JP2003280005A - Ocb type liquid crystal display device and method for driving the same - Google Patents

Ocb type liquid crystal display device and method for driving the same

Info

Publication number
JP2003280005A
JP2003280005A JP2002085244A JP2002085244A JP2003280005A JP 2003280005 A JP2003280005 A JP 2003280005A JP 2002085244 A JP2002085244 A JP 2002085244A JP 2002085244 A JP2002085244 A JP 2002085244A JP 2003280005 A JP2003280005 A JP 2003280005A
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
crystal display
sealing resin
type liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002085244A
Other languages
Japanese (ja)
Inventor
Shinji Ogawa
慎司 小川
Kenji Nakao
健次 中尾
Kazuhiro Nishiyama
和廣 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002085244A priority Critical patent/JP2003280005A/en
Publication of JP2003280005A publication Critical patent/JP2003280005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the effect for reducing display unevenness caused in the vicinity of a sealing resin is insufficient in a polar pulse applying method in the initial stage for driving an OCB type liquid crystal display device using a conventional two solvent type sealing resin. <P>SOLUTION: Display unevenness due to the reduction of specific resistance in the OCB type liquid crystal display device using a liquid crystal having high dielectric anisotropy is reduced by selecting a one solvent type sealing resin and applying pulse voltage in both polar directions in the initial stage for driving the display device to reduce electric field drift of an ionized component of an impurity in the sealing resin. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高誘電率異方性液晶
を使用したOCB型液晶表示装置およびその駆動方法に
関し、特に液晶基板を接着するシール樹脂と駆動方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an OCB type liquid crystal display device using a high dielectric constant anisotropic liquid crystal and a driving method thereof, and more particularly to a sealing resin for adhering a liquid crystal substrate and a driving method.

【0002】[0002]

【従来の技術】現在、パソコン、カーナビ、モニターお
よびTV等の画面表示用として液晶表示装置が多く用い
られている。これらの液晶表示に使用する液晶の配向モ
ードとしてはネマティック液晶を利用したTN型配向モ
ード、STN型配向モードが多く使用されているが、応
答が遅い、視野角が狭いなどの欠点がある。
2. Description of the Related Art At present, liquid crystal display devices are widely used for displaying screens of personal computers, car navigation systems, monitors and TVs. As the alignment mode of liquid crystal used for these liquid crystal displays, TN type alignment mode and STN type alignment mode using nematic liquid crystal are often used, but they have drawbacks such as slow response and narrow viewing angle.

【0003】一方、視野角に優れた表示モードとして近
年、横電界駆動のIPS(水平面内駆動)表示モードの
液晶表示装置が実用化されているが、応答速度や開口率
に難がある。
On the other hand, in recent years, a liquid crystal display device of an IPS (horizontal plane drive) display mode driven by a lateral electric field has been put into practical use as a display mode having an excellent viewing angle, but it has a problem in response speed and aperture ratio.

【0004】また、応答速度が早く視野角が広い強誘電
液晶などの表示モードもあるが、耐ショック性、温度特
性などに難がある。
Further, although there are display modes such as a ferroelectric liquid crystal having a fast response speed and a wide viewing angle, there are problems in shock resistance and temperature characteristics.

【0005】そこで、最近では高速応答性に優れた、視
野角が広い表示モードとして光学補償(OCB)型液晶
表示モードが映像機器用として注目され、活発に開発が
行われている。
Therefore, recently, an optical compensation (OCB) type liquid crystal display mode has been attracting attention as a display mode having excellent high-speed response and a wide viewing angle for video equipment, and is being actively developed.

【0006】OCB型液晶表示モードとは図4(a)の
ように、液晶表示パネル100用の相対向する一対の上
下両基板31、32の内表面に液晶分子(液晶層)11
1を平行方向へ配向処理したスプレイ配向の液晶層11
1を構成し、上下両基板31、32間に電圧印加して液
晶層の液晶分子111を前記スプレイ配向から図4
(b)に示すようにベンド配向あるいはねじれ配向を含
んだベンド配向へ転移させた状態と、さらに図4(c)
に示すようにベンド配向の状態をもつものである。そし
て、図4(a)は印加電圧が略0Vの時、図4(b)は
低電圧印加の時で、それぞれ透過率(輝度)の高い状態
(通称、白表示)であり、図4(c)は高電圧印加時の
透過率(輝度)の低い状態(通称、黒表示)であって、
この白表示と黒表示と白黒中間の表示とで映像表示を行
う。
In the OCB type liquid crystal display mode, as shown in FIG. 4A, liquid crystal molecules (liquid crystal layer) 11 are formed on the inner surfaces of a pair of upper and lower substrates 31 and 32 facing each other for the liquid crystal display panel 100.
Liquid crystal layer 11 of splay alignment obtained by aligning 1 in a parallel direction
4 and voltage is applied between the upper and lower substrates 31 and 32 so that the liquid crystal molecules 111 of the liquid crystal layer are moved from the splay alignment as shown in FIG.
As shown in (b), a state in which the orientation is changed to a bend orientation or a bend orientation including a twist orientation, and further, FIG.
As shown in (3), it has a bend orientation state. 4A shows a state where the transmittance (luminance) is high (commonly referred to as white display) when the applied voltage is approximately 0 V and FIG. 4B shows when a low voltage is applied. c) is a state where the transmittance (luminance) is low when a high voltage is applied (commonly known as black display),
Video display is performed by the white display, the black display and the black and white intermediate display.

【0007】図5は液晶層111を低電圧化駆動と視野
角拡大のために光学補償する位相差板39と偏光板3
8、表示輝度を与えるためのバックライト110などを
配置した液晶表示パネル100の断面模式図である。図
5において上下両基板31、32のうち、一方の基板
(例えば下側基板32)上にマトリクス状に配列したス
イッチングTFT素子(TFT素子の駆動については図
7で概要を後述する)が複数個(通称、XGAと呼ばれ
る映像画面では縦768個×横1024×3個)形成さ
れている。バックライト110の透過率は液晶表示パネ
ル100の動作によって制御される。
FIG. 5 shows a retardation plate 39 and a polarizing plate 3 for optically compensating the liquid crystal layer 111 for lower voltage driving and widening the viewing angle.
8 is a schematic sectional view of the liquid crystal display panel 100 in which a backlight 110 for providing display brightness is arranged. In FIG. 5, a plurality of switching TFT elements (the driving of the TFT elements will be described later with reference to FIG. 7) are arranged in a matrix on one of the upper and lower substrates 31, 32 (for example, the lower substrate 32). (A video screen commonly referred to as XGA has a length of 768 × width of 1024 × 3). The transmittance of the backlight 110 is controlled by the operation of the liquid crystal display panel 100.

【0008】液晶表示パネル100の透過率に対する電
圧依存性を示すのが図6である。図4、図5、図6の関
係は、図6の電圧が略0Vにあるときの液晶表示パネル
100の透過率が図4(a)、図5(a)に対応し、電
圧が略Vwにあるときの液晶表示パネルの透過率が図4
(b)、図5(b)にそれぞれ対応し、そして電圧値が
Vwを十分超えたVb近傍にあるときの透過率が図4
(c)、図5(c)にそれぞれ対応する。
FIG. 6 shows the voltage dependence of the transmittance of the liquid crystal display panel 100. 4, 5 and 6, the transmittance of the liquid crystal display panel 100 when the voltage of FIG. 6 is approximately 0 V corresponds to FIGS. 4A and 5A, and the voltage is approximately Vw. Fig. 4 shows the transmittance of the liquid crystal display panel when
(B) and FIG. 5 (b) respectively, and FIG. 4 shows the transmittance when the voltage value is in the vicinity of Vb sufficiently exceeding Vw.
5C corresponds to FIG. 5C.

【0009】このOCB型液晶モードは表示性能面にお
いて高速で視野角が広く明るいのが特徴の液晶表示装置
であり、現在液晶TVなどの映像機器用として実用化が
検討されている。
This OCB type liquid crystal mode is a liquid crystal display device characterized in that it has a high display speed and a wide viewing angle in terms of display performance, and is currently being put into practical use for video equipment such as a liquid crystal TV.

【0010】OCB型モード液晶表示は、白表示と黒表
示と白黒中間状態に対応する印加電圧により映像表示す
るモードであるが、図4(b)の白表示(低電圧印加)
状態の期間が時間的に長い場合には、ベンド状態から図
4(a)のスプレイ状態に逆転移する。そして、このス
プレイ配向状態からベンド配向状態へ再度転移するには
略1秒を必要とするために、映像機器のような動画表示
には好適でないので、逆転移を防止するOCB型液晶表
示特有の駆動方法が採用されていた。
The OCB type liquid crystal display is a mode in which an image is displayed by an applied voltage corresponding to a white display, a black display and a black and white intermediate state, but the white display (low voltage application) of FIG. 4B is used.
When the period of the state is long in time, the bend state reversely transitions to the spray state of FIG. Since it takes about 1 second to re-transfer from the splay alignment state to the bend alignment state, it is not suitable for displaying moving images such as video equipment. Therefore, it is peculiar to OCB type liquid crystal display that prevents reverse transition. The driving method was adopted.

【0011】一方、図4(b)から図4(c)、図4
(c)から図4(b)へは数ミリ秒で移行するので、高
速応答を要求される映像機器のような動画には好適であ
る。したがって、従来は図4において白表示(Vw値)
以下の状態の時には画面1フレーム中に一定期間(デュ
ーティ)の高パルス電圧を印加して図4(b)から図4
(a)への逆転移防止を図っていた。
On the other hand, FIG. 4 (b) to FIG. 4 (c), FIG.
Since it shifts from (c) to FIG. 4 (b) in a few milliseconds, it is suitable for a moving image such as a video device that requires high-speed response. Therefore, conventionally, white display (Vw value) in FIG.
In the following states, a high pulse voltage for a certain period (duty) is applied during one frame of the screen, and the high voltage pulse shown in FIGS.
It was intended to prevent reverse transfer to (a).

【0012】図7(図7の15はスイッチングTFT素
子の拡大部分を示す)はOCB型液晶表示装置を駆動す
るブロック図である。図7において、各画素341の各
スイッチングTFT素子15のソース電極16には電源
から供給される映像信号10をソースドライバからソー
ス線20を通して供給し、各画素341のスイッチング
TFT素子15のゲート電極18には電源から同期信号
11の走査信号(ゲート電圧)がゲートドライバからゲ
ート線19を介してそれぞれ供給される。ゲート電極1
8のON状態のタイミングに合わせて映像信号10をソ
ース電極16に入力し、スイッチングTFT素子15の
ドレイン電極17に接続された画素電極34と液晶層1
11を介して他方の上側基板31上の対向電極33との
間に電圧を供給して液晶表示を行う。110はバックラ
イトであって、液晶表示パネル100の動作によってバ
ックライトの透過率(透過光)を制御する。
FIG. 7 (15 in FIG. 7 shows an enlarged portion of the switching TFT element) is a block diagram for driving the OCB type liquid crystal display device. In FIG. 7, the video signal 10 supplied from the power source is supplied to the source electrode 16 of each switching TFT element 15 of each pixel 341 from the source driver through the source line 20, and the gate electrode 18 of the switching TFT element 15 of each pixel 341 is supplied. A scanning signal (gate voltage) of the synchronization signal 11 is supplied from the power source to the gate driver via the gate line 19 from the gate driver. Gate electrode 1
The video signal 10 is input to the source electrode 16 in accordance with the timing of the ON state of the liquid crystal layer 1 and the pixel electrode 34 connected to the drain electrode 17 of the switching TFT element 15 and the liquid crystal layer 1.
A voltage is supplied to the counter electrode 33 on the other upper substrate 31 via 11 to perform liquid crystal display. Reference numeral 110 denotes a backlight, which controls the transmittance (transmitted light) of the backlight by the operation of the liquid crystal display panel 100.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、OCB
型表示モードに使用される液晶の誘電率異方性△εは1
0以上の値をもつ材料が好適であるが、液晶の誘電率異
方性△εの大きい材料は極性が強いために、シール樹脂
に含有している不純物イオンを取り込みやすく、液晶の
比抵抗を低下させる。
[Problems to be Solved by the Invention] However, OCB
Dielectric anisotropy Δε of liquid crystal used in the liquid crystal display mode is 1
A material having a value of 0 or more is suitable, but a material having a large dielectric anisotropy Δε of the liquid crystal has a strong polarity, so that it is easy to take in impurity ions contained in the sealing resin, and the liquid crystal has a high specific resistance. Lower.

【0014】液晶表示素子用シール樹脂の比抵抗(伝導
率の逆数)に関する先行例について、特開2001−2
20498号公報、特開2001−220499号公報
などに開示されているが、これらの先行例はシール樹脂
(シール接着剤)の硬化物を熱水中に漬けてその抽出水
の比抵抗(伝導率)を測定した例であり、その比抵抗
(伝導率)についても104Ωcm(伝導率:10-4
/cm以下)以上である。
Regarding the prior art relating to the specific resistance (reciprocal of conductivity) of the sealing resin for liquid crystal display element, Japanese Patent Laid-Open No. 2001-2
No. 20498, Japanese Patent Application Laid-Open No. 2001-220499, etc., these prior examples are such that a cured product of a sealing resin (seal adhesive) is immersed in hot water to obtain a specific resistance (conductivity) of the extracted water. ) Is measured, and its specific resistance (conductivity) is 10 4 Ωcm (conductivity: 10 −4 S
/ Cm or less) or more.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
本発明は、シール樹脂と液晶との混合物の比抵抗を測定
したものである。
In order to solve the above problems, the present invention measures the specific resistance of a mixture of a sealing resin and a liquid crystal.

【0016】図1(a)は液晶表示装置において液晶表
示パネル100に対応するxy平面図を示し、図1
(b)は前記平面図において液晶パネル周辺部シ−ル樹
脂の一箇所をA−B線で切ったyz断面の拡大図を示
す。従来の主剤と硬化剤からなるシール樹脂(通称、2
液性シール樹脂)について、ワールド・ロック社製N
o.780B−BS(シール樹脂B)と三井東圧社製X
N−21−S(シール樹脂A)の2種類のシール樹脂と
誘電率異方性△εが10以上の液晶材料との相互作用に
ついて測定した。
FIG. 1A shows an xy plan view corresponding to the liquid crystal display panel 100 in the liquid crystal display device.
(B) is an enlarged view of a yz cross section of the seal resin around the liquid crystal panel taken along the line AB in the plan view. Sealing resin (commonly known as 2
Liquid seal resin) made by World Rock N
o. 780B-BS (seal resin B) and X manufactured by Mitsui Toatsu
The interaction between two kinds of seal resins N-21-S (seal resin A) and a liquid crystal material having a dielectric anisotropy Δε of 10 or more was measured.

【0017】前記相互作用については比抵抗測定値で判
定した。測定用サンプルは液晶材料と前記2種類の未硬
化シール樹脂の混合物をそれぞれ作成して、前記2種類
の混合物の比抵抗と液晶材料単体の比抵抗とを比較し
た。測定結果はシール樹脂Bが6×1011Ωcm、シー
ル樹脂Aが3×1010Ωcm、液晶材料単体が1×10
13Ωcmであった。前記測定結果から、従来のシール樹
脂Aとシール樹脂B中に含有の不純物成分が液晶の比抵
抗を略1桁から略2桁低下させることがわかった。
The above-mentioned interaction is judged by the measured resistivity value.
Decided The measurement sample is a liquid crystal material and the above two types of uncured
Each of the two types of
Compare the specific resistance of the mixture with the specific resistance of the liquid crystal material alone.
It was The measurement result shows that the sealing resin B is 6 × 10.11Ωcm, sea
3 x 10 for resin ATenΩcm, 1 × 10 for liquid crystal material
13It was Ωcm. From the above measurement results, the conventional seal tree
Impurity components contained in the oil A and the sealing resin B are
It was found that the resistance was reduced by about 1 to 2 digits.

【0018】従来のシール樹脂を使用した液晶表示パネ
ル100の両電極間に電圧を印加した際に、図1におい
てシール樹脂付近の画素341に実効的にかかる電圧が
液晶パネルの中央部の画素341に比較して低下する。
When a voltage is applied between both electrodes of the liquid crystal display panel 100 using the conventional seal resin, the voltage effectively applied to the pixel 341 near the seal resin in FIG. 1 is the pixel 341 at the center of the liquid crystal panel. Lower than.

【0019】その結果、液晶表示パネルの画素341に
実行的にかかる電圧値が画素341の位置により差異が
生じて、この差異が表示むらの要因になることがわかっ
た。
As a result, it has been found that the voltage value practically applied to the pixel 341 of the liquid crystal display panel varies depending on the position of the pixel 341, and this difference causes display unevenness.

【0020】このように、本発明は、表示むらと液晶の
比抵抗の低下とに密接な関連があることに着目し、その
要因がシール樹脂との相互作用により比抵抗低下が発生
することを見いだし、その見知から、液晶の比抵抗を低
下させないシール樹脂を使用し、誘電率異方性の大きい
液晶材料の使用した。
As described above, the present invention pays attention to the fact that the display unevenness and the decrease in the specific resistance of the liquid crystal are closely related, and the cause thereof is that the decrease in the specific resistance occurs due to the interaction with the sealing resin. It was found, and from that knowledge, a sealing resin that does not reduce the specific resistance of the liquid crystal was used, and a liquid crystal material having a large dielectric anisotropy was used.

【0021】前記シール樹脂付近において発生していた
表示むらの課題に対し、第1の発明として、1液溶剤型
のシール樹脂370に日本化薬製KAYATORON
ML−3900のシール剤樹脂を使用して両基板周辺を
接着するものである。
In order to solve the problem of display unevenness occurring in the vicinity of the seal resin, as a first invention, a one-liquid solvent type seal resin 370 is added to KAYATORON manufactured by Nippon Kayaku.
The periphery of both substrates is adhered using a sealing agent resin of ML-3900.

【0022】第2の発明として、この1液溶剤型のシー
ル樹脂と液晶の混合物の比抵抗を測定し、液晶単体の比
抵抗に比較して10分の1以下のものを使用したことで
ある。比抵抗の測定は側面に電極をもった1cm3の標
準容積にシール樹脂と液晶との混合物あるいは液晶単体
を入れて測定用サンプルとした後に、電圧を印加して前
記標準容積中の電流測定から求めた。
As a second invention, the specific resistance of the mixture of the one-liquid solvent-type sealing resin and the liquid crystal is measured, and the specific resistance is 1/10 or less as compared with the specific resistance of the liquid crystal alone. . The specific resistance is measured by adding a mixture of seal resin and liquid crystal or a single liquid crystal to a standard volume of 1 cm 3 having electrodes on the side to prepare a measurement sample, and then applying a voltage to measure the current in the standard volume. I asked.

【0023】第3の発明として、元来OCB型液晶表示
モードは数ミリ秒の電気光学応答を示すモードであり、
この特性を有効に活かすために、誘電率異方性△εの大
きい液晶材料が好適であるが、誘電率異方性△εが大き
いほど不純物イオンを取り込みやすい。そこで、第1、
第2の発明に基づき、OCB型モードに好適な誘電率異
方性△εが8以上15以下である液晶の使用を可能にす
る。
As a third invention, originally, the OCB type liquid crystal display mode is a mode showing an electro-optical response of several milliseconds.
In order to effectively utilize this characteristic, a liquid crystal material having a large dielectric anisotropy Δε is suitable, but the larger the dielectric anisotropy Δε, the easier it is to take in impurity ions. So, first,
Based on the second invention, it is possible to use a liquid crystal having a dielectric anisotropy Δε of 8 or more and 15 or less, which is suitable for the OCB type mode.

【0024】第4の発明として、1液溶剤型のシール樹
脂を使用した画素電極と対向電極との間に、非表示状態
から表示状態に転移させる液晶表示装置の初動の際、液
晶層をスプレイ配向からベンド配向に転移させるための
転移電圧パルスと逆極性の電圧パルスとの両方を印加す
る駆動方法の発明である。この発明は液晶表示装置の初
動期間の際に、従来の駆動方法では図8に示すような一
方向の転移電圧パルスのみを印加していたが、前記初動
期間のパルス電圧の極性が一方向であるために、不純物
のイオン化成分がシール樹脂表面から内部にかけて初動
期間に電界ドリフトによって進行することが考えられ
る。そこで、この電界ドリフトによる進行を防止する駆
動方法を発明した。
According to a fourth aspect of the invention, the liquid crystal layer is sprayed during the initial movement of the liquid crystal display device in which the non-display state is changed to the display state between the pixel electrode and the counter electrode using the one-liquid solvent type sealing resin. It is an invention of a driving method for applying both a transition voltage pulse for causing a transition from an orientation to a bend orientation and a voltage pulse of an opposite polarity. According to the present invention, during the initial drive period of the liquid crystal display device, only the transition voltage pulse in one direction as shown in FIG. 8 is applied in the conventional driving method, but the polarity of the pulse voltage in the initial drive period is one direction. Therefore, it is conceivable that the ionized components of the impurities progress from the surface of the sealing resin to the inside by electric field drift during the initial motion period. Therefore, a driving method for preventing the progress due to the electric field drift was invented.

【0025】このように上記発明により、課題の不純物
イオンによる表示むらの発生を低減して均一な表示画面
をもつOCB型液晶表示装置を提供するものである。
As described above, the present invention provides an OCB type liquid crystal display device having a uniform display screen by reducing the occurrence of display unevenness due to the problematic impurity ions.

【0026】[0026]

【発明の実施の形態】以下、本発明の実施の形態につい
て、添付の図面を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0027】(実施の形態1)図5に示す液晶表示パネ
ル100の製作工程の概要を説明する。対向電極33、
画素電極34上に液晶分子111を配列させるためにポ
リイミドからなる配向膜35、36を転写印刷などの方
法でそれぞれ形成する。配向膜35、36表面をレーヨ
ン製の布でラビングすることにより、所定の方向に液晶
分子111を配列させる処理を行う。次に、上側基板3
1、下側基板32を貼り合わせ、周辺部をシール樹脂で
接着した後に、液晶を注入して封入する。
(First Embodiment) An outline of a manufacturing process of the liquid crystal display panel 100 shown in FIG. 5 will be described. Counter electrode 33,
Alignment films 35 and 36 made of polyimide for aligning the liquid crystal molecules 111 are formed on the pixel electrode 34 by a method such as transfer printing. By rubbing the surfaces of the alignment films 35 and 36 with a cloth made of rayon, a process of aligning the liquid crystal molecules 111 in a predetermined direction is performed. Next, the upper substrate 3
1. After bonding the lower substrate 32 and adhering the peripheral portion with a sealing resin, liquid crystal is injected and sealed.

【0028】図7に示すような駆動装置により、製作し
たOCB型液晶表示パネル100に転移用電圧パルスを
画素電極34と対向電極33に印加して、液晶層111
をスプレイ配向からベンド配向に転移させる。スイッチ
ングTFT素子15はソース線20とゲート線19から
入力される駆動電圧により、ON、OFF制御される。
そして、スイッチングTFT素子15に接続された画素
電極34と対向電極33間に印加する電圧値を制御する
ことにより、液晶層111の配向を変化させて各画素3
41の透過率(輝度)を制御し、画像表示する。
A voltage pulse for transition is applied to the pixel electrode 34 and the counter electrode 33 in the manufactured OCB type liquid crystal display panel 100 by the driving device as shown in FIG.
Is transferred from the splay orientation to the bend orientation. The switching TFT element 15 is ON / OFF controlled by a drive voltage input from the source line 20 and the gate line 19.
Then, by controlling the voltage value applied between the pixel electrode 34 connected to the switching TFT element 15 and the counter electrode 33, the orientation of the liquid crystal layer 111 is changed and each pixel 3 is changed.
The transmittance (luminance) of 41 is controlled to display an image.

【0029】このとき、図1に示す液晶表示パネル10
0の上下両基板31、32の周辺を接着するためのシー
ル樹脂370に1液溶剤型(日本化薬製KAYATOR
ONML−3900)のシール樹脂Cを使用したとこ
ろ、シール樹脂370周辺に表示むらが発生しなかっ
た。比較のために2種類の2液混合型のシール樹脂Aと
シール樹脂Bを使用した際には表示むらが発生した。つ
まり、1液溶剤型は従来の主剤と硬化剤からなる2液混
合型に比較して不純物成分の影響を受けにくいことがわ
かった。
At this time, the liquid crystal display panel 10 shown in FIG.
The one-solvent solvent type (KAYATOR manufactured by Nippon Kayaku) is used as the sealing resin 370 for bonding the periphery of the upper and lower substrates 31 and 32 of 0.
When the sealing resin C of ONML-3900) was used, display unevenness did not occur around the sealing resin 370. For comparison, when two kinds of two-liquid mixed type seal resin A and seal resin B were used, display unevenness occurred. That is, it was found that the one-liquid solvent type is less susceptible to the influence of the impurity component than the conventional two-liquid mixed type including the main agent and the curing agent.

【0030】先の「発明が解決しようとする課題」の説
明と同様の測定をシール樹脂Cについて行った結果、シ
ール樹脂Cと液晶の混合物の比抵抗は5×1012Ωcm
であった。前記3種類のシール樹脂と液晶との混合物の
比抵抗の値は、大きい順にシール樹脂C(1液)>シー
ル樹脂B(2液)>シール樹脂A(2液)である。
As a result of performing the same measurement as described above in "Problems to be solved by the invention" for the sealing resin C, the specific resistance of the mixture of the sealing resin C and the liquid crystal is 5 × 10 12 Ωcm.
Met. The values of the specific resistance of the mixture of the three kinds of seal resin and liquid crystal are, in descending order, seal resin C (1 liquid)> seal resin B (2 liquid)> seal resin A (2 liquid).

【0031】(実施の形態2)図2はOCB型液晶表示
装置の初動期間中に画素電極34と対向電極33との間
に両方向の極性パルスを印加する電圧波形を示すもので
ある。前記両方向の極性パルスの印加により、シール樹
脂中の不純物イオンが液晶中に電界ドリフトするのを防
止し、その後の拡散を防止することができた。
(Second Embodiment) FIG. 2 shows a voltage waveform for applying a bidirectional polarity pulse between the pixel electrode 34 and the counter electrode 33 during the initial operation period of the OCB type liquid crystal display device. By applying the polarity pulse in both directions, it was possible to prevent the impurity ions in the seal resin from drifting in the liquid crystal due to the electric field, and to prevent the subsequent diffusion.

【0032】(実施の形態3)図3はシール樹脂Cを使
用した際に、液晶の誘電率異方性と表示むらの発生関係
を示す図である。同図よりシール樹脂Cを使用した際に
は、誘電率異方性△εが15以下の液晶材料について、
表示むらは全く発生しなかった。比較のためにシール樹
脂Bとシール樹脂Aを使用した際には、各誘電率異方性
△εが8以上、7以上において表示むらが除々に発生
し、さらに各誘電率異方性△εが10以上、8以上にお
いて、不快感のある表示むらとなった。つまり、シール
樹脂Cは、液晶の誘電率異方性△εが8以上のとき、他
の2液混合型シール樹脂に対して効果的であることを示
す。
(Embodiment 3) FIG. 3 is a diagram showing the relationship between the dielectric anisotropy of liquid crystal and the occurrence of display unevenness when the seal resin C is used. From the figure, when the seal resin C is used, for the liquid crystal material having a dielectric anisotropy Δε of 15 or less,
The display unevenness did not occur at all. When the seal resin B and the seal resin A are used for comparison, display unevenness gradually occurs when each dielectric constant anisotropy Δε is 8 or more and 7 or more, and each dielectric anisotropy Δε is further increased. When the value was 10 or more and 8 or more, the display unevenness was unpleasant. That is, it is shown that the seal resin C is effective against other two-liquid mixed type seal resins when the dielectric constant anisotropy Δε of the liquid crystal is 8 or more.

【0033】なお、実施の形態の1から3に記載の実施
に基づいてOCB型液晶表示装置に好適な誘電率異方性
△εが8以上15以下である液晶を使用して、次の寿命
試験条件(温度:80℃、湿度90%)で長時間駆動表
示をした結果、課題の表示むらの発生を防止することが
できた。
Based on the operations described in the first to third embodiments, a liquid crystal having a dielectric anisotropy Δε of 8 or more and 15 or less, which is suitable for the OCB type liquid crystal display device, is used, and As a result of long-time drive display under the test conditions (temperature: 80 ° C., humidity: 90%), it was possible to prevent the problem of display unevenness.

【0034】[0034]

【発明の効果】以上詳細に説明したように、本発明によ
るシール樹脂の1液溶剤型の採用と駆動方法によって、
従来シール樹脂周辺に発生していた不純物成分イオンに
よる表示むらの発生を低減させることが可能になった。
さらに、誘電率異方性△εが8以上15以下の液晶につ
いても表示むらの低減が可能になった。したがって、本
発明は今後TVなどの映像表示用として期待の大きいO
CB型液晶表示装置を製作する上で、工業的利点が極め
て大きいものである。
As described in detail above, by adopting the one-liquid solvent type sealing resin and the driving method according to the present invention,
It has become possible to reduce the occurrence of display unevenness due to impurity component ions that have been conventionally generated around the sealing resin.
Furthermore, it has become possible to reduce display unevenness even for liquid crystals having a dielectric anisotropy Δε of 8 or more and 15 or less. Therefore, the present invention is highly expected to be used as a video display for TVs in the future.
The industrial advantage is extremely great in manufacturing a CB type liquid crystal display device.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)本発明のOCB型液晶表示装置の平面図 (b)上記(a)のA−B線における拡大断面図FIG. 1A is a plan view of an OCB type liquid crystal display device of the present invention. (B) An enlarged sectional view taken along the line AB of (a) above.

【図2】本発明の駆動電圧波形図FIG. 2 is a drive voltage waveform diagram of the present invention.

【図3】OCB型液晶表示装置の液晶材料の誘電率異方
性とシール周辺の表示むらの関係図
FIG. 3 is a diagram showing a relationship between dielectric anisotropy of a liquid crystal material of an OCB type liquid crystal display device and display unevenness around a seal.

【図4】OCB型液晶の配向を模式的に示す断面図FIG. 4 is a sectional view schematically showing the alignment of OCB type liquid crystal.

【図5】OCB型液晶表示パネルを模式的に示す断面図FIG. 5 is a sectional view schematically showing an OCB type liquid crystal display panel.

【図6】OCB型液晶表示装置の透過率と電圧の関係図FIG. 6 is a diagram showing the relationship between the transmittance and the voltage of an OCB type liquid crystal display device.

【図7】OCB型液晶表示装置の駆動方法を示すブロッ
ク図
FIG. 7 is a block diagram showing a driving method of an OCB type liquid crystal display device.

【図8】従来の駆動電圧波形図FIG. 8 is a conventional drive voltage waveform diagram.

【符号の説明】[Explanation of symbols]

10 映像信号 11 同期信号 15 スイッチングTFT素子 16 ソース電極 17 ドレイン電極 18 ゲート電極 19 ゲート線 20 ソース線 31 上側基板 32 下側基板 33 対向電極 34 画素電極 35,36 配向膜 38 偏光板 39 位相差板 100 液晶表示パネル 110 バックライト 111 液晶分子(液晶層) 341 画素 370 シール樹脂 380 封口剤 10 video signals 11 Sync signal 15 Switching TFT element 16 Source electrode 17 Drain electrode 18 Gate electrode 19 gate lines 20 source line 31 upper substrate 32 Lower substrate 33 Counter electrode 34 pixel electrodes 35,36 Alignment film 38 Polarizer 39 Phase plate 100 LCD display panel 110 backlight 111 Liquid crystal molecules (liquid crystal layer) 341 pixels 370 seal resin 380 Sealant

フロントページの続き (72)発明者 西山 和廣 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2H088 EA03 FA04 GA02 HA08 HA16 HA18 JA04 KA26 KA30 MA04 2H089 MA04 NA37 PA16 QA16 RA04 SA16 SA17 TA04 TA09 TA14 TA15 2H093 NA16 NC34 ND05 NE06 NE10 NF04 NH04 5C006 AA01 AA16 AC11 AC26 AF44 AF73 BA15 BB16 BC11 BF27 FA14 FA22 FA34 FA54 FA55 5C080 AA10 BB05 DD05 DD08 DD18 EE19 EE29 FF11 GG08 JJ02 JJ03 JJ04 JJ05 JJ06 KK02 KK04 KK43 Continued front page    (72) Inventor Kazuhiro Nishiyama             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F term (reference) 2H088 EA03 FA04 GA02 HA08 HA16                       HA18 JA04 KA26 KA30 MA04                 2H089 MA04 NA37 PA16 QA16 RA04                       SA16 SA17 TA04 TA09 TA14                       TA15                 2H093 NA16 NC34 ND05 NE06 NE10                       NF04 NH04                 5C006 AA01 AA16 AC11 AC26 AF44                       AF73 BA15 BB16 BC11 BF27                       FA14 FA22 FA34 FA54 FA55                 5C080 AA10 BB05 DD05 DD08 DD18                       EE19 EE29 FF11 GG08 JJ02                       JJ03 JJ04 JJ05 JJ06 KK02                       KK04 KK43

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 マトリクス状に配列されたスイッチング
用TFT素子と画素電極を有する一方の基板と対向電極
を有する他方の基板とを一定の間隙に保持して前記両方
の基板の周辺を、液晶注入口を除外してシール樹脂によ
り接着し、前記液晶注入口から液晶の注入と注入口の封
止をした液晶表示装置において、前記シール樹脂は1液
溶剤型であることを特徴とするOCB型液晶表示装置。
1. A liquid crystal injection device is provided around a periphery of both of the substrates by holding one substrate having switching TFT elements and pixel electrodes arranged in a matrix and the other substrate having a counter electrode at a constant gap. A liquid crystal display device in which liquid crystal is injected from the liquid crystal injection port and sealed by sealing the liquid crystal injection port by excluding the inlet, and the sealing resin is a one-liquid solvent type liquid crystal. Display device.
【請求項2】 1液溶剤型シール樹脂と液晶との混合物
の比抵抗が5×1012Ωcm以上であるシール樹脂を使
用したことを特徴とする請求項1に記載のOCB型液晶
表示装置。
2. The OCB type liquid crystal display device according to claim 1, wherein a seal resin having a specific resistance of a mixture of a one-liquid solvent-type seal resin and a liquid crystal is 5 × 10 12 Ωcm or more is used.
【請求項3】 液晶の誘電率異方性△εが8以上15以
下であることを特徴とする請求項1または請求項2に記
載のOCB型液晶表示装置。
3. The OCB type liquid crystal display device according to claim 1, wherein the liquid crystal has a dielectric anisotropy Δε of 8 or more and 15 or less.
【請求項4】 液晶表示装置を表示させる初動期間中
に、画素電極と対向電極との間に液晶をスプレイ配向か
らベンド配向に転移させるための転移電圧パルスを印加
して、続いて逆極性の電圧パルスを印加することを特徴
とする請求項1から請求項3のいずれかに記載のOCB
型液晶表示装置の駆動方法。
4. A transfer voltage pulse for transferring the liquid crystal from the splay alignment to the bend alignment is applied between the pixel electrode and the counter electrode during the initial period for displaying the liquid crystal display device, and then the liquid crystal display device of the opposite polarity is applied. The OCB according to any one of claims 1 to 3, wherein a voltage pulse is applied.
Method of driving type liquid crystal display device.
JP2002085244A 2002-03-26 2002-03-26 Ocb type liquid crystal display device and method for driving the same Pending JP2003280005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002085244A JP2003280005A (en) 2002-03-26 2002-03-26 Ocb type liquid crystal display device and method for driving the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002085244A JP2003280005A (en) 2002-03-26 2002-03-26 Ocb type liquid crystal display device and method for driving the same

Publications (1)

Publication Number Publication Date
JP2003280005A true JP2003280005A (en) 2003-10-02

Family

ID=29232270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002085244A Pending JP2003280005A (en) 2002-03-26 2002-03-26 Ocb type liquid crystal display device and method for driving the same

Country Status (1)

Country Link
JP (1) JP2003280005A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006011423A (en) * 2004-05-28 2006-01-12 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display panel and its manufacturing method
KR100732105B1 (en) * 2004-05-28 2007-06-27 도시바 마쯔시따 디스플레이 테크놀로지 컴퍼니, 리미티드 Liquid crystal display panel and method for driving the same
US7468771B2 (en) * 2004-05-28 2008-12-23 Toshiba Matsushita Display Technology Co., Ltd. Liquid crystal display panel and method for manufacturing the same
US7480023B2 (en) * 2004-05-28 2009-01-20 Toshiba Matsushita Display Technology Co., Ltd. Liquid crystal display panel in which the rubbing directions of the pair of alignment films are oriented toward a side of a main diffusion source of impurity ions

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006011423A (en) * 2004-05-28 2006-01-12 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display panel and its manufacturing method
KR100732105B1 (en) * 2004-05-28 2007-06-27 도시바 마쯔시따 디스플레이 테크놀로지 컴퍼니, 리미티드 Liquid crystal display panel and method for driving the same
CN100370341C (en) * 2004-05-28 2008-02-20 东芝松下显示技术有限公司 Liquid crystal display panel and method for driving the same
US7468771B2 (en) * 2004-05-28 2008-12-23 Toshiba Matsushita Display Technology Co., Ltd. Liquid crystal display panel and method for manufacturing the same
US7480023B2 (en) * 2004-05-28 2009-01-20 Toshiba Matsushita Display Technology Co., Ltd. Liquid crystal display panel in which the rubbing directions of the pair of alignment films are oriented toward a side of a main diffusion source of impurity ions
US7483104B2 (en) * 2004-05-28 2009-01-27 Toshiba Matsushita Display Technology Co., Ltd. Liquid crystal display panel and method for driving the same
CN100460936C (en) * 2004-05-28 2009-02-11 东芝松下显示技术有限公司 Liquid crystal display panel

Similar Documents

Publication Publication Date Title
US7808604B2 (en) Liquid crystal display device of in-plane switching mode, method of fabricating the same, and method of driving the same
JPH07181439A (en) Active matrix liquid crystal display device
US20060244895A1 (en) Liquid crystal display device and manufacturing method of liquid crystal display device
JPH02176625A (en) Liquid crystal display device
KR20090125326A (en) In-plane switching liquid crystal device using cholesteric blue phase liquid crystal
US20050062705A1 (en) Liquid crystal display device and method for driving the same
JPH10161077A (en) Liquid crystal display device
JP2003280005A (en) Ocb type liquid crystal display device and method for driving the same
JP2003280012A (en) Ocb type liquid crystal display device and method for driving the same
JP3332863B2 (en) Optical modulator
JP2006301466A (en) Liquid crystal display device
KR101108387B1 (en) Twisted nematic mode liquid crystal display device and method for manufacturing lcd
JP2006011425A (en) Liquid crystal display panel and method for driving the same
JP2006011423A (en) Liquid crystal display panel and its manufacturing method
JP3365587B2 (en) Liquid crystal device
JPH07110481A (en) Liquid crystal display device and its production
JP2003066491A (en) Liquid crystal display
JP2003287738A (en) Method for driving liquid crystal display device
JP2003279996A (en) Ocb type liquid crystal display device and driving method therefor
JP2001142071A (en) Liquid crystal display device
KR200278034Y1 (en) Lcd for car having dye coating layer
JPH11174451A (en) Liquid crystal display device
JP3239310B2 (en) Ferroelectric liquid crystal display device
JPH10123478A (en) Liquid crystal display device
JPH06160885A (en) Liquid crystal display element