JP2003329830A - Optical multilayered film filter, method for manufacturing the same and optical amplifier - Google Patents

Optical multilayered film filter, method for manufacturing the same and optical amplifier

Info

Publication number
JP2003329830A
JP2003329830A JP2002134604A JP2002134604A JP2003329830A JP 2003329830 A JP2003329830 A JP 2003329830A JP 2002134604 A JP2002134604 A JP 2002134604A JP 2002134604 A JP2002134604 A JP 2002134604A JP 2003329830 A JP2003329830 A JP 2003329830A
Authority
JP
Japan
Prior art keywords
spectral transmittance
basic
multilayer film
optical
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002134604A
Other languages
Japanese (ja)
Inventor
Masaaki Sato
正聡 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2002134604A priority Critical patent/JP2003329830A/en
Publication of JP2003329830A publication Critical patent/JP2003329830A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical multilayered film filter which responds to spectral transmittance characteristics required for various purposes and can be manufactured in a short delivery period. <P>SOLUTION: The optical multilayered film filter 20 is produced by forming a basic multilayered film 22 having basic spectral transmittance characteristics which are identical characteristics for different requirements and a controlling multilayered film 23 deposited on a face different from the basic multilayered film 22 and compensating the basic spectral transmittance characteristics to obtain desired spectral transmittance characteristics suitable for each requirement. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光学多層膜フィル
タおよびその製造方法と、この光学多層膜フィルタを備
えた光アンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical multi-layer film filter, a method for manufacturing the same, and an optical amplifier including the optical multi-layer film filter.

【0002】[0002]

【従来の技術】近年、インターネット通信等の普及およ
び利用が進み、通信ラインの通信量が急速に増大しつつ
ある。このため、大量の通信量を扱える光ファイバを用
いた光通信が主流になりつつあり、さらに、波長分割多
重通信技術WDM等も用いられている。このような光フ
ァイバを用いた光通信システムにおいて、所定の波長の
光をカットしたり、波長選択を行ったり、波長対応ゲイ
ン調整を行ったりするために、高屈折率物質層と低屈折
率物質層とを交互に積層して作られる光学多層膜フィル
タが多く用いられている。
2. Description of the Related Art In recent years, the spread and utilization of Internet communication and the like have advanced, and the communication volume of communication lines has been rapidly increasing. Therefore, optical communication using an optical fiber capable of handling a large amount of communication is becoming mainstream, and further, wavelength division multiplexing communication technology WDM and the like are also used. In an optical communication system using such an optical fiber, a high-refractive index material layer and a low-refractive index material are used to cut light of a predetermined wavelength, select a wavelength, or adjust a gain corresponding to a wavelength. An optical multilayer film filter made by alternately laminating layers is often used.

【0003】このような光学多層膜フィルタの一つに、
ゲイン平坦化フィルタGFF(GainFlattening Filte
r)がある。光通信システムには光信号を増幅する光ア
ンプが所定間隔で使用されており、この光アンプの増幅
特性は波長依存性を持っているため、光アンプの使用時
にはその波長依存性を平坦にすることが望まれる。その
手段として、光アンプの増幅特性とは逆の分光透過率特
性を持つ光学多層膜が成膜された透明基板(例えば、ガ
ラス基板)からなるGFF(すなわち光学多層膜フィル
タ)を使用して、光アンプの分光透過率特性を平坦化す
ることが知られている。なお、GFFは上記のように光
学多層膜を用いて構成されるものの他に、ファイバーグ
レーディングを用いて構成されるものがあるが、光学多
層膜を用いて構成されるGFFのほうが量産性に優れて
いる。
One of such optical multilayer filters is
Gain flattening filter GFF (GainFlattening Filte)
There is r). Optical amplifiers that amplify optical signals are used at predetermined intervals in optical communication systems. Since the amplification characteristics of this optical amplifier have wavelength dependence, the wavelength dependence is flattened when the optical amplifier is used. Is desired. As a means thereof, a GFF (that is, an optical multilayer film filter) made of a transparent substrate (for example, a glass substrate) on which an optical multilayer film having a spectral transmittance characteristic opposite to the amplification characteristic of an optical amplifier is formed is used. It is known to flatten the spectral transmittance characteristic of an optical amplifier. Note that there are GFFs formed by using fiber grading in addition to those formed by using an optical multilayer film as described above, but GFFs formed by using an optical multilayer film are superior in mass productivity. ing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、光アン
プの増幅特性は装置毎に異なり、GFFに要求される分
光透過率特性が多種多様であるため、要求される分光透
過率特性に対応したGFFを個々に製造しなければなら
ず、GFFの製造には多くの時間を要してしまう。光学
多層膜を用いてGFFを構成する場合、光アンプの増幅
特性の波長依存性を平坦化するために数十層〜100層
以上に重ねてなる数十μmの膜厚を有する光学多層膜が
必要とされる。このような光学多層膜を有したGFFの
製造を行う場合、一般に薄膜製造装置の成膜速度は数Å
/s〜十数Å/sであるため、製造時間が非常に長くな
る(例えば、数時間〜数十時間)という問題があった。
However, the amplification characteristics of the optical amplifier differ from device to device, and the spectral transmittance characteristics required for the GFF are diverse, so that the GFF corresponding to the required spectral transmittance characteristics can be obtained. Since it has to be manufactured individually, it takes a lot of time to manufacture the GFF. When a GFF is constructed using an optical multilayer film, an optical multilayer film having a film thickness of several tens of μm formed by stacking several tens to 100 layers or more in order to flatten the wavelength dependence of the amplification characteristic of an optical amplifier. Needed. When manufacturing a GFF having such an optical multilayer film, the film forming speed of a thin film manufacturing apparatus is generally several Å.
Since it is / s to tens of Å / s, there is a problem that the manufacturing time becomes extremely long (for example, several hours to several tens hours).

【0005】本発明は、このような問題に鑑みてなされ
たものであり、多種多様に要求される分光透過率特性に
対応しながらより短納期で製造できる光学多層膜フィル
タを提供することを目的とする。本発明はまた、このよ
うな光学多層膜フィルタの製造方法を提供することを目
的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical multilayer film filter which can be manufactured in a shorter delivery time in response to a wide variety of required spectral transmittance characteristics. And Another object of the present invention is to provide a method for manufacturing such an optical multilayer filter.

【0006】[0006]

【課題を解決するための手段】このような目的達成のた
め、請求項1に係る発明の光学多層膜フィルタは、異な
る要望に対しても同じ特性である基本分光透過率特性を
有する基本多層膜と、基本多層膜とは異なる面に成膜さ
れ基本分光透過率特性を補正して各々の要望毎に適した
所望分光透過率特性を設定するための調整多層膜が形成
されてなる光学多層膜フィルタとなっている。
In order to achieve such an object, the optical multilayer filter of the invention according to claim 1 has a basic multilayer film having a basic spectral transmittance characteristic which is the same characteristic for different demands. And an adjustment multilayer film formed on a surface different from that of the basic multilayer film to correct the basic spectral transmittance characteristics and set the desired spectral transmittance characteristics suitable for each request. It is a filter.

【0007】請求項2に係る発明の光学多層膜フィルタ
は、請求項1に記載の光学多層膜フィルタにおいて、異
なる要望は各々異なる複数の前記所望分光透過率特性で
あり、これら複数の所望分光透過率特性のうちの最も分
光透過率が大きな特性に対応して基本多層膜の基本分光
透過率特性が設定されていることを特徴とする。
The optical multilayer filter of the invention according to a second aspect is the optical multilayer filter according to the first aspect, wherein different demands are different desired spectral transmittance characteristics, respectively. It is characterized in that the basic spectral transmittance characteristic of the basic multilayer film is set corresponding to the characteristic having the largest spectral transmittance among the rate characteristics.

【0008】請求項3に係る発明の光学多層膜フィルタ
は、異なる要望に対しても同じ特性である基本分光透過
率特性を有する基本多層膜と、基本分光透過率特性を補
正して各々の要望毎に適した所望分光透過率特性を設定
するために基本多層膜の上面に形成された調整多層膜と
からなる光学多層膜フィルタとなっている。
The optical multilayer filter of the invention according to claim 3 has a basic multilayer film having a basic spectral transmittance characteristic which is the same characteristic even for different requests, and a basic spectral transmittance characteristic corrected to satisfy each request. The optical multi-layer film filter is composed of an adjustment multi-layer film formed on the upper surface of the basic multi-layer film in order to set a desired spectral transmittance characteristic suitable for each.

【0009】請求項4に係る発明の光学多層膜フィルタ
は、請求項3に記載の光学多層膜フィルタにおいて、異
なる要望は各々異なる複数の所望分光透過率特性であ
り、これら複数の所望分光透過率特性のうちの中間の分
光透過率を有する特性に対応して基本多層膜の基本分光
透過率特性が設定されていることを特徴とする。
An optical multilayer filter according to a fourth aspect of the present invention is the optical multilayer filter according to the third aspect, in which different requirements are different desired spectral transmittance characteristics, and the desired spectral transmittances of the plurality of desired spectral transmittances are different. It is characterized in that the basic spectral transmittance characteristic of the basic multilayer film is set corresponding to a characteristic having an intermediate spectral transmittance among the characteristics.

【0010】請求項5に係る発明の光学多層膜フィルタ
は、第1透明基板の一方の表面に基本分光透過率特性を
有する基本多層膜が形成されてなる第1フィルタと、第
2透明基板の一方の表面に基本分光透過率特性を補正し
て各々の要望毎に適した所望分光透過率特性を設定する
ための調整多層膜が形成されてなる第2フィルタとから
構成される光学多層膜フィルタとなっている。
An optical multilayer filter according to a fifth aspect of the present invention comprises a first transparent substrate having a basic multilayer film having a basic spectral transmittance characteristic formed on one surface thereof, and a second transparent substrate. An optical multilayer filter including a second filter having an adjustment multilayer film formed on one surface to correct the basic spectral transmittance characteristic and set a desired spectral transmittance characteristic suitable for each request. Has become.

【0011】請求項6に係る発明の光学多層膜フィルタ
の製造方法は、異なる要望に対しても同じ特性である基
本分光透過率特性を有する基本多層膜を形成し、基本分
光透過率特性を補正して各々の要望毎に適した所望分光
透過率特性が得られるようにするために必要な調整分光
透過率特性を求め、調整分光透過率特性を有する調整多
層膜を基本多層膜が成膜された面とは異なる面に形成し
て製造されることを特徴とする。
In the method for manufacturing an optical multilayer film filter according to the sixth aspect of the present invention, a basic multilayer film having basic spectral transmittance characteristics which are the same characteristics for different requirements is formed, and the basic spectral transmittance characteristics are corrected. Then, the adjusted spectral transmittance characteristic required to obtain the desired spectral transmittance characteristic suitable for each request is obtained, and the basic multilayer film is formed as the adjusted multilayer film having the adjusted spectral transmittance characteristic. It is characterized in that it is manufactured by forming it on a surface different from the surface on which it is formed.

【0012】請求項7に係る発明の光学多層膜フィルタ
の製造方法は、請求項6に記載の光学多層膜フィルタの
製造方法において、異なる要望は各々異なる複数の所望
分光透過率特性であり、これら複数の所望分光透過率特
性のうちの最も分光透過率が大きな特性に対応して基本
多層膜の基本分光透過率特性が設定されており、基本多
層膜を予め形成しておき、所望分光透過率特性に応じて
基本分光透過率特性を補正して所望分光透過率特性を設
定するために必要な調整分光透過率特性を求め、調整分
光透過率特性に応じて基本多層膜が成膜された面とは異
なる面に調整多層膜を形成することを特徴とする。
According to a seventh aspect of the present invention, there is provided a method of manufacturing an optical multilayer filter according to the sixth aspect, wherein different requirements are different desired spectral transmittance characteristics. The basic spectral transmittance characteristic of the basic multilayer film is set corresponding to the characteristic having the largest spectral transmittance among the plurality of desired spectral transmittance characteristics. The surface on which the basic multilayer film is formed according to the adjusted spectral transmittance characteristics, and the adjusted spectral transmittance characteristics required to set the desired spectral transmittance characteristics by correcting the basic spectral transmittance characteristics according to the characteristics. It is characterized in that an adjustment multilayer film is formed on a surface different from that.

【0013】請求項8に係る発明の光学多層膜フィルタ
の製造方法は、異なる要望に対しても同じ特性である基
本分光透過率特性を有する基本多層膜を形成し、基本分
光透過率特性を補正して各々の要望毎に適した所望の分
光透過率特性が得られるように調整多層膜を基本多層膜
の上面に形成して製造されることを特徴とする。
In the method for manufacturing an optical multilayer filter according to the eighth aspect of the present invention, the basic multilayer film having the basic spectral transmittance characteristic which is the same characteristic for different requirements is formed, and the basic spectral transmittance characteristic is corrected. The adjustment multilayer film is formed on the upper surface of the basic multilayer film so as to obtain a desired spectral transmittance characteristic suitable for each request, and is manufactured.

【0014】請求項9に係る発明の光学多層膜フィルタ
の製造方法は、請求項8に記載の光学多層膜フィルタの
製造方法において、異なる要望は各々異なる複数の所望
分光透過率特性であり、これら複数の所望分光透過率特
性のうちの中間の分光透過率を有する特性に対応して基
本多層膜の基本分光透過率特性が設定されており、基本
多層膜を予め形成しておき、所望分光透過率特性に応じ
て基本分光透過率特性を補正して所望分光透過率特性が
得られるように基本多層膜の上面に調整多層膜を形成す
ることを特徴とする。
According to a ninth aspect of the present invention, there is provided a method of manufacturing an optical multilayer filter according to the eighth aspect, wherein different demands are different desired spectral transmittance characteristics. The basic spectral transmittance characteristic of the basic multilayer film is set corresponding to the characteristic having an intermediate spectral transmittance among the plurality of desired spectral transmittance characteristics. It is characterized in that the adjustment multilayer film is formed on the upper surface of the basic multilayer film so that the desired spectral transmittance characteristic is obtained by correcting the basic spectral transmittance characteristic according to the rate characteristic.

【0015】請求項10に係る発明の光アンプは、光を
増幅する光増幅部と、光増幅部により増幅された光が入
射される請求項1から請求項9のうちいずれか一項記載
の光学多層膜フィルタとを有することを特徴とする。
An optical amplifier according to a tenth aspect of the present invention is an optical amplifier section for amplifying light, and the light amplified by the optical amplifier section is incident on the optical amplifier section. And an optical multilayer filter.

【0016】請求項11に係る発明の光アンプは、請求
項10に記載の光アンプにおいて、光増幅部は、光が伝
播する光ファイバのコア部中又は導波路中に増幅媒体が
ドープされた光増幅手段とからなり、増幅媒体が励起す
る波長の光を光増幅手段に放射することで光を増幅する
ことを特徴とする。
An optical amplifier according to an eleventh aspect of the present invention is the optical amplifier according to the tenth aspect, wherein the optical amplifying section is formed by doping an amplifying medium in a core section or a waveguide of an optical fiber through which light propagates. It is characterized by comprising an optical amplifying means, and amplifying the light by radiating light having a wavelength excited by the amplification medium to the optical amplifying means.

【0017】[0017]

【発明の実施の形態】以下、図面を参照して本発明の好
ましい実施形態について説明する。本発明に係る光学多
層膜フィルタを備えた光フィルタモジュールを用いて構
成される光アンプの概略構成を図2に示している。この
光アンプ5は光ファイバを用いた通信ラインの途中に設
けられ、光ファイバを介して伝達される光信号の増幅を
行うためのもので、光信号伝達用光ファイバ1aに接続
された光増幅部2と、この光増幅部2に連結用光ファイ
バ1bを介して繋がれた光フィルタモジュール10とか
ら構成され、光フィルタモジュール10に光信号伝達用
光ファイバ1cが繋がれる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows a schematic configuration of an optical amplifier configured using an optical filter module including the optical multilayer film filter according to the present invention. The optical amplifier 5 is provided in the middle of a communication line using an optical fiber and is for amplifying an optical signal transmitted through the optical fiber. The optical amplifier 5 is connected to the optical signal transmitting optical fiber 1a. The optical filter module 10 includes a section 2 and an optical filter module 10 connected to the optical amplification section 2 via a connecting optical fiber 1b. The optical signal transmitting optical fiber 1c is connected to the optical filter module 10.

【0018】光増幅部2は、エルビウム(Er)等の希
土類元素を添加したファイバアンプ部3を備え、図示し
ない波長分割多重器等によりファイバアンプ部3内に励
起光を供給して添加された希土類元素を励起することに
よって希土類元素の外殻電子のエネルギー準位について
反転分布を形成し、光信号伝達用光ファイバ1aからフ
ァイバアンプ部3に入射された信号光を増幅させるもの
である。なお、この光増幅部2を光ファイバ型増幅器に
より構成する代わりに、エルビウム等の希土類元素が添
加されたガラス基板上に増幅用光導波路を形成し、波長
分割多重器等により増幅用光導波路内に励起光を供給す
るとともに光信号伝達用光ファイバ1aからの信号光を
通過させ、この信号光を増幅させるように構成しても良
い。すなわち、光増幅部を、光ファイバ型光増幅器によ
り構成しても光導波路型光増幅器により構成しても良
い。
The optical amplification section 2 is provided with a fiber amplifier section 3 to which a rare earth element such as erbium (Er) is added, and pumping light is supplied into the fiber amplifier section 3 by a wavelength division multiplexer (not shown) or the like. By exciting the rare earth element, an inversion distribution is formed with respect to the energy levels of the outer shell electrons of the rare earth element, and the signal light incident from the optical fiber 1a for optical signal transmission to the fiber amplifier section 3 is amplified. Instead of configuring the optical amplifying section 2 by an optical fiber type amplifier, an amplifying optical waveguide is formed on a glass substrate to which a rare earth element such as erbium is added, and the optical waveguide for amplifying is formed by a wavelength division multiplexer or the like. The pumping light may be supplied to the optical fiber, the signal light from the optical signal transmitting optical fiber 1a may be passed therethrough, and the signal light may be amplified. That is, the optical amplification unit may be configured by an optical fiber type optical amplifier or an optical waveguide type optical amplifier.

【0019】このようにして光増幅部2により増幅され
た光信号は連結用光ファイバ1bを通って光フィルタモ
ジュール10内に導かれる。この光フィルタモジュール
10の構成を図1に拡大して示しており、この図も参照
して光フィルタモジュール10について説明する。光フ
ィルタモジュール10は、波長対応ゲイン調整処理を行
う光学多層膜フィルタ20と、通過する光を平行光線束
とする第1コリメータレンズ11および第2コリメータ
レンズ12と、光学多層膜フィルタ20、第1コリメー
タレンズ11および第2コリメータレンズ12を収容保
持する金属製のケース13とを有して構成される。
The optical signal thus amplified by the optical amplifying section 2 is guided into the optical filter module 10 through the connecting optical fiber 1b. The configuration of the optical filter module 10 is shown in an enlarged scale in FIG. 1, and the optical filter module 10 will be described with reference to this figure as well. The optical filter module 10 includes an optical multilayer filter 20 that performs a gain adjustment process corresponding to wavelengths, a first collimator lens 11 and a second collimator lens 12 that make passing light into a parallel light flux, an optical multilayer filter 20, and a first multilayer filter 20. It has a metal case 13 that houses and holds the collimator lens 11 and the second collimator lens 12.

【0020】そしてこのような構成の光フィルタモジュ
ール10において、連結用光ファイバ1bを通って伝送
される光信号は連結用光ファイバ1bからケース13の
内部へ射出される。次に、連結用光ファイバ1bの端部
から射出された光信号は第1コリメータレンズ11によ
り平行光束とされ、光学多層膜フィルタ20を通過して
波長対応ゲイン調整処理が行われる。そして、光学多層
膜フィルタ20を通過した光信号は第2コリメータレン
ズ12により収束されて光信号伝達用光ファイバ1cへ
導かれる。
In the optical filter module 10 having such a configuration, the optical signal transmitted through the connecting optical fiber 1b is emitted from the connecting optical fiber 1b into the case 13. Next, the optical signal emitted from the end of the coupling optical fiber 1b is made into a parallel light flux by the first collimator lens 11, passes through the optical multilayer film filter 20, and the wavelength-corresponding gain adjustment processing is performed. The optical signal that has passed through the optical multilayer film filter 20 is converged by the second collimator lens 12 and guided to the optical signal transmitting optical fiber 1c.

【0021】ここで、波長対応ゲイン調整処理は、光信
号を増幅する光アンプ5の増幅特性が持つ波長依存性を
平坦化するための処理であり、このような処理を行うフ
ィルタはゲイン平坦化フィルタGFF(Gain Flattenin
g Filter)と称される。このようなGFF、すなわち光
学多層膜フィルタ20は、光増幅部2の増幅特性とは逆
の分光透過率特性を持つ光学多層膜と、この光学多層膜
が成膜された透明基板であるガラス基板とを備えて構成
されているが、光アンプ5の増幅特性は装置毎に異なる
ため、図3に示すように、GFFすなわち光学多層膜フ
ィルタ20に要求される分光透過率特性は多種多様とな
っている。
Here, the wavelength-corresponding gain adjustment processing is processing for flattening the wavelength dependence of the amplification characteristic of the optical amplifier 5 for amplifying the optical signal, and the filter for performing such processing is gain flattening. Filter GFF (Gain Flattenin
g Filter) is called. Such a GFF, that is, the optical multilayer film filter 20, includes an optical multilayer film having a spectral transmittance characteristic opposite to the amplification characteristic of the optical amplification section 2 and a glass substrate which is a transparent substrate on which the optical multilayer film is formed. However, since the amplification characteristic of the optical amplifier 5 is different for each device, as shown in FIG. 3, the GFF, that is, the spectral transmittance characteristic required for the optical multilayer film filter 20 is various. ing.

【0022】そこで、光学多層膜フィルタ20は、透明
のガラス基板21と、ガラス基板21の一方の表面に形
成され、異なる要望に対しても同じ特性である基本分光
透過率特性を有する基本多層膜22と、ガラス基板21
の他方の表面に形成され、基本分光透過率特性を補正し
て所望分光透過率特性を設定するための調整多層膜23
とを有して構成されている。
Therefore, the optical multi-layer film filter 20 is formed on the transparent glass substrate 21 and one surface of the glass substrate 21, and has a basic multi-layer film having the same basic spectral transmittance characteristic for different requirements. 22 and the glass substrate 21
An adjustment multilayer film 23 formed on the other surface of the adjustment multilayer film 23 for correcting the basic spectral transmittance characteristic and setting the desired spectral transmittance characteristic.
And is configured.

【0023】基本多層膜22は、詳細図示しないが、ガ
ラス基板21の一方の表面に高屈折率物質層と低屈折率
物質層とを交互に多数積層して形成され、図4における
◆印に示すように、異なる要望に対しても同じ特性であ
る基本分光透過率特性を有している。基本多層膜22を
形成する高屈折率物質層および低屈折率物質層の材質
は、高屈折率物質層としては五酸化タンタルTa25
用いられ、低屈折率物質層としては二酸化ケイ素SiO
2が用いられている。そして、基本多層膜22は下記の
表1に示す構成となるように形成され、基本多層膜22
の層数は83層で、その膜厚は20.9μmとなってい
る。
Although not shown in detail, the basic multilayer film 22 is formed by alternately laminating a large number of high-refractive index material layers and low-refractive index material layers on one surface of the glass substrate 21. As shown, it has the same basic spectral transmittance characteristics for different demands. The high refractive index material layer and the low refractive index material layer forming the basic multilayer film 22 are made of tantalum pentoxide Ta 2 O 5 as the high refractive index material layer and silicon dioxide SiO 2 as the low refractive index material layer.
2 is used. The basic multilayer film 22 is formed so as to have the structure shown in Table 1 below.
The number of layers is 83, and the film thickness is 20.9 μm.

【0024】[0024]

【表1】 [Table 1]

【0025】一方、調整多層膜23は、基本多層膜22
と同様に、ガラス基板21の他方の表面に高屈折率物質
層と低屈折率物質層とを交互に積層して形成され、その
分光透過率特性(以下、調整分光透過率特性と称する)
は、光学多層膜フィルタ20が所望分光透過率特性を得
られるように基本多層膜22の基本分光透過率特性を補
正するものとなっている。例えば、図4における▲印の
プロットに示す分光透過率特性を有する光学多層膜フィ
ルタ20を作る場合、調整多層膜23の分光透過率特性
は図4における■印のプロットに示すようになる。調整
多層膜23を形成する高屈折率物質層および低屈折率物
質層の材質は、基本多層膜22と同様に、高屈折率物質
層としては五酸化タンタルTa25が用いられ、低屈折
率物質層としては二酸化ケイ素SiO2が用いられてい
る。そして、調整多層膜23は下記の表2に示す構成と
なるように形成され、調整多層膜23の層数は57層
で、その膜厚は13.4μmとなっている。
On the other hand, the adjustment multilayer film 23 is the basic multilayer film 22.
Similarly, the high refractive index material layers and the low refractive index material layers are alternately laminated on the other surface of the glass substrate 21 to form a spectral transmittance characteristic (hereinafter, referred to as an adjusted spectral transmittance characteristic).
Is for correcting the basic spectral transmittance characteristic of the basic multilayer film 22 so that the optical multilayer filter 20 can obtain a desired spectral transmittance characteristic. For example, when the optical multilayer filter 20 having the spectral transmittance characteristics shown by the plot of ∘ in FIG. 4 is produced, the spectral transmittance characteristics of the adjustment multilayer film 23 are as shown by the plot of ∘ in FIG. The high refractive index substance layer and the low refractive index substance layer forming the adjustment multilayer film 23 are made of tantalum pentoxide Ta 2 O 5 as the high refractive index substance layer and have a low refractive index, as in the basic multilayer film 22. Silicon dioxide SiO 2 is used as the index material layer. The adjustment multilayer film 23 is formed to have the configuration shown in Table 2 below, and the adjustment multilayer film 23 has 57 layers and a thickness of 13.4 μm.

【0026】[0026]

【表2】 [Table 2]

【0027】このような構成の光学多層膜フィルタ20
において、第1コリメータレンズ11を通過した光信号
は基本多層膜22を通過して第1の波長対応ゲイン調整
処理が行われ、続いてガラス基板21を通過したのち調
整多層膜23を通過して第2の波長対応ゲイン調整処理
が行われた後、第2コリメータレンズ12へと向かう。
このとき、光学多層膜フィルタ20の分光透過率特性
(▲印)は、図4に示すように、重ね合わせの原理によ
り、基本多層膜22の基本分光透過率特性(◆印)と調
整多層膜23の調整分光透過率特性(■印)とが相乗し
たものとなる。
The optical multilayer filter 20 having such a structure
In, the optical signal that has passed through the first collimator lens 11 passes through the basic multilayer film 22 to be subjected to the first wavelength-corresponding gain adjustment process, and then passes through the glass substrate 21 and then the adjusted multilayer film 23. After the second wavelength-corresponding gain adjustment process is performed, the process proceeds to the second collimator lens 12.
At this time, as shown in FIG. 4, the spectral transmittance characteristics of the optical multilayer filter 20 (marked by ▲) are the same as the basic spectral transmittance characteristics of the basic multilayer film 22 (marked by ♦) and the adjusted multilayer by the principle of superposition. 23 and the adjusted spectral transmittance characteristics (marked with ■) are synergistic.

【0028】これからわかるように、基本分光透過率特
性を用いて得られる分光透過率特性は、図4における基
本分光透過率特性よりも下の領域、すなわち基本分光透
過率特性よりも小さなものに限られる。そこで、より多
くの分光透過率特性に対応できるように、基本分光透過
率特性は、光学多層膜フィルタ20に要求される多種多
様な複数の所望分光透過率特性のうちの最も分光透過率
が大きな特性に対応して設定されている。
As can be seen from the above, the spectral transmittance characteristics obtained by using the basic spectral transmittance characteristics are limited to a region below the basic spectral transmittance characteristics in FIG. 4, that is, a value smaller than the basic spectral transmittance characteristics. To be Therefore, the basic spectral transmittance characteristic has the highest spectral transmittance among the various desired spectral transmittance characteristics required for the optical multilayer film filter 20 so that more spectral transmittance characteristics can be accommodated. It is set according to the characteristics.

【0029】また、図4における▲印のプロットに示す
分光透過率特性と同等の特性を有する光学多層膜(図示
せず)をガラス基板21の一方の表面のみに形成する
と、下記の表3に示すような構成となり、光学多層膜の
層数は121層で、その膜厚は30.8μmとなる。
Further, when an optical multilayer film (not shown) having the same characteristics as the spectral transmittance characteristics shown in the plot of ▲ in FIG. 4 is formed on only one surface of the glass substrate 21, the following Table 3 is obtained. As shown in the figure, the number of optical multilayer films is 121, and the film thickness is 30.8 μm.

【0030】[0030]

【表3】 [Table 3]

【0031】一方、本実施例の光学多層膜フィルタ20
における調整多層膜23の層数は57層で、その膜厚は
13.4μmであることから、調整多層膜23の層数お
よび膜厚は、上述の光学多層膜の層数および膜厚よりも
小さいことがわかる。そのため、予め基本多層膜22の
みをガラス基板21の一方の表面に形成しておき、所望
分光透過率特性の確定後に調整多層膜23をガラス基板
21の他方の表面に形成する方が、所望分光透過率特性
の確定後に光学多層膜をガラス基板21の一方の表面の
みに形成するよりも納期が短かくて済む。
On the other hand, the optical multilayer film filter 20 of this embodiment.
Since the number of layers of the adjusting multilayer film 23 in 57 is 57 and the thickness thereof is 13.4 μm, the number of layers and the film thickness of the adjusting multilayer film 23 are smaller than those of the optical multilayer film described above. You can see that it is small. Therefore, it is better to form only the basic multilayer film 22 on one surface of the glass substrate 21 in advance and to form the adjustment multilayer film 23 on the other surface of the glass substrate 21 after the desired spectral transmittance characteristic is determined. The delivery time is shorter than the case where the optical multilayer film is formed on only one surface of the glass substrate 21 after the transmittance characteristic is determined.

【0032】この結果、予め基本多層膜22のみを形成
しておき、所望分光透過率特性の確定後に、基本分光透
過率特性を補正する調整多層膜23を基本多層膜22が
成膜された面とは異なる面に形成することで、多種多様
に要求される分光透過率特性に対応しながらより短納期
で製造できる光学多層膜フィルタ20を提供することが
できる。また、基本分光透過率特性を複数の所望分光透
過率特性のうちの最も分光透過率が大きな特性に対応し
て設定することで、より多くの分光透過率特性に対応す
ることができる。さらに、光アンプ5に本発明による光
学多層膜フィルタ20を構成することで、より短納期で
製造できる光アンプ5を提供することができる。
As a result, only the basic multilayer film 22 is formed in advance, and after the desired spectral transmittance characteristic is determined, the adjustment multilayer film 23 for correcting the basic spectral transmittance characteristic is formed on the surface on which the basic multilayer film 22 is formed. It is possible to provide the optical multilayer film filter 20 that can be manufactured in a shorter delivery time while corresponding to a wide variety of required spectral transmittance characteristics by forming it on a surface different from the above. Further, by setting the basic spectral transmittance characteristic corresponding to the characteristic having the largest spectral transmittance among the plurality of desired spectral transmittance characteristics, it is possible to cope with more spectral transmittance characteristics. Furthermore, by configuring the optical amplifier 5 with the optical multilayer filter 20 according to the present invention, it is possible to provide the optical amplifier 5 that can be manufactured in a shorter delivery time.

【0033】次に、上述のような光学多層膜フィルタ2
0の製造方法について説明する。まず、ガラス基板21
の一方の表面に、高屈折率物質層と低屈折率物質層とを
交互に多数積層してなる基本多層膜22を、異なる要望
に対しても同じ特性である基本分光透過率特性を得られ
るように、スパッタリング、蒸着等により形成する。な
おこのとき、基本分光透過率特性は、光学多層膜フィル
タ20に要求される多種多様な複数の所望分光透過率特
性のうちの最も分光透過率が大きな特性に対応して設定
される。
Next, the optical multilayer filter 2 as described above.
The manufacturing method of 0 will be described. First, the glass substrate 21
A basic multi-layered film 22 in which a large number of high-refractive index material layers and low-refractive index material layers are alternately laminated is provided on one surface of the one surface, and the same basic spectral transmittance characteristics can be obtained for different requests. Thus, it is formed by sputtering, vapor deposition or the like. At this time, the basic spectral transmittance characteristic is set in correspondence with the characteristic having the largest spectral transmittance among the various desired spectral transmittance characteristics required for the optical multilayer filter 20.

【0034】次に、ガラス基板21の他方の表面におい
て、基本多層膜22の基本分光透過率特性を補正して光
学多層膜フィルタ20の所望分光透過率特性を設定する
ために必要な調整分光透過率特性を求める。そして、ガ
ラス基板21の他方の表面に、高屈折率物質層と低屈折
率物質層とを交互に多数積層してなる調整多層膜23
を、先に求めた調整分光透過率特性を得られるように、
スパッタリング、蒸着等により形成することで、光学多
層膜フィルタ20の製造は完了する。
Next, on the other surface of the glass substrate 21, the adjusted spectral transmission necessary for correcting the basic spectral transmittance characteristic of the basic multilayer film 22 and setting the desired spectral transmittance characteristic of the optical multilayer filter 20. Calculate rate characteristics. Then, on the other surface of the glass substrate 21, an adjustment multilayer film 23 formed by alternately laminating a large number of high refractive index substance layers and low refractive index substance layers.
In order to obtain the adjusted spectral transmittance characteristics previously obtained,
The production of the optical multilayer filter 20 is completed by forming it by sputtering, vapor deposition, or the like.

【0035】この結果、予め基本多層膜22のみを形成
しておき、所望分光透過率特性の確定後に、基本分光透
過率特性を補正して要望通りの所望分光透過率特性を得
るために必要な調整分光透過率特性を求め、この調整分
光透過率特性を有する調整多層膜23を基本多層膜22
が成膜された面とは異なる面に形成することで、多種多
様に要求される分光透過率特性に対応しながらより短納
期で光学多層膜フィルタ20を製造することができる。
また、基本分光透過率特性を複数の所望分光透過率特性
のうちの最も分光透過率が大きな特性に対応して設定す
ることで、より多くの分光透過率特性に対応して光学多
層膜フィルタ20を製造することができる。
As a result, only the basic multilayer film 22 is formed in advance, and after the desired spectral transmittance characteristic is determined, it is necessary to correct the basic spectral transmittance characteristic to obtain the desired spectral transmittance characteristic as desired. The adjusted spectral transmittance characteristic is obtained, and the adjusted multilayer film 23 having the adjusted spectral transmittance characteristic is used as the basic multilayer film 22.
By forming it on a surface different from the surface on which the film is formed, it is possible to manufacture the optical multilayer filter 20 with a shorter delivery time in response to variously required spectral transmittance characteristics.
Further, by setting the basic spectral transmittance characteristic in correspondence with the characteristic having the largest spectral transmittance among the plurality of desired spectral transmittance characteristics, the optical multilayer film filter 20 corresponding to more spectral transmittance characteristics. Can be manufactured.

【0036】次に、光学多層膜フィルタの第二実施形態
について図5を参照して説明する。ここで、図5は本実
施形態における光学多層膜フィルタ50を備えた光フィ
ルタモジュール40の構成を示す拡大図である。なお本
実施形態において、光学多層膜フィルタ50以外の装置
構成は上述した第一実施形態と同様であるため、同一部
位に同一番号を付して重複説明を省略する。
Next, a second embodiment of the optical multilayer filter will be described with reference to FIG. Here, FIG. 5 is an enlarged view showing the configuration of the optical filter module 40 including the optical multilayer filter 50 according to the present embodiment. In the present embodiment, the device configuration other than the optical multilayer filter 50 is the same as that of the above-described first embodiment, and therefore, the same parts will be denoted by the same reference numerals and redundant description will be omitted.

【0037】本実施形態における光学多層膜フィルタ5
0は、透明のガラス基板51と、ガラス基板51の一方
の表面に形成され、異なる要望に対しても同じ特性であ
る基本分光透過率特性を有する基本多層膜52と、基本
多層膜52の上面に形成され、基本分光透過率特性を補
正して所望分光透過率特性を設定するための調整多層膜
53とを有して構成される。そして、基本多層膜52の
上面に調整多層膜53が形成されることで、ガラス基板
51の一方の表面にはひとつの光学多層膜54が形成さ
れる。なお、ガラス基板51の基本多層膜52が成膜さ
れた面とは反対側の面には図示されない反射防止膜が形
成される。また、ガラス基板51の断面はわずかにくさ
び形の形状をしており、対向する面の反射光により無用
な干渉が起きにくくなっている。
Optical multilayer filter 5 in this embodiment
0 is a transparent glass substrate 51, a basic multilayer film 52 formed on one surface of the glass substrate 51 and having a basic spectral transmittance characteristic which is the same characteristic for different requests, and an upper surface of the basic multilayer film 52. And the adjustment multilayer film 53 for correcting the basic spectral transmittance characteristic and setting the desired spectral transmittance characteristic. Then, by forming the adjusting multilayer film 53 on the upper surface of the basic multilayer film 52, one optical multilayer film 54 is formed on one surface of the glass substrate 51. An antireflection film (not shown) is formed on the surface of the glass substrate 51 opposite to the surface on which the basic multilayer film 52 is formed. In addition, the cross section of the glass substrate 51 is slightly wedge-shaped, and it is difficult for unnecessary interference to occur due to the reflected light from the facing surface.

【0038】基本多層膜52は、詳細図示しないが、ガ
ラス基板51の一方の表面に高屈折率物質層と低屈折率
物質層とを交互に多数積層して形成され、図6における
◆印に示すように、異なる要望に対しても同じ特性であ
る基本分光透過率特性を有している。基本多層膜52を
形成する高屈折率物質層および低屈折率物質層の材質
は、高屈折率物質層としては五酸化タンタルTa25
用いられ、低屈折率物質層としては二酸化ケイ素SiO
2が用いられている。そして、基本多層膜52は下記の
表4に示す構成となるように形成され、基本多層膜52
の層数は71層で、その膜厚は17.2μmとなってい
る。
Although not shown in detail, the basic multilayer film 52 is formed by alternately laminating a large number of high refractive index substance layers and low refractive index substance layers on one surface of the glass substrate 51. As shown, it has the same basic spectral transmittance characteristics for different demands. The high refractive index material layer and the low refractive index material layer forming the basic multilayer film 52 are made of tantalum pentoxide Ta 2 O 5 as the high refractive index material layer and silicon dioxide SiO 2 as the low refractive index material layer.
2 is used. The basic multilayer film 52 is formed so as to have the structure shown in Table 4 below.
The number of layers is 71 and the film thickness is 17.2 μm.

【0039】[0039]

【表4】 [Table 4]

【0040】一方、調整多層膜53は、基本多層膜52
の上面に高屈折率物質層と低屈折率物質層とを交互に多
数積層して形成され、その調整分光透過率特性は、光学
多層膜フィルタ50が所望分光透過率特性を得られるよ
うに基本多層膜52の基本分光透過率特性を補正するも
のとなっている。調整多層膜53を形成する高屈折率物
質層および低屈折率物質層の材質は、基本多層膜52と
同様に、高屈折率物質層としては五酸化タンタルTa2
5が用いられ、低屈折率物質層としては二酸化ケイ素
SiO2が用いられている。そして、基本多層膜52の
上面に調整多層膜53が形成されてなる光学多層膜54
は下記の表5に示す構成となるように形成され、光学多
層膜54の層数は109層で、その膜厚は27.6μm
となっている。すなわち、調整多層膜53の層数は38
層となり、その膜厚は10.4μmとなる。
On the other hand, the adjustment multilayer film 53 is the basic multilayer film 52.
Is formed by alternately stacking a plurality of high-refractive index material layers and low-refractive index material layers on its upper surface, and its adjusted spectral transmittance characteristics are basically adjusted so that the optical multilayer film filter 50 can obtain desired spectral transmittance characteristics. The basic spectral transmittance characteristics of the multilayer film 52 are corrected. The high refractive index material layer and the low refractive index material layer forming the adjustment multilayer film 53 are made of tantalum pentoxide Ta 2 as the high refractive index material layer, as in the basic multilayer film 52.
O 5 is used, and silicon dioxide SiO 2 is used as the low refractive index material layer. An optical multilayer film 54 in which the adjustment multilayer film 53 is formed on the upper surface of the basic multilayer film 52
Are formed so as to have the structure shown in Table 5 below. The number of layers of the optical multilayer film 54 is 109, and the film thickness thereof is 27.6 μm.
Has become. That is, the adjustment multilayer film 53 has 38 layers.
The layer has a thickness of 10.4 μm.

【0041】[0041]

【表5】 [Table 5]

【0042】このような構成の光学多層膜フィルタ50
において、第1コリメータレンズ11を通過した光信号
は調整多層膜53および基本多層膜52(すなわち光学
多層膜54)を通過して波長対応ゲイン調整処理が行わ
れ、続いてガラス基板51を通過したのち第2コリメー
タレンズ12へと向かう。このとき、光学多層膜フィル
タ50の分光透過率特性は、図6における■印に示すよ
うな形態となる。
The optical multilayer film filter 50 having such a configuration.
In FIG. 3, the optical signal that has passed through the first collimator lens 11 passes through the adjustment multilayer film 53 and the basic multilayer film 52 (that is, the optical multilayer film 54) to perform the gain adjustment processing corresponding to the wavelength, and then passes through the glass substrate 51. After that, it goes to the second collimator lens 12. At this time, the spectral transmittance characteristics of the optical multilayer film filter 50 have a form as indicated by a black square mark in FIG.

【0043】図6において、光学多層膜フィルタ50の
分光透過率特性には、基本分光透過率特性よりも大きな
分光透過率を示すところがある。これは、基本多層膜5
2に形成されている多層膜界面からの光と調整多層膜5
3で新たに形成された多層膜界面からの光の干渉効果に
よるもので、これにより、より多くの分光透過率特性に
対応できるように、基本分光透過率特性は、光学多層膜
フィルタ50に要求される多種多様な複数の所望分光透
過率特性のうちの中間の分光透過率を有する特性に対応
して設定されている。
In FIG. 6, the spectral transmittance characteristic of the optical multilayer film filter 50 has a portion exhibiting a greater spectral transmittance than the basic spectral transmittance characteristic. This is the basic multilayer film 5
Light from the interface of the multilayer film formed in 2 and the adjusting multilayer film 5
This is due to the interference effect of light from the interface of the multilayer film newly formed in No. 3, so that the basic spectral transmittance characteristics are required for the optical multilayer film filter 50 so that more spectral transmittance characteristics can be dealt with. It is set in correspondence with the characteristic having an intermediate spectral transmittance among the various desired spectral transmittance characteristics.

【0044】また、基本多層膜52の上面に調整多層膜
53が形成されてなる光学多層膜54の層数は109層
で、その膜厚は27.6μmである。一方、調整多層膜
53の層数は38層で、その膜厚は10.4μmである
ことから、調整多層膜53の層数および膜厚は、光学多
層膜54の層数および膜厚よりも小さいことがわかる。
そのため、予め基本多層膜52のみをガラス基板51の
一方の表面に形成しておき、所望分光透過率特性の確定
後に調整多層膜53を基本多層膜52の上面に形成する
方が、所望分光透過率特性の確定後に光学多層膜54を
ガラス基板51の一方の表面に一度に形成するよりも納
期が短かくて済む。
Further, the number of layers of the optical multilayer film 54 in which the adjustment multilayer film 53 is formed on the upper surface of the basic multilayer film 52 is 109 layers, and the thickness thereof is 27.6 μm. On the other hand, since the number of layers of the adjustment multilayer film 53 is 38 and the thickness thereof is 10.4 μm, the number of layers and the film thickness of the adjustment multilayer film 53 are smaller than the number and the thickness of the optical multilayer film 54. You can see that it is small.
Therefore, it is better to form only the basic multilayer film 52 on one surface of the glass substrate 51 in advance and to form the adjustment multilayer film 53 on the upper surface of the basic multilayer film 52 after the desired spectral transmittance characteristic is determined. The delivery time is shorter than the case where the optical multilayer film 54 is formed on one surface of the glass substrate 51 at once after the determination of the rate characteristics.

【0045】この結果、調整多層膜53を基本多層膜5
2の上面に形成することで、第一実施形態における光学
多層膜フィルタ20と同様に、多種多様に要求される分
光透過率特性に対応しながらより短納期で製造できる光
学多層膜フィルタ50を提供することができる。また、
基本分光透過率特性を複数の所望分光透過率特性のうち
の中間の分光透過率を有する特性に対応して設定するこ
とで、より多くの分光透過率特性に対応することができ
る。
As a result, the adjustment multilayer film 53 is replaced with the basic multilayer film 5.
By providing the optical multilayer film filter 50 on the upper surface of No. 2, it is possible to provide an optical multilayer film filter 50 that can be manufactured in a shorter delivery time while responding to variously required spectral transmittance characteristics, like the optical multilayer film filter 20 in the first embodiment. can do. Also,
By setting the basic spectral transmittance characteristic in correspondence with the characteristic having the intermediate spectral transmittance among the plurality of desired spectral transmittance characteristics, it is possible to cope with more spectral transmittance characteristics.

【0046】次に、上述のような光学多層膜フィルタ5
0の製造方法について説明する。まず、ガラス基板51
の一方の表面に、高屈折率物質層と低屈折率物質層とを
交互に多数積層してなる基本多層膜52を、異なる要望
に対しても同じ特性である基本分光透過率特性を得られ
るように、スパッタリング、蒸着等により形成する。な
おこのとき、基本分光透過率特性は、光学多層膜フィル
タ50に要求される多種多様な複数の所望分光透過率特
性のうちの中間の分光透過率を有する特性に対応して設
定される。
Next, the optical multilayer film filter 5 as described above.
The manufacturing method of 0 will be described. First, the glass substrate 51
On one surface, a basic multi-layered film 52 in which a large number of high refractive index material layers and low refractive index material layers are alternately laminated can be obtained with the same basic spectral transmittance characteristics for different demands. Thus, it is formed by sputtering, vapor deposition or the like. At this time, the basic spectral transmittance characteristic is set corresponding to a characteristic having an intermediate spectral transmittance among the various desired spectral transmittance characteristics required for the optical multilayer film filter 50.

【0047】次に、基本多層膜52の上面において、基
本多層膜52の基本分光透過率特性を補正して光学多層
膜フィルタ50の所望分光透過率特性を設定するために
必要な残りの調整多層膜の構成を求める。そして、基本
多層膜52の上面に、高屈折率物質層と低屈折率物質層
とを交互に多数積層してなる調整多層膜53を、スパッ
タリング、蒸着等により形成することで、光学多層膜フ
ィルタ50の製造は完了する。
Next, on the upper surface of the basic multilayer film 52, the remaining adjustment multilayers necessary for correcting the basic spectral transmittance characteristics of the basic multilayer film 52 and setting the desired spectral transmittance characteristics of the optical multilayer film filter 50. Find the composition of the membrane. Then, an adjustment multilayer film 53 formed by alternately stacking a large number of high refractive index material layers and low refractive index material layers is formed on the upper surface of the basic multilayer film 52 by sputtering, vapor deposition, or the like, thereby forming an optical multilayer film filter. The manufacture of 50 is complete.

【0048】この結果、調整多層膜53を基本多層膜5
2の上面に形成することで、第一実施形態における光学
多層膜フィルタ20と同様に、多種多様に要求される分
光透過率特性に対応しながらより短納期で光学多層膜フ
ィルタ50を製造することができる。また、基本分光透
過率特性を複数の所望分光透過率特性のうちの中間の分
光透過率を有する特性に対応して設定することで、より
多くの分光透過率特性に対応して光学多層膜フィルタ5
0を製造することができる。
As a result, the adjustment multilayer film 53 is replaced with the basic multilayer film 5.
By forming it on the upper surface of No. 2, as in the optical multilayer film filter 20 in the first embodiment, it is possible to manufacture the optical multilayer film filter 50 with a shorter lead time while responding to variously required spectral transmittance characteristics. You can Further, by setting the basic spectral transmittance characteristic in correspondence with a characteristic having an intermediate spectral transmittance among a plurality of desired spectral transmittance characteristics, an optical multilayer film filter corresponding to more spectral transmittance characteristics. 5
0 can be produced.

【0049】なお、上述の第一実施例において、光フィ
ルタモジュール10に、透明のガラス基板21と、ガラ
ス基板21の一方の表面に形成された基本多層膜22
と、ガラス基板21の他方の表面に形成された調整多層
膜23とを有して構成された光学多層膜フィルタ20が
配設されているが、これに限られるものではなく、図7
に示すように、光フィルタモジュール70に、第1透明
基板81aの一方の表面に基本分光透過率特性を有する
基本多層膜82が形成されてなる第1フィルタ80a
と、第2透明基板81bの一方の表面に基本分光透過率
特性を補正して要望通りの所望分光透過率特性を得るた
めの調整多層膜83が形成されてなる第2フィルタ80
bとから構成される光学多層膜フィルタ80が配設され
るようにしてもよい。この場合も各多層膜が成膜された
面とは反対側の面に反射防止膜を形成し、光フィルタモ
ジュール70の透過光強度が低下しないようにしてい
る。
In the above-described first embodiment, the optical filter module 10 has a transparent glass substrate 21 and a basic multilayer film 22 formed on one surface of the glass substrate 21.
7 and the adjustment multilayer film 23 formed on the other surface of the glass substrate 21, the optical multilayer film filter 20 is provided, but the invention is not limited to this, and FIG.
As shown in FIG. 1, the optical filter module 70 includes a first transparent substrate 81a having a basic multilayer film 82 having a basic spectral transmittance characteristic formed on one surface of the first transparent substrate 81a.
And a second filter 80 having an adjustment multilayer film 83 formed on one surface of the second transparent substrate 81b for correcting the basic spectral transmittance characteristic to obtain a desired spectral transmittance characteristic as desired.
An optical multilayer filter 80 composed of b and b may be provided. Also in this case, an antireflection film is formed on the surface opposite to the surface on which each multilayer film is formed so that the transmitted light intensity of the optical filter module 70 does not decrease.

【0050】このようにすれば、第一実施形態における
光学多層膜フィルタ20と同様に、多種多様に要求され
る分光透過率特性に対応しながらより短納期で製造でき
る光学多層膜フィルタ80を提供することができる。
By doing so, similarly to the optical multilayer film filter 20 in the first embodiment, an optical multilayer film filter 80 that can be manufactured in a shorter delivery time while responding to variously required spectral transmittance characteristics is provided. can do.

【0051】[0051]

【発明の効果】以上説明したように、本発明によれば、
多種多様に要求される分光透過率特性に対応しながらよ
り短納期で製造できる光学多層膜フィルタを提供するこ
とができる。また、本発明に係る製造方法によれば、多
種多様に要求される分光透過率特性に対応しながらより
短納期で光学多層膜フィルタを製造することができる。
As described above, according to the present invention,
It is possible to provide an optical multilayer film filter which can be manufactured in a shorter delivery time while corresponding to a wide variety of required spectral transmittance characteristics. Further, according to the manufacturing method of the present invention, it is possible to manufacture an optical multilayer filter with a shorter delivery time while complying with variously required spectral transmittance characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる光多層膜フィルタを備えた光フ
ィルタモジュールの装置構成を示す拡大図である。
FIG. 1 is an enlarged view showing a device configuration of an optical filter module including an optical multilayer filter according to the present invention.

【図2】本発明に係る光学多層膜フィルタを備えた光フ
ィルタモジュールを用いて構成される光アンプの構成を
示す概略図である。
FIG. 2 is a schematic diagram showing a configuration of an optical amplifier configured by using an optical filter module including an optical multilayer film filter according to the present invention.

【図3】本発明に係る光学多層膜フィルタに要求される
複数の分光透過率特性を示すグラフである。
FIG. 3 is a graph showing a plurality of spectral transmittance characteristics required for the optical multilayer filter according to the present invention.

【図4】本発明に係る光学多層膜フィルタの基本多層
膜、調整多層膜、および基本多層膜と調整多層膜とを加
えた光学多層膜の分光透過率特性を示すグラフである。
FIG. 4 is a graph showing the spectral transmittance characteristics of the basic multilayer film, the adjusted multilayer film, and the optical multilayer film including the basic multilayer film and the adjusted multilayer film of the optical multilayer filter according to the present invention.

【図5】もう一つの本発明にかかる光多層膜フィルタを
備えた光フィルタモジュールの装置構成を示す拡大図で
ある。
FIG. 5 is an enlarged view showing a device configuration of an optical filter module including an optical multilayer filter according to another aspect of the present invention.

【図6】もう一つの本発明に係る光学多層膜フィルタの
基本多層膜および基本多層膜と調整多層膜とを加えた光
学多層膜の分光透過率特性を示すグラフである。
FIG. 6 is a graph showing a spectral transmittance characteristic of a basic multilayer film of an optical multilayer filter according to another embodiment of the present invention and an optical multilayer film including the basic multilayer film and the adjustment multilayer film.

【図7】さらにもう一つの本発明にかかる光多層膜フィ
ルタを備えた光フィルタモジュールの装置構成を示す拡
大図である。
FIG. 7 is an enlarged view showing a device configuration of an optical filter module including an optical multilayer filter according to yet another aspect of the present invention.

【符号の説明】[Explanation of symbols]

1a 光信号伝達用光ファイバ 1b 連結用光ファイバ 1c 光信号伝達用光ファイバ 2 光増幅部 3 ファイバアンプ部 5 光アンプ 20 光学多層膜フィルタ(第一実施形態) 21 ガラス基板 22 基本多層膜 23 調整多層膜 50 光学多層膜フィルタ(第二実施形態) 51 ガラス基板 52 基本多層膜 53 調整多層膜 80 光学多層膜フィルタ(第一実施形態の別形態) 80a 第1フィルタ 80b 第2フィルタ 81a 第1透明基板 81b 第2透明基板 82 基本多層膜 83 調整多層膜 1a Optical fiber for optical signal transmission 1b Optical fiber for connection 1c Optical fiber for optical signal transmission 2 Optical amplifier 3 Fiber amplifier section 5 optical amplifier 20 Optical multilayer filter (first embodiment) 21 glass substrate 22 Basic multilayer film 23 Adjusting multilayer film 50 Optical Multilayer Film Filter (Second Embodiment) 51 glass substrate 52 Basic multilayer film 53 Adjustable multilayer film 80 Optical multilayer filter (another form of the first embodiment) 80a First filter 80b Second filter 81a First transparent substrate 81b Second transparent substrate 82 Basic multilayer film 83 Controlled multilayer film

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 異なる要望に対しても同じ特性である基
本分光透過率特性を有する基本多層膜と、前記基本多層
膜とは異なる面に成膜され前記基本分光透過率特性を補
正して各々の要望毎に適した所望分光透過率特性を設定
するための調整多層膜が形成されてなる光学多層膜フィ
ルタ。
1. A basic multilayer film having basic spectral transmittance characteristics which are the same characteristics for different requests, and a basic multilayer film formed on a surface different from the basic multilayer film, and the basic spectral transmittance characteristics are corrected respectively. An optical multi-layer film filter including an adjustment multi-layer film for setting a desired spectral transmittance characteristic suitable for each request.
【請求項2】 前記異なる要望は各々異なる複数の前記
所望分光透過率特性であり、これら複数の所望分光透過
率特性のうちの最も分光透過率が大きな特性に対応して
前記基本多層膜の基本分光透過率特性が設定されている
ことを特徴とする請求項1に記載の光学多層膜フィル
タ。
2. The different demands are a plurality of the desired spectral transmittance characteristics that are different from each other, and the basic multi-layered film of the basic multilayer film corresponding to the characteristic having the largest spectral transmittance among the plurality of desired spectral transmittance characteristics. The optical multilayer filter according to claim 1, wherein a spectral transmittance characteristic is set.
【請求項3】 異なる要望に対しても同じ特性である基
本分光透過率特性を有する基本多層膜と、前記基本分光
透過率特性を補正して各々の要望毎に適した所望分光透
過率特性を設定するために前記基本多層膜の上面に形成
された調整多層膜とからなる光学多層膜フィルタ。
3. A basic multilayer film having a basic spectral transmittance characteristic which is the same for different requests, and a desired spectral transmittance characteristic suitable for each request by correcting the basic spectral transmittance characteristic. An optical multilayer filter comprising an adjustment multilayer film formed on the upper surface of the basic multilayer film for setting.
【請求項4】 前記異なる要望は各々異なる複数の前記
所望分光透過率特性であり、これら複数の所望分光透過
率特性のうちの中間の分光透過率を有する特性に対応し
て前記基本多層膜の基本分光透過率特性が設定されてい
ることを特徴とする請求項3に記載の光学多層膜フィル
タ。
4. The different requests are a plurality of the desired spectral transmittance characteristics that are different from each other, and the characteristics of the basic multilayer film corresponding to a characteristic having an intermediate spectral transmittance among the plurality of desired spectral transmittance characteristics. The optical multilayer filter according to claim 3, wherein a basic spectral transmittance characteristic is set.
【請求項5】 第1透明基板の一方の表面に基本分光透
過率特性を有する基本多層膜が形成されてなる第1フィ
ルタと、第2透明基板の一方の表面に前記基本分光透過
率特性を補正して各々の要望毎に適した所望分光透過率
特性を設定するための調整多層膜が形成されてなる第2
フィルタとから構成される光学多層膜フィルタ。
5. A first filter having a basic multilayer film having a basic spectral transmittance characteristic formed on one surface of a first transparent substrate, and the basic spectral transmittance characteristic on one surface of a second transparent substrate. A second multilayer control film for adjusting and setting a desired spectral transmittance characteristic suitable for each request.
An optical multilayer filter composed of a filter.
【請求項6】 異なる要望に対しても同じ特性である基
本分光透過率特性を有する基本多層膜を形成し、前記基
本分光透過率特性を補正して各々の要望毎に適した所望
分光透過率特性が得られるようにするために必要な調整
分光透過率特性を求め、前記調整分光透過率特性を有す
る調整多層膜を前記基本多層膜が成膜された面とは異な
る面に形成して製造されることを特徴とする光学多層膜
フィルタの製造方法。
6. A desired spectral transmittance suitable for each request by forming a basic multilayer film having the same basic spectral transmittance characteristic for different requests and correcting the basic spectral transmittance characteristic. The adjusted spectral transmittance characteristics required to obtain the characteristics are obtained, and an adjusted multilayer film having the adjusted spectral transmittance characteristics is formed on a surface different from the surface on which the basic multilayer film is formed. A method of manufacturing an optical multilayer filter, comprising:
【請求項7】 前記異なる要望は各々異なる複数の前記
所望分光透過率特性であり、これら複数の所望分光透過
率特性のうちの最も分光透過率が大きな特性に対応して
前記基本多層膜の基本分光透過率特性が設定されてお
り、前記基本多層膜を予め形成しておき、 所望分光透過率特性に応じて前記基本分光透過率特性を
補正して所望分光透過率特性を設定するために必要な調
整分光透過率特性を求め、前記調整分光透過率特性に応
じて前記基本多層膜が成膜された面とは異なる面に調整
多層膜を形成することを特徴とする請求項6に記載の光
学多層膜フィルタの製造方法。
7. The different demands are a plurality of the desired spectral transmittance characteristics that are different from each other. Corresponding to the characteristic having the largest spectral transmittance among the plurality of desired spectral transmittance characteristics, the basic multi-layer film basic Spectral transmittance characteristics are set, and it is necessary to form the basic multilayer film in advance and correct the basic spectral transmittance characteristics according to the desired spectral transmittance characteristics to set the desired spectral transmittance characteristics. 7. The adjusted multilayer transmittance characteristic is obtained, and the adjusted multilayer film is formed on a surface different from the surface on which the basic multilayer film is formed according to the adjusted spectral transmittance characteristic. Method for manufacturing optical multilayer filter.
【請求項8】 異なる要望に対しても同じ特性である基
本分光透過率特性を有する基本多層膜を形成し、前記基
本分光透過率特性を補正して各々の要望毎に適した所望
の分光透過率特性が得られるように調整多層膜を前記基
本多層膜の上面に形成して製造されることを特徴とする
光学多層膜フィルタの製造方法。
8. A desired spectral transmission suitable for each request by forming a basic multilayer film having a basic spectral transmittance characteristic that is the same for different requests and correcting the basic spectral transmittance characteristic. A method of manufacturing an optical multilayer film filter, which comprises manufacturing an adjustment multilayer film on the upper surface of the basic multilayer film so as to obtain rate characteristics.
【請求項9】 前記異なる要望は各々異なる複数の前記
所望分光透過率特性であり、これら複数の所望分光透過
率特性のうちの中間の分光透過率を有する特性に対応し
て前記基本多層膜の基本分光透過率特性が設定されてお
り、前記基本多層膜を予め形成しておき、 所望分光透過率特性に応じて前記基本分光透過率特性を
補正して所望分光透過率特性が得られるように前記基本
多層膜の上面に調整多層膜を形成することを特徴とする
請求項8に記載の光学多層膜フィルタの製造方法。
9. The different demands are a plurality of the desired spectral transmittance characteristics which are different from each other, and a characteristic of the basic multilayer film corresponding to a characteristic having an intermediate spectral transmittance among the plurality of desired spectral transmittance characteristics. Basic spectral transmittance characteristics are set, the basic multilayer film is formed in advance, and the basic spectral transmittance characteristics are corrected according to the desired spectral transmittance characteristics so that the desired spectral transmittance characteristics can be obtained. 9. The method for manufacturing an optical multilayer filter according to claim 8, wherein an adjustment multilayer film is formed on the upper surface of the basic multilayer film.
【請求項10】 光を増幅する光増幅部と、前記光増幅
部により増幅された光が入射される請求項1から請求項
9のうちいずれか一項記載の光学多層膜フィルタとを有
することを特徴とする光アンプ。
10. An optical amplifying unit for amplifying light, and the optical multilayer filter according to claim 1, wherein the light amplified by the optical amplifying unit is incident. Optical amplifier characterized by.
【請求項11】 前記光増幅部は、光が伝播する光ファ
イバのコア部中又は導波路中に増幅媒体がドープされた
光増幅手段とからなり、前記増幅媒体が励起する波長の
光を前記光増幅手段に放射することで光を増幅すること
を特徴とする請求項10に記載の光アンプ。
11. The optical amplifying section comprises optical amplifying means in which an amplifying medium is doped in a core portion or a waveguide of an optical fiber through which light propagates, and the light having a wavelength excited by the amplifying medium is transmitted. The optical amplifier according to claim 10, wherein the light is amplified by being radiated to the optical amplification means.
JP2002134604A 2002-05-09 2002-05-09 Optical multilayered film filter, method for manufacturing the same and optical amplifier Pending JP2003329830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134604A JP2003329830A (en) 2002-05-09 2002-05-09 Optical multilayered film filter, method for manufacturing the same and optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134604A JP2003329830A (en) 2002-05-09 2002-05-09 Optical multilayered film filter, method for manufacturing the same and optical amplifier

Publications (1)

Publication Number Publication Date
JP2003329830A true JP2003329830A (en) 2003-11-19

Family

ID=29697194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134604A Pending JP2003329830A (en) 2002-05-09 2002-05-09 Optical multilayered film filter, method for manufacturing the same and optical amplifier

Country Status (1)

Country Link
JP (1) JP2003329830A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2438447A (en) * 2006-05-23 2007-11-28 Bookham Technology Plc Gain flattening filter for optical fibre amplifiers
JP2009268098A (en) * 2008-04-24 2009-11-12 Fujitsu Ltd Method and apparatus for automatic gain control in mobile orthogonal frequency division multiple access (ofdma) network
US7769295B2 (en) 2006-08-25 2010-08-03 Bookham Technology Plc Dual beam splitter optical micro-components and systems and methods employing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7602545B2 (en) 2004-05-10 2009-10-13 Bookham Technology, Plc Gain-flattening apparatus and methods and optical amplifiers employing same
GB2438447A (en) * 2006-05-23 2007-11-28 Bookham Technology Plc Gain flattening filter for optical fibre amplifiers
GB2438447B (en) * 2006-05-23 2010-09-15 Bookham Technology Plc Gain-flattening apparatus and methods and optical amplifiers employing same
US7769295B2 (en) 2006-08-25 2010-08-03 Bookham Technology Plc Dual beam splitter optical micro-components and systems and methods employing same
JP2009268098A (en) * 2008-04-24 2009-11-12 Fujitsu Ltd Method and apparatus for automatic gain control in mobile orthogonal frequency division multiple access (ofdma) network

Similar Documents

Publication Publication Date Title
US20020154387A1 (en) Gain equalizer, collimator with gain equalizer and method of manufacturing gain equalizer
JPS58217901A (en) Laminate vapor-deposited on both sides
EP1469327A1 (en) Multilayer optical filter with small temperature shift of central wavelength
TW584742B (en) Multilayer film optical filter, method of producing the same, and optical component using the same
JP2003329830A (en) Optical multilayered film filter, method for manufacturing the same and optical amplifier
JP2019015816A (en) Optical waveguide
JP5475728B2 (en) Light filter
JP2001066424A (en) Infrared ray transmitting filter and its production method
JPH07209516A (en) Optical multilayer film filter
JP7251099B2 (en) Bandpass filter and manufacturing method thereof
JPWO2006092919A1 (en) Optical element and optical element manufacturing method
JP2001215325A (en) Narrow band optical filter and its manufacturing method
JP2002319727A (en) Gain equalizer, collimator with the gain equalizer and method for manufacturing the gain equalizer
JP2005107010A (en) Method for manufacturing multilayer optical filter, and multilayer optical filter
JP2005091996A (en) Optical component packaging module and optical communication module
JPH04359230A (en) Rare earth added optical waveguide and production thereof
TWI271552B (en) CWDM filter
JP2003084168A (en) Lens with multilayer film and optical fiber collimator
JP2003248116A (en) Multilayer film filter, its manufacturing method and its manufacturing apparatus
JP2004020653A (en) Dielectric multilayer film filter element and optical part using the same
CN219574413U (en) Double-bandpass filter
JP2005189817A (en) Optical element and optical apparatus
JP2018180430A (en) Optical filter
US8294981B2 (en) Optical amplifiers using switched filter devices
JP2018025732A (en) Optical filter member and imaging apparatus