JP2004014206A - Manufacturing method of positive electrode for nonaqueous secondary battery - Google Patents

Manufacturing method of positive electrode for nonaqueous secondary battery Download PDF

Info

Publication number
JP2004014206A
JP2004014206A JP2002163670A JP2002163670A JP2004014206A JP 2004014206 A JP2004014206 A JP 2004014206A JP 2002163670 A JP2002163670 A JP 2002163670A JP 2002163670 A JP2002163670 A JP 2002163670A JP 2004014206 A JP2004014206 A JP 2004014206A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode mixture
secondary battery
active material
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002163670A
Other languages
Japanese (ja)
Other versions
JP4155392B2 (en
Inventor
Fumihiko Kishi
岸 文彦
Shoji Nishihara
西原 昭二
Ichiji Miyata
宮田 一司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2002163670A priority Critical patent/JP4155392B2/en
Publication of JP2004014206A publication Critical patent/JP2004014206A/en
Application granted granted Critical
Publication of JP4155392B2 publication Critical patent/JP4155392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a positive electrode for a nonaqueous secondary battery having a high capacity and excellent cycle characteristics. <P>SOLUTION: A positive electrode for a nonaqueous secondary battery is manufactured through a process of applying positive electrode mixture containing paste to a conductive base body and drying it to form a positive electrode mixture layer. The positive electrode containing paste is prepared by mixing a conductive assistant, a binding agent and a solvent beforehand by a twin-screw extruder rotating two screws at an equivalent speed in the same direction and mixing the resulting conductive assistant containing dispersion and a positive electrode active material by the two-screw extruder. Or, the positive electrode mixture containing paste is prepared by mixing the positive electrode active material, the conductive assistant and the binding agent by the two-screw extruder by applying the obtained positive electrode mixture containing paste to the conductive base body and drying it to form the positive mixture layer. An area/weight ratio of 50-2000 m2/g is preferable for the conductive assistant. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、非水二次電池用正極の製造方法に関し、さらに詳しくは、高容量でかつサイクル特性が優れた非水二次電池を提供することができる非水二次電池用正極の製造方法に関する。
【0002】
【従来の技術】
電子機器の小型化、携帯電話の普及などに伴い、高エネルギー密度を有する二次電池への要求がますます高まっている。現在、この要求に応える高容量二次電池としては、正極活物質としてLiCoO2 、LiNiO2 、LiMn2 4 などのリチウム含有複酸化物を用い、負極活物質として炭素系材料を用いたリチウムイオン二次電池が商品化されている。このリチウムイオン二次電池は平均駆動電圧が3.6Vと高く、従来のニッケル−カドミウム電池やニッケル水素電池の平均駆動電圧の約3倍である。また、負極活物質として炭素系材料を用いることによって、充放電に関与する移動体がリチウムイオンになることから、軽量化も期待できる。
【0003】
このリチウムイオン二次電池では、従来の金属リチウムを負極とする非水二次電池とは異なり、上記活物質を結着剤などとともに溶剤中に分散させて合剤含有ペーストを調製し、その合剤含有ペーストを集電体としての作用を兼ねる導電性基体に塗布し、乾燥して活物質を含有する塗膜状の合剤層を形成し、帯状の正負極を製造している。それらの帯状の正負極はセパレータを介して渦巻状に巻回して電極体を作製し、それを電池缶内に挿入し、電解液を注入し、封口することによって電池が組み立てられている。そして、上記正極には、正極活物質と結着剤以外に正極合剤層中のインピーダンスを低減するため、アセチレンブラックなどの導電助剤が添加されている。
【0004】
今後、携帯情報端末機器の需要拡大により、高容量でかつ軽量のリチウムイオン二次電池の使用はますます増加し、それに伴い要求特性はさらに厳しくなることが予測される。リチウムイオン二次電池の高容量化は、負極材料によるところが大きく、シリコン(Si)系やスズ(Sn)系などの金属複合材料やリチウム(Li)含有窒化物によりさらなる容量アップが期待できる。しかし、充放電による負極材料の膨潤や充放電サイクルによる容量劣化や安全性の低下などにより、それらは実用化には至らず、現在の負極材料の多くは炭素系材料で占められ、その理論容量である372mAh/gに近づきつつある。
【0005】
一方、正極活物質に関しては、一般にLiCoO2 、LiMn2 4 、LiNiO2 などが用いられている。それらの正極活物質の理論放電容量はそれぞれ274mAh/g、148mAh/g、274mAh/gであるが、実際に使用できる放電容量はそれより低く、LiCoO2 の実用的な放電容量は125〜140mAh/g程度であり、LiNiO2 の実用的な放電容量は160〜200mAh/g程度である。したがって、LiNiO2 を用いることにより、LiCoO2 を用いる場合に比べて高容量化が可能であるが、LiNiO2 はLiCoO2 に比べて製造コストが非常に高い上に、安全性の低いことが大きな課題である。また、LiMn2 4 は理論放電容量が148mAh/gであって、LiCoO2 などの理論放電容量に比べて小さい上に、真密度が4.0〜4.2g/ccとLiCoO2 の真密度4.9〜5.1g/ccに比べて低い。そのため、LiMn2 4 を正極活物質として用いた場合、単位体積当たりの容量が小さくなることが明白である。それらの理由により、現在、正極活物質としてLiCoO2 を用いることが一般的となっている。そのため、正極の高容量化を図るには、膜状に形成する正極合剤層での高容量化を達成することが必要である。
【0006】
正極合剤層は、正極活物質、結着剤および導電助剤から構成される。そして、正極合剤層の形成方法としては、特開平4−253157号公報で記載されているように、混練容器内で攪拌棒が自転しながら公転するタイプの混練機を使用して、溶剤中に正極活物質、結着剤および導電助剤を均一に分散させ、正極合剤含有ぺーストを調製、得られた正極合剤含有ぺーストを金属箔などからなる導電性基体に均一に塗布し、乾燥工程を経て塗膜状の正極合剤層を形成する方法が採用されている。そして、必要に応じてその正極合剤層が圧縮される。
【0007】
正極合剤層での高容量化が進むにつれ、その混練工程もさらに強く行う必要性がある。そのため、特開平7−29605号公報に記載されているように、正極活物質、導電助剤、結着剤および溶剤をニーダで混練する工程を経ることにより、正極合剤含有ぺーストを調製し、それを用いて正極を製造する方法や、特開2001−283837号公報に記載されているように、塗布に適した正極合剤含有ぺーストにする前に、正極活物質と導電助剤をマラー型混練機により混練する前処理を行って正極を製造する方法が提案されている。さらに、特開平11−54113号公報に記載されているように、最初に導電助剤と溶剤とを混合して導電助剤を溶剤中に分散させ、その分散液に正極活物質および結着剤を添加して混練分散して正極合剤含有ぺーストを調製して正極を製造する方法も提案されている。
【0008】
【発明が解決しようとする課題】
しかしながら、ニーダやマラー型混練機を使用した場合には、混練工程により、正極合剤密度が向上し高容量化が可能であるが、空隙が大きく、大きな剪断力がかからないため、正極活物質と導電助剤との分散が不充分になり、満足し得る電池特性が得られない。また、導電助剤の前分散工程を経る場合、正極活物質と導電助剤との分散状態は良好になるが、導電助剤が充分に微粒子化できず、また、比表面積が大きい導電助剤を用いると充分に分散することができないため、正極合剤層の密度の向上が望めず、高容量化が期待できない。
【0009】
本発明は、上記のような従来技術の問題点を解決し、高容量でかつサイクル特性が優れた非水二次電池を提供することができる非水二次電池用正極を製造することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、正極合剤含有ぺーストを導電性基体に塗布し、乾燥して正極合剤層を形成する工程を経由して非水二次電池用正極を製造するにあたり、あらかじめ導電助剤と結着剤と溶剤とを二軸が同一方向に等速で回転する二軸エクストルーダを用いて混練し、得られた導電助剤含有分散液と正極活物質とを前記と同様の二軸が同一方向に等速で回転する二軸エクストルーダを用いて混練する工程を経由して正極合剤含有ぺーストを調製するか、または正極活物質と導電助剤と結着剤と溶剤とを二軸が同一方向に等速で回転する二軸エクストルーダを用いて混練する工程を経由して正極合剤含有ぺーストを調製するによって、上記課題を解決したものである。
【0011】
すなわち、本発明において正極合剤含有ぺーストの調製にあたって用いる二軸エクストルーダは、混練時の剪断力が極めて強いので、正極活物質の表面に導電助剤を均一に被覆させることができ、その結果、正極活物質の体積抵抗率を低下させて、高容量でかつサイクル特性を向上させ、前記課題を解決できるようになるものと考えられる。特にあらかじめ導電助剤と結着剤と溶剤とを二軸エクストルーダを用いて混練して導電助剤含有分散液を調製する、いわゆる前処理を行い、その後、得られた導電助剤含有分散液と正極活物質とを二軸エクストルーダを用いて混練する工程を経て正極合剤含有ぺーストを調製する場合は、正極活物質の表面に導電助剤をより均一に被覆させることができるので、正極活物質の体積抵抗率をより効果的に低下させ、容量やサイクル特性をより向上させることができる。
【0012】
【発明の実施の形態】
本発明において、二軸エクストルーダは、あらかじめ導電助剤と結着剤と溶剤とを混練して導電助剤含有分散液を調製する場合、その導電助剤含有分散液と正極活物質とを混練する場合、あるいは正極活物質と導電助剤と結着剤と溶剤とを一挙に混練する場合のいかんにかかわらず、回転数50〜300rpm、温度20〜70℃の条件下で駆動させることが好ましい。
【0013】
正極活物質としては、特に限定されることはないが、例えば、LiCoO2 などのリチウムコバルト酸化物、LiMn2 4 などのリチウムマンガン酸化物、LiNiO2 などのリチウムニッケル酸化物、二酸化マンガン、五酸化バナジウム、クロム酸化物などの金属酸化物、またはそれらを基本構造とする複合酸化物(例えば、異種金属添加品)、あるいは二硫化チタン、二硫化モリブデンなどの金属硫化物などが単独でまたは2種以上の混合物として、あるいはそれらの固溶体として用いられる。また、LiMO2 またはLiM2 4 で表されるリチウム含有金属酸化物において、MはCo、Ni、Mn、Fe、Cuなどの金属元素を少なくとも1つ以上含んだリチウム含有金属酸化物であっても、特に問題はない。そして、それらの正極活物質において、特にLiNiO2 、LiCoO2 、LiMn2 4 などの充電時の開路電圧がLi基準で4V以上を示すリチウム複合酸化物を正極活物質として用いる場合には、高エネルギー密度が得られるので好ましい。
【0014】
本発明において、導電助剤としては、特に限定されることはないが、例えば、ファーネスブラック、ケッチェンブラックなどのカーボンブラック系導電助剤やアセチレンブラック、鱗片状黒鉛、繊維状炭素、活性炭などを用いることができる。上記アセチレンブラックやカーボンブラックは、比表面積が50〜2000m2 /gのものが好ましい。これらアセチレンブラックやカーボンブラックが50〜2000m2 /gであることにより、正極活物質との接触面積を充分に確保して内部抵抗の低減を実現するとともに、正極合剤含有ぺーストの調製にあたって必要とされる溶剤の使用量を適正化させ、それによって、正極合剤層の密度を向上させて高容量を達成することができる。また、黒鉛系導電助剤は比表面積が50〜500m2 /gであることが好ましい。すなわち、黒鉛系導電助剤の比表面積が50〜500m2 /gであることによって、それらと正極活物質との接触面積を充分に確保して内部抵抗の低減を実現するとともに、正極合剤含有ぺーストの調製にあたって必要とされる溶剤の使用量を適正化させ、それによって、正極合剤層の密度を向上させ、正極の高容量化を達成することができる。
【0015】
導電助剤の使用量は、導電助剤の種類や組み合わせにより異なるため、特に限定されることはないが、正極合剤中において、0.1〜10質量%が好ましく、特に0.5〜5質量%が好ましい。すなわち、正極合剤中の導電助剤の含有量を0.1〜10質量%にすることによって、導電性を充分に確保し、かつ容量の低下を抑制し、高容量化を保持することができる。
【0016】
また、正極合剤含有ぺーストの調製にあたって、結着剤としては、特に限定されることはないが、例えば、熱可塑性樹脂、ゴム弾性を有するポリマー、多糖類の少なくとも1種を用いることができる。それらの結着剤の具体例を例示すると、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエン共重合樹脂、スチレンブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキシド、ポリビニルピロリドン、ポリエステル樹脂、アクリル樹脂、フェノール樹脂、エポキシ樹脂、ポリビニルアルコール、ヒドロキシプロピルセルロースなどのセルロース系樹脂などが挙げられ、それらの中でもポリフッ化ビニリデンが特に適している。
【0017】
そして、溶剤としては、例えば、N−メチル−2−ピロリドン、ジメチルアセトアミド、ジメチルホルムアミドなどの非プロトン性有機溶媒を単独でまたは2種以上混合して用いることができる。なお、この溶剤は、正極合剤含有ぺーストの調製やその塗布時には必要であるが、その後に行われる正極合剤層の形成工程での乾燥によって除去され、正極合剤層は正極活物質、導電助剤、結着剤などの固形分で構成されるようになる。
【0018】
本発明において、二軸エクストルーダによる混練は、前記のように、導電助剤とバインダーと溶剤とを混ぜ合わせて導電助剤含有分散液を調製する工程、その導電助剤含有分散液と正極活物質とを混ぜ合わせる工程、あるいは前記のような前処理工程を経ることなく、正極活物質と導電助剤と結着剤と溶剤とを一挙に混ぜ合わせる工程に対して行われるが、その後の希釈工程、すなわち、正極活物質、導電助剤、結着剤および溶剤を含む混合物を溶剤で希釈して塗布に適する状態にする工程は、二軸エクストルーダ以外の分散機や混練機を用いて行ってもよいし、その後の希釈工程も二軸エクストルーダで行ってもよい。
【0019】
なお、前記前処理で得た導電助剤含有分散液と正極活物質とを混練する工程では、必要に応じて、溶剤を添加してもよいし、また、それぞれの工程で各成分の投入順序に時間的な相違があってもよい。
【0020】
正極は、例えば、上記正極含有合剤ぺーストを正極集電体としての作用を兼ねる導電性基体上に塗布し、乾燥して溶剤を除去することにより、導電性基体上に塗膜状の正極合剤層を形成し、必要に応じて正極合剤層を圧縮する工程を経由して製造される。
【0021】
上記正極の製造にあたって用いる導電性基体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼などの金属の箔、網、エキスパンドメタルなどが用いられるが、特にアルミニウム箔が好ましい。
【0022】
本発明において、上記正極の製造にあたって用いる導電性基体の厚さとしては、5〜60μm、特に8〜40μmが好ましく、また、正極合剤層の厚さとしては、圧縮後において、片面当たり30〜300μm、特に50〜150μmが好ましい。
【0023】
本発明によって製造される正極を用いて非水二次電池を構成するにあたり、その対極となる負極に用いる主材料としては、リチウムイオンをドープ・脱ドープできるものであればよく、ここでは、そのようなリチウムイオンをドープ・脱ドープできる物質を負極活物質という。そして、この負極活物質としては、特に限定されることはないが、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などの炭素材料、Si、Sn、Inなどの合金またはLiに近い低電圧で充放電できるSi、Sn、Inなどの酸化物などを用いることができる。
【0024】
負極活物質として炭素材料を用いる場合、該炭素材料としては下記の特性を有するものが好ましい。すなわち、その(002)面の面間距離(d002 )に関しては、0.35nm以下が好ましく、より好ましくは0.345nm以下、さらに好ましくは0.34nm以下である。また、c軸方向の結晶子の大きさ(Lc)に関しては、3.0nm以上が好ましく、より好ましくは8.0nm以上、さらに好ましくは25.0nm以上である。そして、上記炭素材料の平均粒径は8〜20μm、特に10〜15μmが好ましく、純度は99.9質量%以上が好ましい。
【0025】
負極は、例えば、上記負極活物質に前記正極の場合と同様の結着剤を適宜添加し、さらに要すれば前記正極の場合と同様の導電助剤を適宜添加し、溶剤に分散させてぺースト状にし(結着剤はあらかじめ溶剤に溶解または分散させておいてから負極活物質などと混合してもよい)、その負極合剤含有ぺーストを負極集電体としての作用を兼ねる導電性基体に塗布し、乾燥して溶剤を除去することにより、負極合剤層を形成し、必要に応じて負極合剤層を圧縮する工程を経由することによって製造される。
【0026】
上記負極の製造にあたって使用する導電性基体としては、例えば、銅、アルミニウム、ステンレス鋼、チタンなどの金属の箔、網、エキスパンドメタルなどを用いることができるが、特に銅箔が好ましい。
【0027】
上記負極の製造にあたって用いる導電性基体の厚さとしては、5〜60μm、特に8〜40μmが好ましく、また、上記負極合剤の厚さとしては、圧縮後において、片面当たり30〜300μm、特に50〜150μmが好ましい。
【0028】
上記正極や負極の製造にあたって、上記正極合剤含有ぺーストや負極合剤含有ぺーストを導電性基体に塗布する際の塗布手段としては、例えば、押出しコーター、リバースローラー、ドクターブレードなどをはじめ、各種の塗布手段を採用することができる。
【0029】
本発明によって製造される正極を用いて非水二次電池を構成するにあたり、電解液としては有機溶媒などの非水溶媒に溶質を溶解させた非水溶媒系の電解液が用いられる。その溶媒としては、特に限定されるものではないが、鎖状エステルを主溶媒として用いることが特に適している。そのような鎖状エステルとしては、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、酢酸エチル、プロピオン酸メチルなどの鎖状のCOO結合を有する有機溶媒が挙げられる。この鎖状エステルが電解液の主溶媒であるということは、これらの鎖状エステルが全電解液溶媒中の50体積%より多い体積を占めることを意味しており、特に鎖状エステルが全電解液溶媒中の65体積%以上を占めることが好ましい。
【0030】
ただし、電解液溶媒としては、上記鎖状エステルのみで構成するよりも、電池容量の向上をはかるために、上記鎖状エステルに誘電率の高いエステル(誘電率30以上のエステル)を混合して用いることが好ましい。そのような誘電率が高いエステルの全電解液溶媒中で占める量としては、10体積%以上、特に20体積%以上が好ましい。
【0031】
上記誘電率の高いエステルとしては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、エチレングリコールサルファイトなどが挙げられ、特にエチレンカーボネート、プロピレンカーボネートなどの環状構造のものが好ましく、とりわけ環状のカーボネートが好ましく、具体的にはエチレンカーボネートが最も好ましい。
【0032】
また、上記誘電率の高いエステル以外に併用可能な溶媒としては、例えば、1,2−ジメトキシエタン、1,3−ジオキソラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン、ジエチルエーテルなどが挙げられる。そのほか、アミン系またはイミド系有機溶媒や、含イオウ系または含フッ素系有機溶媒なども用いることができる。
【0033】
電解液の溶質としては、例えば、LiClO4 、LiPF6 、LiBF4 、LiAsF6 、LiSbF6 、LiCF3 SO3 、LiC4 9 SO3 、LiCF3 CO2 、Li2 2 4 (SO3 2 、LiN(CF3 SO2 2 、LiC(CF3 SO2 3 、LiCn 2n+1SO3 (n≧2)などが単独でまたは2種以上混合して用いられる。特にLiPF6 やLiC4 9 SO3 などが充放電特性が良好なことから好ましい。電解液中における電解質の濃度は、特に限定されることはないが、0.3mol/l以上が好ましく、0.4mol/l以上がより好ましく、また、1.7mol/l以下が好ましく、1.5mol/l以下がより好ましい。
【0034】
電解液は、通常、液状で用いられるが、ゲル化剤でゲル化してゲル状で用いてもよい。
【0035】
本発明において、セパレータとしては、強度が充分でしかも電解液を多く保持できるものが好ましく、そのような観点から、厚さが10〜50μmで、開孔率が30〜70%のポリプロピレン製、ポリエチレン製またはエチレンとプロピレンのコポリマー製の微孔性フィルムや不織布などが好適に用いられる。
【0036】
非水二次電池は、例えば、上記のようにして製造された正極と負極との間にセパレータを介在させて重ね合わせ、それを渦巻状、楕円状、長円形状などに巻回して巻回構造の電極体を作製し、その巻回構造の電極体を金属ラミネートフィルムからなる外装体、ニッケルメッキを施した鉄やステンレス鋼またはアルミニウムもしくはアルミニウム合金製の電池ケース内に挿入し、封口する工程を経て作製される。また、上記電池には、電池内部に発生したガスをある一定圧力まで上昇した段階で電池外部に排出して、電池の高圧下での破裂を防止するための防爆機構を取り入れてもよい。
【0037】
【実施例】
つぎに、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はそれらの実施例のみに限定されるものではない。
【0038】
実施例1
正極の製造:
導電助剤としてのアセチレンブラック6質量部と、結着剤としてのポリフッ化ビニリデン10質量部と、溶剤としてのN−メチル−2−ピロリドン80質量部とを二軸エクストルーダ(栗本鉄工所社製)を用いて回転数100rpm、温度32℃で混練して導電助剤含有分散液を調製し、その導電助剤含有分散液と正極活物質としてのLiCoO2 (平均粒径:5.5μm)184質量部と粘度調整のためのN−メチル−2−ピロリドンとを二軸エクストルーダで回転数100rpm、温度32℃で混練してスラリー状の正極合剤含有ぺーストを調製した。上記正極合剤含有ぺーストを70メッシュの網を通過させて大きなものを取り除いた後、厚さ15μmのアルミニウム箔からなる導電性基体の両面に均一に塗布し、乾燥して塗膜状の正極合剤層を形成し、圧縮して総厚166μmとし、所定サイズに切断して正極とした。この正極にアルミニウム製のリード体を溶接して、正極にリード体を取り付けた。この正極における正極合剤層の密度は3.35g/cm3 であり、導電助剤として用いたアセチレンブラックの比表面積は68m2 /gであった。
【0039】
負極の製造:
負極活物質としての黒鉛系炭素材料〔ただし、002面の面間距離(d002 )=0.337nm、c軸方向の結晶子の大きさ(Lc)=95.0nm、平均粒径10μm、純度99.9%以上という特性を持つ炭素材料)180質量部を、ポリフッ化ビニリデン14質量部をN−メチル−2−ピロリドン190質量部に溶解させた溶液と混合して負極合剤含有ペーストを調製した。この負極合剤含有ペーストを厚さ10μmの帯状の銅箔からなる導電性基体の両面に均一に塗布し、乾燥して塗膜状の負極合剤層を形成し、圧縮して総厚175μmとし、所定サイズに切断して負極とした。この負極にニッケル製のリード体の一端を溶接して、負極にリード体を取り付けた。
【0040】
電解液の調製:
エチレンカーボネートとメチルエチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF6 を1.2mol溶解させて、組成が1.2mol/lLiPF6 /EC:MEC(1:2体積比)で示される電解液を調製した。
【0041】
非水二次電池の製造:
上記正極および負極を厚さ25μmの微孔性ポリエチレンフィルムからなるセパレータを介して渦巻状に巻回し、巻回構造の電極体にした。これをアルミニウムを芯材とするラミネートフィルムからなる袋状の外装体内に挿入し、上記電解液を注入した後、真空封止を行い、その状態で3時間放置し、正極、負極およびセパレータに電解液を充分に含浸させて非水二次電池を作製した。
【0042】
実施例2
実施例1の正極の製造工程でアセチレンブラックに代えて、ケッチェンブラック(ケッチェンブラックインターナショナル社製:ECP600JD)を用いた以外は、実施例1と同様に正極を製造し、その正極を用いた以外は、実施例1と同様に非水二次電池を製造した。なお、この実施例2の正極の総厚は168μmであり、正極合剤層の密度は3.32g/cm3 であった。また、正極の製造にあたって導電助剤として用いたケッチェンブラックの比表面積は1270m2 /gであった。
【0043】
実施例3
実施例1の正極の製造工程でアセチレンブラックに代えてカーボンブラック(三菱化学社製:CB3030B)を用いた以外は、実施例1と同様に正極を製造し、その正極を用いた以外は、実施例1と同様の非水二次電池を製造した。なお、実施例3の正極の総厚は168μmであり、正極合剤層の密度は3.33g/cm3 であった。また、正極の製造にあたって導電助剤として用いたカーボンブラックの比表面積は32m2 /gであった。
【0044】実施例4
実施例1の正極の製造工程でアセチレンブラックに代えて活性炭(関西熱化学社製:MSP−30)を用いた以外は、実施例1と同様に正極を製造し、その正極を用いた以外は、実施例1と同様に非水二次電池を製造した。なお、この実施例4の正極の総厚は169μmであり、正極合剤層の密度は3.29g/cm3 であった。また、正極の製造にあたって導電助剤として用いた活性炭の比表面積は3100m2 /gであった。
【0045】
実施例5
LiCoO2 184質量部とアセチレンブラック6質量部とポリフッ化ビニリデン10質量部とN−メチル−2−ピロリドン80質量部とを二軸エクストルーダを用いて回転数100rpm、温度33℃で混練して、スラリー状の正極合剤含有ぺーストを調製した。この正極合剤含有ぺーストを用いた以外は、実施例1と同様に正極を製造し、その正極を用いた以外は、実施例1と同様に非水二次電池を製造した。なお、この実施例5の正極の総厚は168μmであり、正極合剤層の密度は3.33g/cm3 であった。
【0046】
比較例1
実施例1の正極の製造工程で二軸エクストルーダに代えてプラネタリーミキサー(浅田鉄工所製)を用いた以外は、実施例1と同様に正極を製造し、その正極を用いた以外は、実施例1と同様に非水二次電池を製造した。なお、この比較例1の正極の総厚は174μmであり、正極合剤層の密度は3.19g/cm3 であった。
【0047】
比較例2
実施例1の正極の製造工程で二軸エクストルーダに代えてニーダを用いた以外は、実施例1と同様に正極を製造し、その正極を用いた以外は、実施例1と同様に非水二次電池を製造した。なお、この比較例2の正極の総厚は172μmであり、正極合剤層の密度は3.22g/cm3 であった。
【0048】
比較例3
実施例1の正極の製造工程で二軸エクストルーダに代えてマラー型混練機を用いた以外は、実施例1と同様に正極を製造し、その正極を用いた以外は、実施例1と同様に非水二次電池を製造した。なお、この比較例3の正極の総厚は171μmであり、正極合剤層の密度は3.25g/cm3 であった。
【0049】
上記実施例1〜5および比較例1〜3の正極を用いた各非水二次電池について、充放電を繰り返した時の放電容量およびインピーダンスの変化を測定した。その結果を表1に示す。
【0050】
放電容量は、1Cの電流制限回路を設けて4.2Vの定電圧で充電を行い、電池の電圧が3Vに低下するまで放電を行ったときの容量で規定し、500サイクル後の放電容量と内部インピーダンスを測定した。その結果の表1への表示にあたっては、比較例1の電池の500サイクル目の放電容量を100とし、その放電容量における相対値で示した。
【0051】
また、内部インピーダンスは、電池容量と同様の条件で、LCRメータにより1kHzにおけるインピーダンスを測定し、その結果の表1への表示にあたっては比較例1の500サイクル目の充電状態のインピーダンスを100とする相対値で示した。
【0052】
また、表2には、実施例1〜5および比較例1〜3で用いた混練機の種類、導電助剤の種類およびその比表面積を示す。なお、導電助剤の種類についての表示にあたっては、次の略号で示す。
AB:アセチレンブラック
KB:ケッチェンブラック
CB:カーボンブラック
C :活性炭
【0053】
【表1】

Figure 2004014206
【0054】
【表2】
Figure 2004014206
【0055】
表1〜表2により明らかなように、正極合剤含有ぺーストの調製を二軸エクストルーダを用いて行った実施例1〜5の正極を用いた電池は、正極合剤含有ぺーストの調製をプラネタリーミキサーを用いて行った比較例1の正極、ニーダを用いた比較例2の正極およびマラー型混練機を用いた比較例3の正極を用いた電池に比べて、500サイクル後の放電容量が高く、かつ内部インピーダンスが低かった。このように、正極合剤含有ぺーストの調製にあたって二軸エクストルーダで混練することによって、500サイクル後の放電容量を大きくし、かつ内部インピーダンスの上昇を抑制することができることがわかる。
【0056】
また、実施例中において、あらかじめ導電助剤含有分散液を調製する前処理工程を取り入れた実施例1〜4の中で比較すると、実施例1〜2は、実施例3〜4に比べて、500サイクル後の放電容量が高く、かつ内部インピーダンスが低くなっていて、導電助剤の比表面積としては50〜2000m2 /gが好ましいことがわかる。
【0057】
さらに、あらかじめ導電助剤含有分散液を調製する前処理工程を取り入れた実施例1と、同じ材料を用いながらも、そのような前処理工程を取り入れなかった実施例5とを比較すると、実施例1の方が実施例5より、500サイクル後の放電容量が大きく、かつ内部インピーダンスが小さかったので、前記のような前処理工程、すなわち、あらかじめ導電助剤含有分散液を調製する工程を取り入れる方がそのような前処理工程を取り入れない場合より好ましいこともわかった。
【0058】
【発明の効果】
以上説明したように、本発明によれば、高容量でかつサイクル特性が優れた非水二次電池を提供することができる非水二次電池用正極を製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a positive electrode for a non-aqueous secondary battery, and more specifically, a method for producing a positive electrode for a non-aqueous secondary battery capable of providing a non-aqueous secondary battery having high capacity and excellent cycle characteristics. About.
[0002]
[Prior art]
With the miniaturization of electronic devices and the spread of mobile phones, demands for secondary batteries having a high energy density are increasing. At present, high-capacity secondary batteries that meet this demand include LiCoO 2 as a positive electrode active material. 2 , LiNiO 2 , LiMn 2 O 4 Lithium ion secondary batteries using lithium-containing double oxides and carbon-based materials as negative electrode active materials have been commercialized. This lithium ion secondary battery has a high average driving voltage of 3.6 V, which is about three times the average driving voltage of conventional nickel-cadmium batteries or nickel-metal hydride batteries. In addition, by using a carbon-based material as the negative electrode active material, a moving body involved in charge and discharge becomes lithium ion, so that a reduction in weight can be expected.
[0003]
In this lithium ion secondary battery, unlike a conventional nonaqueous secondary battery using lithium metal as a negative electrode, the above-mentioned active material is dispersed in a solvent together with a binder and the like to prepare a mixture-containing paste, and the mixture is prepared. The agent-containing paste is applied to a conductive substrate serving also as a current collector, and dried to form a film-shaped mixture layer containing an active material, thereby producing a strip-shaped positive and negative electrode. These strip-shaped positive and negative electrodes are spirally wound through a separator to produce an electrode body, which is inserted into a battery can, injected with an electrolyte, and sealed to form a battery. In addition to the positive electrode active material and the binder, a conductive auxiliary such as acetylene black is added to the positive electrode in order to reduce impedance in the positive electrode mixture layer.
[0004]
In the future, with the growing demand for portable information terminal equipment, the use of high-capacity and lightweight lithium-ion secondary batteries is expected to further increase, and the required characteristics are expected to become more severe. The increase in capacity of a lithium ion secondary battery largely depends on the negative electrode material, and a further increase in capacity can be expected with a metal composite material such as silicon (Si) or tin (Sn) or a nitride containing lithium (Li). However, due to the swelling of the negative electrode material due to charge and discharge, capacity deterioration and safety deterioration due to charge and discharge cycles, they have not been put to practical use, and most of the current negative electrode materials are occupied by carbon-based materials, and their theoretical capacity 372 mAh / g.
[0005]
On the other hand, regarding the positive electrode active material, generally, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 Are used. The theoretical discharge capacities of these positive electrode active materials are 274 mAh / g, 148 mAh / g, and 274 mAh / g, respectively, but the actually usable discharge capacities are lower, and LiCoO 2 Has a practical discharge capacity of about 125 to 140 mAh / g. 2 Has a practical discharge capacity of about 160 to 200 mAh / g. Therefore, LiNiO 2 By using LiCoO 2 Although it is possible to increase the capacity as compared with the case of using LiNiO, 2 Is LiCoO 2 The major issues are that the production cost is extremely high and the safety is low. LiMn 2 O 4 Indicates that the theoretical discharge capacity is 148 mAh / g and LiCoO 2 And the true density is 4.0 to 4.2 g / cc and LiCoO 2 Is lower than 4.9 to 5.1 g / cc. Therefore, LiMn 2 O 4 When is used as the positive electrode active material, it is apparent that the capacity per unit volume is reduced. For these reasons, LiCoO 2 is currently used as the positive electrode active material. 2 It is common to use. Therefore, in order to increase the capacity of the positive electrode, it is necessary to achieve a higher capacity in the positive electrode mixture layer formed in a film shape.
[0006]
The positive electrode mixture layer includes a positive electrode active material, a binder, and a conductive auxiliary. As a method for forming the positive electrode mixture layer, as described in JP-A-4-253157, a kneader of a type in which a stirring rod revolves while rotating in a kneading vessel is used. A positive electrode active material, a binder and a conductive assistant are uniformly dispersed in the paste, a paste containing the positive electrode mixture is prepared, and the obtained paste containing the positive electrode mixture is uniformly applied to a conductive substrate made of a metal foil or the like. And a method of forming a positive electrode mixture layer in the form of a coating film through a drying step. Then, the positive electrode mixture layer is compressed as necessary.
[0007]
As the capacity of the positive electrode mixture layer increases, the kneading step also needs to be performed more strongly. Therefore, as described in JP-A-7-29605, a paste containing a positive electrode mixture is prepared by kneading a positive electrode active material, a conductive auxiliary, a binder and a solvent with a kneader. And a method of manufacturing a positive electrode using the same, as described in JP-A-2001-283837, before forming a positive electrode mixture-containing paste suitable for coating, a positive electrode active material and a conductive auxiliary agent There has been proposed a method of producing a positive electrode by performing a pre-treatment of kneading by a Muller-type kneader. Further, as described in JP-A-11-54113, first, a conductive auxiliary and a solvent are mixed to disperse the conductive auxiliary in the solvent, and the dispersion is mixed with a positive electrode active material and a binder. Has also been proposed in which a positive electrode is prepared by adding and kneading and dispersing to prepare a paste containing the positive electrode mixture.
[0008]
[Problems to be solved by the invention]
However, in the case of using a kneader or a Muller-type kneader, the kneading step can increase the density of the positive electrode mixture and increase the capacity, but since the voids are large and a large shearing force is not applied, the positive electrode active material and Dispersion with the conductive additive becomes insufficient, and satisfactory battery characteristics cannot be obtained. Further, when the conductive auxiliary agent is subjected to a pre-dispersion step, the dispersion state of the positive electrode active material and the conductive auxiliary agent is good, but the conductive auxiliary agent cannot be sufficiently finely divided and has a large specific surface area. However, it is not possible to sufficiently disperse it, and therefore, it is not possible to expect an increase in the density of the positive electrode mixture layer, and it is not possible to expect a high capacity.
[0009]
An object of the present invention is to provide a positive electrode for a non-aqueous secondary battery that can solve the above-described problems of the conventional technology and can provide a non-aqueous secondary battery with high capacity and excellent cycle characteristics. And
[0010]
[Means for Solving the Problems]
The present invention provides a positive electrode for a non-aqueous secondary battery via a step of applying a positive electrode mixture-containing paste to a conductive substrate and drying the paste to form a positive electrode mixture layer. The binder and the solvent are kneaded using a biaxial extruder in which the two axes rotate at the same speed in the same direction, and the obtained conductive auxiliary agent-containing dispersion and the positive electrode active material have the same two axes as described above. A paste containing a positive electrode mixture is prepared via a kneading process using a twin-screw extruder rotating at a constant speed in the direction, or a twin-screw mixture of a positive electrode active material, a conductive additive, a binder, and a solvent is used. The above object has been attained by preparing a paste containing a positive electrode mixture via a kneading process using a twin-screw extruder rotating at the same speed in the same direction.
[0011]
That is, the biaxial extruder used in the preparation of the paste containing the positive electrode mixture in the present invention has an extremely strong shear force at the time of kneading, so that the surface of the positive electrode active material can be uniformly coated with the conductive additive, and as a result, It is considered that the above-mentioned problem can be solved by reducing the volume resistivity of the positive electrode active material, improving the capacity and improving the cycle characteristics. In particular, a conductive auxiliary agent-containing dispersion is prepared by kneading the conductive auxiliary agent, the binder, and the solvent in advance using a biaxial extruder, so-called pretreatment is performed. When the paste containing the positive electrode mixture is prepared through a process of kneading the positive electrode active material with a biaxial extruder, the surface of the positive electrode active material can be more uniformly coated with the conductive additive. The volume resistivity of the substance can be reduced more effectively, and the capacity and cycle characteristics can be further improved.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the biaxial extruder kneads the conductive auxiliary agent-containing dispersion and the positive electrode active material when preparing a conductive auxiliary agent-containing dispersion by previously kneading a conductive auxiliary, a binder, and a solvent. Regardless of the case or the case where the positive electrode active material, the conductive additive, the binder, and the solvent are kneaded at a time, it is preferable to drive at a rotation speed of 50 to 300 rpm and a temperature of 20 to 70 ° C.
[0013]
Although the cathode active material is not particularly limited, for example, LiCoO 2 Such as lithium cobalt oxide, LiMn 2 O 4 Such as lithium manganese oxide, LiNiO 2 Metal oxides such as lithium nickel oxide, manganese dioxide, vanadium pentoxide, and chromium oxide, or composite oxides having these as a basic structure (for example, products with different types of metals), or titanium disulfide, molybdenum disulfide Are used alone or as a mixture of two or more thereof, or as a solid solution thereof. Also, LiMO 2 Or LiM 2 O 4 In the lithium-containing metal oxide represented by the formula, there is no particular problem even if M is a lithium-containing metal oxide containing at least one metal element such as Co, Ni, Mn, Fe, and Cu. And, in those positive electrode active materials, in particular, LiNiO 2 , LiCoO 2 , LiMn 2 O 4 It is preferable to use a lithium composite oxide having an open circuit voltage of 4 V or more based on Li as a positive electrode active material during charging, because a high energy density can be obtained.
[0014]
In the present invention, the conductive auxiliary agent is not particularly limited, for example, furnace black, carbon black-based conductive auxiliary agents such as Ketjen Black and acetylene black, flaky graphite, fibrous carbon, activated carbon and the like Can be used. The acetylene black or carbon black has a specific surface area of 50 to 2000 m. 2 / G is preferred. These acetylene black and carbon black are 50 to 2000 m 2 / G, the contact area with the positive electrode active material is sufficiently secured to reduce the internal resistance, and the amount of the solvent required for preparing the paste containing the positive electrode mixture is optimized. Thereby, the density of the positive electrode mixture layer can be improved to achieve a high capacity. The graphite-based conductive additive has a specific surface area of 50 to 500 m. 2 / G. That is, the specific surface area of the graphite-based conductive additive is 50 to 500 m. 2 / G, the contact area between them and the positive electrode active material is sufficiently ensured to reduce the internal resistance, and the amount of solvent required for preparing the paste containing the positive electrode mixture is adjusted appropriately. Accordingly, the density of the positive electrode mixture layer can be improved, and a higher capacity of the positive electrode can be achieved.
[0015]
The amount of the conductive additive used is not particularly limited because it varies depending on the type and combination of the conductive additive, but is preferably 0.1 to 10% by mass, particularly preferably 0.5 to 5% in the positive electrode mixture. % By mass is preferred. That is, by setting the content of the conductive auxiliary agent in the positive electrode mixture to 0.1 to 10% by mass, sufficient conductivity can be ensured, a decrease in capacity can be suppressed, and high capacity can be maintained. it can.
[0016]
In preparing the paste containing the positive electrode mixture, the binder is not particularly limited, and for example, at least one of a thermoplastic resin, a polymer having rubber elasticity, and a polysaccharide can be used. . Illustrative examples of those binders include, for example, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene-diene copolymer resin, styrene butadiene rubber, polybutadiene, fluororubber, polyethylene oxide, polyvinylpyrrolidone And cellulose resins such as polyester resin, acrylic resin, phenol resin, epoxy resin, polyvinyl alcohol, and hydroxypropyl cellulose, and among them, polyvinylidene fluoride is particularly suitable.
[0017]
As the solvent, for example, an aprotic organic solvent such as N-methyl-2-pyrrolidone, dimethylacetamide, dimethylformamide or the like can be used alone or as a mixture of two or more. Note that this solvent is necessary during preparation and application of the positive electrode mixture-containing paste, but is removed by drying in a subsequent positive electrode mixture layer forming step, and the positive electrode mixture layer contains the positive electrode active material, It will be composed of solids such as conductive aids and binders.
[0018]
In the present invention, kneading with a biaxial extruder is, as described above, a step of preparing a dispersion containing a conductive additive by mixing a conductive aid, a binder, and a solvent, and dispersing the conductive additive-containing dispersion with a positive electrode active material. Is performed on the step of mixing the positive electrode active material, the conductive auxiliary agent, the binder, and the solvent at once, without performing the pretreatment step as described above, or the diluting step thereafter. That is, the step of diluting the mixture containing the positive electrode active material, the conductive auxiliary agent, the binder and the solvent to a state suitable for coating with a solvent may be performed using a disperser or kneader other than the twin-screw extruder. Alternatively, the subsequent dilution step may be performed by a twin-screw extruder.
[0019]
In the step of kneading the conductive additive-containing dispersion obtained in the pretreatment and the positive electrode active material, a solvent may be added, if necessary, and the order of adding the components in each step may be changed. May have a temporal difference.
[0020]
The positive electrode is formed, for example, by coating the above-mentioned positive electrode-containing mixture paste on a conductive substrate also serving as a positive electrode current collector, drying the solvent and removing the solvent, thereby forming a coated positive electrode on the conductive substrate. It is manufactured through a step of forming a mixture layer and, if necessary, compressing the positive electrode mixture layer.
[0021]
As the conductive substrate used in the production of the positive electrode, for example, a metal foil such as aluminum, copper, nickel, and stainless steel, a net, and an expanded metal are used, and an aluminum foil is particularly preferable.
[0022]
In the present invention, the thickness of the conductive substrate used in the production of the positive electrode is preferably 5 to 60 μm, particularly preferably 8 to 40 μm, and the thickness of the positive electrode mixture layer is, after compression, 30 to 30 μm per side. 300 μm, particularly preferably 50 to 150 μm, is preferred.
[0023]
In constructing a non-aqueous secondary battery using the positive electrode manufactured by the present invention, the main material used for the negative electrode serving as the counter electrode may be any material capable of doping and undoping lithium ions. Such a material capable of doping / dedoping lithium ions is called a negative electrode active material. The negative electrode active material is not particularly limited. For example, graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, carbon fibers Alternatively, a carbon material such as activated carbon, an alloy such as Si, Sn, or In, or an oxide such as Si, Sn, or In which can be charged and discharged at a low voltage close to Li can be used.
[0024]
When a carbon material is used as the negative electrode active material, the carbon material preferably has the following characteristics. That is, the inter-plane distance (d) of the (002) plane 002 With regard to ()), it is preferably at most 0.35 nm, more preferably at most 0.345 nm, even more preferably at most 0.34 nm. Further, the size (Lc) of the crystallite in the c-axis direction is preferably 3.0 nm or more, more preferably 8.0 nm or more, and further preferably 25.0 nm or more. The average particle size of the carbon material is preferably 8 to 20 μm, particularly preferably 10 to 15 μm, and the purity is preferably 99.9% by mass or more.
[0025]
For the negative electrode, for example, the same binder as in the case of the positive electrode is appropriately added to the negative electrode active material, and if necessary, the same conductive additive as in the case of the positive electrode is appropriately added, and dispersed in a solvent. (The binder may be dissolved or dispersed in a solvent in advance and then mixed with the negative electrode active material, etc.), and the paste containing the negative electrode mixture serves as a conductive material that also functions as a negative electrode current collector. The negative electrode mixture layer is formed by applying the composition to a substrate, drying and removing the solvent, and then, if necessary, passing through a step of compressing the negative electrode mixture layer.
[0026]
As the conductive substrate used in the production of the negative electrode, for example, a metal foil such as copper, aluminum, stainless steel, and titanium, a net, an expanded metal, and the like can be used, and a copper foil is particularly preferable.
[0027]
The thickness of the conductive substrate used in the production of the negative electrode is preferably 5 to 60 μm, particularly preferably 8 to 40 μm, and the thickness of the negative electrode mixture is 30 to 300 μm per side after compression, particularly 50 to 50 μm. To 150 μm is preferred.
[0028]
In the production of the positive electrode and the negative electrode, as a coating means when applying the positive electrode mixture-containing paste and the negative electrode mixture-containing paste to a conductive substrate, for example, an extrusion coater, a reverse roller, a doctor blade, and the like, Various application means can be employed.
[0029]
In constructing a non-aqueous secondary battery using the positive electrode manufactured by the present invention, a non-aqueous solvent-based electrolyte in which a solute is dissolved in a non-aqueous solvent such as an organic solvent is used as the electrolyte. The solvent is not particularly limited, but it is particularly suitable to use a chain ester as the main solvent. Examples of such a chain ester include organic solvents having a chain COO bond such as diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, ethyl acetate, and methyl propionate. The fact that the chain ester is the main solvent of the electrolytic solution means that the chain ester occupies more than 50% by volume of the total electrolyte solvent, and in particular, the chain ester is It is preferable to account for 65% by volume or more of the liquid solvent.
[0030]
However, in order to improve the battery capacity as compared with the case where only the chain ester is used as the electrolyte solution solvent, the chain ester is mixed with an ester having a high dielectric constant (an ester having a dielectric constant of 30 or more). Preferably, it is used. The amount of such an ester having a high dielectric constant in the total electrolyte solvent is preferably at least 10% by volume, particularly preferably at least 20% by volume.
[0031]
Examples of the ester having a high dielectric constant include, for example, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, ethylene glycol sulfite, and the like.Especially, ethylene carbonate, those having a cyclic structure such as propylene carbonate are preferable, and the cyclic structure is particularly preferable. Is preferred, and specifically, ethylene carbonate is most preferred.
[0032]
Examples of the solvent that can be used in combination with the ester having a high dielectric constant include 1,2-dimethoxyethane, 1,3-dioxolan, tetrahydrofuran, 2-methyl-tetrahydrofuran, and diethyl ether. In addition, an amine-based or imide-based organic solvent, a sulfur-containing or fluorine-containing organic solvent, and the like can also be used.
[0033]
As the solute of the electrolytic solution, for example, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (N ≧ 2) may be used alone or in combination of two or more. Especially LiPF 6 And LiC 4 F 9 SO 3 And the like are preferable because of good charge / discharge characteristics. The concentration of the electrolyte in the electrolyte is not particularly limited, but is preferably 0.3 mol / l or more, more preferably 0.4 mol / l or more, and preferably 1.7 mol / l or less. 5 mol / l or less is more preferable.
[0034]
The electrolyte is usually used in a liquid form, but may be used in a gel form by gelling with a gelling agent.
[0035]
In the present invention, as the separator, a separator having sufficient strength and capable of holding a large amount of electrolyte is preferable. From such a viewpoint, the separator is made of polypropylene or polyethylene having a thickness of 10 to 50 μm and a porosity of 30 to 70%. A microporous film or nonwoven fabric made of ethylene or a copolymer of ethylene and propylene is preferably used.
[0036]
Non-aqueous secondary batteries are, for example, stacked with a separator interposed between the positive electrode and the negative electrode manufactured as described above, and wound into a spiral, elliptical, elliptical shape, etc. A process of producing an electrode body having a structure, inserting the wound electrode body into a battery case made of a metal-laminated film, a nickel-plated iron or stainless steel, or an aluminum or aluminum alloy, and sealing. It is produced through. In addition, the battery may be provided with an explosion-proof mechanism for discharging the gas generated inside the battery to the outside at the stage when the gas has risen to a certain pressure and preventing the battery from bursting under high pressure.
[0037]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.
[0038]
Example 1
Manufacture of positive electrode:
A biaxial extruder (manufactured by Kurimoto Iron Works, Ltd.) comprising 6 parts by mass of acetylene black as a conductive aid, 10 parts by mass of polyvinylidene fluoride as a binder, and 80 parts by mass of N-methyl-2-pyrrolidone as a solvent. Is kneaded at a rotation speed of 100 rpm and a temperature of 32 ° C. to prepare a dispersion containing the conductive assistant, and the dispersion containing the conductive assistant is mixed with LiCoO as a positive electrode active material. 2 (Average particle size: 5.5 μm) 184 parts by mass and N-methyl-2-pyrrolidone for adjusting viscosity are kneaded with a twin-screw extruder at a rotation speed of 100 rpm and a temperature of 32 ° C., and a slurry-containing positive electrode mixture-containing material A strike was prepared. The paste containing the positive electrode mixture was passed through a 70-mesh net to remove large pieces, and then uniformly applied to both sides of a 15 μm-thick aluminum foil conductive substrate, and dried to form a coated positive electrode. A mixture layer was formed, compressed to a total thickness of 166 μm, and cut into a predetermined size to obtain a positive electrode. An aluminum lead was welded to the positive electrode, and the lead was attached to the positive electrode. The density of the positive electrode mixture layer in this positive electrode was 3.35 g / cm. 3 The specific surface area of acetylene black used as a conductive aid is 68 m 2 / G.
[0039]
Production of negative electrode:
Graphite-based carbon material as the negative electrode active material [however, the distance between 002 faces (d 002 ) = 0.337 nm, crystallite size in the c-axis direction (Lc) = 95.0 nm, average particle diameter 10 μm, purity 99.9% or more) 180 parts by mass of polyvinylidene fluoride The negative electrode mixture-containing paste was prepared by mixing parts by mass with a solution of 190 parts by mass of N-methyl-2-pyrrolidone. This paste containing the negative electrode mixture is uniformly applied to both surfaces of a conductive substrate made of a strip-shaped copper foil having a thickness of 10 μm, dried to form a negative electrode mixture layer in the form of a film, and compressed to a total thickness of 175 μm. And cut into a predetermined size to obtain a negative electrode. One end of a nickel lead was welded to the negative electrode, and the lead was attached to the negative electrode.
[0040]
Preparation of electrolyte solution:
LiPF was added to a mixed solvent obtained by mixing ethylene carbonate and methyl ethyl carbonate at a volume ratio of 1: 2. 6 Was dissolved in 1.2 mol and the composition was 1.2 mol / l LiPF 6 An electrolytic solution represented by / EC: MEC (1: 2 volume ratio) was prepared.
[0041]
Manufacture of non-aqueous secondary batteries:
The positive electrode and the negative electrode were spirally wound through a separator made of a microporous polyethylene film having a thickness of 25 μm to form a wound electrode body. This is inserted into a bag-shaped outer package made of a laminated film containing aluminum as a core material, and after injecting the above-mentioned electrolytic solution, vacuum sealing is performed. The liquid was sufficiently impregnated to produce a non-aqueous secondary battery.
[0042]
Example 2
A positive electrode was produced in the same manner as in Example 1, except that Ketjen Black (Ketjen Black International: ECP600JD) was used in place of acetylene black in the production process of the positive electrode of Example 1, and the positive electrode was used. Except for the above, a non-aqueous secondary battery was manufactured in the same manner as in Example 1. The total thickness of the positive electrode of Example 2 was 168 μm, and the density of the positive electrode mixture layer was 3.32 g / cm. 3 Met. The specific surface area of Ketjen Black used as a conductive additive in the production of the positive electrode was 1270 m. 2 / G.
[0043]
Example 3
A positive electrode was manufactured in the same manner as in Example 1 except that carbon black (manufactured by Mitsubishi Chemical Corporation: CB3030B) was used in place of acetylene black in the manufacturing process of the positive electrode in Example 1, and the procedure was the same as in Example 1 except that the positive electrode was used. A non-aqueous secondary battery similar to that in Example 1 was manufactured. The total thickness of the positive electrode of Example 3 was 168 μm, and the density of the positive electrode mixture layer was 3.33 g / cm. 3 Met. The specific surface area of carbon black used as a conductive additive in the production of the positive electrode was 32 m. 2 / G.
Embodiment 4
A positive electrode was manufactured in the same manner as in Example 1 except that activated carbon (manufactured by Kansai Thermochemical Co., Ltd .: MSP-30) was used instead of acetylene black in the manufacturing process of the positive electrode of Example 1, except that the positive electrode was used. A non-aqueous secondary battery was manufactured in the same manner as in Example 1. The total thickness of the positive electrode of Example 4 was 169 μm, and the density of the positive electrode mixture layer was 3.29 g / cm. 3 Met. The specific surface area of the activated carbon used as a conductive additive in the production of the positive electrode was 3100 m. 2 / G.
[0045]
Example 5
LiCoO 2 184 parts by mass, 6 parts by mass of acetylene black, 10 parts by mass of polyvinylidene fluoride and 80 parts by mass of N-methyl-2-pyrrolidone were kneaded using a twin-screw extruder at a rotation speed of 100 rpm and a temperature of 33 ° C. to form a slurry. A paste containing a positive electrode mixture was prepared. A positive electrode was manufactured in the same manner as in Example 1 except that the paste containing the positive electrode mixture was used, and a non-aqueous secondary battery was manufactured in the same manner as in Example 1 except that the positive electrode was used. The total thickness of the positive electrode of Example 5 was 168 μm, and the density of the positive electrode mixture layer was 3.33 g / cm. 3 Met.
[0046]
Comparative Example 1
A positive electrode was manufactured in the same manner as in Example 1 except that a planetary mixer (manufactured by Asada Iron Works) was used in place of the twin-screw extruder in the manufacturing process of the positive electrode of Example 1, and the procedure was performed except that the positive electrode was used. A non-aqueous secondary battery was manufactured in the same manner as in Example 1. The total thickness of the positive electrode of Comparative Example 1 was 174 μm, and the density of the positive electrode mixture layer was 3.19 g / cm. 3 Met.
[0047]
Comparative Example 2
A positive electrode was manufactured in the same manner as in Example 1 except that a kneader was used in place of the biaxial extruder in the manufacturing process of the positive electrode in Example 1, and a non-aqueous electrolyte was manufactured in the same manner as in Example 1 except that the positive electrode was used. A secondary battery was manufactured. The total thickness of the positive electrode of Comparative Example 2 was 172 μm, and the density of the positive electrode mixture layer was 3.22 g / cm. 3 Met.
[0048]
Comparative Example 3
A positive electrode was manufactured in the same manner as in Example 1 except that a Muller-type kneader was used instead of the biaxial extruder in the manufacturing process of the positive electrode in Example 1, and the same as Example 1 except that the positive electrode was used. A non-aqueous secondary battery was manufactured. The total thickness of the positive electrode of Comparative Example 3 was 171 μm, and the density of the positive electrode mixture layer was 3.25 g / cm. 3 Met.
[0049]
For each of the non-aqueous secondary batteries using the positive electrodes of Examples 1 to 5 and Comparative Examples 1 to 3, changes in discharge capacity and impedance when charging and discharging were repeated were measured. Table 1 shows the results.
[0050]
The discharge capacity is defined as the capacity at the time of charging at a constant voltage of 4.2 V with a 1 C current limiting circuit and discharging until the battery voltage drops to 3 V, and the discharge capacity after 500 cycles. The internal impedance was measured. In displaying the results in Table 1, the discharge capacity at the 500th cycle of the battery of Comparative Example 1 was set to 100, and the results were indicated by relative values at the discharge capacity.
[0051]
For the internal impedance, the impedance at 1 kHz was measured by an LCR meter under the same conditions as the battery capacity. In displaying the results in Table 1, the impedance of the charged state at the 500th cycle of Comparative Example 1 was set to 100. It was shown as a relative value.
[0052]
Table 2 shows the types of the kneaders used in Examples 1 to 5 and Comparative Examples 1 to 3, the types of the conductive assistants, and the specific surface areas thereof. In addition, when indicating the type of the conductive additive, the following abbreviation is used.
AB: acetylene black
KB: Ketchen Black
CB: Carbon black
C: activated carbon
[0053]
[Table 1]
Figure 2004014206
[0054]
[Table 2]
Figure 2004014206
[0055]
As is clear from Tables 1 and 2, the batteries using the positive electrodes of Examples 1 to 5 in which the preparation of the paste containing the positive electrode mixture was performed using a biaxial extruder were performed using the preparation of the paste containing the positive electrode mixture. Discharge capacity after 500 cycles compared to the battery using the positive electrode of Comparative Example 1 using a planetary mixer, the positive electrode of Comparative Example 2 using a kneader, and the positive electrode of Comparative Example 3 using a Mallar type kneader. And the internal impedance was low. Thus, it can be seen that, by kneading with the twin-screw extruder in preparing the paste containing the positive electrode mixture, the discharge capacity after 500 cycles can be increased and the rise in the internal impedance can be suppressed.
[0056]
In addition, in Examples, comparing Examples 1 to 4 in which a pretreatment step of preparing a conductive additive-containing dispersion in advance was performed, Examples 1 to 2 were compared with Examples 3 to 4. The discharge capacity after 500 cycles is high, the internal impedance is low, and the specific surface area of the conductive additive is 50 to 2000 m. 2 / G is preferable.
[0057]
Further, a comparison between Example 1 in which a pretreatment step of preparing a dispersion containing a conductive additive in advance and Example 5 in which the same material was used but which did not incorporate such a pretreatment step was compared. Since the discharge capacity after 500 cycles was larger and the internal impedance was smaller in Example 1 than in Example 5, the above-mentioned pretreatment step, that is, the step of preparing the conductive additive-containing dispersion in advance was adopted. Has been found to be preferable to the case without such a pretreatment step.
[0058]
【The invention's effect】
As described above, according to the present invention, a positive electrode for a non-aqueous secondary battery that can provide a non-aqueous secondary battery having high capacity and excellent cycle characteristics can be manufactured.

Claims (3)

正極合剤含有ぺーストを導電性基体に塗布し、乾燥して正極合剤層を形成する工程を経由して非水二次電池用正極を製造するにあたり、あらかじめ導電助剤と結着剤と溶剤とを二軸が同一方向に等速で回転する二軸エクストルーダを用いて混練し、得られた導電助剤含有分散液と正極活物質とを前記と同様の二軸が同一方向に等速で回転する二軸エクストルーダを用いて混練する工程を経由して正極合剤含有ぺーストを調製することを特徴とする非水二次電池用正極の製造方法。In producing a positive electrode for a non-aqueous secondary battery via a step of applying a positive electrode mixture-containing paste to a conductive substrate and drying to form a positive electrode mixture layer, a conductive auxiliary agent and a binder are used in advance. The solvent and the two axes are kneaded using a twin-screw extruder rotating at the same speed in the same direction, and the obtained dispersion containing the conductive additive and the positive electrode active material are biaxially uniform at the same speed in the same direction as described above. A method for producing a positive electrode for a non-aqueous secondary battery, comprising preparing a paste containing a positive electrode mixture through a step of kneading using a twin-screw extruder rotating at a pressure. 正極合剤含有ぺーストを導電性基体に塗布し、乾燥して正極合剤層を形成する工程を経由して非水二次電池用正極を製造するにあたり、正極活物質と導電助剤と結着剤と溶剤とを二軸が同一方向に等速で回転する二軸エクストルーダを用いて混練する工程を経由して正極合剤含有ぺーストを調製することを特徴とする非水二次電池用正極の製造方法。In producing a positive electrode for a non-aqueous secondary battery through a process of applying a paste containing a positive electrode mixture to a conductive substrate and drying to form a positive electrode mixture layer, a positive electrode active material and a conductive auxiliary agent are combined. For a non-aqueous secondary battery, wherein a paste containing a positive electrode mixture is prepared via a step of kneading an adhesive and a solvent using a biaxial extruder in which the biaxial axes rotate at the same speed in the same direction. Manufacturing method of positive electrode. 前記導電助剤の比表面積が50〜2000m2 /gであることを特徴とする請求項1または2記載の非水二次電池用正極の製造方法。The method for producing a positive electrode for a non-aqueous secondary battery according to claim 1, wherein the conductive auxiliary agent has a specific surface area of 50 to 2000 m 2 / g.
JP2002163670A 2002-06-05 2002-06-05 Method for producing positive electrode for non-aqueous secondary battery Expired - Lifetime JP4155392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163670A JP4155392B2 (en) 2002-06-05 2002-06-05 Method for producing positive electrode for non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163670A JP4155392B2 (en) 2002-06-05 2002-06-05 Method for producing positive electrode for non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2004014206A true JP2004014206A (en) 2004-01-15
JP4155392B2 JP4155392B2 (en) 2008-09-24

Family

ID=30432029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163670A Expired - Lifetime JP4155392B2 (en) 2002-06-05 2002-06-05 Method for producing positive electrode for non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4155392B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192185A (en) * 2009-02-17 2010-09-02 Toyota Motor Corp Lithium secondary cell and manufacturing method therefor
US8119242B2 (en) 2006-05-22 2012-02-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Amorphous carbon film, process for forming amorphous carbon film, conductive member provided with amorphous carbon film, and fuel cell separator
JP2012238474A (en) * 2011-05-11 2012-12-06 Toyota Motor Corp Nonaqueous electrolyte secondary battery and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8119242B2 (en) 2006-05-22 2012-02-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Amorphous carbon film, process for forming amorphous carbon film, conductive member provided with amorphous carbon film, and fuel cell separator
JP2010192185A (en) * 2009-02-17 2010-09-02 Toyota Motor Corp Lithium secondary cell and manufacturing method therefor
JP2012238474A (en) * 2011-05-11 2012-12-06 Toyota Motor Corp Nonaqueous electrolyte secondary battery and method for manufacturing the same

Also Published As

Publication number Publication date
JP4155392B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP5220273B2 (en) Electrode and non-aqueous secondary battery using the same
KR100781709B1 (en) Method of preparation of cathode coat-materials for lithium ion secondary battery and the same
JP5187791B1 (en) Method for producing composition for forming positive electrode mixture layer and method for producing lithium ion secondary battery
JP2012174569A (en) Preparation method of slurry for forming positive electrode mixture layer, and method of manufacturing nonaqueous electrolyte secondary battery
JP2004079327A (en) Non-aqueous secondary battery, positive electrode for secondary battery, and its manufacturing method
JP2004171901A (en) Nonaqueous secondary battery, negative electrode therefor, manufacturing method thereof, and electronic device using nonaqueous secondary battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP2004134304A (en) Nonaqueous secondary battery and positive electrode paint manufacturing method
KR101170172B1 (en) Process of preparing coatings for positive electrode materials for lithium secondary batteries and positive electrodes for lithium secondary batteries
JP4979049B2 (en) Non-aqueous secondary battery
JP4780361B2 (en) Lithium secondary battery
JP4971646B2 (en) Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same
JP5072061B2 (en) Method for producing positive electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP2019169346A (en) Lithium ion secondary battery
JP4155392B2 (en) Method for producing positive electrode for non-aqueous secondary battery
JP2002216768A (en) Nonaqueous secondary battery
JP4243964B2 (en) Non-aqueous secondary battery
JP2002075330A (en) Nonaqueous secondary battery and its manufacturing method
JP5424322B2 (en) Non-aqueous electrolyte secondary battery
JP2003331847A (en) Nonaqueous secondary battery and method for manufacturing paint of positive electrode
JP2015201283A (en) Manufacturing method of cathode for nonaqueous secondary battery, and cathode for nonaqueous secondary battery
JP2000200609A (en) Nonaqueous secondary battery
JP4839518B2 (en) Non-aqueous electrolyte secondary battery
JP2003272634A (en) Nonaqueous secondary battery
JP2004355996A (en) Manufacturing method of positive electrode for non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4155392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term