JP2003265626A - In vivo implantation apparatus - Google Patents

In vivo implantation apparatus

Info

Publication number
JP2003265626A
JP2003265626A JP2002069669A JP2002069669A JP2003265626A JP 2003265626 A JP2003265626 A JP 2003265626A JP 2002069669 A JP2002069669 A JP 2002069669A JP 2002069669 A JP2002069669 A JP 2002069669A JP 2003265626 A JP2003265626 A JP 2003265626A
Authority
JP
Japan
Prior art keywords
charging
thermoelectric element
metal case
vivo
receiving side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002069669A
Other languages
Japanese (ja)
Inventor
Shinji Ishida
伸司 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2002069669A priority Critical patent/JP2003265626A/en
Publication of JP2003265626A publication Critical patent/JP2003265626A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To raise transmission efficiency in charging and to suppress the rise of temperature at a case surface in a charging-type intravital implantation apparatus which supplies electric energy by electromagnetic coupling with outside of the body. <P>SOLUTION: This apparatus is provided with a charging control circuit 301 for charging power transmitted from outside or power generated by a thermoelectric device 101 to a secondary battery 105 by arranging the thermoelectric device 101 having Seebeck effect and Peltier effect so that respective contacts may come into contact with an inner surface and inner parts on the receiving side of electromagnetic waves in a metallic case 104 directly or via a heat transmitter 103. Further, the apparatus is provided with a circuit 303 for making current flow through the thermoelectric device 101 when a difference between temperatures at the inner surface of the receiving side of electromagnetic waves and that at an inner site except for this in the metallic case 104 becomes larger than a prescribed value. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、体外から電磁結合
によって電気エネルギの供給を行う充電式の生体内植え
込み装置に係り、より具体的には心臓ペースメーカーや
植え込み型除細動器などに搭載される充電装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rechargeable in-vivo implanting device for supplying electric energy from outside the body by electromagnetic coupling, and more specifically, it is mounted on a cardiac pacemaker, an implantable defibrillator or the like. Charging device.

【0002】[0002]

【従来の技術】生体内植え込み型の心臓ペースメーカー
(以下、ペースメーカー)や植え込み型除細動器(以
下、ICD)は、徐脈や頻拍などの不整脈治療器として
現在広く用いられている。これらの装置の電源としては
現在1次電池が使用されており、一般的に6〜7年程度
で電池が消耗するため、定期的に装置の植え替えを行う
必要がある。このため、これらの装置を植え込んでいる
患者の中には植え替え手術に対する不安感を感じている
者も少なくない。したがって植え替え回数が少なくて済
む、より長寿命のペースメーカーやICDが求められて
いる。
2. Description of the Related Art Implantable cardiac pacemakers (hereinafter referred to as pacemakers) and implantable defibrillators (hereinafter referred to as ICDs) are widely used as arrhythmia treatment devices for bradycardia and tachycardia. Currently, a primary battery is used as a power source for these devices, and the battery is generally exhausted in about 6 to 7 years. Therefore, it is necessary to periodically replant the device. Therefore, many patients who have implanted these devices feel anxiety about replanting surgery. Therefore, there is a demand for a longer-life pacemaker and ICD that can be replanted less frequently.

【0003】このような要求を満足する手段として2次
電池を搭載したペースメーカーが提案されている(例え
ば、特開平5-317433号「ペースメーカー」、特開平6-79
005号「ペースメーカー」、特開平7-246243号「生体植
え込み機器用経皮充電装置」)。これらの提案によれ
ば、数ヶ月に一度の充電により、ペースメーカーの電池
寿命を2倍以上に延長することが可能となる。
As a means for satisfying such requirements, a pacemaker equipped with a secondary battery has been proposed (for example, Japanese Patent Laid-Open No. 5-317433, "Pacemaker", Japanese Patent Laid-Open No. 6-79).
No. 005 "Pacemaker", JP-A No. 7-246243 "Transdermal charging device for living body implanting device"). According to these proposals, the battery life of the pacemaker can be more than doubled by charging the battery once every several months.

【0004】これらに提案されている従来の充電式ペー
スメーカーは、体外のコイルから発生した電磁波を経皮
的にペースメーカー内部のコイルで受電し、電磁結合に
より得られた起電力に対し整流および平滑化を施した
後、所定の電流値になるように制御して2次電池に充電
する。したがって、患者はペースメーカー植え込み部位
の皮膚表面に充電器のコイルを配置するだけで、さほど
行動を制限されることもなく数時間の間に充電を行うこ
とができる。
In the conventional rechargeable pacemakers proposed in these, electromagnetic waves generated from the coil outside the body are percutaneously received by the coil inside the pacemaker, and the electromotive force obtained by electromagnetic coupling is rectified and smoothed. After that, the secondary battery is charged by controlling the current value to a predetermined value. Therefore, the patient can charge the battery within a few hours only by placing the coil of the charger on the skin surface of the pacemaker implantation site without being restricted in his / her activity.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、ペース
メーカーやICDなどの生体内植え込み装置は、電子回
路や電池などの構成部品が体液に侵蝕されないようチタ
ンやチタン系合金等の生体適合性の高い金属ケースに密
封されているため、充電のために送信されるエネルギー
である電磁波は、皮膚や皮下組織に加え、この金属ケー
スを通して装置内の受電コイルに送られることとなる。
However, in vivo implantable devices such as pacemakers and ICDs, metal implants such as titanium and titanium-based alloys are highly biocompatible so that components such as electronic circuits and batteries are not corroded by body fluids. Since it is hermetically sealed, the electromagnetic waves that are the energy transmitted for charging are sent to the power receiving coil in the device through this metal case in addition to the skin and subcutaneous tissue.

【0006】電磁波が金属を通過するとき、金属内には
渦電流が発生し、これにより金属の温度が上昇する。こ
れは、電磁波の一部が熱に変わったためであり、充電時
の電送効率を低下させる原因となっている。電送効率の
低下は充電時間の延長につながるだけでなく、渦電流に
より発生した熱がペースメーカーを植え込んだ部位の生
体組織に作用し低温火傷などの悪影響を引き起こす虞れ
がある。
When an electromagnetic wave passes through a metal, an eddy current is generated in the metal, which raises the temperature of the metal. This is because a part of the electromagnetic wave is changed to heat, which causes a decrease in the transmission efficiency during charging. The decrease in transmission efficiency not only leads to the extension of charging time, but also the heat generated by the eddy current may act on the living tissue at the site where the pacemaker is implanted and may cause an adverse effect such as low temperature burn.

【0007】本発明は、上述の問題点に鑑みてなされた
ものであり、体外から電磁結合によって電気エネルギの
供給を行う充電式の生体内植え込み装置において、電送
効率を上昇させ、かつ生体組織に悪影響を及ぼすような
ケース表面の温度上昇を抑えることを目的とする。
The present invention has been made in view of the above-mentioned problems, and in a rechargeable in-vivo implanting device for supplying electric energy from outside the body by electromagnetic coupling, increases the transmission efficiency and makes it possible to transform living tissues. The purpose is to suppress the temperature rise on the surface of the case that would have an adverse effect.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の生体内植え込み装置によれば、装置を密封
する金属ケースと、該金属ケース内に配置された2次電
池と、前記装置外部から送信されるエネルギーにより電
力を得るコイルと、前記金属ケースにおける前記エネル
ギーの受信側とそれ以外の内部部位との温度差を電力に
変換する熱電素子と、前記コイルにより得られた電力と
前記熱電素子により生成された電力を前記2次電池に充
電する充電制御手段を備えることによりハイブリッド充
電が行えることを特徴とするものである。
In order to solve the above problems, according to the in-vivo implanting device of the present invention, a metal case for sealing the device, a secondary battery arranged in the metal case, and A coil that obtains electric power by energy transmitted from the outside of the device, a thermoelectric element that converts the temperature difference between the energy receiving side of the metal case and other internal parts into electric power, and the electric power obtained by the coil. Hybrid charging can be performed by including charging control means for charging the secondary battery with the electric power generated by the thermoelectric element.

【0009】さらに、前記熱電素子の高温側に前記金属
ケースにおける前記エネルギーの受信側から伝熱体を介
して熱が導かれ、低温側が装置の内部部品に直接あるい
は伝熱体を介して接触していることを特徴とするもので
ある。
Further, heat is introduced to the high temperature side of the thermoelectric element from the energy receiving side of the metal case via the heat transfer body, and the low temperature side contacts the internal parts of the apparatus directly or via the heat transfer body. It is characterized by that.

【0010】さらに、前記熱電素子はペルチェ効果を有
し、前記金属ケースにおける前記エネルギーの受信側と
それ以外の内部部位との温度差が所定の値より大きくな
った場合に該電熱素子に電流を流すよう制御する手段を
備えていることを特徴とするものである。
Further, the thermoelectric element has a Peltier effect, and when the temperature difference between the energy receiving side of the metal case and the other internal parts exceeds a predetermined value, a current is applied to the electrothermal element. It is characterized in that it is provided with a means for controlling the flow.

【0011】[0011]

【発明の実施の形態】以下、添付図面を参照にして、本
発明の実施の形態について詳細に説明する。図1は、本
発明の実施の形態におけるハイブリッド充電式の生体内
植え込み装置10の断面図を示すものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of a hybrid rechargeable in-vivo implanting device 10 according to an embodiment of the present invention.

【0012】図1において、生体内植え込み装置10は
チタン系金属などの生体適合性の高い金属ケース104
によって密閉されたものである。熱電素子101は一方
の面を接点として、生体内植え込み装置10内部の電子
回路102の表面上に接触するように実装されている。
熱電素子101の他方の面には金属ケース104よりも
熱伝導率の高い金属などで構成される薄い伝熱体103
が密着配置されており、さらに伝熱体103は金属ケー
ス104の植え込み時に体表側となる内面(金属ケース
における電磁波の受信側内面)に密着している。また伝
熱体103と2次電池105などの内部部品の境界に
は、金属ケース104からの熱が伝わらないように断熱
部材106が配置されている。これにより金属ケース1
04の熱が他の内部部品側に逃げることを防ぎ、効率的
に熱電素子101の接点に導くことができるようになっ
ている。
In FIG. 1, an in-vivo implanting device 10 includes a metal case 104, such as a titanium-based metal, having high biocompatibility.
It is sealed by. The thermoelectric element 101 is mounted so that one surface of the thermoelectric element 101 serves as a contact point and contacts the surface of the electronic circuit 102 inside the in-vivo implanting device 10.
On the other surface of the thermoelectric element 101, a thin heat transfer body 103 made of metal or the like having a higher thermal conductivity than the metal case 104 is formed.
The heat transfer body 103 is in close contact with the inner surface (the inner surface on the electromagnetic wave receiving side of the metal case) which is the body surface side when the metal case 104 is implanted. A heat insulating member 106 is arranged at the boundary between the heat transfer body 103 and the internal parts such as the secondary battery 105 so that heat from the metal case 104 is not transferred. This makes the metal case 1
It is possible to prevent the heat of 04 from escaping to the other internal component side and efficiently guide it to the contact point of the thermoelectric element 101.

【0013】ここで、熱電素子101としては、サーモ
モジュールが好適に使用できる。サーモモジュールは、
N型・P型が対になった半導体素子によって構成された
冷却素子であり、直流電流を流すことで一方の面が吸熱
(冷却)し、反対の面が放熱する(ペルチェ効果)。ま
た電源の極性を逆にすることで、吸熱・放熱の切り替え
も可能となる。また、逆に温度差を与えることによって
発電することも可能となる(ゼーベック効果)。
Here, as the thermoelectric element 101, a thermo module can be preferably used. Thermo module
This is a cooling element composed of a pair of N-type and P-type semiconductor elements. When a direct current is applied, one surface absorbs (cools) and the other surface radiates heat (Peltier effect). It is also possible to switch between heat absorption and heat dissipation by reversing the polarity of the power supply. Moreover, it is also possible to generate power by giving a temperature difference (Seebeck effect).

【0014】図2は、図1の生体内植え込み装置10の
システムブロック図を示すものである。図2に示すよう
に、植え込まれた装置に充電を行う場合には、装置が植
え込まれている部位の体表面に充電器の送電コイル20
を当て、電磁波を送出する。送出された電磁波は、生体
組織と金属ケース104を介して植え込み装置10内の
受電コイル107で受電され、充電制御回路301によ
り整流および平滑化を施した後、所定の電流値になるよ
うに制御して2次電池105に充電される。
FIG. 2 shows a system block diagram of the in-vivo implanting device 10 of FIG. As shown in FIG. 2, when charging the implanted device, the power transmission coil 20 of the charger is attached to the body surface of the site where the device is implanted.
And apply an electromagnetic wave. The transmitted electromagnetic wave is received by the power receiving coil 107 in the implanting device 10 via the living tissue and the metal case 104, rectified and smoothed by the charging control circuit 301, and then controlled to have a predetermined current value. Then, the secondary battery 105 is charged.

【0015】ここで、送電コイル20から送出された電
磁波が、植え込み装置10を密封している金属ケース1
04を通過する際、金属ケース104には渦電流が発生
する。この渦電流により、金属ケース104における電
磁波通過側の温度は上昇する。すなわち、熱電素子10
1の接点が接触している金属ケース104の体表側内面
と電子回路102との間に2〜3℃程度の温度差が生じ
る。この温度差に基づくゼーベック効果により熱電素子
101は起電力を発生する。発生した電力は昇圧回路3
02により昇圧された後、充電制御回路301に入り、
充電コイル107より受電された電力と合成され2次電
池105に充電される。
Here, the electromagnetic wave sent from the power transmission coil 20 seals the implanting device 10 in the metal case 1.
When passing through 04, an eddy current is generated in the metal case 104. The eddy current causes the temperature of the metal case 104 on the electromagnetic wave passing side to rise. That is, the thermoelectric element 10
A temperature difference of about 2 to 3 ° C. occurs between the inner surface of the metal case 104 on which the first contact is in contact and the electronic circuit 102. The Seebeck effect based on this temperature difference causes the thermoelectric element 101 to generate an electromotive force. The generated power is boost circuit 3
After being boosted by 02, it enters the charge control circuit 301,
The power received from the charging coil 107 is combined with the power and charged in the secondary battery 105.

【0016】冷却制御回路303は、金属ケース104
の温度が生体に悪影響を及ぼす程度まで上昇した場合に
備えて、熱電素子101により発生する起電力と、金属
ケース104における充電時の電磁波通過部位周辺の温
度を常に監視している。
The cooling control circuit 303 includes a metal case 104.
In preparation for the case where the temperature rises to the extent that it adversely affects the living body, the electromotive force generated by the thermoelectric element 101 and the temperature around the electromagnetic wave passing portion of the metal case 104 during charging are constantly monitored.

【0017】すなわち、金属ケース104の温度が所定
の温度以上に上昇した場合、冷却制御回路303がそれ
を感知し、熱電素子101による電力と充電コイル10
7より受電された電力との合成を中止すると同時に、熱
電素子101に対して直流電流を流す。このとき流す直
流電流は、熱電素子101により発生する起電力と反対
の極とする。この通電に伴うペルチェ効果により、熱電
素子101は金属ケース104で発生した側の熱を吸熱
し、温度の上昇を抑える。
That is, when the temperature of the metal case 104 rises above a predetermined temperature, the cooling control circuit 303 senses it, and the electric power from the thermoelectric element 101 and the charging coil 10 are detected.
At the same time when the synthesis with the electric power received from 7 is stopped, a direct current is passed through the thermoelectric element 101. The direct current flowing at this time has a pole opposite to the electromotive force generated by the thermoelectric element 101. Due to the Peltier effect that accompanies this energization, the thermoelectric element 101 absorbs the heat generated on the metal case 104 and suppresses the temperature rise.

【0018】また、冷却制御回路303は、この吸熱に
より金属ケース104の温度が所定の値以下に下がると
冷却動作のための通電を停止し、再度熱電素子101に
よる充電動作を開始するよう制御する。
Further, when the temperature of the metal case 104 drops below a predetermined value due to this heat absorption, the cooling control circuit 303 stops the energization for the cooling operation and controls the charging operation by the thermoelectric element 101 to start again. .

【0019】このように、冷却制御回路303の制御に
より、熱電素子101は、金属ケース104の許容範囲
内の発熱に対しては熱を電気に変換することで吸熱し、
許容範囲を越える発熱に対しては自ら冷却するよう動作
する。
As described above, under the control of the cooling control circuit 303, the thermoelectric element 101 absorbs heat generated within the allowable range of the metal case 104 by converting the heat into electricity,
It operates so as to cool itself against heat generation exceeding the allowable range.

【0020】以上、説明した本発明の生体内植え込み装
置は、具体的にはペースメーカー、ICD、補助人工心
臓、人工心臓、神経刺激装置、埋め込み型薬液注入ポン
プ等、経皮的に充電することが求められるあらゆる装置
に適用することが可能である。
The above-described in-vivo implanting device of the present invention can be charged percutaneously, specifically, by a pacemaker, an ICD, an auxiliary artificial heart, an artificial heart, a nerve stimulator, an implantable drug injection pump, or the like. It can be applied to all required devices.

【0021】[0021]

【発明の効果】本発明によれば、体外のコイルから発生
した電磁波が植え込み装置の金属ケースを通過する際発
生する渦電流による発熱を熱電素子により電気エネルギ
に変換し、装置内の受電コイルで受けた充電エネルギに
加えて充電を行うことができるため、2次電池を利用し
た生体内植え込み装置充電時の電送効率を上昇させるこ
とができる。また、状況に応じて前記熱電素子に電流を
流すことにより金属ケースの冷却が可能であるため、生
体組織に異常をきたすケース表面の温度上昇を抑え、安
全に経皮的充電を行うことが可能である。
According to the present invention, the heat generated by the eddy current generated when the electromagnetic wave generated from the coil outside the body passes through the metal case of the implanting device is converted into the electric energy by the thermoelectric element, and the power receiving coil inside the device is used. Since charging can be performed in addition to the received charging energy, it is possible to increase the transmission efficiency at the time of charging the in-vivo implanting device using the secondary battery. Also, depending on the situation, it is possible to cool the metal case by passing an electric current through the thermoelectric element, so it is possible to suppress the temperature rise on the surface of the case that causes abnormalities in living tissue and safely perform percutaneous charging. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施形態の生体内植え込み装置の断面図であ
る。
FIG. 1 is a cross-sectional view of an in-vivo implantation device according to an embodiment.

【図2】 図1の生体内植え込み装置のシステムブロッ
ク図である。
2 is a system block diagram of the in-vivo implanting device of FIG. 1. FIG.

【符号の説明】[Explanation of symbols]

10 生体内植え込み装置 101 熱電素子 102 電子回路 103 伝熱体 104 金属ケース 105 2次電池 106 断熱部 107 受電コイル 20 送電コイル 301 充電制御装置 302 昇圧回路 303 冷却制御装置 10 In-vivo implantation device 101 thermoelectric element 102 electronic circuit 103 heat transfer body 104 metal case 105 secondary battery 106 heat insulation section 107 Power receiving coil 20 power transmission coil 301 Charge control device 302 Booster circuit 303 Cooling control device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 経皮的充電機能を有する生体内植え込み
装置であって、該装置を密封する金属ケースと、該金属
ケース内に配置された2次電池と、前記装置外部から送
信されるエネルギーにより電力を得るコイルと、前記金
属ケースにおける前記エネルギーの受信側とそれ以外の
内部部位との温度差を電力に変換する熱電素子と、前記
コイルにより得られた電力と前記熱電素子により生成さ
れた電力を前記2次電池に充電する充電制御手段を備え
ることを特徴とする生体内植え込み装置。
1. An in-vivo implantable device having a percutaneous charging function, which is a metal case for sealing the device, a secondary battery arranged in the metal case, and energy transmitted from the outside of the device. Generated by the coil, a thermoelectric element that converts the temperature difference between the energy receiving side of the metal case and the other internal parts into electric power, the electric power obtained by the coil and the thermoelectric element generated by the thermoelectric element An in-vivo implanting device comprising a charging control means for charging the secondary battery with electric power.
【請求項2】 前記熱電素子の高温側に前記金属ケース
における前記エネルギーの受信側から伝熱体を介して熱
が導かれ、前記熱電素子の低温側が装置の内部部品に直
接あるいは伝熱体を介して接触していることを特徴とす
る請求項1に記載の生体内植え込み装置。
2. Heat is introduced to the high temperature side of the thermoelectric element from the energy receiving side of the metal case via a heat transfer body, and the low temperature side of the thermoelectric element directly or internally transfers the heat transfer body to the internal parts of the apparatus. The in-vivo implantation device according to claim 1, wherein the in-vivo implantation device is in contact with the in-vivo device.
【請求項3】 前記熱電素子はペルチェ効果を有し、前
記金属ケースにおける前記エネルギーの受信側とそれ以
外の内部部位との温度差が所定の値より大きくなった場
合に該電熱素子に電流を流すよう制御する手段を更に備
えていることを特徴とする請求項1に記載の生体内植え
込み装置。
3. The thermoelectric element has a Peltier effect, and when the temperature difference between the energy receiving side of the metal case and the other internal parts is larger than a predetermined value, a current is applied to the electrothermal element. The in-vivo implantation apparatus according to claim 1, further comprising means for controlling so as to flow.
JP2002069669A 2002-03-14 2002-03-14 In vivo implantation apparatus Pending JP2003265626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002069669A JP2003265626A (en) 2002-03-14 2002-03-14 In vivo implantation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002069669A JP2003265626A (en) 2002-03-14 2002-03-14 In vivo implantation apparatus

Publications (1)

Publication Number Publication Date
JP2003265626A true JP2003265626A (en) 2003-09-24

Family

ID=29200442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002069669A Pending JP2003265626A (en) 2002-03-14 2002-03-14 In vivo implantation apparatus

Country Status (1)

Country Link
JP (1) JP2003265626A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280163A (en) * 2005-03-30 2006-10-12 Dainippon Printing Co Ltd Non-contact energy electrical transfer system of plane display
JP2008182878A (en) * 2006-12-28 2008-08-07 Semiconductor Energy Lab Co Ltd Power storage device, electronic equipment, and manufacturing method for power storage device
JP2012119657A (en) * 2010-11-09 2012-06-21 National Institute Of Advanced Industrial & Technology Photothermal power generation element and photothermal power generation method using the same
JP2015521790A (en) * 2012-06-06 2015-07-30 ザ チャールズ スターク ドレイパー ラボラトリー インク Biologically implantable airtight integrated circuit device
KR20170028823A (en) * 2015-09-04 2017-03-14 삼성전기주식회사 A wireless power transmitting device and a control method for the same
CN107294220A (en) * 2017-07-21 2017-10-24 维沃移动通信有限公司 A kind of wireless charging device, method and terminal
KR20200027222A (en) * 2018-09-04 2020-03-12 유장석 Device for Charging using Temperature Difference

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280163A (en) * 2005-03-30 2006-10-12 Dainippon Printing Co Ltd Non-contact energy electrical transfer system of plane display
JP2008182878A (en) * 2006-12-28 2008-08-07 Semiconductor Energy Lab Co Ltd Power storage device, electronic equipment, and manufacturing method for power storage device
JP2012119657A (en) * 2010-11-09 2012-06-21 National Institute Of Advanced Industrial & Technology Photothermal power generation element and photothermal power generation method using the same
JP2015521790A (en) * 2012-06-06 2015-07-30 ザ チャールズ スターク ドレイパー ラボラトリー インク Biologically implantable airtight integrated circuit device
KR20170028823A (en) * 2015-09-04 2017-03-14 삼성전기주식회사 A wireless power transmitting device and a control method for the same
KR102561206B1 (en) 2015-09-04 2023-07-28 주식회사 위츠 A wireless power transmitting device and a control method for the same
CN107294220A (en) * 2017-07-21 2017-10-24 维沃移动通信有限公司 A kind of wireless charging device, method and terminal
KR20200027222A (en) * 2018-09-04 2020-03-12 유장석 Device for Charging using Temperature Difference
KR102144439B1 (en) * 2018-09-04 2020-08-13 유장석 Device for Charging using Temperature Difference

Similar Documents

Publication Publication Date Title
US11394226B2 (en) Sensing temperature within medical devices
US10806937B2 (en) Heat dispersion for implantable medical devices
US7127293B2 (en) Biothermal power source for implantable devices
US9270134B2 (en) Adaptive rate recharging system
US6131581A (en) Process and device for supply of an at least partially implanted active device with electric power
US20050038483A1 (en) Biothermal power source for implantable devices
US10027157B2 (en) Implant current controlled battery charging based on temperature
US7486048B2 (en) Implantable power module for powering a medical device
US6640137B2 (en) Biothermal power source for implantable devices
US7184836B1 (en) Implantable devices using rechargeable zero-volt technology lithium-ion batteries
US20070096686A1 (en) Implantable device with heat absorption material
US20070255349A1 (en) Antenna for an external power source for an implantable medical device, system and method
WO2019118001A1 (en) Medical device temperature estimation
US20090326597A1 (en) Solar cell for implantable medical device
JP2003265626A (en) In vivo implantation apparatus
CN101474109A (en) Portable warm wave moxibustion energy producer and method for producing the same
CN109950941B (en) Charging method of implanted equipment and wireless energy transmission device
CN211634908U (en) Implantable neural stimulator packaging structure
TWI526613B (en) Implantable power generating system for organism and application thereof