JP2003333855A - Current detection circuit - Google Patents

Current detection circuit

Info

Publication number
JP2003333855A
JP2003333855A JP2002134846A JP2002134846A JP2003333855A JP 2003333855 A JP2003333855 A JP 2003333855A JP 2002134846 A JP2002134846 A JP 2002134846A JP 2002134846 A JP2002134846 A JP 2002134846A JP 2003333855 A JP2003333855 A JP 2003333855A
Authority
JP
Japan
Prior art keywords
circuit
rectifying
wave
current detection
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002134846A
Other languages
Japanese (ja)
Inventor
Hiroyuki Haga
浩之 芳賀
Original Assignee
Shindengen Electric Mfg Co Ltd
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Mfg Co Ltd, 新電元工業株式会社 filed Critical Shindengen Electric Mfg Co Ltd
Priority to JP2002134846A priority Critical patent/JP2003333855A/en
Publication of JP2003333855A publication Critical patent/JP2003333855A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means of obtaining an equivalent waveform to an input current detected waveform of an ordinary boosting chopper power-factor improvement circuit, in a bridge power-factor improvement circuit. <P>SOLUTION: A current detection circuit includes a first half-wave rectification circuit 9 which half-wave-rectifies the voltage of a first resistor 6 by inserting the first resistor 6 and a second resistor 7 into low side switches 4, 5 of the bridge power-factor improvement circuit, respectively, in series; a second half- wave rectification circuit 10 which half-wave-rectifies the voltage of the second resistor 7; and an addition circuit 11 which adds the output of the first half-wave rectification circuit 9 to that of the second half-wave rectification circuit 10. Voltage of the resistors 6, 7 are half-wave-rectified. By adding the obtained waveforms, the purpose can be achieved. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】本発明はブリッジ型力率改善
回路における、入力電流検出回路に関する発明である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an input current detection circuit in a bridge type power factor correction circuit.
【0002】[0002]
【従来の技術】図5に昇圧チョッパ型力率改善回路にお
ける、入力電流検出回路の従来例を示す。なお、1はイ
ンダクタ、2は整流素子、4はスイッチ素子、8はコン
デンサである。制御回路の基準電位はMOSFETのソ
ースとするのが、MOSFETの駆動が容易であること
から、一般的である。市販の制御ICも、そのような前
提で作られていることが多い。
2. Description of the Related Art FIG. 5 shows a conventional example of an input current detection circuit in a boost chopper type power factor correction circuit. 1 is an inductor, 2 is a rectifying element, 4 is a switching element, and 8 is a capacitor. The reference potential of the control circuit is generally used as the source of the MOSFET because it is easy to drive the MOSFET. Commercially available control ICs are often made on such a premise.
【0003】図5の場合、制御回路の基準電位に電流検
出抵抗6が接続されているので、この抵抗6の電圧を直
接、制御回路で読むことができる。そしてこの抵抗6に
は、入力電流を全波整流した波形が流れており、その波
形は図9の様になる。マイナス側に検出されるのは、電
流が図5のIinで示した矢印の向きに流れるためであ
る。例えば富士電機の制御IC、FA5331は図9の
様な電流波形を入力するように設計されている。したが
って、図5の昇圧チョッパ型力率改善回路では、抵抗一
つで入力電流検出回路を実現できる。
In the case of FIG. 5, since the current detection resistor 6 is connected to the reference potential of the control circuit, the voltage of this resistor 6 can be directly read by the control circuit. A waveform obtained by full-wave rectifying the input current flows through the resistor 6, and the waveform is as shown in FIG. The minus side is detected because the current flows in the direction of the arrow indicated by Iin in FIG. For example, the Fuji Electric control IC, FA5331, is designed to input a current waveform as shown in FIG. Therefore, in the boost chopper type power factor correction circuit of FIG. 5, the input current detection circuit can be realized by one resistor.
【0004】[0004]
【発明が解決しようとする課題】ところが図6のような
ブリッジ型力率改善回路、具体的には、ブリッジ接続さ
れた四個の整流素子2,3,4,5と一つのコンデンサ
8からなり、インダクタ1を介して単相交流電源に接続
され負荷に直流電力を供給する全波整流回路と、前記整
流素子2,3,4,5のうち、入力端子が前記コンデン
サ8に接続されている二つの整流素子にそれぞれ並列に
接続された二つのスイッチ素子4,5とを備えたブリッ
ジ型力率改善回路では、そもそも回路構成が異なるた
め、これと同じ事ができない。
However, a bridge-type power factor correction circuit as shown in FIG. 6, specifically, four bridge rectifying elements 2, 3, 4, 5 and one capacitor 8 are used. , A full-wave rectifier circuit connected to a single-phase AC power source via an inductor 1 to supply DC power to a load, and an input terminal of the rectifier elements 2, 3, 4, 5 is connected to the capacitor 8. The bridge type power factor correction circuit including the two rectifying elements and the two switching elements 4 and 5 connected in parallel cannot perform the same thing because the circuit configuration is different from the beginning.
【0005】図7の様に入力側に電流検出抵抗6を挿入
すれば、このラインには入力電流それ自体が流れている
ので、入力電流を検出する事が可能である。しかし制御
回路の基準電位はMOSFETのソースとするのが、M
OSFETの駆動が容易であることから一般的である事
を考えると、電流検出抵抗6の電位は制御回路とは異な
る事になる。したがって、読みとった電圧をそのまま制
御回路に入力することはできない。何らかの手段で電位
を変換する必要がある。
If the current detection resistor 6 is inserted on the input side as shown in FIG. 7, the input current itself flows through this line, so that the input current can be detected. However, the reference potential of the control circuit is the source of the MOSFET.
Considering that it is general because the OSFET is easily driven, the potential of the current detection resistor 6 is different from that of the control circuit. Therefore, the read voltage cannot be directly input to the control circuit. It is necessary to convert the electric potential by some means.
【0006】ここで扱う情報は、オンオフのデジタル情
報ではなく、アナログ情報であるので、アナログ情報を
扱える電位変換手段が必要である。例えば絶縁アンプを
使う方法が考えられるが、これにはいくつかの問題があ
る。第一の問題は絶縁アンプ用の電源が必要なことであ
る。このための電源回路を組むと、それだけ部品点数が
増え、大型化、コストアップにつながる。第二の問題
は、絶縁アンプ自体が高価であることである。このよう
に、図7の回路では、電流検出は抵抗一つでも、それに
必要となる電位変換手段が高コストになる問題があっ
た。
Since the information handled here is analog information rather than on / off digital information, a potential conversion means capable of handling analog information is required. For example, an isolation amplifier can be used, but this has some problems. The first problem is the need for a power supply for the isolation amplifier. If a power supply circuit for this purpose is assembled, the number of parts increases, which leads to increase in size and cost. The second problem is that the isolation amplifier itself is expensive. As described above, in the circuit of FIG. 7, there is a problem that even if only one resistor is used for current detection, the potential conversion means required for it becomes expensive.
【0007】図8の様に入力側に電流検出抵抗6を挿入
する代わりに、カレントトランス14を挿入すれば、こ
のラインには入力電流それ自体が流れているので、入力
電流を検出する事が可能である。トランスなので異なる
巻線は電位的に独立している。したがって、電流検出抵
抗を挿入した場合と異なり、電位変換の必要もない。し
かしながら、ここで扱う入力電流の周波数は50〜60
Hzといった低周波数であるため、カレントトランスが
大型化する問題があった。
If the current transformer 14 is inserted instead of inserting the current detecting resistor 6 on the input side as shown in FIG. 8, the input current itself flows in this line, so that the input current may be detected. It is possible. Since it is a transformer, the different windings are potential independent. Therefore, unlike the case where the current detection resistor is inserted, there is no need for potential conversion. However, the frequency of the input current handled here is 50 to 60.
Since the frequency is as low as Hz, there is a problem that the current transformer becomes large.
【0008】また、過大電流が流れたときにカレントト
ランスが飽和してしまう問題もある。飽和してしまえば
検出巻線に電流は流れなくなり、電流を検出することは
できない。過大電流が流れた時にこそ、それを検出して
保護回路を働かせる事が必要であるのに、それができな
くなる問題があった。以上のようにブリッジ型力率改善
回路では、入力電流検出回路の実現に当たって様々な問
題があった。
There is also a problem that the current transformer is saturated when an excessive current flows. Once saturated, no current flows in the detection winding, and no current can be detected. Only when an excessive current flows, it is necessary to detect it and activate the protection circuit, but there was a problem that it could not be done. As described above, the bridge type power factor correction circuit has various problems in realizing the input current detection circuit.
【0009】[0009]
【課題を解決するための手段】ブリッジ接続された四個
の整流素子と一つのコンデンサからなり、インダクタを
介して単相交流電源に接続され負荷に直流電力を供給す
る全波整流回路と、前記整流素子のうち、入力端子が前
記コンデンサに接続されている二つの整流素子にそれぞ
れ並列に接続された二つのスイッチ素子とを備えた電力
変換装置において、前記スイッチ素子と整流素子の並列
回路に直列にそれぞれ第一の抵抗と第二の抵抗を挿入
し、前記第一の抵抗の電圧を半波整流する第一の半波整
流回路と前記第二の抵抗の電圧を半波整流する第二の半
波整流回路と、前記第一の半波整流回路と第二の半波整
流回路の出力を加算する加算回路とを備える事により、
課題を解決する。
A full-wave rectifier circuit comprising four rectifying elements connected in bridge and one capacitor, connected to a single-phase AC power source via an inductor and supplying DC power to a load, Among the rectifying elements, in a power conversion device including two rectifying elements each having an input terminal connected to the capacitor, and two rectifying elements each connected in parallel, the rectifying elements are connected in series with a parallel circuit of the switching element and the rectifying element. The first resistor and the second resistor are respectively inserted into a first half-wave rectifying circuit for half-wave rectifying the voltage of the first resistor and a second half-wave rectifying circuit for half-wave rectifying the voltage of the second resistor. By including a half-wave rectifier circuit and an adder circuit that adds the outputs of the first half-wave rectifier circuit and the second half-wave rectifier circuit,
Solve the problem.
【0010】[0010]
【発明の実施の形態】図1に本発明の一実施例を示す。
この実施例は、前記従来例と同様に、ブリッジ接続され
た四個の整流素子2,3,4,5と一つのコンデンサ8
からなり、インダクタ1を介して単相交流電源に接続さ
れ負荷に直流電力を供給する全波整流回路と、前記整流
素子2,3,4,5のうち、入力端子が前記コンデンサ
8に接続されている二つの整流素子にそれぞれ並列に接
続された二つのスイッチ素子4,5とを備えている。な
お、本実施例では、スイッチ素子4,5がMOSFET
で構成してあり、MOSFETのボディーダイオードが
整流素子の役割をする。
1 shows an embodiment of the present invention.
In this embodiment, like the above-mentioned conventional example, four rectifying elements 2, 3, 4, 5 connected in a bridge and one capacitor 8 are connected.
And a full-wave rectifier circuit connected to a single-phase AC power source via an inductor 1 to supply DC power to a load, and an input terminal of the rectifier elements 2, 3, 4, 5 connected to the capacitor 8. The two rectifying elements are provided with two switch elements 4 and 5 connected in parallel. In this embodiment, the switch elements 4 and 5 are MOSFETs.
The body diode of the MOSFET functions as a rectifying element.
【0011】図1に示す6,7は電流検出抵抗である。
前記スイッチ素子4,5と整流素子2,3の直列回路に
直列にそれぞれ第一の抵抗6と第二の抵抗7を挿入し、
前記第一の抵抗6の電圧を半波整流する第一の半波整流
回路9と、前記第二の抵抗7の電圧を半波整流する第二
の半波整流回路10と、前記第一の半波整流回路9と第
二の半波整流回路10の出力を加算する加算回路11と
を備えている。
Reference numerals 6 and 7 shown in FIG. 1 are current detection resistors.
The first resistor 6 and the second resistor 7 are inserted in series in the series circuit of the switch elements 4 and 5 and the rectifying elements 2 and 3, respectively,
A first half-wave rectifying circuit 9 that half-wave rectifies the voltage of the first resistor 6, a second half-wave rectifying circuit 10 that half-wave rectifies the voltage of the second resistor 7, and the first half-wave rectifying circuit 10. It is provided with a half-wave rectifier circuit 9 and an adder circuit 11 that adds the outputs of the second half-wave rectifier circuit 10.
【0012】力率改善回路は、入力電流波形を入力電圧
波形と相似になるように制御し、かつ出力電圧を一定に
保つように動作する。このとき抵抗6,7に流れる電流
の波形は、図3(A)、(B)の様になる。
The power factor correction circuit controls the input current waveform so as to be similar to the input voltage waveform, and operates so as to keep the output voltage constant. At this time, the waveforms of the currents flowing through the resistors 6 and 7 are as shown in FIGS. 3 (A) and 3 (B).
【0013】図で上から下に流れる向きをプラスとする
と、抵抗6,7の電流は、プラス側ではスイッチングさ
れているが、マイナス側では連続となっている。これは
電流がプラス側の場合はスイッチ素子4,5のオン・オ
フによって電流が流れるか流れないかが決まるが、電流
がマイナス側の場合スイッチ素子4,5のオンオフによ
らず、それと並列の整流素子4,5を通過して流れる為
である。図1の場合は、スイッチ素子4,5がMOSF
ETなので、そのボディダイオードを通過して電流が流
れる為、連続となる。
Assuming that the direction of flow from top to bottom in the figure is positive, the currents of the resistors 6 and 7 are switched on the positive side, but continuous on the negative side. When the current is on the plus side, whether the current flows or not depends on the on / off of the switching elements 4 and 5, but when the current is on the minus side, the rectification in parallel with it does not depend on the on / off of the switching elements 4 and 5. This is because it flows through the elements 4 and 5. In the case of FIG. 1, the switching elements 4 and 5 are MOSFs.
Since it is ET, a current flows through the body diode, so that it is continuous.
【0014】この波形を半波整流回路9,10に入力
し、マイナス側の電流連続の部分だけを取り出すと、図
3(C)、(D)の様になる。そして図3(C)、(D)の二つの波
形を加算すると、目的である入力電流波形図3(E)が得
られるのである。
When this waveform is input to the half-wave rectifier circuits 9 and 10 and only the portion of the current on the negative side is taken out, it becomes as shown in FIGS. 3C and 3D. Then, by adding the two waveforms of FIGS. 3 (C) and 3 (D), the target input current waveform diagram 3 (E) is obtained.
【0015】半波整流回路9,10と加算回路11の実
施例として、オペアンプ18,25,30を使用した回
路を図4に示す。
As an embodiment of the half-wave rectifier circuits 9 and 10 and the adder circuit 11, a circuit using operational amplifiers 18, 25 and 30 is shown in FIG.
【0016】具体的に、半波整流回路9は、オペアンプ
25を備え、正の入力側並びに負の入力側に抵抗22,
23を介してあり、負の入力と出力と並列に抵抗24を
接続し、さらに、この抵抗24とダイオード26のカソ
ードを、このダイオード26のアノードとオペアンプ2
5の出力とを接続し、同じくオペアンプ25の出力には
別のダイオード27のカソードと接続し、このダイオー
ド27のアノードはオペアンプ25の負の入力側に接続
してある。
Specifically, the half-wave rectifier circuit 9 includes an operational amplifier 25, and has resistors 22 on the positive input side and the negative input side.
23, a resistor 24 is connected in parallel with the negative input and output, and the resistor 24 and the cathode of the diode 26 are connected to the anode of the diode 26 and the operational amplifier 2
The output of the operational amplifier 25 is connected to the cathode of another diode 27, and the anode of the diode 27 is connected to the negative input side of the operational amplifier 25.
【0017】半波整流回路10もオペアンプ18、抵抗
15,16,17、ダイオード19,20を備えてあ
り、半波整流回路9と同様の構成をしている。
The half-wave rectifier circuit 10 is also provided with an operational amplifier 18, resistors 15, 16, 17 and diodes 19, 20 and has the same structure as the half-wave rectifier circuit 9.
【0018】加算回路11は、オペアンプ30を備え、
このオペアンプ30の負の入力を、抵抗21,抵抗18
を介して、半波整流回路9,10に接続してある。ま
た、正の入力には抵抗29を接続し、負の入力と出力と
並列に抵抗31を接続している。
The adder circuit 11 includes an operational amplifier 30,
The negative input of the operational amplifier 30 is connected to the resistor 21 and the resistor 18
Is connected to the half-wave rectifier circuits 9 and 10. A resistor 29 is connected to the positive input, and a resistor 31 is connected in parallel with the negative input and output.
【0019】この実施例では半波整流回路9,10も加
算回路11も波形を反転させる回路となっているが、二
回反転させるので最終的に得られる波形は図3(E)と等
しい。
In this embodiment, both the half-wave rectifier circuits 9 and 10 and the adder circuit 11 are circuits for inverting the waveform, but since they are inverted twice, the finally obtained waveform is the same as that in FIG. 3 (E).
【0020】さて、実際の応用では半波整流回路9,1
0の前段に増幅回路12,13を入れる事も多い。これ
は大電力出力のPFCで、抵抗6、7の損失が大きくな
りすぎることを防ぐためである。増幅回路12,13を
入れた場合の実施例を図2に示す。
Now, in an actual application, the half-wave rectifying circuit 9, 1 is used.
In many cases, amplifier circuits 12 and 13 are inserted before 0. This is to prevent the loss of the resistors 6 and 7 from becoming too large in the PFC of high power output. An embodiment in which the amplifier circuits 12 and 13 are inserted is shown in FIG.
【0021】また、図1、2では、出力端子がコンデン
サ8に接続されている二つの整流素子2,3があるが、
これら整流素子2,3のそれぞれ並列に、スイッチ素子
を接続することが可能である。このような回路方式でも
抵抗6,7に流れる電流の波形は、図3(A)、(B)と変わ
らないため、本発明を適用する事ができる。また、この
場合におけるスイッチ素子にMOSFETを使用すれ
ば、MOSFETのボディーダイオードが整流素子の役
割をするため、整流素子2,3を省略することができ
る。
1 and 2, there are two rectifying elements 2 and 3 whose output terminals are connected to the capacitor 8,
A switch element can be connected in parallel with each of these rectifying elements 2 and 3. Even with such a circuit system, the waveforms of the currents flowing through the resistors 6 and 7 are the same as those in FIGS. 3A and 3B, and thus the present invention can be applied. If a MOSFET is used as the switch element in this case, the body diode of the MOSFET functions as a rectifying element, and thus the rectifying elements 2 and 3 can be omitted.
【0022】[0022]
【発明の効果】以上のように本発明によれば、ブリッジ
型力率改善回路において、通常の昇圧チョッパ型力率改
善回路における入力電流検出波形と同等の波形を得るこ
とが可能である。したがって既存の昇圧チョッパ型力率
改善回路用制御ICを使用することが可能となり、これ
を使わず個別部品で同等の制御回路を組んだ場合と比べ
て、大幅な部品点数の削減となる効果がある。
As described above, according to the present invention, in the bridge type power factor correction circuit, it is possible to obtain a waveform equivalent to the input current detection waveform in the normal boost chopper type power factor correction circuit. Therefore, it is possible to use the existing control IC for the boost chopper type power factor correction circuit, and it is possible to significantly reduce the number of parts as compared with the case where an equivalent control circuit is formed by using individual parts without using this. is there.
【0023】また、本発明では、入力電流検出波形を得
るのにカレントトランスを使用していないため、異常時
に大電流が流れたときに飽和する心配がないメリットも
ある。
Further, in the present invention, since the current transformer is not used to obtain the input current detection waveform, there is also an advantage that there is no fear of saturation when a large current flows in an abnormal condition.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の一実施例である。FIG. 1 is an example of the present invention.
【図2】本発明の他の実施例である。FIG. 2 is another embodiment of the present invention.
【図3】図1の回路における電流検出波形である。FIG. 3 is a current detection waveform in the circuit of FIG.
【図4】半波整流回路と加算回路の一例である。FIG. 4 is an example of a half-wave rectification circuit and an addition circuit.
【図5】従来の昇圧チョッパ型力率改善回路の回路図で
ある。
FIG. 5 is a circuit diagram of a conventional boost chopper type power factor correction circuit.
【図6】ブリッジ型力率改善回路の回路図である。FIG. 6 is a circuit diagram of a bridge type power factor correction circuit.
【図7】電流検出回路の一例である。FIG. 7 is an example of a current detection circuit.
【図8】電流検出回路の他の例である。FIG. 8 is another example of a current detection circuit.
【図9】図5の回路における電流検出波形である。9 is a current detection waveform in the circuit of FIG.
【符号の説明】[Explanation of symbols]
1 インダクタ 2、3 整流素子 4、5 スイッチ素子(整流素子) 6、7 抵抗 8 コンデンサ 9、10 半波整流回路 11 加算回路 12、13 増幅回路 14 カレントトランス 15、16、17 抵抗 18 オペアンプ 19、20 整流素子 21〜24 抵抗 25 オペアンプ 26、27 整流素子 28、29 抵抗 30 オペアンプ 31 抵抗 1 inductor A few rectifiers 4, 5 switch element (rectifier element) 6, 7 resistance 8 capacitors 9,10 Half-wave rectifier circuit 11 adder circuit 12, 13 Amplifier circuit 14 Current Transformer 15, 16, 17 resistance 18 operational amplifier 19, 20 Rectifying element 21-24 resistance 25 operational amplifier 26, 27 Rectifying element 28, 29 resistance 30 operational amplifier 31 resistance

Claims (6)

    【特許請求の範囲】[Claims]
  1. 【請求項1】ブリッジ接続された四個の整流素子と一つ
    のコンデンサからなり、インダクタを介して単相交流電
    源に接続され負荷に直流電力を供給する全波整流回路
    と、前記整流素子のうち、入力端子が前記コンデンサに
    接続されている二つの整流素子にそれぞれ並列に接続さ
    れた二つのスイッチ素子とを備えた電力変換装置におい
    て、前記スイッチ素子と整流素子の並列回路に直列にそ
    れぞれ第一の抵抗と第二の抵抗を挿入し、前記第一の抵
    抗の電圧を半波整流する第一の半波整流回路と、前記第
    二の抵抗の電圧を半波整流する第二の半波整流回路と、
    前記第一の半波整流回路と第二の半波整流回路の出力を
    加算する加算回路とを備えたことを特徴とする電流検出
    回路。
    1. A full-wave rectifier circuit comprising four rectifying elements bridge-connected and one capacitor, connected to a single-phase AC power source via an inductor to supply DC power to a load, and the rectifying element among the rectifying elements. A power conversion device comprising two rectifying elements each having an input terminal connected to the capacitor and two rectifying elements each connected in parallel, the first rectifying element being connected in series with a parallel circuit of the rectifying element. A first half-wave rectification circuit for inserting a first resistance and a second resistance into half-wave rectification of the voltage of the first resistance, and a second half-wave rectification for half-wave rectification of the voltage of the second resistance. Circuit,
    A current detection circuit comprising: a first half-wave rectifier circuit and an adder circuit that adds the outputs of the second half-wave rectifier circuit.
  2. 【請求項2】前記第一の半波整流回路と第二の半波整流
    回路の入力にそれぞれ第一の増幅回路と第二の増幅回路
    を備えたことを特徴とする請求項1記載の電流検出回
    路。
    2. The current according to claim 1, wherein a first amplifier circuit and a second amplifier circuit are provided at the inputs of the first half-wave rectifier circuit and the second half-wave rectifier circuit, respectively. Detection circuit.
  3. 【請求項3】前記整流素子のうち、出力端子が前記コン
    デンサに接続されている二つの整流素子に、それぞれ並
    列にスイッチ素子が接続された電力変換装置に適用され
    たことを特徴とする請求項1あるいは請求項2記載の電
    流検出回路。
    3. The power conversion device according to claim 1, wherein among the rectifying elements, two rectifying elements whose output terminals are connected to the capacitor are respectively connected to switching elements in parallel. The current detection circuit according to claim 1 or claim 2.
  4. 【請求項4】前記スイッチ素子はMOSFETであり、
    前記スイッチ素子との並列回路に備えた整流素子を、前
    記MOSFETのボディーダイオードが代用しているこ
    とを特徴とする請求項1、請求項2あるいは請求項3記
    載の電流検出回路。
    4. The switch element is a MOSFET,
    4. The current detection circuit according to claim 1, wherein the body diode of the MOSFET substitutes for a rectifying element provided in a parallel circuit with the switch element.
  5. 【請求項5】前記半波整流回路にオペアンプを備えたこ
    とを特徴とする請求項1、請求項2、請求項3あるいは
    請求項4記載の電流検出回路。
    5. The current detection circuit according to claim 1, wherein the half-wave rectifier circuit is provided with an operational amplifier.
  6. 【請求項6】前記加算回路にオペアンプを備えたことを
    特徴とする請求項1、請求項2、請求項3、請求項4あ
    るいは請求項5記載の電流検出回路。
    6. The current detection circuit according to claim 1, claim 2, claim 3, claim 4, or claim 5, wherein the adder circuit includes an operational amplifier.
JP2002134846A 2002-05-10 2002-05-10 Current detection circuit Pending JP2003333855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134846A JP2003333855A (en) 2002-05-10 2002-05-10 Current detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134846A JP2003333855A (en) 2002-05-10 2002-05-10 Current detection circuit

Publications (1)

Publication Number Publication Date
JP2003333855A true JP2003333855A (en) 2003-11-21

Family

ID=29697330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134846A Pending JP2003333855A (en) 2002-05-10 2002-05-10 Current detection circuit

Country Status (1)

Country Link
JP (1) JP2003333855A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093881A (en) * 2008-10-06 2010-04-22 Shindengen Electric Mfg Co Ltd Converter with improved three-phase power factor
JP2011101571A (en) * 2009-11-06 2011-05-19 Ohira Electronics Co Ltd Ac-dc converter
JP2011102737A (en) * 2009-11-10 2011-05-26 Shindengen Electric Mfg Co Ltd Current detection circuit
JP2011147202A (en) * 2010-01-12 2011-07-28 Tdk-Lambda Corp Switching power unit
JP2012085389A (en) * 2010-10-07 2012-04-26 Mitsubishi Electric Corp Dc power supply device
CN103376346A (en) * 2012-04-26 2013-10-30 比亚迪股份有限公司 Low-side current detecting system
JP2014166050A (en) * 2013-02-26 2014-09-08 Origin Electric Co Ltd Ac-dc power conversion device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093881A (en) * 2008-10-06 2010-04-22 Shindengen Electric Mfg Co Ltd Converter with improved three-phase power factor
JP2011101571A (en) * 2009-11-06 2011-05-19 Ohira Electronics Co Ltd Ac-dc converter
JP2011102737A (en) * 2009-11-10 2011-05-26 Shindengen Electric Mfg Co Ltd Current detection circuit
JP2011147202A (en) * 2010-01-12 2011-07-28 Tdk-Lambda Corp Switching power unit
JP2012085389A (en) * 2010-10-07 2012-04-26 Mitsubishi Electric Corp Dc power supply device
CN103376346A (en) * 2012-04-26 2013-10-30 比亚迪股份有限公司 Low-side current detecting system
JP2014166050A (en) * 2013-02-26 2014-09-08 Origin Electric Co Ltd Ac-dc power conversion device

Similar Documents

Publication Publication Date Title
US7209374B2 (en) Capacitor-input positive and negative power supply circuit
US20060013024A1 (en) Rectifier circuit having a power factor correction
JP2003333855A (en) Current detection circuit
KR980006762A (en) AC / DC conversion circuit
US9997994B1 (en) Totem-pole power factor corrector and current-sampling unit thereof
EP1146620A2 (en) Driving method of semiconductor switching device and power supply apparatus operated according to said method
EP3595154A1 (en) Power conversion circuit having inrush current limiting resistor bypass
JP2007119160A (en) Lifting magnet driving circuit
CN107528487B (en) Current sense and gain switching circuit and the method for using wide-range current
JP2004208407A (en) Control circuit of mosfet for synchronous rectification
JPH09509040A (en) Preregulator with protection against voltage ringing at turn-off
US20070035282A1 (en) Switch mode power supply and a method for controlling such a power supply
JPH09504679A (en) Switch mode power supply
JP4725696B2 (en) Switching power supply
JP2004147475A (en) Rectifier
JPH07231650A (en) Boosting chopper circuit
CN110365202B (en) Bridgeless PFC converter, control method thereof and packaged IC device
US20210184566A1 (en) Power converter
JPH10127046A (en) Control circuit for step-up converter
EP3713063A1 (en) Power conversion device
US20210226528A1 (en) Multi-phase interleaved power converters with improved current balancing
JP2010119278A (en) Rectifying device
JPH0564451A (en) Power source apparatus
JP3230644B2 (en) Three-phase high power factor converter
JP3268725B2 (en) DC voltage detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720