JP2003320250A - Catalyst and production of the same - Google Patents

Catalyst and production of the same

Info

Publication number
JP2003320250A
JP2003320250A JP2003048715A JP2003048715A JP2003320250A JP 2003320250 A JP2003320250 A JP 2003320250A JP 2003048715 A JP2003048715 A JP 2003048715A JP 2003048715 A JP2003048715 A JP 2003048715A JP 2003320250 A JP2003320250 A JP 2003320250A
Authority
JP
Japan
Prior art keywords
noble metal
catalyst
substrate
photocatalyst
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003048715A
Other languages
Japanese (ja)
Other versions
JP4336121B2 (en
Inventor
Takashi Nishikawa
貴志 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2003048715A priority Critical patent/JP4336121B2/en
Publication of JP2003320250A publication Critical patent/JP2003320250A/en
Application granted granted Critical
Publication of JP4336121B2 publication Critical patent/JP4336121B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst having an excellent catalyst activity by depositing a noble metal such as palladium, platinum, or the like on a photocatalyst particle of titanium oxide or the surface of a substrate of a ceramic carrier in a highly dispersed state. <P>SOLUTION: A noble metal is deposited on the substrate surface by reducing a noble metal compounds to the noble metal at a relatively low temperature using at least one compound selected from hypophosphorous acid, phosphorous acid and their salts as a reducing agent in a solvent containing a photocatalyst particle, the substrate such as of a ceramic carrier. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、貴金属を表面に担
持した触媒およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to a catalyst having a precious metal supported on its surface and a method for producing the same.

【0002】[0002]

【従来の技術】触媒分野において、貴金属を基体の表面
に担持した触媒は、種々の反応に用いられている。例え
ば、光触媒粒子の表面に貴金属を担持させると、更に光
触媒活性が高くなるので、酸化チタン等の光触媒粒子上
にパラジウムなどを担持させた複合光触媒が知られてい
る(例えば、特許文献1参照)。光触媒とは、通常の熱
触媒とは活性発現機構が異なり、光触媒固有のバンドギ
ャップ以上のエネルギーを有する波長の光を照射すると
励起し、強い触媒活性が発現するものである。その光触
媒活性を活用して化学物質等、特に、有機物を酸化・分
解したり、窒素酸化物、一酸化炭素等の一部の無機物を
酸化・除去することができ、しかも、エネルギー源とし
て低コストで、環境負荷の非常に小さい光を利用できる
ことから、近年環境浄化や脱臭、防汚、殺菌等への応用
が進められている。光触媒としては、酸化物、硫化物等
の金属化合物、特に高い光触媒活性を有する酸化チタン
や酸化亜鉛等が一般的に用いられている。また、一酸化
炭素に水蒸気を反応させ、水素と二酸化炭素とを生成さ
せる所謂COシフト反応は、一酸化炭素の除去、水素の
製造、燃料電池の改質反応等に応用されており、このC
Oシフト反応に用いる触媒として、酸化チタン、酸化ジ
ルコニウム、酸化セリウム等からなる触媒担体に、白
金、パラジウム等の貴金属を担持させたものが知られて
いる(例えば、特許文献2参照)。
2. Description of the Related Art In the field of catalysts, a catalyst in which a noble metal is supported on the surface of a substrate is used for various reactions. For example, when a noble metal is supported on the surface of the photocatalyst particles, the photocatalytic activity is further increased, and thus a composite photocatalyst in which palladium or the like is supported on photocatalyst particles such as titanium oxide is known (for example, see Patent Document 1). . The photocatalyst has a different activity expression mechanism from that of a normal thermocatalyst, and is excited by irradiation with light having a wavelength having an energy equal to or more than the band gap peculiar to the photocatalyst, and exhibits strong catalytic activity. Utilizing its photocatalytic activity, it is possible to oxidize and decompose chemical substances, especially organic substances, and to oxidize and remove some inorganic substances such as nitrogen oxides and carbon monoxide, and at a low cost as an energy source. Since it is possible to use light having a very low environmental load, application to environmental purification, deodorization, antifouling, sterilization, etc. has been promoted in recent years. As the photocatalyst, metal compounds such as oxides and sulfides, particularly titanium oxide and zinc oxide having high photocatalytic activity are generally used. Further, a so-called CO shift reaction in which carbon monoxide is reacted with water vapor to generate hydrogen and carbon dioxide is applied to removal of carbon monoxide, production of hydrogen, reforming reaction of a fuel cell, and the like.
As a catalyst used for the O shift reaction, there is known a catalyst carrier made of titanium oxide, zirconium oxide, cerium oxide or the like, on which a noble metal such as platinum or palladium is carried (see, for example, Patent Document 2).

【0003】[0003]

【特許文献1】特開平10−296082号公報[Patent Document 1] Japanese Unexamined Patent Publication No. 10-296082

【特許文献2】特開2001−347166号公報[Patent Document 2] Japanese Patent Laid-Open No. 2001-347166

【0004】[0004]

【発明が解決しようとする課題】このような貴金属担持
触媒は、光触媒粒子あるいはセラミック担体などの基体
を分散させた媒液中で、塩化物等の貴金属化合物に紫外
線を照射し、基体の表面に貴金属を析出させる所謂光電
析法が知られている。しかし、この方法は反応に長時間
を要し、一度に処理できる量が限られているので、工業
的に適用できる方法ではない。また、貴金属化合物とギ
酸、ヒドラジン、水素化ホウ素ナトリウム等の還元剤と
を反応させる方法も知られているが、この方法では貴金
属の担持量に比べて、十分な効果が得られない。また、
貴金属塩の溶液を基体に含浸させた後、還元性ガスで加
熱還元する方法も知られているが、同様に貴金属の担持
量に比べ、得られる効果が不十分であった。
Such a noble metal-supported catalyst is obtained by irradiating a noble metal compound such as chloride with ultraviolet light in a medium liquid in which a substrate such as photocatalyst particles or a ceramic carrier is dispersed to irradiate the surface of the substrate. A so-called photodeposition method for depositing a noble metal is known. However, this method is not industrially applicable because the reaction requires a long time and the amount that can be treated at one time is limited. Also known is a method of reacting a noble metal compound with a reducing agent such as formic acid, hydrazine, sodium borohydride, etc. However, this method cannot obtain a sufficient effect as compared with the amount of the noble metal supported. Also,
There is also known a method of impregnating a substrate with a solution of a noble metal salt, followed by heating and reducing with a reducing gas, but similarly, the obtained effect was insufficient as compared with the amount of the noble metal supported.

【0005】そこで、本発明は、以上に述べた従来技術
の問題点を克服し、高い触媒活性を有する貴金属担持触
媒、特に高い触媒活性を有する光触媒、COシフト反応
用触媒およびそれを工業的に製造する方法を提供するも
のである。
Therefore, the present invention overcomes the above-mentioned problems of the prior art, and a noble metal-supported catalyst having a high catalytic activity, particularly a photocatalyst having a high catalytic activity, a catalyst for a CO shift reaction, and an industrial use thereof. A method of manufacturing is provided.

【0006】[0006]

【課題を解決するための手段】本発明者は、これらの問
題点を解決すべく鋭意研究を重ねた結果、還元剤に次亜
リン酸、亜リン酸およびそれらの塩から選ばれる少なく
とも一種を用い、貴金属化合物と反応させれば良いこと
を見出し、本発明を完成した。
As a result of intensive studies to solve these problems, the present inventor has found that at least one selected from hypophosphorous acid, phosphorous acid and salts thereof as a reducing agent. The present invention has been completed by finding that it can be used and reacted with a noble metal compound.

【0007】すなわち、本発明は、次亜リン酸、亜リン
酸およびそれらの塩から選ばれる少なくとも一種で貴金
属化合物を還元して生成する貴金属を基体の表面に担持
してなることを特徴とする触媒、前記の基体が光触媒粒
子である光触媒、あるいは、前記の基体がセラミック担
体であるCOシフト反応用触媒である。また、本発明
は、基体を含む媒液中で、次亜リン酸、亜リン酸および
それらの塩から選ばれる少なくとも一種で貴金属化合物
を還元して貴金属を生成させることを特徴とする基体の
表面に貴金属を担持した触媒の製造方法、前記の基体と
して光触媒粒子を用いる光触媒、前記の基体としてセラ
ミック担体を用いるCOシフト反応用触媒の製造方法で
ある。
That is, the present invention is characterized in that a noble metal produced by reducing a noble metal compound with at least one selected from hypophosphorous acid, phosphorous acid and salts thereof is carried on the surface of a substrate. A catalyst, a photocatalyst in which the substrate is photocatalyst particles, or a CO shift reaction catalyst in which the substrate is a ceramic carrier. Further, the present invention is characterized in that, in a liquid medium containing a substrate, a noble metal compound is reduced with at least one selected from hypophosphorous acid, phosphorous acid and salts thereof to produce a noble metal surface. And a photocatalyst using photocatalyst particles as the substrate, and a CO shift reaction catalyst using a ceramic carrier as the substrate.

【0008】[0008]

【発明の実施の形態】本発明は貴金属担持触媒であっ
て、次亜リン酸、亜リン酸およびそれらの塩から選ばれ
る少なくとも一種で貴金属化合物を還元し、生成する貴
金属を基体の表面に担持させたものである。本発明で
は、貴金属化合物の還元剤として次亜リン酸(ホスフィ
ン酸)やこのナトリウム塩、カリウム塩、アンモニウム
塩などの次亜リン酸塩、亜リン酸(ホスホン酸)、二亜
リン酸(ジホスホン酸)などの亜リン酸やこのナトリウ
ム塩、カリウム塩、アンモニウム塩などの亜リン酸塩の
少なくとも一種を用いるのが重要であり、これらの還元
剤のうち、担持する貴金属の化合物を還元できるものを
適宜選択すればよい。特に次亜リン酸は還元力が比較的
強く、すべての貴金属化合物を還元することができるの
で、好ましい。本発明の触媒は、従来のギ酸、ヒドラジ
ン、水素化ホウ素ナトリウム等を用いた還元反応で貴金
属を担持させたもの、あるいは、還元性ガスで加熱還元
したものより、触媒活性が優れている。その理由は良く
判っていないが、おそらく、次亜リン酸、亜リン酸およ
びそれらの塩から選ばれる少なくとも一種を用いた還元
反応は、比較的低温でも還元反応が進むため、より微細
な貴金属が生成し易く、それが高分散の状態で基体の表
面に担持されるので、貴金属の有する効果が発現され易
くなるのではないかと推測される。また、めっき法のよ
うに、パラジウム、スズなどの活性化剤による処理工程
が必要がなく、工業的にも有利である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a noble metal-supported catalyst, in which a noble metal compound is reduced with at least one selected from hypophosphorous acid, phosphorous acid and salts thereof, and a noble metal produced is supported on the surface of a substrate. It was made. In the present invention, hypophosphite (phosphinic acid), hypophosphite such as sodium salt, potassium salt, ammonium salt, phosphorous acid (phosphonic acid), diphosphite (diphosphonic acid) is used as a reducing agent for a noble metal compound. It is important to use at least one of phosphorous acid such as acid) and its phosphite such as sodium salt, potassium salt and ammonium salt, and among these reducing agents, those capable of reducing the compound of the precious metal to be carried. May be selected appropriately. In particular, hypophosphorous acid is preferable because it has a relatively strong reducing power and can reduce all noble metal compounds. The catalyst of the present invention is superior in catalytic activity to a catalyst in which a noble metal is supported by a conventional reduction reaction using formic acid, hydrazine, sodium borohydride or the like, or a catalyst which is heated and reduced with a reducing gas. Although the reason for this is not well understood, it is likely that the reduction reaction using at least one selected from hypophosphorous acid, phosphorous acid, and salts thereof proceeds even at a relatively low temperature, so that finer precious metals are It is presumed that the noble metal is likely to exhibit the effect of the noble metal because it is easily generated and is supported on the surface of the substrate in a highly dispersed state. Further, unlike the plating method, there is no need for a treatment step with an activator such as palladium or tin, which is industrially advantageous.

【0009】本発明で言う貴金属とは、白金、パラジウ
ム、ロジウム、ルテニウム等の白金族および金、銀のこ
とであり、これらを1種または2種以上を複合して用い
ても良いが、中でもパラジウムが比較的安価で、効果が
高いので好ましい。貴金属の担持量は、光触媒、COシ
フト反応用触媒等の触媒の用途に応じて適宜調整するこ
とができ、用いる基体に対し0.01〜5重量%の範囲
が好ましく、0.1〜0.5重量%の範囲であれば更に
好ましい。貴金属の担持量が0.01重量%未満である
と、所望の触媒活性が得られ難く、5重量%を超えても
更なる効果は得られ難いので、経済的でない。
The noble metal referred to in the present invention means platinum group such as platinum, palladium, rhodium and ruthenium, and gold and silver, and these may be used alone or in combination of two or more. Palladium is preferable because it is relatively inexpensive and highly effective. The amount of the noble metal supported can be appropriately adjusted depending on the use of the catalyst such as the photocatalyst and the catalyst for the CO shift reaction, and is preferably in the range of 0.01 to 5% by weight, and 0.1 to 0. More preferably, it is in the range of 5% by weight. If the supported amount of the noble metal is less than 0.01% by weight, it is difficult to obtain the desired catalytic activity, and even if it exceeds 5% by weight, it is difficult to obtain a further effect, which is not economical.

【0010】貴金属を担持する基体はどのようなもので
も良く、例えば、球状、針状、棒状、板状などの粒子や
微粒子、あるいはハニカム状、シート状、波形状、球状
などに成形したものなど、種々の形状、大きさのものが
基体として用いることができる。基体の材質は、触媒分
野で通常用いられるもので良く、例えば、酸化チタン、
酸化アルミニウム、酸化ケイ素、酸化ジルコニウム等の
無機化合物や、それらの混合物、ゼオライト等のそれら
の複合酸化物を材質としたセラミック担体、または、活
性炭、多孔質ポリマーなどの有機質担体など、公知の材
質のものを用いることができる。担体の中でも酸化チタ
ン、特にルチル型の酸化チタンは熱安定性に優れている
ので好ましく、平均一次粒子径が0.005〜0.1μ
mの範囲の微粒子であれば、比表面積が大きく触媒性能
が優れているので、更に好ましい。
The substrate supporting the noble metal may be of any type, for example, spherical or needle-shaped, rod-shaped or plate-shaped particles or fine particles, or a honeycomb-shaped, sheet-shaped, corrugated or spherical-shaped substrate. Various shapes and sizes can be used as the substrate. The material of the substrate may be one normally used in the field of catalysts, such as titanium oxide,
Inorganic compounds such as aluminum oxide, silicon oxide, zirconium oxide and the like, a mixture thereof, a ceramic carrier made of a composite oxide thereof such as zeolite, or an organic carrier such as activated carbon or a porous polymer, of a known material Any thing can be used. Among the carriers, titanium oxide, particularly rutile titanium oxide, is preferable because it has excellent thermal stability, and the average primary particle size is 0.005 to 0.1 μm.
Fine particles in the range of m are more preferable because they have a large specific surface area and excellent catalyst performance.

【0011】本発明の好ましい態様の一つは、前記の触
媒において、基体として光触媒粒子を用いた光触媒であ
る。本発明で用いる光触媒粒子としては、バンドギャッ
プ以上のエネルギーを有する波長の光を照射することに
より、触媒活性を示すものであれば特に制限は無く、例
えば酸化チタン、酸化亜鉛、酸化タングステン、酸化
鉄、あるいはそれらの2種以上の複合物等の公知のもの
を用いることができる。また光触媒粒子はバナジウム、
鉄、コバルト、ニッケル、銅、亜鉛等の元素が、1種ま
たは2種以上含有されていても良い。光触媒粒子の中で
も酸化チタン、特に平均一次粒子径が0.005〜0.
1μmの範囲の微粒子のものが光触媒活性が高いので好
ましい。用いることのできる酸化チタンの種類には特に
制限は無く、無水酸化チタン、含水酸化チタン、水酸化
チタン、チタン酸等いずれでも良く、またルチル型やア
ナターゼ型等の結晶性のものや不定形であっても良く、
これらが混合したものであっても良い。
One of the preferred embodiments of the present invention is a photocatalyst using photocatalyst particles as a substrate in the above catalyst. The photocatalyst particles used in the present invention are not particularly limited as long as they exhibit catalytic activity by irradiation with light having a wavelength having an energy of a band gap or more, and examples thereof include titanium oxide, zinc oxide, tungsten oxide, and iron oxide. Alternatively, known compounds such as a composite of two or more of them can be used. The photocatalyst particles are vanadium,
One or more elements such as iron, cobalt, nickel, copper, and zinc may be contained. Among the photocatalyst particles, titanium oxide, particularly, the average primary particle size is 0.005 to 0.
Fine particles having a size in the range of 1 μm are preferable because of high photocatalytic activity. The type of titanium oxide that can be used is not particularly limited, and any of anhydrous titanium oxide, hydrous titanium oxide, titanium hydroxide, titanic acid, etc. may be used, and crystalline ones such as rutile type and anatase type and amorphous ones may be used. You can have
A mixture of these may be used.

【0012】本発明の光触媒は、貴金属が高分散の状態
で光触媒粒子の表面に担持されるので、貴金属の有する
効果が発現され易く、環境浄化、脱臭、防汚、殺菌等の
種々の用途に有用である。この光触媒は、例えば、金
属、タイル、ホーロー、セメント、コンクリート、ガラ
ス、繊維、木材、紙、プラスチック等の基材の表面に固
定して、光触媒反応に供することができる。固定手段と
しては、光触媒を焼結する方法、バインダーを用いる方
法等の従来の方法を用いることができる。また、前記光
触媒に、必要に応じてバインダーを混合し、平板状、波
板状、ハニカム状、球状、曲面状等に成形して光触媒反
応に供することもできる。
In the photocatalyst of the present invention, since the noble metal is supported on the surface of the photocatalyst particles in a highly dispersed state, the effect of the noble metal is easily exhibited, and it is suitable for various uses such as environmental purification, deodorization, antifouling and sterilization. It is useful. This photocatalyst can be fixed to the surface of a base material such as metal, tile, enamel, cement, concrete, glass, fiber, wood, paper or plastic, and used for the photocatalytic reaction. As a fixing means, a conventional method such as a method of sintering a photocatalyst or a method of using a binder can be used. If necessary, a binder may be mixed with the photocatalyst, and the mixture may be molded into a flat plate shape, a corrugated plate shape, a honeycomb shape, a spherical shape, a curved surface shape or the like, and used for the photocatalytic reaction.

【0013】また、もう一つの本発明の好ましい態様
は、前記の触媒において、基体としてセラミック担体を
用いたCOシフト反応用触媒である。本発明で用いるセ
ラミック担体としては、酸化チタン、酸化アルミニウ
ム、酸化ケイ素、酸化ジルコニウム等の無機化合物や、
それらの混合物または複合酸化物等の公知のものを用い
ることがでる。セラミック担体の中でも酸化チタンが好
ましく、特にルチル型の酸化チタンは熱安定性に優れて
いるのでより好ましく、平均一次粒子径が0.005〜
0.1μmの範囲の微粒子であれば、比表面積が大きく
触媒性能が優れているので、更に好ましい。
Another preferred embodiment of the present invention is a CO shift reaction catalyst in which a ceramic carrier is used as a substrate in the above catalyst. The ceramic support used in the present invention, titanium oxide, aluminum oxide, silicon oxide, inorganic compounds such as zirconium oxide,
Known materials such as a mixture thereof or a complex oxide can be used. Among the ceramic carriers, titanium oxide is preferable, and rutile type titanium oxide is more preferable because it has excellent thermal stability, and the average primary particle size is 0.005 to 0.005.
Fine particles in the range of 0.1 μm are more preferable because they have a large specific surface area and excellent catalyst performance.

【0014】本発明のCOシフト反応用触媒は、貴金属
が高分散の状態で表面に担持されるので、その触媒効果
が発現され易く、一酸化炭素の除去、水素の製造、燃料
電池の改質反応等に有用である。この貴金属担持COシ
フト反応用触媒は、例えば、更にゼオライト等の多孔性
材料や、ハニカム板等に担持させて用いることができ
る。
Since the precious metal is supported on the surface of the catalyst for CO shift reaction in a highly dispersed state in the catalyst of the present invention, its catalytic effect is easily exhibited, and carbon monoxide is removed, hydrogen is produced, and fuel cells are reformed. It is useful for reactions. This noble metal-supported CO shift reaction catalyst can be used, for example, by further supporting it on a porous material such as zeolite or a honeycomb plate.

【0015】更に、本発明は一酸化炭素の除去に用いる
触媒である。前記の触媒において、貴金属として白金族
を、好ましくはパラジウムを担持させると、一酸化炭素
の除去能力が高くなるので、室内の一酸化炭素の除去
剤、工場等の排ガス中に含まれる一酸化炭素の除去剤と
して有用である。白金族金属、特にパラジウムは一酸化
炭素を強く吸着することが知られており、白金族金属を
担持した触媒は、例えば、前記の光触媒の光触媒作用や
COシフト反応用触媒の触媒作用等と吸着作用との相乗
効果により、一酸化炭素の除去能力に優れているものと
考えられる。
Further, the present invention is a catalyst used for removing carbon monoxide. In the above catalyst, when platinum group is supported as a noble metal, preferably palladium is carried, the removal capacity of carbon monoxide becomes high. Therefore, a carbon monoxide remover for indoor use, carbon monoxide contained in exhaust gas of a factory, etc. It is useful as a scavenger. It is known that a platinum group metal, particularly palladium, strongly adsorbs carbon monoxide, and a catalyst supporting a platinum group metal is adsorbed with, for example, the photocatalytic action of the photocatalyst or the catalytic action of the CO shift reaction catalyst. It is considered that the carbon monoxide removing ability is excellent due to the synergistic effect with the action.

【0016】次に、本発明は貴金属担持触媒の製造方法
であって、基体を含む媒液中で、次亜リン酸、亜リン酸
およびそれらの塩から選ばれる少なくとも一種で貴金属
化合物を直接還元して、基体の表面に貴金属を担持した
触媒の製造方法である。還元によって生成した貴金属が
基体の表面に析出したり、あるいは、基体に吸着した貴
金属化合物がその表面上で還元されて、基体の表面に貴
金属を担持させることができる。本発明では、貴金属化
合物の還元剤として次亜リン酸(ホスフィン酸)やこの
ナトリウム塩、カリウム塩、アンモニウム塩などの次亜
リン酸塩、亜リン酸(ホスホン酸)、二亜リン酸(ジホ
スホン酸)などの亜リン酸やこのナトリウム塩、カリウ
ム塩、アンモニウム塩などの亜リン酸塩の少なくとも一
種を用い、特に次亜リン酸が好ましい。具体的な方法と
しては、例えば、水等の媒液中に基体を分散させた懸濁
液に、貴金属化合物の水等の溶液および前記の還元剤を
添加しても良く、貴金属化合物の水等の溶液に基体を分
散させた後、前記の還元剤を添加しても良い。本発明で
は、基体を含む媒液中に貴金属化合物を添加し、次い
で、前記の還元剤を添加して貴金属化合物を還元する方
法が、より微細な貴金属が高度に分散して担持され易い
ため好ましい。前記の還元剤の添加量は、貴金属化合物
の還元に必要な量であれば良く、貴金属化合物に対し
0.5〜5.0倍量の範囲が好ましい。還元反応中のス
ラリー温度は適宜設定することができるが、反応を進み
易くするために、0〜100℃程度の範囲が好ましく、
0〜50℃の範囲がより好ましく、5〜40℃の範囲が
更に好ましい。基体を含む媒液には、貴金属化合物が基
体の表面に吸着し易くするため、または、還元反応が急
激に起こらないようにするため、あるいは、生成した貴
金属が表面に析出し易くするなどのために、酸やアルカ
リを任意に添加し媒液のpHを調整しても良い。貴金属
を担持させた後は、pH調整、濾過・洗浄、乾燥、粉砕
等の操作を、必要に応じて適宜行う。
Next, the present invention is a method for producing a noble metal-supported catalyst, wherein the noble metal compound is directly reduced with at least one selected from hypophosphorous acid, phosphorous acid and salts thereof in a medium containing a substrate. Then, it is a method for producing a catalyst in which a precious metal is supported on the surface of a substrate. The noble metal produced by the reduction can be deposited on the surface of the substrate, or the noble metal compound adsorbed on the substrate can be reduced on the surface to support the noble metal on the surface of the substrate. In the present invention, hypophosphite (phosphinic acid), hypophosphite such as sodium salt, potassium salt, ammonium salt, phosphorous acid (phosphonic acid), diphosphite (diphosphonic acid) is used as a reducing agent for a noble metal compound. Acid) and at least one kind of phosphite such as sodium salt, potassium salt and ammonium salt thereof, and hypophosphorous acid is particularly preferable. As a specific method, for example, a solution of a noble metal compound such as water and the above-mentioned reducing agent may be added to a suspension prepared by dispersing a substrate in a medium such as water. After the substrate is dispersed in the above solution, the reducing agent may be added. In the present invention, a method of adding a noble metal compound to a medium containing a substrate and then adding the reducing agent to reduce the noble metal compound is preferable because finer noble metals are highly dispersed and easily supported. . The reducing agent may be added in an amount necessary for reducing the noble metal compound, and is preferably 0.5 to 5.0 times the amount of the noble metal compound. The slurry temperature during the reduction reaction can be appropriately set, but in order to facilitate the reaction, a range of about 0 to 100 ° C. is preferable,
The range of 0 to 50 ° C is more preferable, and the range of 5 to 40 ° C is further preferable. In the liquid medium containing the substrate, the noble metal compound is easily adsorbed on the surface of the substrate, or the reduction reaction is prevented from abruptly occurring, or the generated noble metal is easily deposited on the surface. In addition, the pH of the liquid medium may be adjusted by optionally adding an acid or an alkali. After supporting the noble metal, operations such as pH adjustment, filtration / washing, drying, and pulverization are appropriately performed as necessary.

【0017】本発明で用いる貴金属化合物は、貴金属の
塩化物、硝酸塩、硫酸塩、錯体化合物等特に制限は無い
が、還元され易い塩化物を用いるのが好ましい。本発明
で言う貴金属とは、白金、パラジウム、ロジウム、ルテ
ニウム等の白金族および金、銀のことであり、これらを
1種または2種以上を複合して用いても良いが、中でも
パラジウムが比較的安価で、効果が高いので好ましい。
貴金属の担持量は貴金属化合物の添加量を調整すること
により適宜調整することができ、基体に対し0.01〜
5重量%の範囲が好ましく、0.1〜0.5重量%の範
囲であれば更に好ましい。
The noble metal compound used in the present invention is not particularly limited, such as a noble metal chloride, nitrate, sulfate or complex compound, but it is preferable to use a chloride which is easily reduced. The noble metal referred to in the present invention means platinum group such as platinum, palladium, rhodium, ruthenium, and gold and silver, and these may be used alone or in combination of two or more, but palladium is particularly preferable. It is inexpensive and highly effective, which is preferable.
The amount of the noble metal supported can be appropriately adjusted by adjusting the amount of the noble metal compound added, and the amount is 0.01 to
The range of 5% by weight is preferable, and the range of 0.1 to 0.5% by weight is more preferable.

【0018】本発明で用いる基体には、前記のものを用
いることができる。特に、酸化チタン、酸化亜鉛、酸化
タングステン、酸化鉄、あるいはそれらの2種以上の複
合物等の光触媒粒子を基体として用いると光触媒を製造
することができ、酸化チタン、酸化アルミニウム、酸化
ケイ素、酸化ジルコニウム等の無機化合物や、それらの
混合物または複合酸化物等のセラミック担体を基体とし
て用いるとCOシフト反応用触媒を製造することができ
るため、好ましい態様である。
As the substrate used in the present invention, the above-mentioned ones can be used. In particular, a photocatalyst can be produced by using photocatalyst particles such as titanium oxide, zinc oxide, tungsten oxide, iron oxide, or a composite of two or more kinds thereof as a substrate, and titanium oxide, aluminum oxide, silicon oxide, oxide The use of an inorganic compound such as zirconium, a mixture thereof, or a ceramic support such as a complex oxide as a substrate is a preferred embodiment because a CO shift reaction catalyst can be produced.

【0019】前記のように、貴金属化合物を還元した
後、本発明においては、使用した基体が微粒子であれ
ば、濾過、洗浄が困難であったり、時間がかかる場合が
ある。そのような場合には、還元反応後の媒液に濾過助
剤として活性炭を添加し、濾過、洗浄すると、濾過速
度、洗浄速度が速くなり、貴金属担持触媒、特に貴金属
担持光触媒、COシフト反応用触媒等を比較的容易に得
ることができるため、好ましい。活性炭の添加量は、基
体に対し、0.5〜10重量%の範囲が好ましく、0.
5〜5重量%の範囲が更に好ましい。
As described above, after reducing the noble metal compound, in the present invention, if the substrate used is fine particles, filtration and washing may be difficult or it may take time. In such a case, when activated carbon is added to the liquid medium after the reduction reaction as a filter aid, and filtration and washing are carried out, the filtration rate and the washing rate are increased, and the noble metal-supported catalyst, particularly the noble metal-supported photocatalyst and CO shift reaction A catalyst and the like can be obtained relatively easily, which is preferable. The amount of activated carbon added is preferably in the range of 0.5 to 10% by weight with respect to the substrate,
The range of 5 to 5% by weight is more preferable.

【0020】[0020]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れらに制限されるものではない。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto.

【0021】実施例1 光触媒酸化チタン(ST‐01:石原産業社製、平均粒
子径0.01μm)を純水中に分散させた200g/リ
ットルの濃度のスラリー750リットルを反応容器中に
投入し、窒素ガスを吹き込んだ。窒素ガスは後述の濾過
・洗浄を行うまで、供給を継続した。このスラリーを撹
拌しながら、室温下、50g/リットルの塩化パラジウ
ムの塩酸水溶液15リットルを添加し、更に、次亜リン
酸50%水溶液15リットルを添加し、塩化パラジウム
と次亜リン酸とを反応させた。反応後、17%水酸化ナ
トリウム水溶液4.5リットルを添加し、スラリーのp
Hを5に調整した。次いで、活性炭(WHC2C:武田
薬品社製)1500gをスラリーに投入し、混合した
後、フィルタープレスを用いて、濾液の比抵抗が100
00Ω・cm以上になるまで濾過・洗浄を行った。濾過
・洗浄に要した時間は約16時間であった。濾過・洗浄
後、110℃にて1晩乾燥を行い、ピンミルを用いて粉
砕し、パラジウム担持光触媒(試料A)を得た。この試
料Aを電子顕微鏡で観察したところ、光触媒酸化チタン
粒子の表面にパラジウムが担持されていることを確認し
た。
Example 1 Photocatalytic titanium oxide (ST-01: manufactured by Ishihara Sangyo Co., Ltd., average particle size 0.01 μm) was dispersed in pure water, and 750 liters of a slurry having a concentration of 200 g / liter was placed in a reaction vessel. , Bubbling nitrogen gas. Nitrogen gas was continuously supplied until it was filtered and washed as described below. While stirring this slurry, at room temperature, 15 liters of a 50 g / liter aqueous solution of palladium chloride in hydrochloric acid was added, and further, 15 liters of a 50% aqueous solution of hypophosphorous acid were added to react palladium chloride with hypophosphorous acid. Let After the reaction, 4.5 liters of 17% sodium hydroxide aqueous solution was added, and the slurry p
H was adjusted to 5. Next, 1500 g of activated carbon (WHC2C: manufactured by Takeda Pharmaceutical Co., Ltd.) was put into the slurry, and after mixing, the specific resistance of the filtrate was 100 using a filter press.
Filtration and washing were performed until it became 00 Ω · cm or more. The time required for filtration and washing was about 16 hours. After filtration and washing, it was dried at 110 ° C. overnight and pulverized with a pin mill to obtain a palladium-supported photocatalyst (Sample A). When this sample A was observed with an electron microscope, it was confirmed that palladium was supported on the surface of the photocatalytic titanium oxide particles.

【0022】比較例1 光触媒酸化チタン(ST‐01:石原産業社製、平均粒
子径0.01μm)を純水中に分散させた200g/リ
ットルの濃度のスラリー445リットルに3モル/リッ
トルの濃度の炭酸ナトリウム水溶液10リットルを添加
し、スラリーのpHを10に調整した。このスラリーを
撹拌しながら、50g/リットルの塩化パラジウムの塩
酸水溶液30リットルを、pHを10に維持しながら1
時間かけて添加し、更に15分間撹拌した。次いで、1
7%水酸化ナトリウム水溶液83.5kgを添加し、ス
ラリーのpHを13.5に調整した後、88%ギ酸水溶
液10.95kgを添加し撹拌し、塩化パラジウムとギ
酸とを反応させた。反応後、純水を添加してスラリー濃
度を100g/リットルに調整してから、80℃で60
分間熟成させた。熟成後、スラリーを60℃以下に冷却
してから、フィルタープレスを用いて濾液の比抵抗が1
0000Ω・cm以上になるまで濾過・洗浄を行った。
濾過・洗浄に要した時間は約40時間であった。濾過・
洗浄後、実施例1と同様にして乾燥、粉砕を行い、パラ
ジウム担持光触媒(試料B)を得た。この試料Bを電子
顕微鏡で観察したところ、光触媒酸化チタン粒子の表面
にパラジウムが担持されていることを確認した。
Comparative Example 1 A photocatalytic titanium oxide (ST-01: manufactured by Ishihara Sangyo Co., Ltd., average particle size 0.01 μm) was dispersed in pure water. The pH of the slurry was adjusted to 10 by adding 10 liters of the aqueous sodium carbonate solution. While stirring the slurry, 30 liters of an aqueous hydrochloric acid solution of 50 g / liter of palladium chloride was added while maintaining the pH at 10.
Add over time and stir for an additional 15 minutes. Then 1
After 83.5 kg of 7% aqueous sodium hydroxide solution was added to adjust the pH of the slurry to 13.5, 10.95 kg of 88% aqueous formic acid solution was added and stirred to react palladium chloride with formic acid. After the reaction, pure water was added to adjust the slurry concentration to 100 g / liter, and then 60 ° C. at 80 ° C.
Aged for a minute. After aging, cool the slurry to 60 ° C or lower, and then use a filter press to reduce the filtrate resistivity to 1
Filtration and washing were performed until it reached 0000 Ω · cm or more.
The time required for filtration and washing was about 40 hours. filtration·
After washing, it was dried and pulverized in the same manner as in Example 1 to obtain a palladium-supported photocatalyst (Sample B). When this sample B was observed with an electron microscope, it was confirmed that palladium was supported on the surface of the photocatalytic titanium oxide particles.

【0023】評価1 パラジウム担持量 実施例1および比較例1で得られた試料A、Bのパラジ
ウム担持量を、蛍光X線分析装置(RIX−3000
型:理学電機社製)を用いて測定した。
Evaluation 1 Palladium loading amount The palladium loading amount of Samples A and B obtained in Example 1 and Comparative Example 1 was measured by a fluorescent X-ray analyzer (RIX-3000).
Type: manufactured by Rigaku Denki Co., Ltd.).

【0024】評価2 一酸化炭素除去量 実施例1および比較例1で得られた試料A、Bの一酸化
炭素除去量を測定した。試料量0.1gを閉鎖循環式反
応容器に入れ、初期濃度が15ppmになるように容器
中に一酸化炭素ガスを導入し、次いで一酸化炭素ガスを
6リットル/分で循環させながら、照度が1mW/cm
になるように、ブラックライトを試料に90分間照射
した。その後、容器から試料ガスをサンプリングし、試
料ガス中の一酸化炭素の濃度を、メタナイザー(MTN
−1型:島津製作所社製)を装備したガスクロマトグラ
フ(GC−14A型:島津製作所社製、カラム:3mm
φ×2m、充填材:Porapak T、Waters
社製)を用いて測定し、濃度の減量分を除去量とした。
Evaluation 2 Carbon Monoxide Removal Amount The carbon monoxide removal amount of Samples A and B obtained in Example 1 and Comparative Example 1 was measured. A sample amount of 0.1 g was placed in a closed circulation type reaction vessel, carbon monoxide gas was introduced into the vessel so that the initial concentration was 15 ppm, and then the carbon monoxide gas was circulated at 6 liters / minute, and the illuminance was changed. 1 mW / cm
The sample was exposed to a black light of 90 for 90 minutes. Then, the sample gas is sampled from the container, and the concentration of carbon monoxide in the sample gas is measured by a methanizer (MTN
-1 type: Gas chromatograph equipped with Shimadzu Corporation (GC-14A type: Shimadzu Corporation, column: 3 mm)
φ × 2m, filling material: Porapak T, Waters
(Manufactured by Mfg. Co., Ltd.) and the amount of reduction in concentration was taken as the amount of removal.

【0025】パラジウム担持量、一酸化炭素除去量の結
果を表1に示す。試料Aは試料Bよりパラジウム単位重
量に対する一酸化炭素の除去量が多く、試料Aのパラジ
ウム担持効果が有利であることが判る。この原因がパラ
ジウムの担持状態に差があると考えられるため、表1の
実験結果は本発明の光触媒が高活性であることを示すだ
けではなく、触媒として、特に、一酸化炭素の除去に用
いる触媒、COシフト反応用触媒としても有効であるこ
とを示すものである。
Table 1 shows the results of the amount of palladium carried and the amount of carbon monoxide removed. The sample A has a larger amount of carbon monoxide removed per unit weight of palladium than the sample B, and it can be seen that the palladium carrying effect of the sample A is advantageous. Since it is considered that this is due to the difference in the supported state of palladium, the experimental results in Table 1 not only show that the photocatalyst of the present invention is highly active, but also are used as a catalyst, particularly for removing carbon monoxide. It shows that it is also effective as a catalyst and a catalyst for CO shift reaction.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明は、次亜リン酸、亜リン酸および
それらの塩から選ばれる少なくとも一種で貴金属化合物
を還元して生成する貴金属を基体の表面に担持してなる
触媒、特に光触媒またはCOシフト反応用触媒であっ
て、優れた触媒活性、光触媒活性を有することから、触
媒、光触媒分野の種々の用途や、一酸化炭素の除去、C
Oシフト反応に用いることができる。また、本発明は、
基体を含む媒液中で、次亜リン酸、亜リン酸およびそれ
らの塩から選ばれる少なくとも一種で貴金属化合物を還
元して貴金属を生成させることにより、貴金属担持触
媒、特に貴金属担持光触媒またはCOシフト反応用触媒
を製造する方法であって、経済的、工業的に有利に高活
性の触媒が得られる。
INDUSTRIAL APPLICABILITY The present invention provides a catalyst, particularly a photocatalyst, in which a noble metal produced by reducing a noble metal compound with at least one selected from hypophosphorous acid, phosphorous acid and salts thereof is supported on the surface of a substrate. Since it is a catalyst for CO shift reaction and has excellent catalytic activity and photocatalytic activity, it has various uses in the fields of catalysts and photocatalysts, removal of carbon monoxide, C
It can be used for O shift reaction. Further, the present invention is
A noble metal-supported catalyst, particularly a noble metal-supported photocatalyst or CO shift, is produced by reducing a noble metal compound with at least one selected from hypophosphorous acid, phosphorous acid and salts thereof in a medium containing a substrate. A method for producing a catalyst for reaction, which is economically and industrially advantageous and provides a highly active catalyst.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】次亜リン酸、亜リン酸およびそれらの塩か
ら選ばれる少なくとも一種で貴金属化合物を還元して生
成する貴金属を基体の表面に担持してなることを特徴と
する触媒。
1. A catalyst comprising a noble metal formed by reducing a noble metal compound with at least one selected from hypophosphorous acid, phosphorous acid and salts thereof on the surface of a substrate.
【請求項2】光触媒粒子を基体として用いた光触媒であ
ることを特徴とする請求項1に記載の触媒。
2. The catalyst according to claim 1, which is a photocatalyst using photocatalyst particles as a substrate.
【請求項3】セラミック担体を基体として用いたCOシ
フト反応用触媒であることを特徴とする請求項1に記載
の触媒。
3. The catalyst according to claim 1, which is a catalyst for CO shift reaction using a ceramic carrier as a substrate.
【請求項4】一酸化炭素の除去に用いることを特徴とす
る請求項1〜3のいずれか一項に記載の触媒。
4. The catalyst according to claim 1, which is used for removing carbon monoxide.
【請求項5】基体が酸化チタンであることを特徴とする
請求項1〜4のいずれか一項に記載の触媒。
5. The catalyst according to claim 1, wherein the base is titanium oxide.
【請求項6】基体に対し貴金属を0.01〜5重量%の
範囲で担持してなることを特徴とする請求項1〜4のい
ずれか一項に記載の触媒。
6. The catalyst according to any one of claims 1 to 4, wherein a noble metal is supported on the substrate in a range of 0.01 to 5% by weight.
【請求項7】貴金属がパラジウムであることを特徴とす
る請求項1〜4のいずれか一項に記載の触媒。
7. The catalyst according to claim 1, wherein the noble metal is palladium.
【請求項8】基体を含む媒液中で、次亜リン酸、亜リン
酸およびそれらの塩から選ばれる少なくとも一種で貴金
属化合物を還元して貴金属を生成させることを特徴とす
る基体の表面に貴金属を担持した触媒の製造方法。
8. A noble metal compound is produced by reducing a noble metal compound with at least one selected from hypophosphorous acid, phosphorous acid and salts thereof in a medium containing the substrate. A method for producing a catalyst carrying a noble metal.
【請求項9】基体として光触媒粒子を用いて、該光触媒
粒子の表面に貴金属を担持した光触媒を得ることを特徴
とする請求項8に記載の触媒の製造方法。
9. The method for producing a catalyst according to claim 8, wherein the photocatalyst particles are used as the substrate to obtain a photocatalyst in which a noble metal is supported on the surface of the photocatalyst particles.
【請求項10】基体としてセラミック担体を用いて、該
セラミック担体の表面に貴金属を担持したCOシフト反
応用触媒を得ることを特徴とする請求項8に記載の触媒
の製造方法。
10. The method for producing a catalyst according to claim 8, wherein a ceramic carrier is used as a substrate, and a CO shift reaction catalyst in which a precious metal is supported on the surface of the ceramic carrier is obtained.
【請求項11】貴金属を生成させた後の媒液中に活性炭
を添加し、濾過、洗浄することを特徴とする請求項8〜
10のいずれか一項に記載の触媒の製造方法。
11. The method according to claim 8, wherein activated carbon is added to the medium liquid after forming the noble metal, and the medium is filtered and washed.
10. The method for producing the catalyst according to any one of 10.
【請求項12】基体に対し活性炭を0.5〜10重量%
の範囲で添加することを特徴とする請求項11に記載の
触媒の製造方法。
12. Activated carbon in an amount of 0.5 to 10% by weight based on the substrate.
The method for producing the catalyst according to claim 11, wherein the catalyst is added in the range of.
JP2003048715A 2002-03-01 2003-02-26 Catalyst and method for producing the same Expired - Fee Related JP4336121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003048715A JP4336121B2 (en) 2002-03-01 2003-02-26 Catalyst and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-55993 2002-03-01
JP2002055993 2002-03-01
JP2003048715A JP4336121B2 (en) 2002-03-01 2003-02-26 Catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003320250A true JP2003320250A (en) 2003-11-11
JP4336121B2 JP4336121B2 (en) 2009-09-30

Family

ID=29552198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048715A Expired - Fee Related JP4336121B2 (en) 2002-03-01 2003-02-26 Catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP4336121B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105705A1 (en) * 2006-03-14 2007-09-20 Ishihara Sangyo Kaisha, Ltd. Visible light-responsive photocatalyst, method for producing same, photocatalyst coating agent using same, and photocatalyst dispersion
WO2019054151A1 (en) * 2017-09-14 2019-03-21 住友化学株式会社 Method for oxidizing carbon monoxide, device for oxidizing carbon monoxide, air purifier, and gas mask

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105705A1 (en) * 2006-03-14 2007-09-20 Ishihara Sangyo Kaisha, Ltd. Visible light-responsive photocatalyst, method for producing same, photocatalyst coating agent using same, and photocatalyst dispersion
KR100987623B1 (en) * 2006-03-14 2010-10-13 이시하라 산교 가부시끼가이샤 Visible light-responsive photocatalyst, method for producing same, photocatalyst coating agent using same, and photocatalyst dispersion
US7820584B2 (en) 2006-03-14 2010-10-26 Nihon Nohyaku Co., Ltd. Visible light-responsive photocatalyst, method for producing same, photocatalyst coating agent using same, and photocatalyst dispersion
JP5473324B2 (en) * 2006-03-14 2014-04-16 石原産業株式会社 Visible light responsive photocatalyst, production method thereof, photocatalyst coating agent and photocatalyst dispersion using the same
WO2019054151A1 (en) * 2017-09-14 2019-03-21 住友化学株式会社 Method for oxidizing carbon monoxide, device for oxidizing carbon monoxide, air purifier, and gas mask

Also Published As

Publication number Publication date
JP4336121B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
US7846864B2 (en) Photocatalyst materials having semiconductor characteristics and methods for manufacturing and using the same
WO2006103754A1 (en) Ammonia decomposition catalyst and process for decomposition of ammonia using the catalyst
JPWO2008132824A1 (en) Titanium oxide photocatalyst and method for producing the same
CN113976108B (en) Ceramic catalytic membrane and preparation method and application thereof
JP5067942B2 (en) Catalyst and method for producing the same
Lee et al. Catalytic reduction of nitrite in water over ceria-and ceria–zirconia-supported Pd catalysts
JP3987289B2 (en) Photocatalyst, method for producing the same, and photocatalyst using the same
JP4150712B2 (en) Visible light-activated photocatalyst and process for producing the same
JP4989545B2 (en) Nitrogen oxide catalytic reduction catalyst
Li et al. Enhanced catalytic ozonation performance by CuOx nanoclusters/TiO2 nanotube and an insight into the catalytic mechanism
Yuan et al. Promotion effect of Al2O3–SiO2 interlayer and Pt loading on TiO2/nickel-foam photocatalyst for degrading gaseous acetaldehyde
CN115722220B (en) Catalytic oxidation catalyst and preparation method and application thereof
JPH05261284A (en) Catalyst for water treatment and its production
JP4336121B2 (en) Catalyst and method for producing the same
JP2004073910A (en) Visible light-responsive photocatalyst, method of producing the same, and photocatalytic body using the same
JP2006198568A (en) Method for preparing composite photocatalyst and its device
JP6719363B2 (en) Method for producing catalyst for methane oxidation removal and catalyst for methane oxidation removal
JPH10218601A (en) Decomposition of water by solar light
KR100621946B1 (en) A method for improving dispersity of noble catalyst with h2o2 and catalyst compositions thereby
JP4254381B2 (en) Water gas reaction catalyst, carbon monoxide reduction method, and fuel cell power generation system
JP3440295B2 (en) Novel semiconductor photocatalyst and photocatalytic reaction method using the same
JP2005329360A (en) Cleaning material and its manufacturing method
JP4250971B2 (en) Inorganic material and shift catalyst using the same
Kominami et al. Direct solvothermal formation of nanocrystalline TiO 2 on porous SiO 2 adsorbent and photocatalytic removal of nitrogen oxides in air over TiO 2–SiO 2 composites
JP2006000781A (en) Photocatalyst for efficient purification of environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140703

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees