JP2003298920A - Digital camera - Google Patents

Digital camera

Info

Publication number
JP2003298920A
JP2003298920A JP2002096977A JP2002096977A JP2003298920A JP 2003298920 A JP2003298920 A JP 2003298920A JP 2002096977 A JP2002096977 A JP 2002096977A JP 2002096977 A JP2002096977 A JP 2002096977A JP 2003298920 A JP2003298920 A JP 2003298920A
Authority
JP
Japan
Prior art keywords
image
lens
imaging
imaging lens
high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002096977A
Other languages
Japanese (ja)
Inventor
Mitsufumi Misawa
Michitaka Nakazawa
充史 三沢
通隆 中沢
Original Assignee
Fuji Photo Film Co Ltd
富士写真フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd, 富士写真フイルム株式会社 filed Critical Fuji Photo Film Co Ltd
Priority to JP2002096977A priority Critical patent/JP2003298920A/en
Publication of JP2003298920A publication Critical patent/JP2003298920A/en
Application status is Pending legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a digital camera provided with a plurality of photographing optical systems and imaging elements for realizing high magnification zooming without interruption and upsizing.
SOLUTION: The digital camera has two kinds of modes comprising: a high image quality mode for processing an image obtained by composing high quality image information with a small field angle and possible for optical zooming obtained by a combination of a first CCD 30 with a small size and high pixel density, a first imaging lens 12 with a short focal length, a second CCD 32 with a large size and low pixel density, and a second imaging lens 14 with a long focal length and slightly lower quality image information with a large field angle by an image interpolation means; and a high magnification mode for processing an image obtained by composing high quality image information with a minimum field angle obtained by a combination of the first CCD 30 and the second imaging lens 14, and the second CCD 32 and the first imaging lens 12 and low quality image information with a large field angle by the image interpolation means 38. Each mode can be selected by selecting an optical path from each lens to each CCD to change the combination of the lenses and the CCDs.
COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明はデジタルカメラに関するものである。 BACKGROUND OF THE INVENTION [0001] [Technical Field of the Invention The present invention relates to a digital camera. 【0002】 【従来の技術】従来、撮影レンズを交換できない所謂レンズ固定式カメラでは、撮影領域を拡大するためには高倍率のズームレンズを搭載する必要があったが、レンズの構成枚数が多くなり、レンズの全長と重量が増加し、 [0004] Conventionally, a so-called lens fixed camera which can not replace the taking lens, in order to expand the imaging region it was necessary to mount a high magnification zoom lens, many number of constituent lenses will, overall length and weight of the lens is increased,
開放F値が暗く、光学性能も劣化するといった問題があった。 Open F value is dark and optical performance there is a problem to deteriorate. 【0003】そのため、一本のズームレンズではなくズーム機能を持つ複数の光学系を備え、切替えを行ない撮影領域を拡大するものが考案されている。 [0003] Therefore, with a plurality of optical systems having a zoom function rather than a single zoom lens, it is intended to expand the imaging area subjected to switching has been devised. 【0004】また、単一の光学系とサイズの異なる複数の撮像素子を備え、撮像素子を切替えて撮影領域を拡大するものも考案されているしかし、いずれもレンズまたは撮像素子を切替えて画角を変えるものであり、連続して切れ目なく撮影領域を変化させることはできない。 Further, with different plurality of imaging elements of a single optical system and the size, but have also been devised and expands imaging region by switching an imaging device, the angle of view by either switching the lens or image sensor is intended to change the, it can not be changed seamlessly imaging region continuously. 【0005】 【発明が解決しようとする課題】本発明は上記事実を考慮して、複数の撮影光学系および撮像素子を備えたデジタルカメラにおいて装置の大型化を招かずに連続して切れ目のない高倍率ズームを実現することを課題とする。 [0005] [0008] The present invention is in view of the above circumstances, unbroken continuously without causing an increase in the size of the apparatus in a digital camera having a plurality of imaging optical system and the imaging device it is an object to realize a high power zoom. 【0006】 【課題を解決するための手段】請求項1に記載のデジタルカメラは、第1の撮像素子と、前記第1の撮像素子よりサイズが大きく画素密度が低い第2の撮像素子と、第1の撮影レンズと、前記第1の撮影レンズより焦点距離が長い第2の撮影レンズと、前記第1の撮影レンズを通った光を前記第1の撮像素子または前記第2の撮像素子へ、あるいは前記第2の撮影レンズを通った光を前記第1の撮像素子または前記第2の撮像素子へ導く光路切替手段と、前記光路切替手段を操作して前記第1の撮像素子及び前記第2の撮像素子から得られる画像情報を要求される画質によって使い分ける画像補完手段と、を備えたことを特徴とする。 [0006] Means for Solving the Problems] The digital camera according to claim 1 includes a first image sensor, and the first large pixel density is less in size than the image pickup element and the second image sensor, a first imaging lens, and the focal length longer than the first imaging lens second imaging lens, the light passing through said first taking lens to the first image pickup element or the second image sensor or an optical path switching means for guiding the light passing through the second imaging lens to the first image pickup element or the second image sensor, wherein the first image sensor and said operating the optical path switching means the an image complementing means to selectively use the image quality required image information obtained from the second imaging device, characterized by comprising a. 【0007】上記構成の発明では、サイズが小さく画素密度が高い第1撮像素子と焦点距離の短い第1撮影レンズ、サイズが大きく画素密度が低い第2撮像素子と焦点距離の長い第2撮影レンズの組合せによって得られる、 [0007] The above in the configuration of the invention, the first imaging lens short pixel density small size high first imaging element and the focal length, large size pixel density is lower second imaging element and the focal length long second photographic lens obtained by the combination,
画角が小さい高画質画像情報と画角が大きくやや低画質な画像情報の2つを画像補完手段で合成して得られる画像による高画質モードを実現できる。 The high-quality mode by image obtained by synthesizing can be realized in two images complement to the angle of view is small high-quality image information and view angle is large relatively low-quality image information. また、サイズが小さく画素密度が高い第1撮像素子と焦点距離の長い第2 The first image sensor is high pixel density of small size and focal length long second
撮影レンズ、サイズが大きく画素密度が低い第2撮像素子と焦点距離の短い第1撮影レンズの組合せによって得られる、画角の極小な高画質画像情報と画角が大きな低画質画像情報の2つを画像補完手段で合成して得られる画像による高倍率モードを実現できる。 Taking lens, the size is large pixel density obtained by the combination of the lower second imaging element and the focal length short first imaging lens, two minima high-quality image information and angle of view field angle large low-quality image information can be realized a high-magnification mode by the image obtained by synthesizing the image complementing means. すなわち、上記構成ではズーム比は低いが画質の高い高画質モードと画質は低いがズーム比の高い高倍率モードの2種類のモードが選択できる。 That is, in the above-mentioned configuration zoom ratio is low but high quality mode and image quality of the image quality is low but two modes of high high-magnification mode to zoom ratio can be selected. 【0008】前記2種類のモードは各撮影レンズから各撮像素子への光路を切替え、撮影レンズと撮像素子の組合せを変えることによって選択することができる。 [0008] The two modes switches the optical path to the imaging elements from each imaging lens, it can be selected by changing the combination of the photographing lens and the image sensor. 通常は主要な被写体を画面の中央に捉えて撮影を行なうので、高画質な画像情報を画面中央に使用すれば主要な被写体を含んだ画面中央部の画質を高くできる。 Since normally performs photographing capture a main object in the center of the screen, you can increase the quality of the screen central portion including the main subject Using high-quality image information in the center of the screen. 【0009】請求項2に記載のデジタルカメラは、前記第1の撮像素子と前記第2の撮像素子の対角線長比が前記第1の撮影レンズと前記第2の撮影レンズの焦点距離比と等しいかまたは大きいことを特徴とする。 [0009] The digital camera according to claim 2 is equal to the focal length ratio of the first imaging device and the said diagonal length ratio of the second imaging element and the first imaging lens second imaging lens Kamada may be greater. 【0010】上記構成の発明では、第1の撮像素子と第1の撮影レンズ、第2の撮像素子と第2の撮影レンズの組み合わせで得られる2つの画像の画角比が、第1と第2の撮像素子の対角線長比を第1と第2の撮影レンズの焦点距離比で割った商となり、対角線長比が焦点距離比と等しい場合は二つの画像の画角は等しくなる。 [0010] In the present aspect, the first image sensor and the first imaging lens, angle ratio of the two images obtained by the combination of the second imaging device and the second imaging lens, the first and become divided by the diagonal length ratio of 2 of the image pickup device in a first focal length ratio of the second imaging lens, diagonal length ratio angle of view of the two images is equal to the focal length ratio is equal. すなわち同じ画像のサイズ違いが得られる。 That size difference of the same image can be obtained. 【0011】また、第1の撮影素子と第2の撮影レンズ、第2の撮像素子と第1の撮影レンズの組合せで得られる2つの画像の画角比は、第1と第2の撮像素子の対角線長比と、第1と第2の撮影レンズの焦点距離比とを掛けた積となる。 Further, the first imaging element and the second imaging lens, angle ratio of the two images obtained by the combination of the second imaging element and the first imaging lens, the first and the second image sensor a diagonal length ratio, is the product obtained by multiplying the focal length ratio of the first and second imaging lenses. 【0012】請求項3に記載のデジタルカメラは、前記光路切替手段とズーム手段の操作部を単一とし、前記第1の撮像素子と前記第2の撮像素子により得られる撮影画像を合成し、連続して切れ目なしに変化させることを特徴とする。 [0012] The digital camera according to claim 3, the operating portion of the optical path switching means and a zoom means a single, combining photographed images obtained by the first image sensor and the second image sensor, continuously and wherein the changing without cut. 【0013】上記構成の発明では、画角が小さく画素密度の高い第1の撮像素子で得られる画像を撮影画像の中心部に置き、画角が大きく画素密度の低い第2の撮像素子で得られる画像で撮影画像の周辺部を構成する。 [0013] According to the present aspect, placing the image field angle is obtained at a high first image sensor of reduced pixel density in the center of the captured image, resulting in lower second image sensor having large pixel density angle constituting the peripheral portion of the captured image in the image to be. 上記2つの画像を画像補完手段で合成して一つの画像とし、 As one of the image by combining the two images in the image complementing unit,
第1の撮像素子で得られる最小の画像から第2の撮像素子で得られる最大の画像まで連続して切れ目なしに変化させる。 From the smallest image obtained by the first image pickup device to the maximum of the image obtained by the second image sensor are continuously changing without cut. 【0014】また高画質モードに設定されていても、画角が最大または最小になった時点で連続してズーム手段を操作し続けることで自動的に高倍率モードに切り替わり、ズームが途切れることはない。 [0014] be set in the high-quality mode, the angle of view is automatically switches to high-magnification mode by continuing to operate the zooming unit continuously when it becomes maximum or minimum, the zoom choppy Absent. 【0015】 【発明の実施の形態】図1には、第1形態に係るデジタルカメラが示されている。 [0015] DETAILED DESCRIPTION OF THE INVENTION Figure 1 is a digital camera according to the first embodiment is shown in FIG. 【0016】図1(A)に示すようにデジタルカメラ1 The digital camera as shown in FIG. 1 (A) 1
0は箱型をしており、レリーズボタン16、ズームボタン18、ストロボ20等が設けられている。 0 is of a box type, the release button 16, a zoom button 18, a strobe 20, and the like. デジタルカメラ10の前面には第1撮影レンズ12と第2撮影レンズ14が横一列に約60mm間隔で設けられ、後述する第1CCD30及び第2CCD32上に画像を結ぶ。 The front of the digital camera 10 is provided at about 60mm distance between the first imaging lens 12 and the second imaging lens 14 in a row, connecting the image on the first 1CCD30 and second 2CCD32 later. 【0017】図1(B)に示すようにデジタルカメラ1 The digital camera as shown in FIG. 1 (B) 1
0の背面にはファインダ用としてLCDモニタ22が設けられている。 The back of the 0 LCD monitor 22 is provided as a viewfinder. また、別途に光学ファインダ24を設けている。 Further, there is provided a optical finder 24 separately. 電源スイッチ26、モード切替ボタン28等のスイッチ類も設けられており、モード切替やズーム等の情報はLCDモニタ20上に映し出される。 Power switch 26, switches such as mode switch button 28 is also provided, information such as mode switching, zoom is displayed on the LCD monitor 20. 【0018】図2には、第1形態にかかるデジタルカメラ10の内部構造のブロック図が示されている。 [0018] FIG. 2 is a block diagram of the internal structure of the digital camera 10 according to the first embodiment is shown. 【0019】第1撮影レンズ12を通った光は第1CC [0019] Light passing through the first imaging lens 12 is first 1CC
D30上に結像し、第2撮影レンズ14を通った光は第2CCD32上に結像し、光学データは電気的な画像データに変換される。 D30 is imaged on the light passing through the second imaging lens 14 forms an image on the first 2CCD32, optical data is converted into electrical image data. この画像データは画像処理部34、 The image data is the image processing unit 34,
35へ送られ画像処理される。 Sent to 35 is the image processing. 画像処理部34、35で処理された画像データはコントロール部36内の画像補完部38へ送られ一つの画像に合成される。 The image data processed by the image processing unit 34 and 35 are combined into one image is sent to the image expansion unit 38 in the control unit 36. 【0020】図3には画像補完部38で行なわれる画像合成の方法が示されている。 The process of the image composition performed by the image expansion unit 38 is shown in FIG. 【0021】図3(A)のように、画像の中央には画素密度の高い第1CCD30の画像が表示され、周辺部は画素密度の低い第2CCD32の画像を使用して補完する。 [0021] As in FIG. 3 (A), the center of the image is displayed image having high pixel density first 1CCD30, peripheral unit complements using an image of low pixel density first 2CCD32. 第1CCD30の画像と第2CCD32の画像の境目を目立たなくするため、図3(B)に示すように第1 To obscure the boundary between the first 1CCD30 image and the 2CCD32 image, first as shown in FIG. 3 (B)
CCD30の画像の周辺部で第2CCD32の画像と滑らかに繋ぎ合わせる処理が行なわれる。 Smoothly connecting combining process and the image of the 2CCD32 at the periphery of the image of the CCD30 is performed. 例えば第1CC For example, the first 1CC
D30の画像と第2CCD32の画像で輝度に差があった場合、図3(B)では縦軸Yに輝度yをとり、第1C If there is a difference in luminance in the image and the 2CCD32 image of D30, taking the luminance y in the vertical axis in FIG. 3 (B) Y, the 1C
CD30の画像外縁部a2から一定の距離を設けた内側のa3まで輝度yをゆるやかに変化させて繋ぎ目を目立たなくする。 Slowly changing the luminance y from the image outer edge a2 of CD30 to the inside of the a3 having a certain distance inconspicuous seams with. 具体的には、a2における第2CCD32 Specifically, the in a2 2CCD32
のy数値(ya2)から、a3における第1CCD30 From figures y (ya2), first in the a3 1CCD30
のy数値(ya3)まで、画像上の距離xに応じて図3 To a value of y (ya3), FIG. 3 in accordance with the distance x on the image
(B)上のy1:y2が常にx1:x2となるように数値yを変化させて行けばよい。 (B) on the y1: y2 always x1: x2 and numerical y may go varied so. 当然、輝度以外の数値についても同様の処理を行なう。 Of course, performing the same processing for value other than brightness. 【0022】図4には第1CCD30、第2CCD32 [0022] FIG. 4 the first 1CCD30, the 2CCD32
で得られる画像が撮影レンズとCCDの組合せ別に示されている。 The obtained image is shown by the combination of the photographing lens and the CCD in. 【0023】ここではサイズが小さく画素密度の高い第1CCD30とサイズが大きく画素密度の低い第2CC [0023] Here, a low increase pixel density is high the 1CCD30 size pixel density of small size is the 2CC
D32の対角線長比を1:4、第1撮影レンズ12と第2撮影レンズ14の焦点距離比を1:2とする。 The D32 diagonal length ratio of 1: 4, the first imaging lens 12 to the focal length ratio of the second imaging lens 14 1: 2. 【0024】また、第1撮影レンズ12と第1CCD3 [0024] In addition, the first taking lens 12 first 1CCD3
0の組合せで得られる画角は35ミリカメラ換算で望遠96mmレンズ相当、第2撮影レンズ14と第2CCD Angle obtained by 0 combinations telephoto 96mm lens equivalent in 35mm camera conversion, the second imaging lens 14 first 2CCD
32の組合せで得られる画角は35ミリカメラ換算で標準48mmレンズ相当、第1撮影レンズ12と第2CC Angle obtained in 32 combinations of standard 48mm lens equivalent in 35mm camera conversion, a first imaging lens 12 first 2CC
D32の組合せで得られる画角は同じく広角24mmレンズ相当、第2撮影レンズ14と第1CCD30の組合せで得られる画角は同じく望遠192mm相当とする。 Angle obtained by a combination of D32 is also wide-angle 24mm lens equivalent, the second imaging lens 14 and angle obtained by the combination of the 1CCD30 is also a telephoto 192mm equivalent. 【0025】まず高画質モードでは、図4(A)に示すように焦点距離の短い第1撮影レンズ12とサイズが小さく画素密度の高い第1CCD30、焦点距離の長い第2撮影レンズ14とサイズが大きく画素密度の低い第2 [0025] In first high-quality mode, the 1CCD30 high pixel density smaller first photographic lens 12 and the size short focal length, as shown in FIG. 4 (A), a long second imaging lens 14 and the size of focal length low increase pixel density second
CCD32の組合せで画像情報を得ている。 To obtain image information with a combination of CCD 32. 得られた画像情報は第1撮影レンズ12/第1CCD30で96m The resulting image information 96m in the first imaging lens 12 / second 1CCD30
mレンズ相当、第2撮影レンズ14/第2CCD32で48mmレンズ相当なので、図4(A)に示すように画面中央に画質の高い第1CCD30の96mmレンズ相当画像を置き、周辺は第2CCD32の48mmレンズ相当画像を使用して画像補完により合成することで、標準48mmレンズ相当から望遠96mmレンズ相当の画面まで切れ目なく画像を得ることができる。 m corresponding to lenses, since the second imaging lens 14 / 48mm lens substantial at the 2CCD32, placing a high first 1CCD30 96 mm lens corresponding image of the image quality in the center of the screen as shown in FIG. 4 (A), near the 48mm lens in 2CCD32 corresponding image by synthesizing the images complement using, it is possible to obtain a seamless image from a standard 48mm lens corresponds to the telephoto 96mm lens equivalent screen. 【0026】次に高倍率モードでは、図4(B)に示すように焦点距離の長い第2撮影レンズ14とサイズが小さく画素密度の高い第1CCD30、焦点距離の短い第1撮影レンズ12とサイズが大きく画素密度の低い第2 [0026] In next high-magnification mode, Fig 4 first 1CCD30 higher the smaller pixel density long second imaging lens 14 and the size of the focal length (B), the first imaging lens 12 short focal length and size second low pixel density increases
CCD32の組合せで画像情報を得ている。 To obtain image information with a combination of CCD 32. 得られた画像情報は第2撮影レンズ14/第1CCD30で192 Image information obtained in the second imaging lens 14 / second 1CCD30 192
mmレンズ相当、第1撮影レンズ12/第2CCD32 mm corresponding to lenses, the first imaging lens 12 / second 2CCD32
で24mmレンズ相当なので、図4(B)に示すように画面中央に画質の高い第1CCD30の192mmレンズ相当画像を置き、周辺は第2CCD32の24mmレンズ相当画像を使用して画像補完により合成することで、広角24mmレンズ相当から望遠192mmレンズ相当の画面まで切れ目なく画像を得ることができる。 In so 24mm lens substantial, place the 192mm lens corresponding image of the 1CCD30 high quality in the center of the screen as shown in FIG. 4 (B), near be synthesized by the image complementation using 24mm lens corresponding image of the 2CCD32 in, it is possible to obtain a seamless image from a wide-angle 24mm lens corresponds to the telephoto 192mm lens corresponding screen. ただし、画素密度の高い第1CCD30の占める割合が高画質モードに比較して狭いため画像全体の画質は高画質モードより下がる。 However, the proportion of the 1CCD30 high pixel density of the entire image quality for narrow compared to the high image quality mode drops below the high-quality mode. 【0027】次にモード切替えについて具体的に説明する。 [0027] Next, the mode switching will be described in detail. 【0028】デジタルカメラ10が高画質モードに設定されている時は図5(A)のように第1撮影レンズ12 [0028] The first imaging lens, such as when the digital camera 10 is set to high quality mode FIG 5 (A) 12
から入射した光が第1CCD30に導かれ、第2撮影レンズ14から入射した光は第2CCD32に導かれる。 Light incident from is led to the 1CCD30, light incident from the second imaging lens 14 is directed to the 2CCD32.
これにより、焦点距離の短い第1撮影レンズ12と画素密度の高い第1CCD30で得られる高画質部分を画面の中心に置き、焦点距離の長い第2撮影レンズ14と画素密度の低い第2CCD32で得られる低画質部分を周囲に配置することで、二つの画像の画角比は小さいが高画質部分を大きくとった画像が得られる。 Thus, placing a high-quality part obtained by high short first photographic lens 12 and the pixel density focal length first 1CCD30 the center of the screen, resulting in low long second imaging lens 14 and the pixel density focal length first 2CCD32 is a low-quality portion placing around, angle ratio of the two images is small is obtained images taken large high-quality parts. 【0029】撮影者がモード切替ボタン28で高倍率モードに切替えると、図5(B)に示すように光路中に4 [0029] When the switching to the high-magnification mode by photographer mode switching button 28, 4 in the optical path as shown in FIG. 5 (B)
枚の可動ミラー42が挿入され、第1撮影レンズ12から入射した光は可動ミラー42と固定ミラー44で反射され第2CCD32に導かれ、第2撮影レンズ14から入射した光は可動ミラー42で反射され第1CCD30 Like being movable mirror 42 is inserted in the light incident from the first imaging lens 12 is directed to a 2CCD32 reflected movable mirror 42 by the fixed mirror 44, the light incident from the second imaging lens 14 is reflected by the movable mirror 42 It is the first 1CCD30
に導かれる。 It is directed to. これにより、焦点距離の長い第2撮影レンズ14と画素密度の高い第1CCD30で得られる高画質部分を画面の中心に置き、焦点距離の短い第1撮影レンズ12と画素密度の低い第2CCD32で得られる低画質部分を周囲に配置することで、高画質部分は小さくなるが二つの画像の画角比を大きくとった画像が得られるので高倍率のズームが可能となる。 Thus, placing a high-quality part obtained by high long second imaging lens 14 and the pixel density focal length first 1CCD30 the center of the screen, resulting in a low short first photographic lens 12 and the pixel density focal length first 2CCD32 the low-quality portion that is by placing around, high quality parts will be capable of high power zoom because images smaller took large angle ratio of two images is obtained. 【0030】また、この第1形態において、第1撮影レンズ12と第2撮影レンズ14の焦点距離比と、第1C [0030] In the first embodiment, the first imaging lens 12 focal length ratio of the second imaging lens 14, the 1C
CD30と第2CCD32の対角線長比が等しい場合、 CD30 and when diagonal length ratio of the 2CCD32 are equal,
高画質モードでは二つの画像の画角が等しくなる。 Angle of view of the two images are equal in quality mode. 例えば撮影レンズの焦点距離比とCCDの対角線長比が共に1:2であった場合、高倍率モードで第1CCD30・ For example the focal distance ratio and the diagonal length ratio of the CCD of the imaging lens are both 1: if it was 2, the 1CCD30 · a high magnification mode
第2撮影レンズ14の組合せが112mm相当で第2C The 2C in combination with the second imaging lens 14 is equivalent 112mm
CD32・第1撮影レンズ12の組合せが28mm相当であれば、高画質モードでは二つの画像は共に56mm If CD32 · first combination of the taking lens 12 is an equivalent 28mm, two images in high-quality mode are both 56mm
相当の画角となる。 The equivalent of the angle of view. 【0031】このため約60mm間隔で横に並んだ二つの撮影レンズ12,14から同じ画角の画像が得られることになる。 [0031] so that the image of the same angle from the two imaging lenses 12 and 14 side by side in this order from about 60mm interval is obtained. この二つの画像サイズを統一し、並べて出力すればステレオ写真となる。 To unify the two image size, and stereo photos if the side-by-side output. 【0032】図6には、第2形態に係るデジタルカメラの構造が示されている。 [0032] Figure 6, the structure of a digital camera according to the second embodiment is shown. 図6(A)に示すようにデジタルカメラ10は箱を二つ繋いだ形状をしており、二つの箱は接合面の中央にある回転軸46で回動自在に連結されている。 Digital camera 10 as shown in FIG. 6 (A) is a tethered two a box shape, the two boxes are connected rotatably with the rotary shaft 46 in the center of the joint surface. 【0033】撮影者から見て手前側の箱すなわちCCD [0033] you can see from the photographer near side box that is CCD
部48には電源スイッチ26、ズームボタン18、レリーズボタン16が設けられ、接合面には第1CCD30 Power switch 26 is in part 48, a zoom button 18, the release button 16 is provided on a bonding surface and the 1CCD30
及び第2CCD32が設けられている。 And the 2CCD32 are provided. CCD部48に回転軸46で軸支されているレンズ部50は回転軸46 Lens unit 50 that is pivotally supported by the rotary shaft 46 to the CCD unit 48 is the rotary shaft 46
を中心に360度自由に回動可能であり、内部には第1 A center 360 degrees freely pivotable, first inside
撮影レンズ12及び第2撮影レンズ14が収められている。 Photographing lens 12 and the second imaging lens 14 is accommodated. この第1及び第2撮影レンズを通った光は夫々第1 Light passing through the first and second imaging lens are each first
窓52及び第2窓54を通り、CCD部48の第1CC Through window 52 and second window 54, the CCD unit 48 first 1CC
D30及び第2CCD32に像を結ぶ。 It forms an image D30 and the 2CCD32. CCD部48とレンズ部50の情報の遣り取り、AF用の電源供給などは電気接点56を通じて行なう。 Exchange of information of the CCD unit 48 and the lens unit 50, such as a power supply for AF is performed through an electric contact 56. 【0034】撮影者がモードを切替える際は、CCD部48とレンズ部50を持って回転軸46を中心に180 [0034] When switching the photographer mode, 180 around the rotation shaft 46 with the CCD 48 and the lens unit 50
度回転させる。 To degree rotation. これによりレンズ部50の第1撮影レンズ12と第2撮影レンズ14、CCD部の第1CCD3 Thus the first imaging lens 12 of the lens unit 50 and the second imaging lens 14, CCD portion of the 1CCD3
0と第2CCD32の組合せが逆になる。 0 combination of the 2CCD32 is reversed. 撮影レンズとCCDの光軸は回転軸46を中心に対称の位置にあるのでCCD部48とレンズ部50を180度回転させても光軸が狂うことはない。 It will not be mad optical axis even when the CCD unit 48 and the lens unit 50 is rotated 180 degrees because the optical axis of the taking lens and the CCD are positioned symmetrically about the rotary shaft 46. 電気接点56も回転軸に対して対称の位置にあるので情報や電力の伝達に支障はない。 There is no problem in the transmission of information and power since the positions symmetrical with respect to the electrical contact 56 is also the rotation axis.
また撮影中、不用意に回転しないようにロック機構58 Also during shooting, so as not to inadvertently rotation lock mechanism 58
を設けておくことは言うまでもない。 It goes without saying that should be provided. 【0035】さらに、現在のレンズ/CCDの組合せが高画質/高倍率のどちらか一目で判るようにレンズ部をツートンカラーに塗り分けたり形状を非対称にしてもよい。 Furthermore, the combination of the current lens / CCD may also be colored separately or shape of the lens unit in the two-tone at a glance either high quality / high magnification asymmetrically. 【0036】図7には第3形態に係るデジタルカメラの外観が示されている。 [0036] have shown the appearance of a digital camera according to the third embodiment in FIG. 【0037】図7に示すようにデジタルカメラ10は第2形態と同様に箱を二つ繋いだ形状をしているが第3形態には回転軸は存在せず、CCD部48側の接合面をU The digital camera 10 as shown in FIG. 7 is absent rotating shaft in it has a shape that connects two boxes as in the second embodiment third embodiment, the bonding surface of the CCD unit 48 side the U
字型の支持部60とし、レンズ部50側の接合面を形成する係止部62を上から嵌め込んで固定する。 And the supporting portion 60 of the shaped, fixed is fitted from above the locking portion 62 which forms a joint surface of the lens unit 50 side. 【0038】モード切替えの際には一旦レンズ部50を外し、レンズ光軸方向を中心として、180度回転させてからCCD部48に嵌め込む。 [0038] Remove the lens unit 50 once during mode switching, around the lens optical axis direction, fitted on the CCD unit 48 from being rotated 180 degrees. これにより撮影レンズ/CCDの組合せが変わり、撮影モードを変更できる。 Thus changes the combination of the photographing lens / CCD, you can change the shooting mode. 【0039】このとき、不用意にCCD部48とレンズ部50の結合が外れないようにロック機構64を設けておく必要がある。 [0039] At this time, it is necessary to inadvertently provided a locking mechanism 64 such that binding does not come off the CCD unit 48 and the lens unit 50. 【0040】図8には第4形態に係る光学系の断面図が示されている。 The shown sectional view of an optical system according to the fourth embodiment is in Fig. 【0041】図8(A)に示すように、一つの開口部から入射した光をハーフプリズム66で2分割し、一方をミラー68で反射させ、それぞれ第1撮影レンズ12及び第2撮影レンズ14へと導いた後、第1及び第2CC As shown in FIG. 8 (A), one of the light incident from the opening portion 2 is divided by the half prism 66, is reflected one by the mirror 68, each of the first imaging lens 12 and the second imaging lens 14 after it led to the first and second 2CC
D上に結像させる。 It is focused on D. この先は図8(B)に示すように第1〜第3形態のいずれかに準拠した方法で撮影レンズとCCDの組合せを切替える。 Ahead switches the combinations of photographing lens and CCD by a method according to any one of the first to third embodiments, as shown in FIG. 8 (B). 【0042】このとき、第1撮影レンズ12及び第2撮影レンズ14は光学的に同軸配置されているので、被写体までの距離が近くなっても、2つのCCDからの画像間に2本のレンズの位置ずれに起因するパララックス(視差)が発生しないという利点がある。 [0042] At this time, since the first imaging lens 12 and the second imaging lens 14 are coaxially arranged optically, even closer distance to the object, two lenses between an image from the two CCD there is an advantage that parallax caused by the positional deviation of does not occur. 【0043】また、ハーフプリズム66の代わりにハーフミラーを用いても良いし、このハーフプリズム/ハーフミラーの反射/透過の割合を調整することで2本の撮影レンズの明るさの差を補正するようにしてもよい。 [0043] Alternatively, an half-mirror instead of half prism 66, to correct the difference in brightness of the two photographing lens by adjusting the ratio of the reflection / transmission of the half prism / half mirror it may be so. 【0044】 【発明の効果】本発明は上記構成としたので、装置の大型化を招かずに連続して切れ目のない高倍率ズームを実現することができた。 [0044] According to the present invention since the above configuration, it was possible to realize a high power zoom unbroken continuously without causing an increase in the size of the apparatus.

【図面の簡単な説明】 【図1】本実施形態1に係るデジタルカメラの斜視図である。 It is a perspective view of the BRIEF DESCRIPTION OF THE DRAWINGS digital camera according to the disclosed exemplary embodiment 1. 【図2】本実施形態1に係るデジタルカメラのブロック図である。 It is a block diagram of a digital camera according to Figure 2 the first embodiment. 【図3】本実施形態1に係るデジタルカメラの画面合成の説明図である。 It is an explanatory view of the digital camera screen composition according to [3] the first embodiment. 【図4】本実施形態1に係るデジタルカメラの画面合成の説明図である。 It is an explanatory view of the digital camera screen composition according to [4] the first embodiment. 【図5】本実施形態1に係るデジタルカメラの内部構造図である。 It is an internal structural diagram of a digital camera according to Figure 5 the first embodiment. 【図6】本実施形態2に係るデジタルカメラの透視図である。 6 is a perspective view of a digital camera according to the second embodiment. 【図7】本実施形態3に係るデジタルカメラの斜視図である。 7 is a perspective view of a digital camera according to the third embodiment. 【図8】本実施形態4に係るデジタルカメラの内部構造図である。 8 is an internal structural diagram of a digital camera according to the fourth embodiment. 【符号の説明】 10 デジタルカメラ12 第1撮影レンズ14 第2撮影レンズ16 レリーズボタン18 ズームボタン26 電源スイッチ30 第1CCD 32 第2CCD 42 可動ミラー44 固定ミラー46 回転軸48 CCD部50 レンズ部52 第1窓54 第2窓56 電気接点60 支持部62 係止部66 ハーフプリズム [Description of reference numerals] 10 digital camera 12 first photographic lens 14 and the second imaging lens 16 release button 18 Zoom button 26 power switch 30 first 1CCD 32 second 2CCD 42 movable mirror 44 fixed mirror 46 rotary shaft 48 CCD unit 50 lens unit 52 first 1 window 54 second window 56 electrical contact 60 supporting portion 62 engaging portion 66 a half prism

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 7識別記号 FI テーマコート゛(参考) H04N 5/225 H04N 5/225 D // H04N 101:00 101:00 Fターム(参考) 2H054 AA01 BB02 BB05 BB07 2H101 DD16 EE08 5C022 AA13 AB66 AC42 AC54 AC69 ────────────────────────────────────────────────── ─── of the front page continued (51) Int.Cl 7 identification mark FI theme Court Bu (reference) H04N 5/225 H04N 5/225 D // H04N 101:. 00 101: 00 F -term (reference) 2H054 AA01 BB02 BB05 BB07 2H101 DD16 EE08 5C022 AA13 AB66 AC42 AC54 AC69

Claims (1)

  1. 【特許請求の範囲】 【請求項1】 第1の撮像素子と、前記第1の撮像素子よりサイズが大きく画素密度が低い第2の撮像素子と、 第1の撮影レンズと、前記第1の撮影レンズより焦点距離が長い第2の撮影レンズと、 前記第1の撮影レンズを通った光を前記第1の撮像素子または前記第2の撮像素子へ、あるいは前記第2の撮影レンズを通った光を前記第1の撮像素子または前記第2 And [Claims 1 first imaging element, and the first large pixel density is less in size than the image pickup element and the second image sensor, a first imaging lens, the first focal length from the photographing lens and the longer the second imaging lens, the light passing through said first taking lens to the first image pickup element or the second image sensor, or through the second imaging lens the light first imaging element or the second
    の撮像素子へ導く光路切替手段と、 前記光路切替手段を操作して前記第1の撮像素子及び前記第2の撮像素子から得られる画像情報を要求される画質によって使い分ける画像補完手段と、を備えたことを特徴とするデジタルカメラ。 Comprising of an optical path switching means for guiding to the imaging device, and an image complementing means to selectively use the image quality required image information obtained from said operating the optical path switching means the first image sensor and the second image sensor digital camera, characterized in that the. 【請求項2】 前記第1の撮像素子と前記第2の撮像素子の対角線長比が前記第1の撮影レンズと前記第2の撮影レンズの焦点距離比と等しいかまたは大きいことを特徴とする請求項1に記載のデジタルカメラ。 Wherein, wherein the diagonal length ratio of the first imaging device and the second imaging device is equal to or greater the focal length ratio of the second imaging lens and the first imaging lens the digital camera according to claim 1. 【請求項3】 前記光路切替手段とズーム手段の操作部を単一とし、前記第1の撮像素子と前記第2の撮像素子により得られる撮影画像を合成し、連続して切れ目なしに変化させることを特徴とする請求項1または請求項2 Wherein a single operation of the optical path switching means and the zooming unit, combining photographed images obtained by the first imaging device and the second imaging element, it is varied without break in succession claim 1 or claim 2, characterized in that
    に記載のデジタルカメラ。 Digital camera according to.
JP2002096977A 2002-03-29 2002-03-29 Digital camera Pending JP2003298920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002096977A JP2003298920A (en) 2002-03-29 2002-03-29 Digital camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002096977A JP2003298920A (en) 2002-03-29 2002-03-29 Digital camera

Publications (1)

Publication Number Publication Date
JP2003298920A true JP2003298920A (en) 2003-10-17

Family

ID=29387563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002096977A Pending JP2003298920A (en) 2002-03-29 2002-03-29 Digital camera

Country Status (1)

Country Link
JP (1) JP2003298920A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016474A2 (en) * 2006-08-01 2008-02-07 Eastman Kodak Company Producing digital image with different resolution portions
CN104980644A (en) * 2014-04-14 2015-10-14 华为技术有限公司 Shooting method and device
US9774831B2 (en) 2013-02-24 2017-09-26 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9787911B2 (en) 2013-03-14 2017-10-10 Fotonation Cayman Limited Systems and methods for photometric normalization in array cameras
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
US10142560B2 (en) 2008-05-20 2018-11-27 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US10156706B2 (en) 2014-08-10 2018-12-18 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US10225479B2 (en) 2013-06-13 2019-03-05 Corephotonics Ltd. Dual aperture zoom digital camera
US10230898B2 (en) 2015-08-13 2019-03-12 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
US10250797B2 (en) 2013-08-01 2019-04-02 Corephotonics Ltd. Thin multi-aperture imaging system with auto-focus and methods for using same
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US10284780B2 (en) 2015-09-06 2019-05-07 Corephotonics Ltd. Auto focus and optical image stabilization with roll compensation in a compact folded camera
US10288897B2 (en) 2015-04-02 2019-05-14 Corephotonics Ltd. Dual voice coil motor structure in a dual-optical module camera
US10288896B2 (en) 2013-07-04 2019-05-14 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
US10311649B2 (en) 2017-09-01 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016474A2 (en) * 2006-08-01 2008-02-07 Eastman Kodak Company Producing digital image with different resolution portions
WO2008016474A3 (en) * 2006-08-01 2008-03-27 Eastman Kodak Co Producing digital image with different resolution portions
US10142560B2 (en) 2008-05-20 2018-11-27 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
US10218889B2 (en) 2011-05-11 2019-02-26 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US20180197035A1 (en) 2011-09-28 2018-07-12 Fotonation Cayman Limited Systems and Methods for Encoding Image Files Containing Depth Maps Stored as Metadata
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US10275676B2 (en) 2011-09-28 2019-04-30 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US10019816B2 (en) 2011-09-28 2018-07-10 Fotonation Cayman Limited Systems and methods for decoding image files containing depth maps stored as metadata
US9864921B2 (en) 2011-09-28 2018-01-09 Fotonation Cayman Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9774831B2 (en) 2013-02-24 2017-09-26 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US10225543B2 (en) 2013-03-10 2019-03-05 Fotonation Limited System and methods for calibration of an array camera
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9787911B2 (en) 2013-03-14 2017-10-10 Fotonation Cayman Limited Systems and methods for photometric normalization in array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US10225479B2 (en) 2013-06-13 2019-03-05 Corephotonics Ltd. Dual aperture zoom digital camera
US10288896B2 (en) 2013-07-04 2019-05-14 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US10250797B2 (en) 2013-08-01 2019-04-02 Corephotonics Ltd. Thin multi-aperture imaging system with auto-focus and methods for using same
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
CN104980644A (en) * 2014-04-14 2015-10-14 华为技术有限公司 Shooting method and device
CN104980644B (en) * 2014-04-14 2018-12-14 华为技术有限公司 A method and apparatus for photographing
US10156706B2 (en) 2014-08-10 2018-12-18 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US10288897B2 (en) 2015-04-02 2019-05-14 Corephotonics Ltd. Dual voice coil motor structure in a dual-optical module camera
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US10230898B2 (en) 2015-08-13 2019-03-12 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
US10284780B2 (en) 2015-09-06 2019-05-07 Corephotonics Ltd. Auto focus and optical image stabilization with roll compensation in a compact folded camera
US10311649B2 (en) 2017-09-01 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing

Similar Documents

Publication Publication Date Title
CN103647895B (en) The camera body, the camera system and method for controlling the camera body
JP3480446B2 (en) Digital camera
JP3035434B2 (en) Compound-eye imaging apparatus
US20160050374A1 (en) Dual aperture zoom digital camera
US20020030749A1 (en) Image capturing apparatus
US6453124B2 (en) Digital camera
KR100629305B1 (en) Cameras
US5710954A (en) Camera system having function for photographing image linked to electronic image
US5937212A (en) Image pickup apparatus
JP2005303694A (en) Compound eye imaging device
JP2008141518A (en) Imaging apparatus
JP2004264832A (en) Imaging apparatus and lens arrangement
US20110164169A1 (en) Camera and camera system
JP2007286255A (en) Camera
JP2001203930A (en) Image pickup device
US8860849B2 (en) Imaging device and method
JP3380963B2 (en) Imaging device
CN1187647C (en) Zoom camera with pseudo zooming function
US8059185B2 (en) Photographing apparatus, image display method, computer program and storage medium for acquiring a photographed image in a wide range
JP2008276115A (en) Digital camera and focus control program
JP4931668B2 (en) Compound-eye imaging apparatus
JP2005221602A (en) Image pickup device
JP2003037757A (en) Imaging unit
JP2005311789A (en) Digital camera
JP2010186004A (en) Imaging apparatus, method for controlling the same, and program