JP2003297660A - Method for processing sm-fe-n-based magnetic powder for bond magnet and the bond magnet - Google Patents

Method for processing sm-fe-n-based magnetic powder for bond magnet and the bond magnet

Info

Publication number
JP2003297660A
JP2003297660A JP2002095428A JP2002095428A JP2003297660A JP 2003297660 A JP2003297660 A JP 2003297660A JP 2002095428 A JP2002095428 A JP 2002095428A JP 2002095428 A JP2002095428 A JP 2002095428A JP 2003297660 A JP2003297660 A JP 2003297660A
Authority
JP
Japan
Prior art keywords
magnetic powder
powder
iron
particle
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002095428A
Other languages
Japanese (ja)
Other versions
JP4296379B2 (en
Inventor
Minoru Yamazaki
実 山崎
Kunio Ikemoto
邦生 池本
Katsuhiro Fujita
勝弘 藤田
Tadanobu Hirata
匡宣 平田
Norio Sugita
典生 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2002095428A priority Critical patent/JP4296379B2/en
Publication of JP2003297660A publication Critical patent/JP2003297660A/en
Application granted granted Critical
Publication of JP4296379B2 publication Critical patent/JP4296379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for processing Sm-Fe-N-based magnetic powders for a bond magnet in which a flow property in forming the bond magnet is superior and moreover stability in kneading with a resin is excellent, and to provide the bond magnet. <P>SOLUTION: After iron oxide particle powders are mixed with samarium oxide particle powders, the mixture is subjected to a reduction reaction to form a mixture of iron particles and samarium oxide particles. Next, under a temperature range of 30 to 150°C and an oxygen containing atmosphere, a stabilization process is carried out to form an oxidated film on a particle surface of the iron particles. Thereafter, Ca is mixed, and under a temperature range of 800 to 1200°C and an inactive gas atmosphere, a reduction diffusion reaction is carried out, and next under a temperature range of 300 to 600°C, a nitriding reaction is carried out to obtain the Sm-Fe-N-based magnetic powders for the bond magnet. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ボンド磁石形成時
の流動性及び混練安定性に優れたボンド磁石用Sm−F
e−N系磁性粉末の製造法を提供する。
TECHNICAL FIELD The present invention relates to a Sm-F for a bonded magnet, which is excellent in fluidity and kneading stability when forming a bonded magnet.
A method for producing an eN magnetic powder is provided.

【0002】[0002]

【従来の技術】ボンド磁石は、その形状自在性や高寸法
精度などの利点があるため、従来から電気製品や自動車
部品等の各種用途に広く使用されているが、近年、電気
製品や自動車部品の小型・軽量化に伴って、これに使用
されるボンド磁石自体の高性能化が強く要求されてい
る。
2. Description of the Related Art Bonded magnets have been widely used for various purposes such as electric products and automobile parts because of their advantages such as flexibility in shape and high dimensional accuracy. As the size and weight of the bonded magnet have been reduced, there is a strong demand for higher performance of the bonded magnet itself used for the magnet.

【0003】ボンド磁石は、一般に、ゴム又はプラスチ
ック材料等の結合剤樹脂と磁性粉末とを混練した後、成
形することによって製造されているため、ボンド磁石の
高性能化のためには、磁性粉末の高性能化、即ち、大き
な残留磁束密度Brと高い保磁力iHcとを有し、その
結果、最大磁気エネルギー積(BH)maxが大きな磁
性粉末が強く要求されている。
Generally, a bonded magnet is manufactured by kneading a binder resin such as a rubber or plastic material and a magnetic powder, and then molding the mixture. Therefore, in order to improve the performance of the bonded magnet, the magnetic powder is used. That is, there is a strong demand for a magnetic powder having high performance, that is, having a large residual magnetic flux density Br and a high coercive force iHc, and as a result, having a large maximum magnetic energy product (BH) max.

【0004】磁性粉末としては、バリウムフェライトや
ストロンチウムフェライト等のマグネトプランバイト型
フェライトやSm−Fe−N系磁性粉末及び希土類−鉄
−ホウ素系磁石が知られている。特に、Sm−Fe−N
系磁性粉末は、飽和磁化値と異方性磁界が共に高く、更
に、高いキュリー温度を有することから、近年特に注目
されている。
As magnetic powders, magnetoplumbite type ferrites such as barium ferrite and strontium ferrite, Sm-Fe-N type magnetic powders and rare earth-iron-boron type magnets are known. In particular, Sm-Fe-N
Recently, magnetic powders have attracted particular attention because they have a high saturation magnetization value and an anisotropic magnetic field and a high Curie temperature.

【0005】Sm−Fe−N系磁性粉末はサマリウムと
鉄との合金を窒化反応して得ることができるが、ボンド
磁石に用いるためには適度な大きさに粉砕する必要があ
る。しかしながら、粉砕工程を経ることによって磁気特
性が低下したり、均一な粒子形状を得ることが困難であ
ることから、粉砕することなくSm−Fe−N系磁性粉
末を得ることが要求されている。
The Sm-Fe-N magnetic powder can be obtained by nitriding an alloy of samarium and iron, but it is necessary to grind it to an appropriate size for use in a bonded magnet. However, since it is difficult to obtain a uniform particle shape due to deterioration of magnetic properties through the pulverizing step, it is required to obtain Sm-Fe-N-based magnetic powder without pulverizing.

【0006】即ち、ボンド磁石の残留磁束密度は結合剤
樹脂中に磁性粉末を多量に充填できることが重要であ
る。そこで、粒子形状が均一で、粒度分布に優れ、しか
も、流動性に優れた磁性粉末が要求されている。
That is, regarding the residual magnetic flux density of the bonded magnet, it is important that a large amount of magnetic powder can be filled in the binder resin. Therefore, a magnetic powder having a uniform particle shape, an excellent particle size distribution, and an excellent fluidity is required.

【0007】また、ボンド磁石の残留磁束密度は、磁性
粉末の飽和磁化値に左右されることから、高い飽和磁化
値を有する磁性粉末であることが重要である。そのため
には、優れた磁気特性を有するSm−Fe−N系磁性粉
末が要求されている。
Further, since the residual magnetic flux density of the bonded magnet depends on the saturation magnetization value of the magnetic powder, it is important that the magnetic powder has a high saturation magnetization value. For that purpose, Sm-Fe-N-based magnetic powder having excellent magnetic properties is required.

【0008】更に、ボンド磁石の製造時において、結合
剤樹脂と磁性粉末との混練時には、加熱及び加圧するた
め、磁性粉末が酸化されやすく、磁性粉末の酸化に伴っ
て、結合剤樹脂が変質しやすい。そこで、酸化されにく
く、混練時の安定性に優れたSm−Fe−N系磁性粉末
が要求されている。
Furthermore, in the production of the bonded magnet, since the binder resin and the magnetic powder are heated and pressed during kneading, the magnetic powder is easily oxidized, and the binder resin is deteriorated due to the oxidation of the magnetic powder. Cheap. Therefore, there is a demand for an Sm-Fe-N-based magnetic powder that is resistant to oxidation and has excellent stability during kneading.

【0009】従来、粒度が調整された原料を用いてSm
−Fe−N系磁性粉末を得る技術が知られている(特開
平11−121216号公報、特開平11−31080
7号公報、特開平11−335702号公報、特開20
00−17309号公報等)。
Conventionally, Sm has been obtained by using a raw material whose particle size is adjusted.
A technique for obtaining a —Fe—N-based magnetic powder is known (Japanese Patent Laid-Open Nos. 11-112216 and 11-31080).
No. 7, JP-A-11-335702, JP-A 20
No. 00-17309).

【0010】[0010]

【発明が解決しようとする課題】ボンド磁石形成時の流
動性に優れ、しかも、混練時の安定性に優れたボンド磁
石用Sm−Fe−N系磁性粉末は現在最も要求されてい
るところであるが、このような特性を有するボンド磁石
用Sm−Fe−N系磁性粉末の製造法は未だ得られてい
ない。
The Sm-Fe-N magnetic powder for bond magnets, which is excellent in fluidity during formation of bond magnets and is excellent in stability during kneading, is currently most demanded. A method for producing Sm-Fe-N magnetic powder for bonded magnets having such characteristics has not yet been obtained.

【0011】即ち、前出各公開公報には鉄原料粉末の粒
度を調整すること及びサマリウム原料と鉄原料との混合
物の粒度を調整することが記載されているが、粒子間の
焼結を抑制することが困難なため、均一な窒化反応を行
うことが困難である。
That is, the above-mentioned respective publications describe adjusting the particle size of the iron raw material powder and adjusting the particle size of the mixture of the samarium raw material and the iron raw material, but suppressing sintering between particles. Therefore, it is difficult to carry out a uniform nitriding reaction.

【0012】そこで、本発明は、粒度分布に優れ、均一
な粒子形状を有することによって、分散性及び流動性に
優れたSm−Fe−N系磁性粉末を得ることを技術的課
題とする。
[0012] Therefore, it is a technical object of the present invention to obtain an Sm-Fe-N-based magnetic powder having an excellent particle size distribution and a uniform particle shape, which is excellent in dispersibility and fluidity.

【0013】[0013]

【課題を解決するための手段】前記技術的課題は、次の
通りの本発明によって達成できる。
The above technical problems can be achieved by the present invention as follows.

【0014】即ち、本発明は、酸化鉄粒子粉末と酸化サ
マリウム粒子粉末とを混合した後、当該混合物を還元反
応を行って鉄粒子と酸化サマリウム粒子との混合物と
し、次いで、30〜150℃の温度範囲、酸素含有雰囲
気下で安定化処理を行って前記鉄粒子の粒子表面に酸化
被膜を形成した後、Caを混合して800〜1200℃
の温度範囲、不活性ガス雰囲気下で還元拡散反応を行
い、次いで、300〜600℃の温度範囲で窒化反応を
行うことを特徴とするボンド磁石用Sm−Fe−N系磁
性粉末の製造法である。
That is, according to the present invention, after the iron oxide particle powder and the samarium oxide particle powder are mixed, the mixture is subjected to a reduction reaction to obtain a mixture of iron particles and samarium oxide particles, and then at 30 to 150 ° C. Stabilization is performed in an oxygen-containing atmosphere in a temperature range to form an oxide film on the particle surface of the iron particles, and then Ca is mixed to 800 to 1200 ° C.
In the method for producing an Sm-Fe-N-based magnetic powder for a bonded magnet, the reduction diffusion reaction is performed in an inert gas atmosphere in the temperature range of 1 to 3, and then the nitriding reaction is performed in the temperature range of 300 to 600 ° C. is there.

【0015】また、本発明は、前記ボンド磁石用Sm−
Fe−N系磁性粉末の製造法で得られたボンド磁石用S
m−Fe−N系磁性粉末を含有することを特徴とするボ
ンド磁石である。
The present invention also provides the above-mentioned Sm-for bonded magnets.
S for bonded magnets obtained by the method for producing Fe-N magnetic powder
A bonded magnet containing m-Fe-N magnetic powder.

【0016】本発明の構成をより詳しく説明すれば、次
の通りである。
The structure of the present invention will be described in more detail below.

【0017】本発明に係るボンド磁石用Sm−Fe−N
系磁性粉末の製造法について述べる。
Sm-Fe-N for bonded magnets according to the present invention
The method for producing the magnetic powders will be described.

【0018】本発明における酸化鉄粒子粉末は、ヘマタ
イト粒子粉末又はマグネタイト粒子粉末が好ましい。
The iron oxide particles in the present invention are preferably hematite particles or magnetite particles.

【0019】酸化鉄粒子粉末の粒子形状は球状であり、
平均粒子径は0.1〜10μmが好ましい。平均粒子径
が0.1μm未満の場合には、安定化処理における酸化
被膜の全体に占める体積が増加し、そのため、次工程の
還元拡散反応時に激しい発熱反応を招き、均一な合金組
成及びシャープな粒度分布を有するSm−Fe−N系磁
性粉末を得ることが困難となる。10μmを越える場合
には、粒子サイズが大きく、目的とする粒子サイズを有
するSm−Fe−N系磁性粉末を得ることが困難とな
る。また、還元拡散反応による、鉄粒子へのSmのドー
ピングも、粒子内部まで均一に及ぶことが困難となり、
望ましくない。
The particle shape of the iron oxide particle powder is spherical,
The average particle diameter is preferably 0.1 to 10 μm. When the average particle size is less than 0.1 μm, the volume of the oxide film in the stabilization treatment as a whole increases, which causes a violent exothermic reaction during the reduction-diffusion reaction in the next step, resulting in a uniform alloy composition and a sharp alloy composition. It becomes difficult to obtain an Sm-Fe-N-based magnetic powder having a particle size distribution. If it exceeds 10 μm, the particle size is large, and it becomes difficult to obtain an Sm—Fe—N-based magnetic powder having a target particle size. Further, it becomes difficult for Sm doping into the iron particles by the reduction diffusion reaction to evenly reach the inside of the particles,
Not desirable.

【0020】酸化鉄粒子粉末の粒度分布は、酸化鉄粒子
粉末の全体積を100%として粒子径に対する累積の体
積割合を求めたとき、その累積の体積割合が10%、9
0%となる点の粒子径をそれぞれD10、D90として
示した場合、D10が0.5μm以上、D90が8.0
μm以下であることが好ましい。前記範囲外の場合に
は、粒度分布が広いことを意味し、得られるSm−Fe
−N系磁性粉末の粒度分布が広くなり、磁気特性が低下
するため好ましくない。D10とD90との比D 10
90は0.1以上であることが好ましい。この値が小
さいことは、粒度分布が広いことを意味しており、結果
的に得られるSm−Fe−N系磁性粉末の磁気特性が低
下するため好ましくない。
The particle size distribution of the iron oxide particles is iron oxide particles.
Cumulative body for particle size with 100% total volume of powder
When the product ratio is calculated, the cumulative volume ratio is 10%, 9
The particle size at the point of 0% is D10, D90As
If indicated, D10Is 0.5 μm or more, D90Is 8.0
It is preferably μm or less. If outside the range
Means that the particle size distribution is wide, and the obtained Sm-Fe
-The N-based magnetic powder has a broad particle size distribution and deteriorates magnetic properties.
It is not preferable because D10And D90Ratio D 10/
D90Is preferably 0.1 or more. This value is small
The good news is that the particle size distribution is wide and the result
Obtained Sm-Fe-N magnetic powder has low magnetic properties
It is not preferable because it is lowered.

【0021】前記酸化鉄粒子粉末のうちマグネタイト粒
子粉末は、硫酸第一鉄水溶液とアルカリ水溶液とを反応
して得られる水酸化第一鉄塩コロイドを含む第一鉄塩反
応溶液に酸素含有ガスを通気することにより得ることが
できる。また、ヘマタイト粒子粉末は、前記マグネタイ
ト粒子粉末を700〜1000℃の温度範囲で加熱焼成
を行って得ることができる。
Among the iron oxide particle powders, magnetite particle powders are prepared by reacting a ferrous sulfate aqueous solution with an alkaline aqueous solution to obtain a ferrous salt reaction solution containing a ferrous hydroxide salt colloid and adding an oxygen-containing gas. It can be obtained by aeration. The hematite particle powder can be obtained by heating and sintering the magnetite particle powder in the temperature range of 700 to 1000 ° C.

【0022】本発明における酸化サマリウム粒子粉末の
粒子形状は粒状であり、平均粒子径は0.5〜5.0μ
mであることが好ましい。
The particle shape of the samarium oxide particle powder in the present invention is granular, and the average particle diameter is 0.5 to 5.0 μm.
It is preferably m.

【0023】前記酸化鉄粒子粉末と前記酸化サマリウム
粒子粉末との混合割合は、化学量論比であるSmFe
17となるSmとFeとの割合に対して、サマリウムを
Sm換算で100〜130モル%となるように過剰の酸
化サマリウムを混合する。
The mixing ratio of the iron oxide particle powder and the samarium oxide particle powder is Sm 2 Fe, which is a stoichiometric ratio.
An excess of samarium oxide is mixed so that samarium becomes 100 to 130 mol% in terms of Sm with respect to the ratio of Sm and Fe of 17 .

【0024】前記酸化鉄粒子粉末と前記酸化サマリウム
粒子粉末との混合は、酸化鉄粒子と酸化サマリウム粒子
とが均一に接触するように混合できればよく、例えば、
アトライタなどを用いた湿式混合もしくは湿式粉砕混合
が好ましい。
The iron oxide particle powder and the samarium oxide particle powder may be mixed as long as the iron oxide particles and the samarium oxide particles can be uniformly contacted with each other.
Wet mixing or wet pulverization mixing using an attritor or the like is preferable.

【0025】前記酸化鉄粒子粉末と前記酸化サマリウム
粒子粉末との混合物は、還元反応を行って鉄粒子と酸化
サマリウム粒子との混合物にする。還元反応は、例え
ば、水素ガス雰囲気下で500〜700℃の温度範囲で
加熱して行うことができる。
The mixture of the iron oxide particle powder and the samarium oxide particle powder undergoes a reduction reaction to form a mixture of iron particles and samarium oxide particles. The reduction reaction can be carried out, for example, by heating in a temperature range of 500 to 700 ° C. under a hydrogen gas atmosphere.

【0026】本発明においては、鉄粒子と酸化サマリウ
ム粒子との混合物に安定化処理を行って、鉄粒子の粒子
表面に酸化被膜を形成することが肝要である。鉄粒子の
粒子表面に酸化被膜を形成することによって、後述する
窒化反応を均一に進行させることができ、粒子間の焼結
を抑制することができる。
In the present invention, it is important that the mixture of iron particles and samarium oxide particles is subjected to a stabilizing treatment to form an oxide film on the particle surface of the iron particles. By forming an oxide film on the particle surface of the iron particles, the nitriding reaction described below can be uniformly advanced, and sintering between particles can be suppressed.

【0027】安定化処理は、鉄粒子と酸化サマリウム粒
子との混合物を酸素含有雰囲気下で30〜150℃の温
度範囲で加熱する。30℃未満の場合には、均一な酸化
被膜を形成することが困難であり、また、処理に長時間
を要するので好ましくない。150℃を越える場合には
局所的に反応が進むことがあるため好ましくない。反応
時間は1〜5時間程度である。
In the stabilization treatment, a mixture of iron particles and samarium oxide particles is heated in an oxygen-containing atmosphere in the temperature range of 30 to 150 ° C. If the temperature is lower than 30 ° C., it is difficult to form a uniform oxide film, and it takes a long time for the treatment, which is not preferable. If it exceeds 150 ° C, the reaction may locally proceed, which is not preferable. The reaction time is about 1 to 5 hours.

【0028】安定化処理の雰囲気は酸素含有雰囲気であ
り、酸素含有量は30体積%以下が好ましく、より好ま
しくは1〜25体積%である。
The atmosphere for the stabilization treatment is an oxygen-containing atmosphere, and the oxygen content is preferably 30% by volume or less, more preferably 1 to 25% by volume.

【0029】安定化処理の程度は、後述するように、安
定化処理後の混合物を熱分析し重量増加を計測して酸化
被膜の重量比から算出することができる。混合物におけ
る鉄粒子の酸化被膜の重量比は1〜15重量%が好まし
い。1重量%未満の場合には酸化被膜を形成した効果が
無く、15重量%を越える場合には後工程の還元拡散反
応が激しく起こるため好ましくない。
The degree of the stabilization treatment can be calculated from the weight ratio of the oxide film by thermal analysis of the mixture after the stabilization treatment to measure the weight increase, as described later. The weight ratio of the oxide film of iron particles in the mixture is preferably 1 to 15% by weight. If it is less than 1% by weight, the effect of forming an oxide film is not obtained, and if it exceeds 15% by weight, the reduction-diffusion reaction in the subsequent step occurs violently, which is not preferable.

【0030】安定化処理後の鉄粒子と酸化サマリウム粒
子との混合物に、カルシウムを混合して還元拡散反応を
行う。
Calcium is mixed with the mixture of iron particles and samarium oxide particles after the stabilization treatment to carry out a reduction diffusion reaction.

【0031】カルシウムの混合割合は、混合物中の酸化
サマリウム(Sm)1モルに対して3〜15モル
が好ましい。3モル未満の場合には、還元拡散反応が十
分ではなく、サマリウムの還元が不十分となる。15モ
ルを越える場合には効果が飽和するため必要以上に添加
する意味がない。
The mixing ratio of calcium is preferably 3 to 15 mol with respect to 1 mol of samarium oxide (Sm 2 O 3 ) in the mixture. When the amount is less than 3 mol, the reduction diffusion reaction is not sufficient and the reduction of samarium is insufficient. If it exceeds 15 moles, the effect is saturated and it is meaningless to add more than necessary.

【0032】還元拡散反応は、不活性ガス雰囲気下で8
00〜1200℃の温度範囲で行う。800℃未満の場
合には酸化サマリウムの還元が不十分となる。1200
℃を越える場合にはカルシウム及びサマリウムの蒸発が
起こり始め組成比が変化しやすく、また、焼結が進行し
やすくなる。
The reduction-diffusion reaction is performed under an inert gas atmosphere at 8
It is performed in the temperature range of 00 to 1200 ° C. If the temperature is lower than 800 ° C, the reduction of samarium oxide will be insufficient. 1200
If the temperature exceeds ℃, evaporation of calcium and samarium begins to occur, the composition ratio is likely to change, and sintering is likely to proceed.

【0033】還元拡散反応を行うことによって、鉄粒子
と酸化サマリウム粒子との混合物を鉄とサマリウムとの
合金にする。
The mixture of iron particles and samarium oxide particles is made into an alloy of iron and samarium by carrying out a reduction diffusion reaction.

【0034】還元拡散反応後の鉄とサマリウムとの合金
を300〜600℃の温度範囲で窒化反応を行う。30
0℃未満の場合には鉄とサマリウムとの合金に必要量の
窒素を侵入させることが困難となる。600℃を越える
場合にはα−FeとSmの窒化物などへの分解が始まる
ため好ましくない。窒化反応の時間は1〜20時間程度
である。
The alloy of iron and samarium after the reduction diffusion reaction is subjected to a nitriding reaction in the temperature range of 300 to 600 ° C. Thirty
When the temperature is lower than 0 ° C, it becomes difficult to inject a necessary amount of nitrogen into the alloy of iron and samarium. If it exceeds 600 ° C., decomposition of α-Fe and Sm into nitrides and the like starts, which is not preferable. The nitriding reaction time is about 1 to 20 hours.

【0035】窒化反応は、SmFe17に対して2.
8〜3.5重量%の窒素を含有するように行う。
The nitriding reaction was performed on Sm 2 Fe 17 by 2.
Performed so as to contain 8-3.5% by weight of nitrogen.

【0036】窒化反応後のSm−Fe−N系磁性粉末は
水洗、濾過、乾燥して取り出すことができる。
The Sm-Fe-N magnetic powder after the nitriding reaction can be taken out by washing with water, filtering and drying.

【0037】得られたボンド磁石用Sm−Fe−N系磁
性粉末は、SmFe17を主成分とし、粒子形状
はほぼ球状であり粒子表面は滑らかであり、平均粒径が
2.0〜6.0μm、BET比表面積値が0.10〜
0.80m/g、粒度分布のうちD10が1.0μm
以上、D90が10.0μm以下であることが好まし
い。D10とD90との比D10/D90は0.10以
上であることが好ましい。
The obtained Sm-Fe-N-based magnetic powder for bonded magnets contains Sm 2 Fe 17 N 3 as a main component, the particle shape is almost spherical, the particle surface is smooth, and the average particle diameter is 2. 0-6.0 μm, BET specific surface area value 0.10-
0.80 m 2 / g, D 10 of the particle size distribution is 1.0 μm
As described above, it is preferable that D 90 is 10.0 μm or less. D 10 and the ratio D 10 / D 90 of the D 90 is preferably 0.10 or more.

【0038】得られたボンド磁石用Sm−Fe−N系磁
性粉末の磁気特性は(粉末を磁場中配向させて測定した
ところ)、保磁力238.7〜1428.6kA/m
(3000〜18000Oe)であり、残留磁束密度が
800〜1300mT(8〜13kG)であり、最大磁
気エネルギー積が79.4〜396.8kJ/m(1
0〜50MGOe)である。
The magnetic properties of the obtained Sm-Fe-N magnetic powder for bonded magnets (measured by orienting the powder in a magnetic field) are as follows: Coercive force 238.7 to 1428.6 kA / m.
(3000 to 18000 Oe), the residual magnetic flux density is 800 to 1300 mT (8 to 13 kG), and the maximum magnetic energy product is 79.4 to 396.8 kJ / m 3 (1
0 to 50 MGOe).

【0039】次に、本発明におけるボンド磁石用樹脂組
成物について述べる。
Next, the resin composition for a bonded magnet according to the present invention will be described.

【0040】本発明におけるボンド磁石用樹脂組成物
は、Sm−Fe−N系磁性粉末を結合剤樹脂中に分散し
てなるものであって、当該Sm−Fe−N系磁性粉末を
85〜99重量%含有し、残部が結合剤樹脂とその他添
加剤とからなる。
The resin composition for a bonded magnet according to the present invention comprises Sm-Fe-N magnetic powder dispersed in a binder resin, and the Sm-Fe-N magnetic powder is 85-99. % By weight, the balance consisting of binder resin and other additives.

【0041】前記結合剤樹脂としては、成形法によって
種々選択することができ、射出成形、押し出し成形及び
カレンダー成形の場合には熱可塑性樹脂が使用でき、圧
縮成形の場合には、熱硬化性樹脂が使用できる。前記熱
可塑性樹脂としては、例えば、ナイロン(PA)系、ポ
リプロピレン(PP)系、エチレンビニルアセテート
(EVA)系、ポリフェニレンサルファイド(PPS)
系、液晶樹脂(LCP)系、エラストマー系、ゴム系等
の樹脂が使用でき、前記熱硬化性樹脂としては、例え
ば、エポキシ系、フェノール系等の樹脂を使用すること
ができる。
The binder resin can be variously selected depending on the molding method. A thermoplastic resin can be used in the case of injection molding, extrusion molding and calender molding, and a thermosetting resin in the case of compression molding. Can be used. Examples of the thermoplastic resin include nylon (PA) -based, polypropylene (PP) -based, ethylene vinyl acetate (EVA) -based, and polyphenylene sulfide (PPS).
A resin such as a resin, a liquid crystal resin (LCP), an elastomer, or a rubber can be used. As the thermosetting resin, for example, an epoxy resin, a phenol resin, or the like can be used.

【0042】なお、ボンド磁石用樹脂組成物を製造する
に際して、成形を容易にしたり、磁気特性を十分に引き
出すために、必要により、結合剤樹脂の他に可塑剤、滑
剤、カップリング剤など周知の添加物を使用してもよ
い。また、フェライト磁石粉末などの多種の磁石粉末を
混合することもできる。
In the production of the resin composition for a bonded magnet, a plasticizer, a lubricant, a coupling agent, etc. in addition to the binder resin are well known in order to facilitate the molding and bring out the magnetic properties sufficiently. You may use the additive of. Further, various magnet powders such as ferrite magnet powder can be mixed.

【0043】これらの添加物は、目的に応じて適切なも
のを選択すればよく、可塑剤としては、それぞれの使用
樹脂に応じた市販品を使用することができ、その合計量
は使用する結合剤樹脂に対して0.01〜5.0重量%
程度が使用できる。
These additives may be selected appropriately according to the purpose, and as the plasticizer, commercially available products corresponding to the respective resins used can be used, and the total amount thereof is the bond used. 0.01-5.0% by weight to the agent resin
Degree can be used.

【0044】前記滑剤としては、ステアリン酸とその誘
導体、無機滑剤、オイル系等が使用でき、ボンド磁石全
体に対して0.01〜1.0重量%程度が使用できる。
As the lubricant, stearic acid and its derivatives, inorganic lubricants, oils, etc. can be used, and about 0.01 to 1.0% by weight can be used with respect to the whole bonded magnet.

【0045】前記カップリング剤としては、使用樹脂と
フィラーに応じた市販品が使用でき、使用する結合剤樹
脂に対して0.01〜3.0重量%程度が使用できる。
As the coupling agent, a commercially available product depending on the resin and filler used can be used, and about 0.01 to 3.0% by weight based on the binder resin used can be used.

【0046】他の磁性粉末としては、フェライト磁石粉
末、アルニコ系磁石粉末、希土類系磁石粉末などが使用
できる。
As the other magnetic powder, ferrite magnet powder, alnico magnet powder, rare earth magnet powder and the like can be used.

【0047】ボンド磁石用樹脂組成物の混練安定性は、
後述する評価法において20%以下が好ましい。混練安
定性が20%を越える場合には、磁性粉末と結合剤樹脂
とを混練する工程において、熱と圧力が加わる中で、磁
性粉末が酸化などすると、それに伴って結合剤樹脂も化
学的に変質し、プラストミルのトルクが上昇することに
なり好ましくない。
The kneading stability of the resin composition for bonded magnets is
In the evaluation method described below, 20% or less is preferable. When the kneading stability exceeds 20%, when the magnetic powder is oxidized while heat and pressure are applied in the step of kneading the magnetic powder and the binder resin, the binder resin is chemically changed accordingly. It is not preferable because it deteriorates and the torque of the plastomill increases.

【0048】ボンド磁石用樹脂組成物の流れ性(MF
R)は、後述する評価法において、150〜500g/
10min程度が望ましい。150g/10min未満
の場合には、射出成型の成形性と生産性が著しく低下す
る。
Flowability of resin composition for bonded magnet (MF
R) is 150 to 500 g / in the evaluation method described later.
About 10 minutes is desirable. When it is less than 150 g / 10 min, the moldability and productivity of injection molding are significantly reduced.

【0049】本発明に係るボンド磁石用樹脂組成物は、
Sm−Fe−N系磁性粉末を結合剤樹脂と混合、混練し
てボンド磁石用樹脂組成物を得る。
The resin composition for a bonded magnet according to the present invention is
The Sm-Fe-N-based magnetic powder is mixed with a binder resin and kneaded to obtain a resin composition for a bonded magnet.

【0050】前記混合は、ヘンシェルミキサー、V字ミ
キサー、ナウター等の混合機などで行うことができ、混
練は一軸混練機、二軸混練機、臼型混練機、押し出し混
練機などで行うことができる。
The above-mentioned mixing can be carried out by a mixer such as a Henschel mixer, a V-shaped mixer, a Nauter, etc., and the kneading can be carried out by a uniaxial kneading machine, a biaxial kneading machine, a mortar type kneading machine, an extrusion kneading machine or the like. it can.

【0051】次に、本発明に係るボンド磁石について述
べる。
Next, the bonded magnet according to the present invention will be described.

【0052】ボンド磁石の磁気特性は目的とする用途に
応じて種々変化させることができるが、残留磁束密度は
350〜800mT(3.5〜8.0kG)であり、保
磁力は238.7〜1428.5kA/m(3000〜
18000Oe)であり、最大エネルギー積は23.9
〜158.7kJ/m(3〜20MGOe)であるこ
とが好ましい。
Although the magnetic characteristics of the bonded magnet can be variously changed according to the intended use, the residual magnetic flux density is 350 to 800 mT (3.5 to 8.0 kG) and the coercive force is 238.7 to. 1428.5 kA / m (3000-
18000 Oe), and the maximum energy product is 23.9.
˜158.7 kJ / m 3 ( 3 to 20 MGOe) is preferable.

【0053】ボンド磁石の成形密度は4.5〜5.0g
/cmであることが好ましい。
The molding density of the bonded magnet is 4.5 to 5.0 g.
/ Cm 3 is preferable.

【0054】本発明におけるボンド磁石は、前記ボンド
磁石用樹脂組成物を用いて、射出成形、押出成形、圧縮
成形又はカレンダー成形等の周知の成形法で成形加工し
た後、常法に従って電磁石着磁やパルス着磁することに
より、ボンド磁石とすることができる。
The bonded magnet according to the present invention is molded by a known molding method such as injection molding, extrusion molding, compression molding or calender molding using the above resin composition for a bonded magnet, and then magnetized by an ordinary method. It is possible to obtain a bonded magnet by pulse-magnetizing or.

【0055】[0055]

【発明の実施の形態】本発明の代表的な実施の形態は次
の通りである。
BEST MODE FOR CARRYING OUT THE INVENTION A typical embodiment of the present invention is as follows.

【0056】本発明における安定化処理の程度は、下記
方法に従って算出した。
The degree of stabilization treatment in the present invention was calculated according to the following method.

【0057】即ち、熱重量測定TGを用いて、空気中6
00℃で加熱し、重量増加を計測することで、酸化被膜
の重量比を算出した。たとえば、SmFe17となる
化学量論比に対してSmの含有量を110%とした場合
の混合物では、酸化による重量増加が29%だとする
と、下記計算式に従って算出することによって、鉄粒子
に設けられた酸化被膜は鉄粒子全体の約7.0wt%と
計算できる。
That is, using thermogravimetric TG, 6 in air
The weight ratio of the oxide film was calculated by heating at 00 ° C. and measuring the weight increase. For example, in a mixture in which the Sm content is 110% with respect to the stoichiometric ratio of Sm 2 Fe 17 , if the weight increase due to oxidation is 29%, iron particles are calculated by the following calculation formula. The oxide film provided can be calculated to be about 7.0 wt% of the total iron particles.

【0058】重量増加比をD、鉄粒子中のFe原子全量
中のマグネタイトに含まれるFe原子の比をx、Sm
Fe17となる化学量論比に対するSmの混合比をz
(z×100(%))として、下記数1及び数2に従っ
て、鉄粒子中のマグネタイト重量比yを算出した。
The weight increase ratio is D, the ratio of Fe atoms contained in magnetite to the total Fe atoms in the iron particles is x, and Sm 2
The mixing ratio of Sm to the stoichiometric ratio of Fe 17 is z
As (z × 100 (%)), the magnetite weight ratio y in the iron particles was calculated according to the following formulas 1 and 2.

【0059】[0059]

【数1】重量増加比D: [Formula 1] Weight increase ratio D:

【0060】[0060]

【数2】鉄粒子中のマグネタイト重量比y: [Formula 2] Weight ratio of magnetite in iron particles y:

【0061】Sm−Fe−N系磁性粉末の形状は走査型
電子顕微鏡で観察した。
The shape of the Sm-Fe-N magnetic powder was observed with a scanning electron microscope.

【0062】酸化鉄粒子粉末及びSm−Fe−N系磁性
粉末の粒度分布はHELOSで測定し、各粒子粉末の全
体積を100%として粒子径に対する累積割合を求めた
とき、その累積割合が10%、50%、90%となる点
の粒子径をそれぞれD10、D50(平均粒子径)、D
90として示した。
The particle size distributions of the iron oxide particle powder and the Sm-Fe-N magnetic powder were measured by HELOS, and the cumulative ratio to the particle diameter was calculated when the total volume of each particle powder was 100% and the cumulative ratio was 10 %, 50% and 90% of the particle diameters are D 10 , D 50 (average particle diameter) and D, respectively.
Shown as 90 .

【0063】Sm−Fe−N系磁性粉末の磁気特性は、
アクリル製のカプセル中に蝋と磁粉を入れて、配向磁場
を印加しながら、加熱冷却し、磁粉を配向した上で、試
料振動型磁力計VSM(東英工業株式会社製)で測定し
た値で示した。
The magnetic characteristics of the Sm-Fe-N magnetic powder are as follows:
Wax and magnetic powder were placed in an acrylic capsule, heated and cooled while applying an orientation magnetic field to orient the magnetic powder, and then measured with a sample vibrating magnetometer VSM (manufactured by Toei Industry Co., Ltd.). Indicated.

【0064】ボンド磁石用樹脂組成物の混練安定性は、
Sm−Fe−N系磁性粉末90.3重量部と12ナイロ
ン樹脂8.2重量%、酸化防止剤0.5重量%及び表面
処理剤1.0重量%とをヘンシェルミキサーを用いて混
合し、二軸押出混練機により混練(混練温度190℃)
を行い、得られた組成物をプラストミルで120分間連
続して混練したとき、その混練トルクが0.2kg・m
を超えることがなく、且つ、最低トルクの値を(A)、
120分後のトルクの値を(B)としたとき、[(B)
−(A)]/(A)×100(%)で示す。
The kneading stability of the resin composition for bonded magnets is
90.3 parts by weight of Sm-Fe-N magnetic powder, 8.2% by weight of 12 nylon resin, 0.5% by weight of antioxidant and 1.0% by weight of surface treatment agent were mixed using a Henschel mixer, Kneading with a twin-screw extrusion kneader (kneading temperature 190 ° C)
When the resulting composition was continuously kneaded with a plastomill for 120 minutes, the kneading torque was 0.2 kg · m.
And the minimum torque value (A),
Assuming that the torque value after 120 minutes is (B), [(B)
-(A)] / (A) × 100 (%).

【0065】ボンド磁石用樹脂組成物の流れ性(MF
R)はセミメルトインデクサ(型式2A、東洋精機
(株)製)を用いて加熱温度270℃、加重10kgf
の条件で測定した。
Flowability of resin composition for bonded magnet (MF
R) is a semi-melt indexer (model 2A, manufactured by Toyo Seiki Co., Ltd.), and the heating temperature is 270 ° C and the load is 10 kgf.
It was measured under the conditions.

【0066】Sm−Fe−N系磁性粉末を含有するボン
ド磁石の磁気特性は、配向磁場中で成型したボンド磁石
をBHトレーサー(東英工業工業株式会社)により測定
した。
The magnetic properties of the bond magnet containing the Sm-Fe-N magnetic powder were measured by a BH tracer (Toei Kogyo Co., Ltd.) of the bond magnet molded in an oriented magnetic field.

【0067】ボンド磁石の密度は、成形ボンド磁石を室
温約25℃に十分冷却した後、ボンド磁石の大きさを測
定し、測定値から体積を求めた。次に、当該成形ボンド
磁石の重量を測定し、重量値(g)を体積値で除した値
で示した。
Regarding the density of the bond magnet, after the molded bond magnet was sufficiently cooled to room temperature of about 25 ° C., the size of the bond magnet was measured, and the volume was determined from the measured value. Next, the weight of the molded bonded magnet was measured, and the weight value (g) was divided by the volume value.

【0068】<Sm−Fe−N系磁性粉末の製造>反応
タンクに水、苛性ソーダ、硫酸鉄FeSOを所定量投
入し、温度を80℃に保ち、空気を吹き込み、反応溶液
をpH5に調整して、反応、合成、粒状マグネタイト粒
子を得る。次いで、ろ過・水洗・乾燥して、800−1
000℃の範囲で大気中で焼成を行う。焼成後、ピンミ
ルで解砕して酸化鉄粒子粉末を得た。
<Production of Sm-Fe-N Magnetic Powder> Water, caustic soda and iron sulfate FeSO 4 were charged in a predetermined amount into the reaction tank, the temperature was kept at 80 ° C., air was blown into the reaction solution to adjust the pH to 5. Then, reaction, synthesis and granular magnetite particles are obtained. Then, filter, wash with water, and dry, 800-1
Firing is performed in the atmosphere in the range of 000 ° C. After firing, it was crushed with a pin mill to obtain iron oxide particle powder.

【0069】得られた酸化鉄粒子粉末はヘマタイト(α
−Fe)であり、粒子形状はほぼ球状に近い形で
あり、平均粒子径1.31μmであり、粒度分布のうち
0.6μm、D902.24μmであり、BET
比表面積値2.2m/gであった。
The obtained iron oxide particle powder is hematite (α
A -Fe 2 O 3), the particle shape is substantially close to the spherical shape, an average particle diameter of 1.31 .mu.m, D 1 0 0.6 .mu.m of the particle size distribution, a D 90 2.24μm, BET
The specific surface area value was 2.2 m 2 / g.

【0070】<湿式混合>ここに得た酸化鉄粒子粉末の
うち3118.52gと酸化サマリウム(Sm
粒子形状:粒状、平均粒子径4.40μm)881.4
8gとをアトライタにて、水を用いて湿式混合した。得
られたスラリーを濾過、乾燥し、ほぐして混合粉末を得
た。
<Wet Mixing> 3118.52 g of the iron oxide particle powder obtained here and samarium oxide (Sm 2 O 3 ,
Particle shape: granular, average particle size 4.40 μm) 881.4
8 g was wet mixed with water in an attritor. The obtained slurry was filtered, dried, and loosened to obtain a mixed powder.

【0071】<還元反応及び安定化処理>次いで、得ら
れた混合粉末3000gを回転熱処理炉に充填し、純度
100%の水素を40リットル/minで流通させなが
ら、600℃で5時間加熱して還元反応を行った。還元
反応後は、鉄粒子と酸化サマリウム粒子の混合物であっ
た。その後、回転炉中雰囲気をNに置換し、温度を4
0℃にまで冷却する。温度が安定したら、およそ2.0
vol%の酸素を含有するN流通下にて1時間安定化
処理を行って、前記鉄粒子の粒子表面を徐酸化し、粒子
表面に酸化被膜を形成した。反応熱を観察し、反応熱が
収まったら、系全体を室温まで冷却し、大気中に当該混
合物を取り出し、ライカイキでほぐして粒子表面に酸化
被膜を形成した鉄粒子と酸化サマリウム粒子との混合物
からなる黒色粉末を得た。鉄粒子に形成された酸化被膜
は、鉄粒子中のマグネタイトとして7.0重量%であっ
た。
<Reduction reaction and stabilization treatment> Next, 3000 g of the obtained mixed powder was charged into a rotary heat treatment furnace and heated at 600 ° C. for 5 hours while flowing hydrogen having a purity of 100% at 40 l / min. A reduction reaction was performed. After the reduction reaction, it was a mixture of iron particles and samarium oxide particles. Then, the atmosphere in the rotary furnace was replaced with N 2 and the temperature was changed to 4
Cool to 0 ° C. When the temperature stabilizes, about 2.0
Stabilization treatment was performed for 1 hour under N 2 flow containing vol% oxygen to gradually oxidize the particle surfaces of the iron particles and form an oxide film on the particle surfaces. After observing the heat of reaction, when the heat of reaction has subsided, the entire system is cooled to room temperature, the mixture is taken out into the air, and is loosened with a reiki to form an oxide film on the particle surface. A black powder was obtained. The oxide film formed on the iron particles was 7.0% by weight as magnetite in the iron particles.

【0072】<還元拡散反応および窒化反応>ここに得
た黒色粉末521.51gと粒状金属Caを103.4
9g(Smに対して600モル%)とを混合し
て、純鉄製トレーに入れて、雰囲気炉に挿入する。炉内
を真空排気した後、アルゴンガス気流中で1050℃ま
で昇温する。炉内の温度が所定の温度に到達したら、次
に、450℃まで冷却し、温度が450℃で安定した
ら、一度真空排気し、Nガス気流中とする。N気流
中としてから、8時間、450℃に保持して窒化反応し
た後、室温まで冷却する。
<Reduction and diffusion reaction and nitriding reaction> 521.51 g of the black powder obtained here and 103.4 of granular metal Ca were added.
9 g (600 mol% with respect to Sm 2 O 3 ) is mixed, put in a tray made of pure iron, and inserted into an atmosphere furnace. After evacuation of the furnace, the temperature is raised to 1050 ° C. in an argon gas stream. When the temperature in the furnace reaches a predetermined temperature, it is then cooled to 450 ° C., and when the temperature stabilizes at 450 ° C., it is evacuated once and placed in a N 2 gas stream. After being in a N 2 stream, the temperature is maintained at 450 ° C. for 8 hours for nitriding reaction, and then cooled to room temperature.

【0073】<水洗・乾燥>窒化反応後の粉末を水中に
投じる。これにより、水中にて、自然に崩壊し、合金粉
末とCa成分との分離が始まる。さらに機械的解砕を加
えることで、凝集体の中まで、Ca成分を水洗する。数
回デカンテーションを繰り返すことで、当該粉末からC
a成分を除去した後、濾過し、N気流中で乾燥させて
Sm−Fe−N系磁性粉末500gを得た。
<Washing / Drying> The powder after the nitriding reaction is poured into water. As a result, it spontaneously disintegrates in water and the separation of the alloy powder and the Ca component begins. By further mechanically crushing, the Ca component is washed with water into the aggregate. By repeating decantation several times, C
After removing the component a, it was filtered and dried in an N 2 stream to obtain 500 g of Sm-Fe-N-based magnetic powder.

【0074】得られたSm−Fe−N系磁性粉末は、粒
子形状は球状であってその粒子表面は滑らかであり、平
均粒径3.0μm、粒度分布のうちD10が1.03μ
m、D90が5.70μm、BET比表面積値0.67
/gであった。磁気特性は、保磁力897kA/m
(11300Oe)であり、残留磁束密度が1244m
T(12.44kG)であり、最大磁気エネルギー積が
222kJ/m(28.0MGOe)であった。
The obtained Sm-Fe-N magnetic powder had a spherical particle shape and a smooth particle surface, with an average particle diameter of 3.0 μm and a particle size distribution of D 10 of 1.03 μm.
m, D 90 is 5.70 μm, BET specific surface area value is 0.67
m was 2 / g. Magnetic property is coercive force 897kA / m
(11300 Oe) and residual magnetic flux density is 1244 m
T (12.44 kG), and the maximum magnetic energy product was 222 kJ / m 3 (28.0 MGOe).

【0075】<ボンド磁石用樹脂組成物の製造>ここに
得たSm−Fe−N系磁性粉末90.3重量%と12ナ
イロン樹脂8.2重量%、酸化防止剤0.5重量%及び
表面処理剤1.0重量%とをヘンシェルミキサーを用い
て混合し、二軸押出混練機により混練(混練温度190
℃)を行い、ボンド磁石用樹脂組成物を得た。
<Production of Resin Composition for Bonded Magnet> 90.3 wt% of Sm-Fe-N magnetic powder obtained here, 8.2 wt% of 12 nylon resin, 0.5 wt% of antioxidant and surface. 1.0% by weight of the treating agent was mixed using a Henschel mixer and kneaded with a twin-screw extrusion kneader (kneading temperature 190
C.) to obtain a resin composition for a bonded magnet.

【0076】得られたボンド磁石用樹脂組成物の混練安
定性は前述した評価法で3%であり、流動性を示すMF
Rは加熱温度270℃、加圧10kgの条件で430g
/10minであった。
The kneading stability of the obtained resin composition for bonded magnets was 3% according to the above-mentioned evaluation method, and MF showing fluidity was obtained.
R is 430g under the conditions of heating temperature of 270 ° C and pressure of 10kg.
It was / 10 min.

【0077】<ボンド磁石の製造>得られたボンド磁石
用樹脂組成物を用いて射出成形し、ボンド磁石を作製し
た。
<Manufacture of Bonded Magnet> The obtained resin composition for a bonded magnet was injection-molded to prepare a bonded magnet.

【0078】得られた射出成形ボンド磁石の室温磁気特
性は残留磁束密度が763mT(7.63kG)、保磁
力が635kA/m(8.01kOe)、最大磁気エネ
ルギー積が103kJ/m(13.0MGOe)であ
り、密度は4.76g/ccであった。
The room temperature magnetic characteristics of the obtained injection-molded bonded magnet were as follows: residual magnetic flux density of 763 mT (7.63 kG), coercive force of 635 kA / m (8.01 kOe), and maximum magnetic energy product of 103 kJ / m 3 (13. 0MGOe) and the density was 4.76 g / cc.

【0079】[0079]

【作用】本発明では酸化サマリウムと酸化鉄粒子粉末と
の混合物を水素還元した後、安定化処理を行って鉄粒子
の粒子表面に酸化被膜を形成する。鉄粒子の粒子表面に
酸化被膜を形成することよって、還元拡散反応の際に各
鉄粒子の酸化被膜層が発熱し、全体として均一な還元拡
散反応を行うことができ、均一な焼成が可能となったも
のと推定している。
In the present invention, a mixture of samarium oxide and iron oxide particle powder is hydrogen-reduced and then stabilized to form an oxide film on the particle surface of the iron particles. By forming an oxide film on the particle surface of the iron particles, the oxide film layer of each iron particle generates heat during the reduction-diffusion reaction, and a uniform reduction-diffusion reaction can be performed as a whole, which enables uniform firing. It is estimated that it has become.

【0080】また、Sm−Fe−N系磁性粉末の粒子形
状及び粒度分布は、出発原料、特に酸化鉄粒子粉末の粒
子形状及び粒度分布に依存して成長することが知られて
いる。本発明においては粒度分布が均斉な酸化鉄粒子粉
末を用いたことによって、得られるSm−Fe−N系磁
性粉末はより均斉な粒度分布を有するものである。
It is known that the particle shape and particle size distribution of the Sm-Fe-N system magnetic powder grow depending on the particle shape and particle size distribution of the starting material, especially iron oxide particle powder. In the present invention, by using the iron oxide particle powder having a uniform particle size distribution, the obtained Sm-Fe-N-based magnetic powder has a more uniform particle size distribution.

【0081】[0081]

【実施例】次に、実施例並びに比較例を挙げる。EXAMPLES Next, examples and comparative examples will be given.

【0082】実施例1〜4、比較例1〜4:酸化鉄粒子
粉末の平均粒子径及び粒度分布、安定化処理の条件を種
々変化させた以外は前記発明の実施の形態と同様にして
Sm−Fe−N系磁性粉末を得た。
Examples 1 to 4 and Comparative Examples 1 to 4: Sm was carried out in the same manner as in the above-mentioned embodiment of the invention except that the average particle diameter and particle size distribution of the iron oxide particle powder and the conditions of the stabilizing treatment were variously changed. -Fe-N system magnetic powder was obtained.

【0083】このときの製造条件を表1に、得られたS
m−Fe−N系磁性粉末の諸特性を表2に示す。なお、
安定化処理の酸化被膜の重量%は、鉄粒子の粒子表面に
形成されたマグネタイト(酸化被膜)について、鉄粒子
中のマグネタイトの重量割合である。
The manufacturing conditions at this time are shown in Table 1, and the obtained S
Table 2 shows various characteristics of the m-Fe-N magnetic powder. In addition,
The weight% of the oxide film for the stabilization treatment is the weight ratio of magnetite in the iron particles with respect to the magnetite (oxide film) formed on the particle surface of the iron particles.

【0084】[0084]

【表1】 [Table 1]

【0085】[0085]

【表2】 [Table 2]

【0086】実施例1乃至4で得られたSm−Fe−N
系磁性粉末はいずれも、粒子形状はほぼ球状であって、
粒子表面は滑らかであった。
Sm-Fe-N obtained in Examples 1 to 4
All of the magnetic powders have a substantially spherical particle shape,
The particle surface was smooth.

【0087】実施例5〜8、比較使用例5〜8:Sm−
Fe−N系磁性粉末を種々変化させた以外は前記発明の
実施の形態と同様にしてボンド磁石を得た。
Examples 5-8, Comparative use examples 5-8: Sm-
A bonded magnet was obtained in the same manner as the embodiment of the present invention except that the Fe-N magnetic powder was variously changed.

【0088】このときの製造条件及びボンド磁石の諸特
性を表3に示す。
Table 3 shows the manufacturing conditions and various characteristics of the bonded magnet at this time.

【0089】[0089]

【表3】 [Table 3]

【0090】[0090]

【発明の効果】本発明に係るボンド磁石用Sm−Fe−
N系磁性粉末の製造法によって、流動性及び混練安定性
に優れたボンド磁石用Sm−Fe−N系磁性粉末が得ら
れるので、ボンド磁石用Sm−Fe−N系磁性粉末の製
造法として好適である。
EFFECT OF THE INVENTION Sm-Fe- for bonded magnets according to the present invention
Since the Sm-Fe-N-based magnetic powder for bonded magnets having excellent fluidity and kneading stability can be obtained by the method for producing N-based magnetic powder, it is suitable as a method for manufacturing Sm-Fe-N-based magnetic powder for bonded magnets. Is.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平田 匡宣 広島県大竹市明治新開1番4 戸田工業株 式会社大竹創造センター内 (72)発明者 杉田 典生 広島県大竹市明治新開1番4 戸田工業株 式会社大竹創造センター内 Fターム(参考) 4K017 AA04 BA06 BB12 CA01 CA07 DA04 EH18 FB10 5E040 AA11 AA19 BB03 BC08 CA01 HB07 HB09 HB11 HB14 HB17 5E062 CD05 CG03 CG07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masanori Hirata             Toda Kogyo Co., Ltd. 1-4 Meiji Shinkai, Otake City, Hiroshima Prefecture             In ceremony company Otake creation center (72) Inventor Norio Sugita             Toda Kogyo Co., Ltd. 1-4 Meiji Shinkai, Otake City, Hiroshima Prefecture             In ceremony company Otake creation center F term (reference) 4K017 AA04 BA06 BB12 CA01 CA07                       DA04 EH18 FB10                 5E040 AA11 AA19 BB03 BC08 CA01                       HB07 HB09 HB11 HB14 HB17                 5E062 CD05 CG03 CG07

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化鉄粒子粉末と酸化サマリウム粒子粉
末とを混合した後、当該混合物を還元反応を行って鉄粒
子と酸化サマリウム粒子との混合物とし、次いで、30
〜150℃の温度範囲、酸素含有雰囲気下で安定化処理
を行って前記鉄粒子の粒子表面に酸化被膜を形成した
後、Caを混合して800〜1200℃の温度範囲、不
活性ガス雰囲気下で還元拡散反応を行い、次いで、30
0〜600℃の温度範囲で窒化反応を行うことを特徴と
するボンド磁石用Sm−Fe−N系磁性粉末の製造法。
1. An iron oxide particle powder and a samarium oxide particle powder are mixed, and then the mixture is subjected to a reduction reaction to form a mixture of iron particles and samarium oxide particles, and then 30
~ 150 ° C in a temperature range of oxygen-containing atmosphere to perform a stabilizing treatment to form an oxide film on the particle surface of the iron particles, and then mix with Ca in a temperature range of 800 to 1200 ° C in an inert gas atmosphere. The reduction diffusion reaction is carried out at
A method for producing an Sm-Fe-N-based magnetic powder for a bonded magnet, which comprises performing a nitriding reaction in a temperature range of 0 to 600 ° C.
【請求項2】 請求項1記載のボンド磁石用Sm−Fe
−N系磁性粉末の製造法で得られたボンド磁石用Sm−
Fe−N系磁性粉末を含有することを特徴とするボンド
磁石。
2. The Sm—Fe for bonded magnet according to claim 1.
-Sm for bonded magnets obtained by the method for producing N-based magnetic powder-
A bonded magnet containing Fe-N magnetic powder.
JP2002095428A 2002-03-29 2002-03-29 Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet Expired - Fee Related JP4296379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002095428A JP4296379B2 (en) 2002-03-29 2002-03-29 Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002095428A JP4296379B2 (en) 2002-03-29 2002-03-29 Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet

Publications (2)

Publication Number Publication Date
JP2003297660A true JP2003297660A (en) 2003-10-17
JP4296379B2 JP4296379B2 (en) 2009-07-15

Family

ID=29387214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002095428A Expired - Fee Related JP4296379B2 (en) 2002-03-29 2002-03-29 Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet

Country Status (1)

Country Link
JP (1) JP4296379B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307342A (en) * 2005-03-31 2006-11-09 Toda Kogyo Corp METHOD FOR PRODUCING Sm-Fe-N BASED MAGNETIC PARTICLE POWDER, RESIN COMPOSITION FOR BOND MAGNET COMPRISING Sm-Fe-N BASED MAGNETIC PARTICLE POWDER, AND BOND MAGNET
JP2007035667A (en) * 2005-07-22 2007-02-08 Toda Kogyo Corp Compound magnetic powder for bond magnet, resin composition for bond magnet, and bond magnet
CN111163885A (en) * 2018-08-31 2020-05-15 株式会社Lg化学 Method for producing magnetic material and magnetic material
CN112805795A (en) * 2018-10-10 2021-05-14 味之素株式会社 Magnetic paste

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307342A (en) * 2005-03-31 2006-11-09 Toda Kogyo Corp METHOD FOR PRODUCING Sm-Fe-N BASED MAGNETIC PARTICLE POWDER, RESIN COMPOSITION FOR BOND MAGNET COMPRISING Sm-Fe-N BASED MAGNETIC PARTICLE POWDER, AND BOND MAGNET
JP4662061B2 (en) * 2005-03-31 2011-03-30 戸田工業株式会社 Method for producing Sm-Fe-N magnetic particle powder, resin composition for bonded magnet containing Sm-Fe-N magnetic particle powder, and bonded magnet
JP2007035667A (en) * 2005-07-22 2007-02-08 Toda Kogyo Corp Compound magnetic powder for bond magnet, resin composition for bond magnet, and bond magnet
CN111163885A (en) * 2018-08-31 2020-05-15 株式会社Lg化学 Method for producing magnetic material and magnetic material
CN111163885B (en) * 2018-08-31 2023-04-18 株式会社Lg化学 Method for producing magnetic material and magnetic material
CN112805795A (en) * 2018-10-10 2021-05-14 味之素株式会社 Magnetic paste
US12014854B2 (en) 2018-10-10 2024-06-18 Ajinomoto Co., Inc. Magnetic paste

Also Published As

Publication number Publication date
JP4296379B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP5831866B2 (en) Ferromagnetic particle powder and method for producing the same, anisotropic magnet, bonded magnet, and compacted magnet
JP5769223B2 (en) Ferromagnetic particle powder and production method thereof, anisotropic magnet and bonded magnet
US11676748B2 (en) Anisotropic magnetic powders and method of producing the same
JP5924657B2 (en) Method for producing ferromagnetic iron nitride particle powder, anisotropic magnet, bonded magnet and dust magnet
JP6155440B2 (en) Method for producing ferromagnetic iron nitride particle powder, method for producing anisotropic magnet, bonded magnet and dust magnet
TWI509643B (en) A strong magnetic particle powder and a method for producing the same, an anisotropic magnet and a bonded magnet
JP5858419B2 (en) Method for producing ferromagnetic particle powder, anisotropic magnet, bonded magnet, and dust magnet
KR20140078625A (en) Method for manufacturing ferromagnetic iron nitride powder, anisotropic magnet, bond magnet, and compressed-powder magnet
JP2018127716A (en) Rare-earth-iron-nitrogen based magnetic powder and method for producing the same
JP4623308B2 (en) Sm-Fe-N-based magnetic particle powder for bonded magnet and method for producing the same, resin composition for bonded magnet, and bonded magnet
Xu et al. Exchange coupled SrFe 12 O 19/Fe-Co core/shell particles with different shell thickness
JP2015019050A (en) Iron nitride magnetic powder and magnet using the same
JP2021055188A (en) Method for producing anisotropic magnetic powder
JP2016134583A (en) Iron-nitride-based magnet
JP2006283094A (en) Sm-Fe-N MAGNETIC PARTICLE POWDER, ITS MANUFACTURING METHOD, AND BOND MAGNET
JP2007277692A (en) Sm-Fe-N BASED MAGNETIC PARTICLE POWDER, ITS PRODUCTION METHOD, RESIN COMPOSITION FOR BOND MAGNET COMPRISING Sm-Fe-N BASED MAGNETIC PARTICLE POWDER
JP4296379B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
JP3800589B2 (en) SmFeN magnet powder and bonded magnet using the same
JP5110296B2 (en) Method for producing Sm-Fe-N-based magnetic particle powder, resin composition for bonded magnet containing Sm-Fe-N-based magnetic particle powder, and bonded magnet
JP4370555B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
JP4662061B2 (en) Method for producing Sm-Fe-N magnetic particle powder, resin composition for bonded magnet containing Sm-Fe-N magnetic particle powder, and bonded magnet
JP5019037B2 (en) Sm-Fe-N-based magnetic particle powder and method for producing the same, resin composition for bonded magnet containing Sm-Fe-N-based magnetic particle powder, and bonded magnet
JP2006002187A (en) Sm-Fe-N-BASED MAGNETIC PARTICLE POWDER, AND BOND MAGNET CONTAINING THE Sm-Fe-N-BASED MAGNETIC PARTICLE POWDER
WO2022259949A1 (en) Smfen-based anisotropic magnetic powder, bonded maget, method for producing said smfen-based anisotropic magnetic powder, and method for producing said bonded maget
Kumar et al. Studies on Mn (ZnxFe2O4 Nanoparticles Synthesized by Co-Precipitation Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees