fuel cell according to claim 3, further comprising an electric conductivity detection unit that detects electric conductivity of the cooling water and a temperature detection unit that detects a temperature of the cooling water in the circulation path. The cooling water circulation supply system for a fuel cell according to claim 1 or 2, further comprising an opening / closing control means for controlling opening / closing of the electromagnetic valve based on the electric output signal of (1).
[0012]
According to the invention as set forth in claim 3, the circulation path is provided with an electric conductivity detecting means for detecting electric conductivity of the cooling water and a temperature detecting means for detecting the temperature of the cooling water, and based on these electric output signals. By providing the opening and closing control means for controlling the opening and closing of the electromagnetic valve, the electric conductivity of the cooling water and the temperature of the cooling water can be suitably maintained.
[0013]
The cooling water circulation supply system for a fuel cell according to claim 4, wherein the solenoid valve is opened when the fuel cell is started up. 5. 5. A cooling water circulation supply system for a fuel cell according to (1).
[0014]
According to the invention described in claim 4, when the fuel cell is stopped, a large amount of ion-dissolved components such as metal ions are eluted into the cooling water from the piping material or the fuel cell depending on the stop state (leaving time or the like). Therefore, the electrical conductivity of the cooling water may generally be high. However, even when the fuel cell is stopped and the solenoid valve is fully closed, the orifice and the ion exchanger are in communication with each other. Is kept low. Therefore, if the solenoid valve is opened when the fuel cell is started, the electric conductivity can be easily kept low.
[0015]
The cooling water circulation supply system for a fuel cell according to claim 5, wherein the solenoid valve is opened when the electric conductivity increases. It is a cooling water circulation supply system for a fuel cell described in the paragraph.
[0016]
According to the invention described in claim 5, the electric conductivity can be kept low by opening the solenoid valve when the electric conductivity increases.
[0017]
The cooling water circulation supply system for a fuel cell according to claim 6, wherein the solenoid valve is closed when the temperature of the cooling water is increased. 2. The cooling water circulation supply system for a fuel cell according to claim 1.
[0018]
According to the invention described in claim 6, by closing the solenoid valve when the temperature of the cooling water rises, the amount of high-temperature cooling water flowing to the ion exchanger can be reduced. In addition, performance degradation due to thermal decomposition of the ion exchange resin charged in the ion exchanger can be reduced.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is an overall configuration diagram showing a first embodiment of a cooling water circulation supply system for a fuel cell according to the present invention, and FIG. 2 is a diagram showing the cooling water circulation supply system for a fuel cell according to the first embodiment in a vehicle. It is a figure which shows an example at the time of mounting and controlling the water flow to an ion exchanger using an electromagnetic valve and an orifice for flow rate restriction.
FIG. 3 is an overall configuration diagram showing a second embodiment of a cooling water circulation supply system for a fuel cell according to the present invention, and FIG. 4 is used in a cooling water circulation supply system for a fuel cell of the second embodiment. FIG. 2 is a simplified diagram showing the structure of a solenoid valve.
[0020]
First, a cooling water circulation supply system for a fuel cell according to a first embodiment will be described with reference to FIG.
As shown in FIG. 1, a cooling water circulation supply system 1 for a fuel cell according to a first embodiment of the present invention includes:
In the fuel cell 2 that generates power by an electrochemical reaction between the fuel gas supplied to the anode and the oxidant gas supplied to the cathode, cooling water is passed through the fuel cell 2 to cool the fuel cell 2. An inlet 2a and an outlet 2b for cooling water are provided.
A circulation path 3 for circulating the cooling water is connected to the cooling water inlet 2a and the outlet 2b.
[0021]
The circulation path 3 includes a cooling water circulating pump 3a for circulating cooling water, a radiator 3b as a cooler for cooling the cooling water, and a fuel cell 2 by adjusting a flow rate of the cooling water to the radiator 3b. And a thermostat valve 3c as a temperature adjusting device for adjusting the temperature of the cooling water supplied to the heater.
The circulation path 3 near the inlet 2a of the fuel cell 2 has an electric conductivity sensor 3e as electric conductivity detecting means for detecting electric conductivity of the cooling water and a temperature detecting means for detecting the temperature of the cooling water. A temperature sensor 3d is provided.
[0022]
When it is not necessary to cool the cooling water supplied to the fuel cell 2 (when the cooling water circulating to the fuel cell 2 does not require heat radiation), the cooling water is directly supplied to the fuel cell 2. The path 3 is provided with a first bypass path 4 branched upstream of the radiator 3b and connected to the thermostat valve 3c.
Further, in order to maintain the electric conductivity of the cooling water low, a part of the flow to the fuel cell 2 provided downstream of the thermostat valve 3c or a part of the flow from the fuel cell 2 to the radiator 3b is reduced. The second bypass path 5, which is a bypass path bypassed, includes an ion exchanger 5a filled with a cation exchange resin and an anion exchange resin, an electromagnetic valve 5b for controlling the amount of water flowing to the ion exchanger 5a, and the electromagnetic valve 5b. An orifice 5c for restricting the flow rate is provided in parallel with 5b. The solenoid valve 5b is an ON-OFF valve (two-position control valve).
[0023]
Further, a control device 6 for controlling the opening and closing of the solenoid valve 5b based on the electric output signal of the electric conductivity sensor 3e and / or the temperature sensor 3d is provided. The control device 6 used here is an electronic control device including an electric control circuit or a microcomputer mainly configured with a RAM, a ROM, a CPU (or an MPU), an I / O, and the like.
As described above, the electric conductivity sensor 3e for detecting the electric conductivity of the cooling water and the temperature sensor 3d for detecting the temperature of the cooling water are provided in the circulation path 3, and the opening and closing of the electromagnetic valve 5b is controlled based on these electric output signals. By doing so, the electrical conductivity of the cooling water and the temperature of the cooling water can be suitably maintained.
[0024]
Next, the cooling water circulating supply system 1 of the first embodiment configured as described above is mounted on a vehicle, and the cooling water circulation supply system 1 is ionized by using an electromagnetic valve 5b and a flow rate limiting orifice 5c provided in parallel with the second bypass path 5. An example of controlling the amount of water flowing to the exchanger 5a will be described with reference to FIGS. It should be noted that a flow rate control characteristic similar to that of FIG. 2 can be obtained also in a cooling water circulation supply system for a fuel cell according to a second embodiment described later.
(1) When the ignition switch is turned on, the fuel gas and the oxidizing gas are supplied to the fuel cell 2 and the fuel cell 2 starts (starts) power generation.
(2) At this time, the cooling water circulation pump 3a also starts driving.
(3) When the fuel cell 2 is started, the solenoid valve 5b of the second bypass path 5 is opened to increase the amount of water flowing to the ion exchanger 5a, and the ion-dissolved components in the cooling water that have been increased before the start are removed. I do. In this way, the electric conductivity of the cooling water can be easily kept low.
(4) After the fuel cell 2 is started, when the temperature of the cooling water becomes equal to or higher than a predetermined value, for example, 40 ° C. or higher, or when a predetermined time, for example, one minute, elapses, the solenoid valve 5b is closed.
[0025]
(5) Next, when the temperature of the cooling water rises due to the heat generated by the fuel cell 2, the thermostat valve 3c operates to flow the cooling water to the radiator 3b side, and the heat radiation of the cooling water is started. By controlling the opening of the thermostat valve 3c, the temperature of the cooling water is controlled to the normal operating temperature of the fuel cell 2 (about 80 ° C.).
(6) In a normal state where the electric conductivity of the cooling water is equal to or lower than a predetermined value (the upper limit of the electric conductivity at which the cooling water does not cause a liquid junction), the electromagnetic valve 5b is closed to allow the cooling water to pass through the ion exchanger 5a. The amount of water is set to a minimum flow rate (a required flow rate at all times), and ion-dissolved components in the cooling water that are constantly generated are removed from the cooling water.
(7) When the electric conductivity of the cooling water exceeds a predetermined value, the electromagnetic valve 5b is opened to increase the amount of water flowing to the ion exchanger 5a, thereby increasing the ability to remove ion-dissolved components from the cooling water. By doing so, the electric conductivity can be controlled to a predetermined value or less.
(8) When the outside temperature is high, for example, when the accelerator (not shown) is fully opened to increase the amount of power generation (heat generation) of the fuel cell 2, the cooling performance of the radiator 3b is temporarily exceeded, and the temperature of the cooling water becomes predetermined Values, for example, 80 ° C. or higher.
At this time, by closing the electromagnetic valve 5b and suppressing the flow rate of water to the ion exchanger 5a to the minimum flow rate, it is possible to reduce the performance deterioration due to the thermal decomposition of the ion exchange resin and to reduce the ion that does not contribute to the cooling of the fuel cell 2. The cooling capacity of the fuel cell 2 can be ensured by reducing the amount of water flowing to the exchanger 5a and increasing the amount of cooling water to the fuel cell 2.
[0026]
According to the cooling water circulation supply system for a fuel cell of the first embodiment having such a configuration and operation,
(1) The required amount of water flowing to the ion exchanger 5a is not supplied to the ion exchanger 5a only through a valve for controlling the amount of water flowing as in the related art, but a solenoid valve 5b and an orifice 5c provided in parallel. And the water supply amount is shared, so that the valve for controlling the water flow amount to the ion exchanger 5a without impairing the conventional purification function of the ion exchanger 5a is a small-sized, light-weight and inexpensive solenoid valve 5b. Can be substituted.
(2) Also, by providing the orifice 5c in parallel with the solenoid valve 5b, it is possible to secure a necessary water flow to the ion exchanger 5a during steady operation even when the solenoid valve 5b is fully closed. The electric conductivity of the cooling water is low and stable. Therefore, only when the electric conductivity in the cooling water is high, such as when the system is stopped for a long period of time or when the system is stopped, or when there is an abnormality, the electric conductivity can be maintained low only by opening the solenoid valve 5b. As a result, the number of times of opening and closing of the solenoid valve 5b is reduced, so that the driving power consumption of the valve is reduced and the durability of the valve is improved.
[0027]
Next, a cooling water circulation supply system for a fuel cell according to a second embodiment of the present invention will be described with reference to FIGS. The difference between the configuration of the fuel cell cooling water circulation supply system 10 of the second embodiment and the configuration of the fuel cell cooling water circulation supply system of the first embodiment is that the cooling water circulation supply system 10 of the second embodiment is The second bypass path 5 provided with the ion exchanger 5a is provided with an electromagnetic valve 5b 'having a structure in which an electromagnetic valve having an orifice function and an orifice for restricting the flow rate are integrated even in the fully closed state. .
Note that the same members as those of the cooling water circulation / supply system for a fuel cell according to the first embodiment are denoted by the same reference numerals and described.
[0028]
First, the structure of an electromagnetic valve 5b 'in which an electromagnetic valve and an orifice for restricting flow rate used in a cooling water circulation supply system 10 for a fuel cell according to a second embodiment will be described with reference to FIG.
As shown in FIG. 4, a solenoid valve 5b 'used in the cooling water circulation supply system of the second embodiment includes a driving unit 5b'1 for driving a plug 15 via a plunger 12, and a valve body 5b for flowing cooling water. '2 constitutes a main part.
As the solenoid valve 5b ', either a direct acting type or a pilot type can be used, but in the present embodiment, the direct acting type is used.
The driving unit 5b′1 includes a coil 11 that is supplied with electric power from the outside to form a magnetic field, a plunger 12 that is disposed at the center of the coil 11 and that is driven vertically by the magnetic field, A spring 13 is provided in the drive case 14 above and receives the driving force of the plunger 12, and a drive casing 14 accommodating the spring 13 therein.
On the other hand, the valve body 5b'2 is formed of a plug 15 provided continuously with a lower portion of the plunger 12 and having an orifice passage 15a, and a casing 16 for accommodating these plugs. The orifice passage 15a is provided to allow cooling water to flow through the orifice passage 15a of the plug 15 even when the plug 15 of the solenoid valve 5b 'is in a fully closed state (a position where the inlet side is closed). It is provided in.
[0029]
The cooling water circulating supply system 10 for a fuel cell according to the second embodiment including the solenoid valve 5b 'having such a structure is mounted on a vehicle, and the solenoid valve 5b provided in parallel with the second bypass path 5 and a flow rate limiting valve The control method in the case of controlling the flow rate of water to the ion exchanger 5a using the orifice 5c is the same as that of the cooling water circulation supply system for the fuel cell of the first embodiment, and the description is omitted.
[0030]
According to the cooling water circulation supply system for a fuel cell of the second embodiment having such a configuration and operation,
(1) The required amount of water passing through the ion exchanger 5a is not supplied to the ion exchanger 5a only through a valve that controls the amount of flowing water as in the related art, but has an orifice function even in the fully closed state. Since the supply is performed by the solenoid valve 5b ', space saving around the solenoid valve 5b' can be achieved without impairing the conventional purification function of the ion exchanger 5a, and clogging of the solenoid valve 5b 'can be prevented. It is possible to improve the reliability of the valve.
(2) Since the solenoid valve 5b 'having an orifice function is provided even when the solenoid valve 5b' is fully closed, the amount of water flow to the ion exchanger 5a required during steady operation even when the solenoid valve 5b 'is fully closed. Therefore, the electric conductivity of the cooling water is low and stable.
Therefore, only when the electric conductivity in the cooling water is high, such as when the system is stopped for a long time, such as when the system is started or when there is an abnormality, the electric conductivity can be maintained low only by opening the solenoid valve 5b '. As a result, the number of times the solenoid valve 5b 'is opened and closed is reduced, so that the driving power consumption of the valve is reduced and the durability of the valve is improved.
[0031]
The cooling water circulation supply system for a fuel cell according to the first embodiment and the cooling water circulation supply system for a fuel cell according to the second embodiment have been described above. However, the cooling water circulation supply system for a fuel cell according to the present invention is not limited thereto. However, the present invention can be embodied with appropriate modifications without departing from the technical scope of the present invention.
For example, the opening and closing control of the electromagnetic valve can be performed under complicated control conditions by combining the electric output signals of the electric conductivity detecting means and the temperature detecting means.
In this embodiment, an ON-OFF valve (two-position control valve) is used as the electromagnetic valve, but an electromagnetic valve capable of continuously controlling the flow rate of water to the ion exchanger may be used.
[0032]
【The invention's effect】
According to the present invention having the above configuration and operation, the following effects can be obtained.
1. According to the invention described in claim 1,
(1) The required flow rate to the ion exchanger is not supplied to the ion exchanger only through a valve for controlling the flow rate as in the conventional case, but the flow rate is controlled by a solenoid valve and an orifice provided in parallel. The valve for controlling the flow rate of water to the ion exchanger can be replaced by a small, lightweight and inexpensive solenoid valve without impairing the conventional purification function of the ion exchanger.
(2) Further, by providing the orifice in parallel with the solenoid valve, it is possible to secure a necessary water flow to the ion exchanger during a steady operation even when the solenoid valve is in a fully closed state. Low electric conductivity and stable. Therefore, only when the electric conductivity in the cooling water is high, such as when the system is stopped for a long time and when the system is started up or when an abnormality occurs, the electric conductivity can be kept low only by opening the solenoid valve.
As a result, the number of times the solenoid valve is opened and closed is reduced, so that the driving power consumption of the valve is reduced, and the durability of the valve is improved.
2. According to the invention described in claim 2,
(1) A solenoid valve having an orifice function even when it is fully closed, instead of supplying the required water flow to the ion exchanger to the ion exchanger only through a valve that controls the water flow as in the conventional case. , The space around the solenoid valve can be saved without impairing the conventional purification function of the ion exchanger, and clogging of the solenoid valve can be prevented, improving the reliability of the valve. be able to.
(2) Further, by providing the solenoid valve having the orifice function even when the solenoid valve is fully closed, it is possible to secure a necessary amount of water flowing to the ion exchanger during steady operation even when the solenoid valve is fully closed. Since it is possible, the electric conductivity of the cooling water is low and stable.
Therefore, only when the electric conductivity in the cooling water is high, such as when the system is stopped for a long time and when the system is started up or when an abnormality occurs, the electric conductivity can be kept low only by opening the solenoid valve. As a result, the number of times the solenoid valve is opened and closed is reduced, so that the driving power consumption of the valve is reduced, and the durability of the valve is improved.
3. According to the invention described in claim 3, the electric conductivity of the cooling water and the temperature of the cooling water can be suitably maintained.
4. According to the invention described in claim 4, the electric conductivity can be easily maintained low by opening the solenoid valve when the fuel cell is started.
5. According to the invention described in claim 5, the electric conductivity can be kept low by opening the solenoid valve when the electric conductivity increases.
6. According to the invention described in claim 6, by opening the solenoid valve when the temperature of the cooling water rises, performance degradation due to thermal decomposition of the ion exchange resin filled in the ion exchanger is reduced. can do.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing a first embodiment of a cooling water circulation supply system for a fuel cell according to the present invention.
FIG. 2 shows an example in which the cooling water circulation supply system for a fuel cell of the first embodiment is mounted on a vehicle and the amount of water flowing to an ion exchanger is controlled using an electromagnetic valve and an orifice for restricting a flow rate. FIG.
FIG. 3 is an overall configuration diagram showing a second embodiment of a cooling water circulation supply system for a fuel cell according to the present invention.
FIG. 4 is a simplified diagram showing a structure of an electromagnetic valve used in a cooling water circulation supply system for a fuel cell according to a second embodiment.
[Explanation of symbols]
1,10 Cooling water circulation supply system 2 for fuel cell 2 Fuel cell 3 Circulation path 3d Temperature sensor (temperature detecting means)
3e Electric conductivity sensor (electric conductivity detecting means)
5 second bypass passage (bypass route)
5a Ion exchangers 5b, 5b 'Solenoid valve 5c Orifice 6 Controller

Claims (6)

燃料電池に対して冷却水を循環させる循環経路と、前記燃料電池を迂回するバイパス経路を設け、このバイパス経路に、冷却水の電気伝導度を低く維持するためのイオン交換器と、前記イオン交換器への通水量を制御する弁とを設け、冷却水を前記燃料電池へ循環供給して冷却する燃料電池用の冷却水循環供給システムにおいて、
前記イオン交換器への通水量を制御する弁を、前記バイパス経路に対して並列に電磁弁と流量制限用のオリフィスとで構成したことを特徴とする燃料電池用の冷却水循環供給システム。
A circulation path for circulating cooling water through the fuel cell; and a bypass path bypassing the fuel cell; an ion exchanger for maintaining a low electrical conductivity of the cooling water in the bypass path; A valve for controlling the amount of water flowing to the fuel cell, a cooling water circulation supply system for a fuel cell for circulating and supplying cooling water to the fuel cell for cooling,
A cooling water circulation supply system for a fuel cell, wherein a valve for controlling a flow rate of water to the ion exchanger is constituted by an electromagnetic valve and an orifice for restricting a flow rate in parallel with the bypass path.
燃料電池に対して冷却水を循環させる循環経路と、前記燃料電池を迂回するバイパス経路を設け、このバイパス経路に、冷却水の電気伝導度を低く維持するためのイオン交換器と、前記イオン交換器への通水量を制御する弁とを設け、冷却水を前記燃料電池へ循環供給して冷却する燃料電池用の冷却水循環供給システムにおいて、
前記イオン交換器への通水量を制御する弁を、全閉状態のときでもオリフィス機能を持つ電磁弁で構成したことを特徴とする燃料電池用の冷却水循環供給システム。
A circulation path for circulating cooling water through the fuel cell; and a bypass path bypassing the fuel cell; an ion exchanger for maintaining a low electrical conductivity of the cooling water in the bypass path; A valve for controlling the amount of water flowing to the fuel cell, a cooling water circulation supply system for a fuel cell for circulating and supplying cooling water to the fuel cell for cooling,
A cooling water circulation supply system for a fuel cell, wherein the valve for controlling the flow rate of water to the ion exchanger is an electromagnetic valve having an orifice function even in a fully closed state.
前記循環経路に冷却水の電気伝導度を検知する電気伝導度検知手段及び冷却水の温度を検知する温度検知手段を設け、これらの電気出力信号に基づき前記電磁弁の開閉を制御する開閉制御手段を設けたことを特徴とする請求項1又は請求項2に記載の燃料電池用の冷却水循環供給システム。Open / close control means for providing electric conductivity detecting means for detecting electric conductivity of cooling water and temperature detecting means for detecting temperature of cooling water in the circulation path, and controlling opening and closing of the electromagnetic valve based on these electric output signals. The cooling water circulation supply system for a fuel cell according to claim 1 or 2, further comprising: 前記電磁弁を、前記燃料電池の起動時に開弁することを特徴とする請求項1乃至請求項3のうちの何れか1項に記載の燃料電池用の冷却水循環供給システム。The cooling water circulation supply system for a fuel cell according to any one of claims 1 to 3, wherein the solenoid valve is opened when the fuel cell is started. 前記電磁弁を、前記電気伝導度の増加時に開弁することを特徴とする請求項1乃至請求項3のうちの何れか1項に記載の燃料電池用の冷却水循環供給システム。The cooling water circulation supply system for a fuel cell according to any one of claims 1 to 3, wherein the solenoid valve is opened when the electric conductivity increases. 前記電磁弁を、前記冷却水の温度の上昇時に開弁することを特徴とする請求項1乃至請求項3のうちの何れか1項に記載の燃料電池用の冷却水循環供給システム。The cooling water circulation supply system for a fuel cell according to any one of claims 1 to 3, wherein the solenoid valve is opened when the temperature of the cooling water rises.
JP2002166949A 2002-06-07 2002-06-07 Cooling water circulation supply system for fuel cell Expired - Fee Related JP3979581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002166949A JP3979581B2 (en) 2002-06-07 2002-06-07 Cooling water circulation supply system for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002166949A JP3979581B2 (en) 2002-06-07 2002-06-07 Cooling water circulation supply system for fuel cell

Publications (3)

Publication Number Publication Date
JP2004014324A true JP2004014324A (en) 2004-01-15
JP2004014324A5 JP2004014324A5 (en) 2005-08-04
JP3979581B2 JP3979581B2 (en) 2007-09-19

Family

ID=30434340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166949A Expired - Fee Related JP3979581B2 (en) 2002-06-07 2002-06-07 Cooling water circulation supply system for fuel cell

Country Status (1)

Country Link
JP (1) JP3979581B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317392A (en) * 2004-04-28 2005-11-10 Ebara Ballard Corp Water treatment system and fuel cell power generation system
JP2006214348A (en) * 2005-02-03 2006-08-17 Toyota Motor Corp Pump device, cooling system, and fuel cell system
FR2893186A3 (en) * 2005-11-07 2007-05-11 Renault Sas Fuel cell, e.g. proton exchange membrane fuel cell, device for motor vehicle, has regulation unit in form of by-pass channels and making cooling system and purification system operate independently based on temperature of cooling water
WO2008037611A1 (en) * 2006-09-28 2008-04-03 Robert Bosch Gmbh Fuel cell cooling device
JP2010021005A (en) * 2008-07-10 2010-01-28 Toyota Motor Corp Fuel-cell cooling method and fuel-cell system
JP2010140658A (en) * 2008-12-09 2010-06-24 Honda Motor Co Ltd Fuel cell system cooling device
JP2013054933A (en) * 2011-09-05 2013-03-21 Suzuki Motor Corp Temperature and flow controller of fuel cell cooling liquid
KR20190064739A (en) * 2017-12-01 2019-06-11 현대자동차주식회사 Thermal management system of fuel cell vehicle
JP2020149933A (en) * 2019-03-15 2020-09-17 本田技研工業株式会社 Fuel cell system and temperature adjusting method thereof
CN114883608A (en) * 2022-01-28 2022-08-09 上海神力科技有限公司 Single-chip waterway temperature control system of fuel cell stack

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4629999B2 (en) * 2004-04-28 2011-02-09 株式会社荏原製作所 Water treatment system and fuel cell power generation system
JP2005317392A (en) * 2004-04-28 2005-11-10 Ebara Ballard Corp Water treatment system and fuel cell power generation system
JP2006214348A (en) * 2005-02-03 2006-08-17 Toyota Motor Corp Pump device, cooling system, and fuel cell system
JP4645210B2 (en) * 2005-02-03 2011-03-09 トヨタ自動車株式会社 Pump device, cooling system and fuel cell system
FR2893186A3 (en) * 2005-11-07 2007-05-11 Renault Sas Fuel cell, e.g. proton exchange membrane fuel cell, device for motor vehicle, has regulation unit in form of by-pass channels and making cooling system and purification system operate independently based on temperature of cooling water
WO2008037611A1 (en) * 2006-09-28 2008-04-03 Robert Bosch Gmbh Fuel cell cooling device
JP2010021005A (en) * 2008-07-10 2010-01-28 Toyota Motor Corp Fuel-cell cooling method and fuel-cell system
JP2010140658A (en) * 2008-12-09 2010-06-24 Honda Motor Co Ltd Fuel cell system cooling device
JP2013054933A (en) * 2011-09-05 2013-03-21 Suzuki Motor Corp Temperature and flow controller of fuel cell cooling liquid
KR20190064739A (en) * 2017-12-01 2019-06-11 현대자동차주식회사 Thermal management system of fuel cell vehicle
KR102496804B1 (en) * 2017-12-01 2023-02-06 현대자동차 주식회사 Thermal management system of fuel cell vehicle
JP2020149933A (en) * 2019-03-15 2020-09-17 本田技研工業株式会社 Fuel cell system and temperature adjusting method thereof
JP7098560B2 (en) 2019-03-15 2022-07-11 本田技研工業株式会社 Fuel cell system and fuel cell stack temperature control method
CN114883608A (en) * 2022-01-28 2022-08-09 上海神力科技有限公司 Single-chip waterway temperature control system of fuel cell stack

Also Published As

Publication number Publication date
JP3979581B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
EP2325038B1 (en) Vehicle fuel cell cooling system
US10170778B2 (en) Thermal management system of fuel cell vehicle
JP4066361B2 (en) Fuel cell cooling system
KR101835186B1 (en) Fuel cell system and control method for fuel cell system
JP2015128049A (en) Thermal management system and method of fuel cell vehicle
US11469426B2 (en) Thermal management system for fuel cell vehicle
JP3979582B2 (en) Cooling water circulation supply system for fuel cell
JP3979581B2 (en) Cooling water circulation supply system for fuel cell
JP5742946B2 (en) Fuel cell system
JP3912087B2 (en) Fuel cell cooling system and electric vehicle
KR101592651B1 (en) Thermal management system for fuel cell vehicle and method thereof
JP2002329521A (en) Fuel cell system and fuel cell automobile
JP3643069B2 (en) Fuel cell cooling method
JP2004158279A (en) Fuel cell cooling device of fuel cell electric vehicle
JP2010192141A (en) Coolant circuit system
US20040072043A1 (en) Fuel cell system
JP2002175823A (en) Cooling equipment for fuel cell
JP2004327083A (en) Fuel cell system and its control method
JP2003123804A (en) Cooling method of fuel cell
JP2005190881A (en) Cooling device for fuel cell
JP2007305519A (en) Fuel cell system
KR101551034B1 (en) Apparatus and Method for controlling open angle of control valve variably
JP4161527B2 (en) Fuel cell power generator
US20240039019A1 (en) Fuel cell system and method for start control therein
JP4333931B2 (en) Fuel cell power generator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140706

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees