JP2003273305A - Lead frame - Google Patents

Lead frame

Info

Publication number
JP2003273305A
JP2003273305A JP2002066992A JP2002066992A JP2003273305A JP 2003273305 A JP2003273305 A JP 2003273305A JP 2002066992 A JP2002066992 A JP 2002066992A JP 2002066992 A JP2002066992 A JP 2002066992A JP 2003273305 A JP2003273305 A JP 2003273305A
Authority
JP
Japan
Prior art keywords
plating
plating layer
lead frame
layer
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002066992A
Other languages
Japanese (ja)
Other versions
JP3707548B2 (en
Inventor
Akira Ri
明 李
Daigo Yamaura
大悟 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui High Tec Inc
Original Assignee
Mitsui High Tec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui High Tec Inc filed Critical Mitsui High Tec Inc
Priority to JP2002066992A priority Critical patent/JP3707548B2/en
Publication of JP2003273305A publication Critical patent/JP2003273305A/en
Application granted granted Critical
Publication of JP3707548B2 publication Critical patent/JP3707548B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead frame exhibiting excellent characteristics and having a lead-free plating film. <P>SOLUTION: On the surface of a basic material composed of copper or an A4 material, a nickel plating layer is formed as an underlying plating layer. On the surface of the nickel plating layer, a plurality of Au-Ag plating layers having different rate of Ag is formed such that the rate of Ag increases from the basic material side toward the surface side thus forming a multilayer Au-Ag plating layer. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、リードフレームに
関し、特に、鉛を含まないめっきが施されたリードフレ
ームに関する。 【0002】 【従来の技術】リードフレームには、通常、ワイヤボン
ディング性や半導体チップの接合性を向上させるため、
金、銀、ニッケル、パラジウムなどの金属めっきがアイ
ランドやインナーリードなどに部分的に施されている。 【0003】そして、半導体チップをアイランド上に搭
載し、樹脂封止が施されたリードフレームには、さらに
外装半田めっきが施される。 【0004】ところで、近年、環境保護の立場から多く
の化学物質の規制が強化されている。 【0005】外装鉛半田めっきを施したリードフレーム
は、半田めっきを施す時に使用された鉛の処理問題や、
鉛が回収されることなく廃棄された製品から環境への流
出問題など、様々な課題を有している。 【0006】また、IC組立工程での工程簡素化の流れ
で、外装半田めっきが必要ない、PPF( Pre Plated
Lead-Frame )が注目されている。 【0007】外装半田めっきを必要とせず、かつ鉛フリ
ーの半導体装置用PPFとしてのリードフレームには、
ワイヤボンディング性、半田濡れ性、耐食性、及び封止
樹脂との密着性等の機能が同時に要求されている。 【0008】また、商品として製造コスト及び環境影響
をも考えなければならない。 【0009】 【発明が解決しようとする課題】しかし、現在実用化さ
れているPPFでこのような諸条件を満足することは非
常に困難である。 【0010】例えば、Ni/Pdの2層またはNi/P
d/Auの3層めっきのPPFは、高周波特性が悪いな
どの欠点があり、また、耐食性に難点があるためA42
材には使用できない。 【0011】また、Pdの価格変動が大きいため、コス
ト面でも不安定である。 【0012】そして、スポットAgめっきとスポット鉛
フリーの半田めっきの2色めっきのPPFは、ワイヤボ
ンディング温度が制限されている。 【0013】そこで本発明では、優れた特性を有しかつ
鉛を含まないめっき皮膜が形成されたリードフレームを
提供することを目的とする。 【0014】 【課題を解決するための手段】本発明に係るリードフレ
ームは、表面にAu−Agめっきが形成されたリードフ
レームにおいて、Au−Agめっきは、Agの割合が異
なる複数のAu−Agめっき層が積層された多層Au−
Agめっき層からなり、多層Au−Agめっき層は、基
材側から最表面にかけてAgの割合が増加する傾斜組成
構造を有する。 【0015】また、Au−Agめっきは、銅からなる基
材表面に施されたニッケルめっき層上に形成されてい
る。 【0016】また、Au−Agめっきは、A42材から
なる基材表面に施されたニッケルめっき層上に形成され
ている。 【0017】 【発明の実施の形態】図1は、本発明に係るリードフレ
ームの構成を示す断面図である。 【0018】図1において、本発明に係るリードフレー
ム10には、基材である銅材1の表面に下地めっきであ
るニケッルめっき層2が形成され、さらにニッケルめっ
き層2の表面に複数のAu−Agめっき層3、4、5が
積層された多層めっき層6を形成している。 【0019】ここで、多層Au−Agめっき層6を形成
する各Au−Agめっき層の組成は異なり、図2に示す
ように、下地めっきであるニッケルめっき側から外表面
側にかけて各Au−Agめっき層中のAgの割合が徐々
に高くなるように構成され、総合的には深さ方向の合金
組成が傾斜構造となる。 【0020】なお、下地めっき表面に形成されたAu−
Agめっき層と外表面のAu−Agめっき層との組成の
傾斜量は、90wt%Ag以下とし、また、各Au−A
gめっき層の平均組成は、20〜70wt%Agとす
る。 【0021】また、各めっき層の厚みは、完全な層を得
るため0.001μm以上の厚みであることが好まし
く、また、多層化したAu−Agめっき層の厚みは合計
して0.2μm以下であることが好ましい。 【0022】以下、図3を用いて、本発明に係るリード
フレームの製造方法について説明する。 【0023】まず、図3(a)に示すように、リードフ
レームの基材である銅材1の表面に下地めっきであるニ
ッケルめっき層2を形成し、図3(b)に示すように、
下地めっき層2の表面に第1のAu−Agめっき層3を
形成する。 【0024】そして、図3(c)に示すように、第1の
Au−Agめっき層3よりもAgの割合が高い第2のA
u−Agめっき層4を第1のAu−Agめっき層3の表
面に形成し、さらに、図3(d)に示すように、第2の
Au−Agめっき層4よりもAgの割合が高い第3のA
u−Agめっき層5を第2のAu−Agめっき層4の表
面に形成して、多層Au−Agめっき層6を形成する。 【0025】ここで、基材や下地めっき表面にめっきを
施す方法としては、めっき用整流器の電流波形や電圧波
形の制御する方法や2セル以上の多セルで分段めっきす
る方法、またこれらの方法を同時に用いた方法や、他の
ドライプレーティング法(真空蒸着法など)など、既知
のめっき方法を適宜用いることができる。 【0026】また、リードフレームの基材は銅に限られ
るものではなく、A42材など、他の材料を用いること
もできる。 【0027】そして、多層Au−Agめっき層を構成す
るAu−Agめっき層は、3層に限られるものではな
く、必要に応じてAgの割合が異なる少なくとも2層以
上のAu−Ag合金めっき膜を用いて形成することがで
きる。 【0028】以下、実施例を用いてさらに詳細に説明す
る。 【0029】 【実施例1】本実施例では、多段セル(2段)めっき法
を用い、次の工程に従って多層Au−Agめっき層を形
成した。 【0030】1)まず、AuイオンとAgイオンとの濃
度比が異なる2種類のAu−Ag合金めっき溶液を2つ
のめっきセルに用意する。 2)次に、板厚0.125mmのリードフレーム用銅材
を脱脂・酸洗した後、厚さが1μmのニッケルめっき層
を下地めっきとして表面に形成する。 3)そして、まず、Ag濃度が低いAu−Ag合金めっ
き溶液から順番に下地めっきが施されたリードフレーム
用銅材を浸漬させ、同じ電流密度でAu−Agめっき層
を形成し、多層Au−Agめっき層を形成する。 【0031】上記工程を用いることにより、平均組成2
5.4wt%Ag、組成の傾斜量28.9wt%、2層構
造の多層Au−Agめっき層を持つリードフレームが得
られた。 【0032】 【実施例2】本実施例では、めっき用整流器の電流波形
を制御し、次の工程に従って多層Au−Agめっき層を
形成した。 【0033】1)まず、一定濃度比のAuイオン及びA
gイオンを含有し、低い電流密度でAuの割合が高いA
u−Ag合金膜が形成されるAu−Agめっき溶液を用
意する。 2)次に、板厚0.125mmリードフレーム用銅材を
脱脂・酸洗した後、厚さが1μmのニッケルめっき層を
下地めっきとして表面に形成する。 3)そして、下地めっきが施されたリードフレームを先
ほど用意したAu−Agめっき溶液に浸漬し、図4に示
すように、通電時間(ON)0.5秒間、休み時間(O
FF)2秒間、最初の通電時の電流密度(Ip)が0.
1A/dmで、以後20%ずつ上昇する電流波形によ
り多層Au−Agめっき層を形成する。 【0034】上記工程を用いることにより、平均組成2
5.4wt%Ag、組成の傾斜量28.9wt%、13層
構造の多層Au−Agめっき層を持つリードフレームが
得られた。 【0035】 【実施例3】本実施例では、多段セル(4段)分段めっ
き法を用い、次の工程に従って多層Au−Agめっき層
を形成した。 【0036】1)まず、AuイオンとAgイオンとの濃
度比が異なる4種類のAu−Ag合金めっき溶液を4つ
のめっきセルに用意する。 2)次に、板厚0.125mmのリードフレーム用銅材
を脱脂・酸洗した後、厚さが1μmのニッケルめっき層
を下地めっきとして表面に形成する。 3)そして、Ag濃度が最も低いAu−Ag合金めっき
溶液から順番にAg濃度が高いAu−Ag合金めっき溶
液に下地めっきが施されたリードフレーム用銅材を浸漬
させ、同じ電流密度を用いてAu−Agめっき層を形成
する。 【0037】上記工程を用いることにより、平均組成4
9.0wt%Ag、組成の傾斜量63.7wt%、4層構
造の多層Au−Agめっき層を持つリードフレームが得
られた。 【0038】 【実施例4】本実施例では、多段セル(2段)分段めっ
き法を用い、次の工程に従って多層Au−Agめっき層
を形成した。 【0039】1)まず、AuイオンとAgイオンとの濃
度比が異なる2種類のAu−Ag合金めっき溶液を2つ
のめっきセルに用意する。 2)次に、板厚0.125mmのリードフレーム用銅材
を脱脂・酸洗した後、厚さが1μmのニッケルめっき層
を下地めっきとして表面に形成する。 3)そして、Ag濃度が低いAu−Ag合金めっき溶液
に下地めっきが施されたリードフレーム用銅材を浸漬さ
せ、直流整流器を用いてAu−Agめっき層を形成す
る。 4)その後、Ag濃度が高いAu−Agめっき溶液に浸
漬し、実施例2と同様に、図4に示すように、通電時間
(ON)0.5秒間、休み時間(OFF)2秒間、最初
の通電時の電流密度(Ip)が0.1A/dmで、以
後20%ずつ上昇する電流波形により多層Au−Agめ
っき層を形成する。 【0040】上記工程を用いることにより、平均組成6
9.3wt%Ag、組成の傾斜量87.4wt%、14層
構造の多層Au−Agめっき層を持つリードフレームが
得られた。 【0041】 【実施例5】本実施例では、多段セル(4段)分段めっ
き法を用い、次の工程に従って多層Au−Agめっき層
を形成した。 【0042】1)まず、AuイオンとAgイオンとの濃
度比が異なる4種類のAu−Ag合金めっき溶液を4つ
のめっきセルに用意する。 2)次に、板厚0.125mmのリードフレーム用A4
2材を脱脂・酸洗した後、厚さが1μmのニッケルめっ
き層を下地めっきとして表面に形成する。 3)そして、実施例3と同様に、Ag濃度が最も低いA
u−Ag合金めっき溶液から順番にAg濃度が高いAu
−Ag合金めっき溶液に下地めっきが施されたリードフ
レーム用A42材を浸漬させ、同じ電流密度を用いてA
u−Agめっき層を形成する。 【0043】上記工程を用いることにより、A42材上
に、実施例3と同様に、平均組成49.0wt%Ag、
組成の傾斜量63.7wt%、4層構造の多層Au−A
gめっき層を持つリードフレームが得られた。 【0044】 【比較例1】本比較例では、直流電源を用いてAu−A
gめっき層を形成した。 【0045】1)まず、Au−Ag合金めっき溶液を1
つのめっきセルに用意する。 2)次に、板厚0.125mmのリードフレーム用銅材
を脱脂・酸洗した後、厚さが1μmのニッケルめっき層
を下地めっきとして表面に形成する。 3)そして、Au−Ag合金めっき溶液に下地めっきが
施されたリードフレーム用銅材を浸漬させ、Au−Ag
めっき層を形成する。 【0046】上記工程を用いることにより、組成27.
6wt%Agの単層のAu−Agめっき膜を持つリード
フレームが得られた。 【0047】 【比較例2】本比較例では、定電流パルス電源を用いて
Au−Agめっき層を形成した。 【0048】1)まず、Au−Ag合金めっき溶液を1
つのめっきセルに用意する。 2)次に、板厚0.125mmのリードフレーム用銅材
を脱脂・酸洗した後、厚さが1μmのニッケルめっき層
を下地めっきとして表面に形成する。 3)そして、Au−Ag合金めっき溶液に下地めっきが
施されたリードフレーム用銅材を浸漬させ、Au−Ag
めっき層を形成する。 【0049】上記工程を用いることにより、組成25.
1wt%Agの単層のAu−Ag合金膜を持つリードフ
レームが得られた。 【0050】ここで、実施例1乃至5及び比較例1及び
2で形成されたリードフレームに対して、次の方法で耐
食性テスト及び半田濡れ性テストを行った。 【0051】耐食性テスト:5%NaCl溶液を35℃
の環境で24時間噴霧する塩水噴霧加速テストを行い、
錆の発生を観察する。半田濡れ性テスト:330℃で3
0分間加熱後、Sn−37Pbを230℃で5秒間接触
させ、半田の濡れを観測した。 【0052】耐食性テスト及び半田濡れ性テストの結果
を表1に示す。 【0053】 【表1】 【0054】ここで、濡れ率は、95%を超えると○
で、耐食性は、錆が観察されない場合は、○で示してい
る。 【0055】表1に示すように、実施例1乃至5では、
比較例1及び2に比べて薄い膜厚(0.1μm未満)で
半田濡れ性及び耐食性に優れた特性を得ている。 【0056】このように、本発明に係るリードフレーム
は、耐食性及び半田濡れ性に優れたリードフレームを薄
く形成することが可能となる。 【0057】また、外装半田めっきなど鉛を用いる必要
がないため、環境にやさしく、廃液処理などのコストを
押さえることができる。 【0058】さらに、単層のAu−Agめっき層を形成
する場合に比べて低コストで優れた特性を得ることがで
きる。 【0059】また、Au−Agめっきを用いるため、パ
ラジウムめっきなどを用いた場合と比べて、高周波特性
に優れたリードフレームを形成することができる。 【0060】加えて、Ni/Pdの2層またはNi/P
d/Auの3層めっきでは、耐食性に難点があるため基
材として持ちいることができなかったA42材を基材と
して用いることができる。 【0061】 【発明の効果】本発明では、優れた特性を有するめっき
皮膜が鉛を用いることなく薄く形成されたリードフレー
ムを得ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead frame, and more particularly to a lead frame plated with lead. 2. Description of the Related Art Usually, a lead frame is provided with a wire bonding property and a semiconductor chip bonding property to improve the bonding property.
Metal plating such as gold, silver, nickel, and palladium is partially applied to islands, inner leads, and the like. [0005] A lead frame on which a semiconductor chip is mounted on an island and sealed with a resin is further subjected to external solder plating. In recent years, regulations on many chemical substances have been strengthened from the standpoint of environmental protection. [0005] The lead frame subjected to the outer lead solder plating has a problem in treating lead used in applying the solder plating,
There are various problems, such as the problem of spilling into the environment from products discarded without recovery of lead. Also, with the flow of process simplification in the IC assembly process, PPF (Pre Plated
Lead-Frame) is attracting attention. [0007] A lead frame as a PPF for a semiconductor device which does not require external solder plating and is lead-free,
Functions such as wire bonding properties, solder wettability, corrosion resistance, and adhesion to a sealing resin are simultaneously required. In addition, it is necessary to consider the production cost and environmental impact as a product. [0009] However, it is very difficult for PPFs currently in practical use to satisfy such conditions. For example, two layers of Ni / Pd or Ni / Pd
The d / Au three-layer plating PPF has drawbacks such as poor high-frequency characteristics, and has a problem in corrosion resistance.
Cannot be used for wood. [0011] Further, since the price fluctuation of Pd is large, the cost is also unstable. [0012] The two-color plating PPF of spot Ag plating and spot lead-free solder plating has a limited wire bonding temperature. Accordingly, an object of the present invention is to provide a lead frame having excellent characteristics and a lead-free plating film formed thereon. According to the present invention, there is provided a lead frame having Au-Ag plating formed on a surface thereof, wherein the Au-Ag plating comprises a plurality of Au-Ag plating layers having different Ag ratios. Multi-layer Au- with plating layer laminated
The multilayer Au—Ag plating layer is composed of an Ag plating layer and has a gradient composition structure in which the ratio of Ag increases from the substrate side to the outermost surface. The Au-Ag plating is formed on a nickel plating layer provided on the surface of a substrate made of copper. The Au-Ag plating is formed on a nickel plating layer applied to the surface of a base material made of A42 material. FIG. 1 is a sectional view showing the structure of a lead frame according to the present invention. In FIG. 1, a lead frame 10 according to the present invention has a nickel plating layer 2 as a base plating formed on a surface of a copper material 1 as a base material, and a plurality of Au platings on the surface of the nickel plating layer 2. -The multilayer plating layer 6 in which the Ag plating layers 3, 4, and 5 are laminated is formed. Here, the composition of each Au-Ag plating layer forming the multilayer Au-Ag plating layer 6 is different, and as shown in FIG. 2, each Au-Ag plating layer extends from the nickel plating which is the base plating to the outer surface side. The composition of the plating layer is such that the ratio of Ag in the plating layer is gradually increased, and the alloy composition in the depth direction has a gradient structure overall. It should be noted that the Au-
The gradient amount of the composition between the Ag plating layer and the Au—Ag plating layer on the outer surface is set to 90 wt% Ag or less.
The average composition of the g-plated layer is 20 to 70 wt% Ag. The thickness of each plating layer is preferably 0.001 μm or more in order to obtain a complete layer, and the total thickness of the multilayer Au—Ag plating layer is 0.2 μm or less. It is preferred that Hereinafter, a method for manufacturing a lead frame according to the present invention will be described with reference to FIG. First, as shown in FIG. 3 (a), a nickel plating layer 2 which is a base plating is formed on the surface of a copper material 1 which is a base material of a lead frame, and as shown in FIG.
The first Au-Ag plating layer 3 is formed on the surface of the base plating layer 2. Then, as shown in FIG. 3C, the second Au having a higher Ag content than the first Au-Ag plating layer 3 has.
The u-Ag plating layer 4 is formed on the surface of the first Au-Ag plating layer 3, and the ratio of Ag is higher than that of the second Au-Ag plating layer 4 as shown in FIG. Third A
The u-Ag plating layer 5 is formed on the surface of the second Au-Ag plating layer 4 to form the multilayer Au-Ag plating layer 6. Here, as a method of plating the surface of the base material or the underlying plating, there are a method of controlling a current waveform and a voltage waveform of a rectifier for plating, a method of performing step plating with multiple cells of two or more cells, and a method of plating these. A known plating method such as a method using the methods simultaneously or another dry plating method (such as a vacuum evaporation method) can be appropriately used. Further, the base material of the lead frame is not limited to copper, and other materials such as A42 material can be used. The Au—Ag plating layer constituting the multilayer Au—Ag plating layer is not limited to three layers, and may be at least two or more Au—Ag alloy plating films having different Ag ratios as necessary. Can be formed. Hereinafter, the present invention will be described in more detail with reference to examples. Example 1 In this example, a multilayer Au—Ag plating layer was formed according to the following steps using a multi-stage cell (two-stage) plating method. 1) First, two types of Au—Ag alloy plating solutions having different concentration ratios of Au ions and Ag ions are prepared in two plating cells. 2) Next, a copper material for a lead frame having a thickness of 0.125 mm is degreased and pickled, and then a nickel plating layer having a thickness of 1 μm is formed on the surface as a base plating. 3) Then, first, a copper material for a lead frame on which a base plating is applied is immersed in order from an Au-Ag alloy plating solution having a low Ag concentration, and an Au-Ag plating layer is formed at the same current density to form a multilayer Au- An Ag plating layer is formed. By using the above process, the average composition 2
A lead frame having 5.4 wt% Ag, a composition gradient of 28.9 wt%, and a multilayer Au-Ag plating layer having a two-layer structure was obtained. Example 2 In this example, the current waveform of the plating rectifier was controlled, and a multilayer Au-Ag plating layer was formed according to the following steps. 1) First, a constant concentration ratio of Au ions and A
A containing g ions and having a high Au content at a low current density
An Au-Ag plating solution for forming a u-Ag alloy film is prepared. 2) Next, after the copper material for a lead frame having a thickness of 0.125 mm is degreased and pickled, a nickel plating layer having a thickness of 1 μm is formed on the surface as a base plating. 3) Then, the lead frame on which the base plating has been applied is immersed in the previously prepared Au-Ag plating solution, and as shown in FIG. 4, the energization time (ON) is 0.5 seconds, and the rest time (O
FF) For 2 seconds, the current density (Ip) at the time of the first energization is 0.
A multilayer Au-Ag plating layer is formed at a current waveform of 1 A / dm 2 and thereafter increasing by 20%. By using the above process, the average composition 2
A lead frame having 5.4 wt% Ag, a composition gradient of 28.9 wt%, and a multilayer Au-Ag plating layer having a 13-layer structure was obtained. Example 3 In this example, a multilayer Au—Ag plating layer was formed according to the following steps using a multi-stage cell (four-stage) step plating method. 1) First, four kinds of Au-Ag alloy plating solutions having different concentration ratios of Au ions and Ag ions are prepared in four plating cells. 2) Next, a copper material for a lead frame having a thickness of 0.125 mm is degreased and pickled, and then a nickel plating layer having a thickness of 1 μm is formed on the surface as a base plating. 3) Then, the lead-plated copper material for the underlayer is immersed in the Au-Ag alloy plating solution having the highest Ag concentration in order from the Au-Ag alloy plating solution having the lowest Ag concentration, and using the same current density. An Au-Ag plating layer is formed. By using the above process, the average composition 4
A lead frame having 9.0 wt% Ag, a composition gradient of 63.7 wt%, and a multilayer Au-Ag plating layer having a four-layer structure was obtained. Embodiment 4 In this embodiment, a multilayer Au—Ag plating layer was formed according to the following steps by using a multi-stage cell (two-stage) step plating method. 1) First, two types of Au—Ag alloy plating solutions having different concentration ratios of Au ions and Ag ions are prepared in two plating cells. 2) Next, a copper material for a lead frame having a thickness of 0.125 mm is degreased and pickled, and then a nickel plating layer having a thickness of 1 μm is formed on the surface as a base plating. 3) Then, the lead-framed copper material having the base plating is immersed in an Au-Ag alloy plating solution having a low Ag concentration, and an Au-Ag plating layer is formed using a DC rectifier. 4) Then, it is immersed in an Au-Ag plating solution having a high Ag concentration, and as in Example 2, as shown in FIG. 4, the energizing time (ON) is 0.5 seconds, the rest time (OFF) is 2 seconds, and The current density (Ip) at the time of energization is 0.1 A / dm 2 , and a multilayer Au—Ag plating layer is formed by a current waveform that increases by 20% thereafter. By using the above process, an average composition of 6
A lead frame having 9.3 wt% Ag, a composition gradient amount of 87.4 wt%, and a multilayer Au-Ag plating layer having a 14-layer structure was obtained. Embodiment 5 In this embodiment, a multilayer Au—Ag plating layer was formed according to the following steps using a multi-stage cell (four-stage) step plating method. 1) First, four kinds of Au—Ag alloy plating solutions having different concentration ratios of Au ions and Ag ions are prepared in four plating cells. 2) Next, A4 for a 0.1125 mm thick lead frame
After the two materials are degreased and pickled, a nickel plating layer having a thickness of 1 μm is formed as a base plating on the surface. 3) As in Example 3, A having the lowest Ag concentration
Au having a high Ag concentration in order from the u-Ag alloy plating solution
-An A42 material for a lead frame, which has been subjected to base plating, is immersed in an Ag alloy plating solution.
A u-Ag plating layer is formed. By using the above process, the average composition was 49.0 wt% Ag on A42 material in the same manner as in Example 3.
63.7 wt% of composition gradient, multilayer Au-A having a four-layer structure
g A lead frame having a plating layer was obtained. Comparative Example 1 In this comparative example, Au-A
g A plating layer was formed. 1) First, the Au—Ag alloy plating solution was
Prepare one plating cell. 2) Next, a copper material for a lead frame having a thickness of 0.125 mm is degreased and pickled, and then a nickel plating layer having a thickness of 1 μm is formed on the surface as a base plating. 3) Then, the copper material for the lead frame on which the base plating is applied is immersed in an Au-Ag alloy plating solution, and the Au-Ag alloy is plated.
Form a plating layer. By using the above process, the composition 27.
A lead frame having a single-layer Au-Ag plating film of 6 wt% Ag was obtained. Comparative Example 2 In this comparative example, an Au—Ag plating layer was formed using a constant current pulse power supply. 1) First, an Au-Ag alloy plating solution was
Prepare one plating cell. 2) Next, a copper material for a lead frame having a thickness of 0.125 mm is degreased and pickled, and then a nickel plating layer having a thickness of 1 μm is formed on the surface as a base plating. 3) Then, the copper material for the lead frame on which the base plating is applied is immersed in an Au-Ag alloy plating solution, and the Au-Ag alloy is plated.
Form a plating layer. By using the above process, the composition 25.
A lead frame having a single-layer Au-Ag alloy film of 1 wt% Ag was obtained. Here, the lead frames formed in Examples 1 to 5 and Comparative Examples 1 and 2 were subjected to a corrosion resistance test and a solder wettability test by the following methods. Corrosion resistance test: 5% NaCl solution at 35 ° C.
Salt spray acceleration test spraying for 24 hours in the environment of
Observe the formation of rust. Solder wettability test: 3 at 330 ° C
After heating for 0 minutes, Sn-37Pb was contacted at 230 ° C. for 5 seconds, and wetting of the solder was observed. Table 1 shows the results of the corrosion resistance test and the solder wettability test. [Table 1] Here, when the wetting rate exceeds 95%,
The corrosion resistance is indicated by a circle when no rust is observed. As shown in Table 1, in Examples 1 to 5,
Compared to Comparative Examples 1 and 2, thinner films (less than 0.1 μm) have excellent solder wettability and corrosion resistance. As described above, according to the lead frame of the present invention, it is possible to form a thin lead frame having excellent corrosion resistance and solder wettability. Further, since there is no need to use lead such as external solder plating, it is environmentally friendly and the cost of waste liquid treatment and the like can be suppressed. Further, excellent characteristics can be obtained at low cost as compared with the case where a single Au-Ag plating layer is formed. Further, since Au-Ag plating is used, a lead frame having excellent high frequency characteristics can be formed as compared with the case where palladium plating or the like is used. In addition, two layers of Ni / Pd or Ni / Pd
In the three-layer plating of d / Au, an A42 material that could not be used as a base material because of its poor corrosion resistance can be used as a base material. According to the present invention, it is possible to obtain a lead frame in which a plating film having excellent characteristics is formed thin without using lead.

【図面の簡単な説明】 【図1】本発明に係るリードフレームの構成を示す断面
図 【図2】本発明に係るリードフレームの製造方法を示す
断面図 【図3】多層Au−Agめっき層のAg含有量の変化を
示す概念図 【図4】実施例2における電流波形の制御を示す概略図 【符号の説明】 1…銅材 2…ニッケルめっき層 3…第1のAu−Agめっき層 4…第2のAu−Agめっき層 5…第3のAu−Agめっき層 6…多層Au−Agめっき層 10…リードフレーム
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a configuration of a lead frame according to the present invention. FIG. 2 is a cross-sectional view showing a method for manufacturing a lead frame according to the present invention. FIG. 3 is a multilayer Au-Ag plating layer. FIG. 4 is a conceptual diagram showing a change in the Ag content of FIG. 4. FIG. 4 is a schematic diagram showing the control of a current waveform in Example 2. Description of reference numerals 1... Copper material 2. Nickel plating layer 3. 4. Second Au-Ag plating layer 5 Third Au-Ag plating layer 6 Multi-layer Au-Ag plating layer 10 Lead frame

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K024 AA03 AA24 AB03 AB04 AB19 BA09 BB13 GA04 GA14 GA16 5F067 DC11 DC17 DC18 EA02    ────────────────────────────────────────────────── ─── Continuation of front page    F term (reference) 4K024 AA03 AA24 AB03 AB04 AB19                       BA09 BB13 GA04 GA14 GA16                 5F067 DC11 DC17 DC18 EA02

Claims (1)

【特許請求の範囲】 【請求項1】 表面にAu−Agめっきが形成されたリ
ードフレームにおいて、 前記Au−Agめっきは、Agの割合が異なる複数のA
u−Agめっき層が積層された多層Au−Agめっき層
からなり、 前記多層Au−Agめっき層は、基材側から最表面にか
けてAgの割合が増加することを特徴とするリードフレ
ーム。
Claims: 1. A lead frame having a surface on which Au-Ag plating is formed, wherein the Au-Ag plating comprises a plurality of A having different Ag ratios.
A lead frame comprising a multilayer Au-Ag plating layer on which a u-Ag plating layer is laminated, wherein the multilayer Au-Ag plating layer has a ratio of Ag increasing from the substrate side to the outermost surface.
JP2002066992A 2002-03-12 2002-03-12 Lead frame and lead frame manufacturing method Expired - Fee Related JP3707548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002066992A JP3707548B2 (en) 2002-03-12 2002-03-12 Lead frame and lead frame manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002066992A JP3707548B2 (en) 2002-03-12 2002-03-12 Lead frame and lead frame manufacturing method

Publications (2)

Publication Number Publication Date
JP2003273305A true JP2003273305A (en) 2003-09-26
JP3707548B2 JP3707548B2 (en) 2005-10-19

Family

ID=29198538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002066992A Expired - Fee Related JP3707548B2 (en) 2002-03-12 2002-03-12 Lead frame and lead frame manufacturing method

Country Status (1)

Country Link
JP (1) JP3707548B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004049415A1 (en) * 2002-11-26 2004-06-10 Sharp Kabushiki Kaisha Alloy material for semiconductor, semiconductor chip using such alloy material, and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004049415A1 (en) * 2002-11-26 2004-06-10 Sharp Kabushiki Kaisha Alloy material for semiconductor, semiconductor chip using such alloy material, and method for manufacturing same

Also Published As

Publication number Publication date
JP3707548B2 (en) 2005-10-19

Similar Documents

Publication Publication Date Title
KR0183645B1 (en) Semiconductor leadframe having composite plating
KR900000865B1 (en) Copper-chromium-polyimide composite and its manufaturiring process
JP4406420B2 (en) Printed circuit board with built-in thin film capacitor and manufacturing method thereof
JP2006040938A (en) Solid electrolytic capacitor, laminated capacitor using the same and its manufacturing method
JP2001130986A (en) Copper plated ceramic board, peltier element using the same and method for producing copper plated ceramic board
US9870930B2 (en) Method for producing substrate for mounting semiconductor element
JP2009293119A (en) Method of forming plating layer
WO2019011456A1 (en) Optoelectronic device with a component which is surface-mounted on a frame support structure, and reflective composite material for such a device
JP3918424B2 (en) Method for manufacturing thermoelectric conversion module
JP2003273305A (en) Lead frame
JP2000077593A (en) Lead frame for semiconductor
JP3276765B2 (en) Method of forming electrode terminals of chip fixed resistor
JP6134485B2 (en) Metal material having surface for bonding with liquid crystal polymer, metal-liquid crystal polymer composite, method for producing the same, and electronic component
JP2000174191A (en) Semiconductor device and its manufacture
JP2001111126A (en) Piezoelectric element
KR100833934B1 (en) Multi-layer plating lead frame and method of manufacturing the same
JP2000303186A (en) Electroless plating method, electrode structural body and conductive paste used therefor
JP4704313B2 (en) Lead frame plating method
JPH08293654A (en) Formation of metal film on ceramic base material and metal-coated ceramic structure
JP2811752B2 (en) Silver plating solution and silver plating method
JPS61169166A (en) Production of chromium target for sputtering
JPH11300471A (en) Solder coating material and its manufacture
WO2008072845A1 (en) Heat sink and method of manufacturing the same
KR20170108892A (en) Thin Layer Material for low temperature bonding
JPS6138187Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees