JP2003247875A - Ultrasonic flow measuring device - Google Patents

Ultrasonic flow measuring device

Info

Publication number
JP2003247875A
JP2003247875A JP2002045644A JP2002045644A JP2003247875A JP 2003247875 A JP2003247875 A JP 2003247875A JP 2002045644 A JP2002045644 A JP 2002045644A JP 2002045644 A JP2002045644 A JP 2002045644A JP 2003247875 A JP2003247875 A JP 2003247875A
Authority
JP
Japan
Prior art keywords
flow
control means
flow rate
ultrasonic
fluid control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002045644A
Other languages
Japanese (ja)
Other versions
JP3922044B2 (en
Inventor
Hajime Miyata
肇 宮田
Yukio Nagaoka
行夫 長岡
Norio Niimura
紀夫 新村
Yoshiaki Inui
善紀 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002045644A priority Critical patent/JP3922044B2/en
Publication of JP2003247875A publication Critical patent/JP2003247875A/en
Application granted granted Critical
Publication of JP3922044B2 publication Critical patent/JP3922044B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve measuring accuracy and carry out minimization by eliminating drift generated by the bending of a passage very near to an opening and closing valve on the passage of an ultrasonic flow measuring means and reduction of a sectional thereof. <P>SOLUTION: The ultrasonic flow measuring device is provided with a fluid control means 25 provided adjacent to the downstream of the opening and closing valve 23 at the upper stream side of a measuring passage 1, the bending 31 toward the measurement passage 1, and a rectification means 32 at the inlet of the measuring passage 1, and then suppress the drift generated at the down stream of the opening and closing valve 23 on the passage with the fluid control means 25. The fluid control means 25 formed with a plate member and a baffle board with porosity can suppress the drift suiting the strength of the drift with the inclination of the plate member, the opening degree of a hole, and distribution density. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超音波により気体
や液体の流量や流速の計測を行う超音波流量計測装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flow rate measuring device for measuring the flow rate and flow velocity of gas or liquid by ultrasonic waves.

【0002】[0002]

【従来の技術】従来この種超音波流量計測装置として
は、例えば特開平9−18591号公報や特開平11−
351926号公報が知られており、図9は特開平9−
18591号公報の例を示す。
2. Description of the Related Art Conventional ultrasonic flow rate measuring devices of this type are disclosed in, for example, Japanese Patent Application Laid-Open Nos. 9-18591 and 11-.
No. 3519926 is known, and FIG.
The example of 18591 is shown.

【0003】図9において、被計測流体を流す計測流路
1の中心線を挟んで対向し、かつ中心線に対して所定角
度を有する周面に一対の超音波送受信器2、3を設ける
と共に、計測流路1の流体流入口4に計測流路1と同一
方向の向きに、平行に配列された複数の細管5から構成
した整流体6を設けている。そして、流体の流れに対し
て順方向と逆方向に超音波を超音波送受信器2、3間で
送受信して、両方向の伝搬時間差から流速を計測し、配
管の断面積より流量を算出している。このとき、計測流
路1に入る流れは整流体6を構成する細管5によりその
流れ方向を計測流路1と同一方向に規制して、計測部で
の流線の傾きを低減したり、渦の発生を抑制して流れの
乱れの境界面での超音波の反射や屈曲による超音波の受
信レベルの変動を低減して測定精度の悪化を防止してい
る。
In FIG. 9, a pair of ultrasonic transmitters / receivers 2 and 3 are provided on the peripheral surfaces facing each other with the center line of the measurement flow path 1 through which the fluid to be measured flowing and having a predetermined angle with respect to the center line. A rectifying body 6 composed of a plurality of thin tubes 5 arranged in parallel is provided in the fluid inlet 4 of the measurement flow path 1 in the same direction as the measurement flow path 1. Then, ultrasonic waves are transmitted and received between the ultrasonic transceivers 2 and 3 in the forward and reverse directions with respect to the flow of the fluid, the flow velocity is measured from the propagation time difference in both directions, and the flow rate is calculated from the cross-sectional area of the pipe. There is. At this time, the flow entering the measurement flow path 1 is regulated by the thin tube 5 forming the rectifying body 6 so that the flow direction is the same direction as the measurement flow path 1 to reduce the inclination of the flow line in the measurement section, or to reduce the vortex. Is suppressed to reduce the fluctuation of the reception level of the ultrasonic wave due to the reflection and bending of the ultrasonic wave at the boundary surface of the flow turbulence, thereby preventing the deterioration of the measurement accuracy.

【0004】更に他の例としての特開平11−3519
26号公報における例を図10、図11に示す。図10
において、計測流路1、超音波送受信器2,3、流体入
口4は前記図9に示した例と同じであるが、流体入口4
に整流体6の変わりに、流れ方向規制手段7と流れの変
動抑止手段8を配設したものである。この流れ方向規制
手段7は図11に示す様に流路を細かく分割する数枚の
縦仕切り板9と横仕切り板10を設け、仕切り板9、1
0に設けた傾斜で流れの方向を規制し、図9における整
流体6の細管5と同様に計測流路の流れの方向を所望の
向きにそろえている。変動抑止手段8は計測流路の横断
面に対し多数の微細形状の連絡路を配置したもので網状
のメッシュ、プラスチックや発泡金属等の発泡体、プレ
ス加工板やエッチング加工板、不織布等を単独あるいは
複数組み合わせた物であり、その微細な連絡路が計測流
路1の流れの変動防止と整流化を行う。又特開平11−
351926号公報には変動抑止手段8と流れ方向規制
手段7とはそれぞれ単独或いは隣接して併設が可能な例
が示されている。
As another example, JP-A-11-3519
Examples in Japanese Patent No. 26 are shown in FIGS. Figure 10
9, the measurement flow path 1, the ultrasonic transmitters / receivers 2, 3, and the fluid inlet 4 are the same as those in the example shown in FIG.
Instead of the rectifying body 6, a flow direction restricting means 7 and a flow fluctuation suppressing means 8 are provided. As shown in FIG. 11, the flow direction regulating means 7 is provided with several vertical partition plates 9 and horizontal partition plates 10 that divide the flow path into fine parts, and partition plates 9 and 1 are provided.
The flow direction is regulated by the inclination provided at 0, and the flow direction of the measurement flow path is aligned in a desired direction like the thin tube 5 of the rectifying body 6 in FIG. The fluctuation suppressing means 8 has a large number of finely-shaped connecting passages arranged in the cross section of the measurement passage, and is made of a mesh net, a foam such as plastic or foam metal, a pressed plate, an etched plate, or a non-woven fabric. Alternatively, a plurality of them are combined, and the fine communication paths prevent flow fluctuations in the measurement flow path 1 and rectify the flow. In addition, JP-A-11-
Japanese Patent No. 351926 discloses an example in which the fluctuation suppressing means 8 and the flow direction restricting means 7 can be installed individually or adjacently.

【0005】以上のように、細管5を有する整流体6、
流れの方向を規制する流れ方向規制手段7、微細な孔を
有する変動抑止手段8は、計測流路入口4に設置し、流
路を流れて来る流体の不均一な流速分布の改善と、流速
の瞬時的な変動の均一化を行うことで、計測流路1を流
れる流体の整流化を行い流量の計測精度を向上させる目
的で設けられていた。
As described above, the rectifying body 6 having the thin tube 5,
The flow direction restricting means 7 for restricting the flow direction and the fluctuation suppressing means 8 having fine holes are installed at the measurement flow path inlet 4 to improve the non-uniform flow velocity distribution of the fluid flowing through the flow path, and to improve the flow speed. It was provided for the purpose of rectifying the fluid flowing through the measurement flow path 1 and improving the measurement accuracy of the flow rate by uniforming the instantaneous fluctuation of

【0006】[0006]

【発明が解決しようとする課題】しかしながら前記従来
の構成では、流量計測装置を小型化するために必要な短
い間隔での流路の屈曲や細管化、開閉弁部の流路の屈
曲、局部的な断面積の変化などがある場合には、屈曲部
で偏流が発生し、流路の断面積の縮小が偏流の強度や乱
流を増大させる。図9の細管式の整流体6では流れの方
向を整える口径と長さの比が1対10程度の比較的長い
細管5が必要であるため、流量計測路が大型化し、圧力
損失も大きくなり計測可能な上限流量が制限されるとい
う課題があった。また流れ方向規制手段7の単独設置で
は偏流の向きを変更できるが偏流の強度を弱める効果が
少ないという課題があった。変動抑止手段8においても
一個の微細孔の流体通過抵抗を大きくして通過する流量
を規制し、変動抑止手段8の全面に設けてある微細孔全
体に均一に流体を通過させる様にして計測流路内の流速
分布の改善を行っているので、激しい偏流がある場合、
これを緩和、抑止出来なくなったり、所望の偏流防止効
果を得る為には圧力損失が過大になるという課題を有し
ていた。さらに、流れ方向規制手段7と変動抑止手段8
とを計測流路1の入口4に接近して併設したものにおい
ても、流量が増加し、激しい偏流が生じた場合には整流
効果が発揮できず、計測流路に偏流や過流が発生し、こ
の偏流や渦流の発生、発生位置の変動、消滅等で流量計
測の精度が狂う課題を有していた。
However, in the above-mentioned conventional structure, the flow path is bent or narrowed at a short interval necessary for downsizing the flow rate measuring device, the flow path of the on-off valve is bent, and the local flow is locally applied. When there is a large change in the cross-sectional area, uneven flow occurs at the bent portion, and the reduction of the cross-sectional area of the flow path increases the intensity of the uneven flow and the turbulent flow. The thin tube type rectifier 6 of FIG. 9 requires a relatively long thin tube 5 having a diameter-length ratio of about 1 to 10 for adjusting the flow direction, so that the flow rate measurement path becomes large and the pressure loss becomes large. There is a problem that the measurable upper limit flow rate is limited. Further, if the flow direction regulating means 7 is installed alone, the direction of the drift can be changed, but there is a problem that the effect of weakening the strength of the drift is small. Also in the fluctuation suppressing means 8, the flow rate of the fluid passing through one fine hole is increased to regulate the flow rate, and the fluid is uniformly flowed through the whole fine hole provided on the entire surface of the fluctuation suppressing means 8. Since the flow velocity distribution in the road is improved, if there is a severe drift,
There is a problem that this cannot be alleviated or suppressed, or that pressure loss becomes excessive in order to obtain a desired drift prevention effect. Further, the flow direction regulating means 7 and the fluctuation suppressing means 8
Even in the case where and are installed close to the inlet 4 of the measurement flow path 1, when the flow rate increases and a severe drift occurs, the rectifying effect cannot be exerted, and a drift or overflow occurs in the measurement flow path. However, there is a problem that the accuracy of the flow rate measurement is changed due to the generation of the drift or the vortex, the change of the generation position, and the disappearance.

【0007】本発明は上記課題を解決するもので、計測
流路の入口に至る前に強力な偏流防止を行い、更に計測
流路入口で整流作用又は流れ方向の規制と整流作用を行
って、計測流路を流れる流体の流量分布の改善を行うこ
とで、流路の短縮化、小型化、高計測精度化を実現し、
装置全体を小型化した流量計測装置を提供することを目
的とする。
The present invention is intended to solve the above-mentioned problems, in which strong uneven flow prevention is performed before reaching the inlet of the measurement flow path, and further rectification or flow direction regulation and rectification is performed at the measurement flow path inlet. By improving the flow rate distribution of the fluid flowing through the measurement flow path, the flow path is shortened, downsized, and the measurement accuracy is improved.
An object of the present invention is to provide a flow rate measuring device in which the entire device is downsized.

【0008】尚、従来例で述べた計測流路1の入口4に
設けた整流体5、流れ方向規制手段7、流れ変動抑制手
段8は、本発明においては、一括して以下整流手段と呼
ぶ。
The rectifying body 5, the flow direction regulating means 7, and the flow fluctuation suppressing means 8 provided at the inlet 4 of the measurement flow path 1 described in the conventional example are collectively referred to as rectifying means in the present invention. .

【0009】[0009]

【課題を解決するための手段】前記従来の課題を解決す
るために、本発明の流量計測装置は、開閉弁、開閉弁下
流側流路よりなる導入路、曲り部、計測流路入口に設け
た整流手段、計測流路、及び排出曲げ部からなる流路構
成において、開閉弁下流側流路に流体制御手段を設けた
ものである。
In order to solve the above-mentioned conventional problems, a flow rate measuring device of the present invention is provided at an opening / closing valve, an introducing passage formed by a downstream passage of an opening / closing valve, a bending portion, and a measurement passage inlet. In the flow path configuration including the rectifying means, the measurement flow path, and the discharge bending portion, the fluid control means is provided in the flow path on the downstream side of the on-off valve.

【0010】これによって、流体の流れが開閉弁を通過
する時に開閉弁部で曲げられ、開閉弁下流側の流路の対
向壁面に衝突することで生じた偏流が流体制御手段で流
路全面に拡散緩和され、曲り部で攪拌され、更に計側流
路入口に設けた整流手段で流速分布の改善と、短い間隔
で発生する流量の脈動が削減される事になる。
As a result, when the flow of the fluid passes through the on-off valve, it is bent at the on-off valve portion and collided against the opposite wall surface of the flow passage on the downstream side of the on-off valve, and the uneven flow is generated on the entire flow passage by the fluid control means. The diffusion is alleviated, the mixture is agitated at the curved portion, and the flow velocity distribution is improved by the rectifying means provided at the inlet of the meter side flow passage, and the pulsation of the flow rate generated at a short interval is reduced.

【0011】[0011]

【発明の実施の形態】請求項1に記載の発明は、開閉弁
及び前記開閉弁の下流側に配設した流体制御手段とを有
する導入路と、前記導入路の軸方向から屈曲して配設し
た計測流路と、前記計測流路の流路を挟んだ対向壁面に
設けた少なくとも一対の超音波送受信器と、前記一対の
送受信器間の超音波の伝搬時間を計測する計測制御手段
と、前記計測制御手段からの信号に基づいて流量を算出
する演算手段とを備えてなる超音波流量計測装置とする
ことにより、流体が流路壁面に装着された開閉弁の弁座
開口部で曲げられて下流側流路に流れ込み、下流側流路
の対向壁面に衝突してから流路壁面に沿って下流側へ流
れる事で生じる偏流が流体制御手段で抑制、緩和され、
曲り部で交じり合った後、方向を変え、計側流路入口に
設けた整流手段で更に整流作用を受ける事となり、計測
流路の流速分布が改善され、短い間隔で発生する流量の
脈動も削減することが出来る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 is characterized in that an inlet passage having an on-off valve and a fluid control means disposed on the downstream side of the on-off valve, and an inlet passage bent in the axial direction of the inlet passage. A measurement flow path provided, at least a pair of ultrasonic transceivers provided on opposite wall surfaces sandwiching the flow path of the measurement flow channel, and measurement control means for measuring the propagation time of ultrasonic waves between the pair of transceivers. And an ultrasonic flow rate measuring device comprising a calculation means for calculating a flow rate based on a signal from the measurement control means, whereby the fluid is bent at the valve seat opening of the on-off valve mounted on the wall surface of the flow path. The flow control means suppresses and alleviates uneven flow caused by flowing into the downstream side flow path, colliding with the facing wall surface of the downstream side flow path and then flowing to the downstream side along the flow path wall surface,
After mixing at the bend, the direction is changed, and the rectifying means installed at the inlet of the meter side flow channel further receives the rectifying action, improving the flow velocity distribution in the measurement flow channel and pulsating the flow rate generated at short intervals. Can be reduced.

【0012】請求項2に記載の発明は、特に、請求項1
に記載の流体制御手段を導入路を覆い、流路の方向に多
孔性を有する板状部材とする事により流路全体に偏流を
拡散させ消滅させることができる。
The invention as defined in claim 2 is particularly defined by claim 1.
By covering the introduction passage with the fluid control means described in (1) and forming a plate-like member having porosity in the direction of the passage, the drift can be diffused and eliminated in the entire passage.

【0013】請求項3に記載の発明は、特に、請求項2
に記載の流体制御手段を流路内の最も偏流の強い部分を
上流側とし、偏流の弱い部分を下流側とするように、傾
斜した多孔性を有する板状部材としたことにより、偏流
は傾斜した多孔性板状部材の表面を伝って広がりやすく
なり、前記板状部材に設けた全面の孔を均等に流体が通
過して流体制御手段における圧力損失の低減と、偏流抑
止効果を増強することができる。
The invention as defined in claim 3 is particularly defined by claim 2.
Since the fluid control means described in (1) is a plate-shaped member having inclined porosity so that the portion with the strongest drift in the flow path is the upstream side and the portion with the weakest drift is the downstream side, the drift is inclined. The porous plate-shaped member easily spreads along the surface of the porous plate-shaped member, and the fluid evenly passes through the holes provided on the entire surface of the plate-shaped member to reduce the pressure loss in the fluid control means and enhance the effect of suppressing the non-uniform flow. You can

【0014】請求項4に記載の発明は、特に、請求項3
記載の流体制御手段を下流側に行くほど通過圧損が低く
なる開口面積を有する多孔性の板状部材とした事によ
り、激しい勢いを有する偏流は上流側の大きな通過圧損
を有する孔で大きく勢いを削がれ、また傾斜した多孔性
板状部材の表面に沿って拡散して勢いが減衰した流体は
下流側の小さな通過圧損の孔をわずかな勢いの減少で通
過することが出来るので、板状部材の孔を通過した流れ
は均等化し、流体制御手段部での偏流抑止効果の増強と
圧力損失の減少とを得ることが出来る。
The invention as defined in claim 4 is particularly characterized by claim 3.
Since the fluid control means described above is a porous plate-like member having an opening area in which the passage pressure loss becomes lower toward the downstream side, the biased flow having a strong momentum exerts a large momentum at the hole having a large passage pressure loss on the upstream side. The fluid that has been shaved and diffused along the surface of the slanted porous plate member and whose momentum has been attenuated can pass through the small passage pressure loss hole on the downstream side with a slight reduction in momentum. The flow passing through the holes of the member can be equalized, and the effect of suppressing the nonuniform flow in the fluid control means can be enhanced and the pressure loss can be reduced.

【0015】請求項5に記載の発明は、特に、請求項
2、3、4記載の流体制御手段を流路内の最も偏流が強
く当たる部分には流体通過孔を有さない板状部材とする
事により、最も強い偏流が、板状部材の上流側の流体通
過孔を通り、強い勢いを持ったまま下流側に漏れる事を
防止し、板状部材下流側に設けた孔に流体を通すことで
流体制御手段部での偏流抑止効果を増強できる。
According to a fifth aspect of the present invention, in particular, the fluid control means according to the second, third, and fourth aspects is a plate-like member having no fluid passage hole in a portion of the flow path where the most biased flow strikes. By doing so, the strongest drift is prevented from passing through the fluid passage hole on the upstream side of the plate member and leaking to the downstream side with strong force, and the fluid is passed through the hole provided on the downstream side of the plate member. As a result, the effect of suppressing uneven flow in the fluid control unit can be enhanced.

【0016】請求項6に記載の発明は、特に、請求項
4、5記載の流体制御手段を最も偏流が弱い下流側部分
に切り欠き部がある多孔性の板状部材とする事により、
少ない流量では板状部材の孔と、切り欠き部を流れる事
により流体制御手段で生じる圧力損失を削減できる。
According to the sixth aspect of the present invention, in particular, the fluid control means according to the fourth and fifth aspects is a porous plate-like member having a cutout portion in the downstream side portion where the most uneven flow is weak.
When the flow rate is small, the pressure loss caused by the fluid control means can be reduced by flowing through the holes of the plate-shaped member and the notch.

【0017】請求項7に記載の発明は、特に、請求項1
記載の流体制御手段を流路内の最も偏流の強い部分を上
流側とし、偏流の弱い部分を下流側となるように傾斜
し、かつ下流側部分に切り欠き部がある板状部材と、前
記切り欠き部より下流側に設けたひさし状の邪魔板とで
構成する事により、板状部材に設けた孔を通過して勢い
を失った流体は板状部材切り欠き部を通り邪魔板に当た
って方向を変えた流体を下流方向へ押し流すことで更に
勢いを無くし、また前記邪魔板に当たって方向を変えた
流体は邪魔板後方で生じる渦に引っ張られて流路全体に
拡散することになり偏流が削減できる。
The invention as defined in claim 7 is particularly defined by claim 1.
The fluid control means described is a plate-shaped member in which the portion with the strongest drift in the flow channel is the upstream side, the portion with the weakest drift is the downstream side, and there is a notch in the downstream portion, and By constructing with an eaves-shaped baffle plate provided on the downstream side of the notch, the fluid that has lost its momentum through the hole provided in the plate-shaped member passes through the plate-shaped member notch and hits the baffle plate in the direction. The fluid whose flow rate has been changed is pushed further downstream to further reduce the momentum, and the fluid whose direction has changed by hitting the baffle plate is attracted by the vortex generated behind the baffle plate and diffused throughout the flow path, thus reducing uneven flow. .

【0018】[0018]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明をする。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】(実施例1)図1、2は、本発明の第1の
実施例における超音波流量計測装置の断面図及び上面一
部断面図を示すものである。
(Embodiment 1) FIGS. 1 and 2 are a sectional view and an upper surface partial sectional view of an ultrasonic flow rate measuring apparatus according to a first embodiment of the present invention.

【0020】図1に於いて、21は被計測流体の導入路
であり、流入口22、電磁式またはステッピングモータ
ー式などの開閉弁23、開閉弁下流側流路24、流体制
御手段25で構成されている。開閉弁下流側流路24は
開閉弁23の弁座開口部26より下流側であり、矩形の
断面形状を有する。流体制御手段25は流路の方向に多
孔性を有する板状部材、邪魔板等で構成され、その孔の
大きさと分布密度は流路の寸法と流量の大きさで定まる
偏流の強さと許容圧力損失で決定してある。開閉弁23
の開閉中心線と開閉弁下流側流路24の中心軸とはほぼ
90度の角度を持っている。また、開閉弁23の駆動部
27の取り付け外形寸法を小さくするために弁座開口部
26が段差28で開閉弁下流側流路24に入りこみ、弁
座開口部26と、弁座開口部26に対向する位置にある
壁面29との間が狭くなり、この部分の流路断面積を小
さくしている。計測路30は曲げ部31、計測流路入口
4、計測流路入口4に設けた整流手段32、計測流路
1、排出曲げ部33よりなる。曲げ部31は、導入路2
1の開閉弁下流側流路24と接続しており、断面が矩形
で、開閉弁下流側流路24に対向する壁面には窪み34
が設けてある。計測流路1は導入路21の開閉弁下流側
流路24の中心軸とほぼ直角をなしている。
In FIG. 1, reference numeral 21 is an introduction passage of a fluid to be measured, which is composed of an inlet 22, an opening / closing valve 23 of an electromagnetic type or a stepping motor type, an opening / closing valve downstream side passage 24, and a fluid control means 25. Has been done. The on-off valve downstream side flow path 24 is on the downstream side of the valve seat opening 26 of the on-off valve 23 and has a rectangular cross-sectional shape. The fluid control means 25 is constituted by a plate-shaped member having a porosity in the direction of the flow path, a baffle plate, etc., and the size and distribution density of the holes are determined by the size of the flow path and the size of the flow rate. It is decided by the loss. On-off valve 23
The opening / closing center line of the opening / closing valve and the central axis of the opening / closing valve downstream side flow path 24 have an angle of about 90 degrees. Further, the valve seat opening 26 enters the flow path 24 on the downstream side of the open / close valve at the step 28 in order to reduce the mounting external dimension of the drive portion 27 of the open / close valve 23, and the valve seat opening 26 and the valve seat opening 26 are inserted. The space between the wall surface 29 and the wall surface 29 located at the opposite position is narrowed, and the flow passage cross-sectional area of this portion is reduced. The measurement path 30 includes a bending portion 31, a measurement flow path inlet 4, a rectifying means 32 provided at the measurement flow path inlet 4, the measurement flow path 1, and a discharge bending portion 33. The bent portion 31 is the introduction path 2
1 is connected to the on-off valve downstream side flow passage 24, has a rectangular cross section, and has a recess 34 on the wall surface facing the on-off valve downstream side flow passage 24.
Is provided. The measurement flow path 1 is substantially perpendicular to the central axis of the open / close valve downstream flow path 24 of the introduction path 21.

【0021】整流手段32は従来例で説明したように流
れの乱れに応じて所望の方向に傾斜させた仕切り板で構
成した流れ方向規制手段7と、微細通路を有するメッシ
ュなどで構成した変動抑止手段8とで構成されている。
計測流路1は矩形断面を持っており、図2に示す様に導
入路21の方向と直角方向にある壁面には流路を挟んで
一対の超音波送受信器2、3が流路の上流側と下流側で
斜めに対向して装着されている。35は流体の整流状態
を現し、流路内の流速分布が矢印の長さに比例した状態
で現される。36は排出路であり、排出曲げ部33に接
続している。排出路36の流出口37から被測定流体は
流れ出す。また導入路21の開閉弁下流側流路24と計
測路30と排出路36はコの字型をしている。38は計
測制御手段であり超音波送受信器2、3間で交互に超音
波を送受信させて流体の流れに対して順方向と逆方向の
超音波の伝搬時間の差を一定間隔を置いて計り、伝搬時
間差信号として出力する働きを持つ。また39は演算手
段で前記計測制御手段38からの伝搬時間差信号を受け
て被計測流体の流速及び流量を算出するものである。更
に40はリチウム電池などで構成される電源手段であ
る。計測制御手段38、演算手段39、電源手段40の
一部と開閉弁23の駆動部27はコの字型で構成される
被計測流体の流路の内側の空間に装着されている。
As described in the conventional example, the rectifying means 32 is a flow direction regulating means 7 composed of a partition plate inclined in a desired direction according to the turbulence of the flow, and a fluctuation restraint composed of a mesh having fine passages. And means 8.
The measurement flow path 1 has a rectangular cross section, and as shown in FIG. 2, a pair of ultrasonic transmitters / receivers 2, 3 are located upstream of the flow path on the wall surface in a direction perpendicular to the direction of the introduction path 21 with the flow path interposed therebetween. Side and downstream sides are diagonally opposed and mounted. Reference numeral 35 represents a rectified state of the fluid, and the flow velocity distribution in the flow path is represented in proportion to the length of the arrow. A discharge path 36 is connected to the discharge bending portion 33. The fluid to be measured flows out from the outlet 37 of the discharge path 36. The flow path 24 on the downstream side of the on-off valve, the measurement path 30, and the discharge path 36 of the introduction path 21 are U-shaped. Reference numeral 38 denotes a measurement control means which alternately transmits and receives ultrasonic waves between the ultrasonic transmitters / receivers 2 and 3 and measures the difference in the propagation time of the ultrasonic waves in the forward direction and the backward direction with respect to the fluid flow at regular intervals. , Has a function of outputting as a propagation time difference signal. Further, 39 is a calculation means for receiving the propagation time difference signal from the measurement control means 38 and calculating the flow velocity and flow rate of the fluid to be measured. Further, 40 is a power supply means composed of a lithium battery or the like. The measurement control unit 38, the calculation unit 39, a part of the power supply unit 40, and the drive unit 27 of the opening / closing valve 23 are mounted in the space inside the flow path of the fluid to be measured which is formed in a U-shape.

【0022】以上のように構成された超音波流量計測装
置について、以下その動作、作用を説明する。まず、計
測を受ける流体は、導入路21の流入口22から図示し
ない外部配管を経由して流入する。さらに開放されてい
る開閉弁23から弁座開口部26を通り、開閉弁下流側
流路24の対向壁29に突き当たり、方向を変え対向壁
面29に沿って偏流を形成しながら流体制御手段25へ
向かう。この偏流は弁座開口部26から壁面29間の距
離が短く、流路断面積が狭いほど流速が早くなるので壁
面に強く衝突し、強い強度のものとなる。流体制御手段
25の孔は通過流量に比例した圧力損失を生じるため過
大な通過流量に対しては大きな抵抗体となり、偏流は流
体制御手段25の上流側の面に沿って全面に拡散し、流
体制御手段25の全面にある孔を通過して下流側へ流れ
る。このことにより開閉弁23を通過後に発生した偏流
が弱められて曲げ部31へ流れ込む。曲げ部分31では
流れの方向が90度変えられるので、流路の外壁に沿っ
た流れが偏流を作るが、窪み34で流路の中心方向へ曲
げられ、中心部を通る流体と混じり合いながら計測流路
入口4へ流れる。
The operation and action of the ultrasonic flow rate measuring device configured as described above will be described below. First, the fluid to be measured flows from the inflow port 22 of the introduction path 21 through an external pipe (not shown). Further, the open / close valve 23 is opened, passes through the valve seat opening 26, hits the opposing wall 29 of the downstream passage 24 of the on / off valve, changes direction, and forms a drift along the opposing wall surface 29 to the fluid control means 25. Go to This uneven flow has a short distance between the valve seat opening 26 and the wall surface 29, and the narrower the flow passage cross-sectional area, the faster the flow velocity. Since the holes of the fluid control means 25 generate a pressure loss proportional to the passage flow rate, they become a large resistance body against an excessive passage flow rate, and the uneven flow diffuses all over the surface on the upstream side of the fluid control means 25, It flows through the holes on the entire surface of the control means 25 to the downstream side. As a result, the uneven flow generated after passing through the on-off valve 23 is weakened and flows into the bent portion 31. At the bent portion 31, the flow direction can be changed by 90 degrees, so the flow along the outer wall of the flow path creates uneven flow, but it is bent toward the center of the flow path at the depression 34 and measured while mixing with the fluid passing through the center. It flows to the flow path inlet 4.

【0023】計測流路入口4に設けた整流手段32は流
れ方向規制手段7で流れの方向を流路と同じ方向に規制
し、偏流抑止手段8の微細通路を経由して流量分布を均
一化する。計測流路1を流れる流体は壁面の摩擦抵抗で
壁面近くの流速は減速するので整流状態35で流れる。
さらに流体は排出曲げ部33、排出路36を経由して図
示しない外部配管へ流出する。次に、計測流路1の壁面
に設けた一対の超音波送受信器の一方から送信した超音
波は、被計測流体の流速の影響を受けて、流れと順方向
に伝搬する時は早く、流れと逆方向に伝搬する時は遅く
他方の送受信器で受信される。この超音波の送受信は計
測制御手段38で制御されて一対の超音波送受信器2、
3間で交互に行われ、電気信号に変換されて、計測制御
手段38で流体の流れの順方向と逆方向における超音波
の伝搬時間に変換される。伝搬時間差は流体の流速に比
例するのでこれを演算手段39へ伝達する。演算手段3
9は計測制御手段38からの信号と、内部に記憶してい
る計測流路の断面積と、機器固有の係数とを演算して被
計測流体の流速または流量を演算する。
The rectifying means 32 provided at the measurement flow path inlet 4 restricts the flow direction to the same direction as the flow path by the flow direction restricting means 7, and makes the flow distribution uniform via the fine passages of the non-uniform flow suppressing means 8. To do. The fluid flowing through the measurement channel 1 flows in the rectified state 35 because the flow velocity near the wall surface is decelerated by the frictional resistance of the wall surface.
Further, the fluid flows out to an external pipe (not shown) via the discharge bending portion 33 and the discharge passage 36. Next, the ultrasonic wave transmitted from one of the pair of ultrasonic wave transmitters / receivers provided on the wall surface of the measurement flow path 1 is affected by the flow velocity of the fluid to be measured, and when the ultrasonic wave propagates in the forward direction, the ultrasonic wave flows quickly. When it propagates in the opposite direction, the signal is received by the other transceiver late. The transmission / reception of this ultrasonic wave is controlled by the measurement control means 38 so that the pair of ultrasonic wave transmitters / receivers 2,
Alternately performed between 3 and converted into an electric signal, and converted into an ultrasonic wave propagation time in the forward direction and the reverse direction of the fluid flow by the measurement control means 38. Since the propagation time difference is proportional to the fluid flow velocity, this is transmitted to the computing means 39. Computing means 3
Reference numeral 9 calculates the signal from the measurement control means 38, the cross-sectional area of the measurement flow path stored inside, and the coefficient peculiar to the device to calculate the flow velocity or flow rate of the fluid to be measured.

【0024】以上のように本実施例においては、流体制
御手段25を計測流路入口4から離れた導入路21の開
閉弁下流側流路24に設けたことにより、開閉弁23の
弁座開口部流路で発生した偏流を抑制できる作用が生じ
る事となり計測流路1内の流体の流れを改善し、超音波
計測装置の小型化と計測精度の向上をおこなうことがで
きる。
As described above, in the present embodiment, the fluid control means 25 is provided in the open / close valve downstream side flow path 24 of the introduction path 21 separated from the measurement flow path inlet 4, so that the valve seat opening of the open / close valve 23 is achieved. Since the action of suppressing the non-uniform flow generated in the partial flow path occurs, the flow of the fluid in the measurement flow path 1 can be improved, and the ultrasonic measurement device can be downsized and the measurement accuracy can be improved.

【0025】また本実施例では開閉弁23を開閉弁下流
側流路24の一部を狭くして、取りつけることができる
ので、コの字型に形成した流路の内側の空間が拡大でき
て、計測制御手段38、演算手段39、電源手段40な
どを収納できるので超音波流量計測装置の小型化に役立
つ。
Further, in this embodiment, since the opening / closing valve 23 can be attached by narrowing a part of the opening / closing valve downstream side passage 24, the space inside the passage formed in a U-shape can be expanded. Since the measurement control means 38, the calculation means 39, the power supply means 40, etc. can be housed, it is useful for downsizing the ultrasonic flow rate measuring device.

【0026】また、本実施例では、開閉弁下流側流路2
4に設けた流体制御手段25と、窪み34を有する曲げ
部31と、計測流路入口4に設けた整流手段32とを設
けたことにより流れの乱れにより発生する流速の短い時
間間隔での変動の抑制ができることにより、計測流路1
内の被計測流体の流れを改善し、流路の短縮化も可能と
なり超音波計測装置の小型化と計測精度の向上をおこな
うことができる。
Further, in the present embodiment, the open / close valve downstream side flow passage 2
4 is provided with the fluid control means 25, the bent portion 31 having the depression 34, and the rectifying means 32 provided at the measurement flow path inlet 4, so that the flow velocity is fluctuated at a short time interval due to the turbulence of the flow. The measurement flow path 1
It is possible to improve the flow of the fluid to be measured in the inside, shorten the flow path, and reduce the size of the ultrasonic measurement device and improve the measurement accuracy.

【0027】尚、本実施例においはて、整流手段32は
流れ方向規制手段7と偏流抑止手段8の両者で構成した
が、いずれか一方を有するものでも良く、また開閉弁2
3の開閉中心軸は開閉弁下流側流路24の中心軸と90
度以外の角度で交わる様に構成したものでも良い。
In the present embodiment, the rectifying means 32 is composed of both the flow direction regulating means 7 and the drift suppressing means 8, but it may have either one or the on-off valve 2.
The center axis of opening and closing of 3 is 90 degrees with the center axis of the flow path 24 on the downstream side of the on-off valve.
It may be configured to intersect at an angle other than degrees.

【0028】(実施例2)図3は、本発明の第2の実施
例の超音波流量計測装置の流体制御手段の断面図を示す
ものである。超音波流量計測装置の他の部分は図1と同
じであるため省略する。図3において、51は図1の流
体制御手段25としての一例である多孔性を有する板状
部材からなる流体制御手段であり、板状部材51の全面
に孔52を設けてある。孔52の大きさと、設置密度は
流路を流れる流量と、偏流の大きさにより実験的に決め
られる。
(Embodiment 2) FIG. 3 is a sectional view of a fluid control means of an ultrasonic flow rate measuring apparatus according to a second embodiment of the present invention. The other parts of the ultrasonic flow rate measuring device are the same as those in FIG. In FIG. 3, reference numeral 51 is a fluid control means composed of a plate-like member having porosity, which is an example of the fluid control means 25 in FIG. 1, and a hole 52 is provided on the entire surface of the plate-like member 51. The size of the holes 52 and the installation density are experimentally determined by the flow rate of the flow path and the size of the uneven flow.

【0029】以上の様に構成された超音波流量計測装置
において、開閉弁23の弁座開口部26を通過して、対
向壁29に衝突した被計測流体は壁面に沿って下流側へ
流れ、板状部材51に当たる。流体制御手段51に設け
た孔52を流体が通過すると通過抵抗が発生し、過度の
流量が流れる事を妨ぐので板状部材51の上流面に沿っ
て偏流が拡散し、板状部材51の全面に設けた孔を流体
圧力に応じて流れることとなり、板状部材51の下流側
では弱い偏流となる。
In the ultrasonic flow rate measuring device configured as described above, the fluid to be measured which has passed through the valve seat opening 26 of the on-off valve 23 and collided with the facing wall 29 flows downstream along the wall surface, It hits the plate member 51. When the fluid passes through the hole 52 provided in the fluid control means 51, a passage resistance is generated, which prevents an excessive flow rate from flowing, so that the uneven flow is diffused along the upstream surface of the plate-shaped member 51 and the plate-shaped member 51 It flows through the holes provided on the entire surface in accordance with the fluid pressure, and a weak drift occurs on the downstream side of the plate member 51.

【0030】(実施例3)図4は本発明の第3の実施例
の超音波流量計測装置の流体制御手段25である多孔性
の板状部材51の装着状況を示す断面図である。図4に
おいて、実施例2と異なる点は、多孔性を有する板状部
材51を偏流の強い部分を上流側61に、偏流の弱い部
分を下流側62となるように斜めに装着した点である。
(Embodiment 3) FIG. 4 is a cross-sectional view showing a mounting state of a porous plate member 51 which is a fluid control means 25 of an ultrasonic flow rate measuring apparatus according to a third embodiment of the present invention. In FIG. 4, the point different from Example 2 is that the plate-like member 51 having porosity is obliquely attached so that the portion with strong drift is on the upstream side 61 and the portion with weak drift is on the downstream side 62. .

【0031】以上の様に構成された超音波流量計測装置
において、開閉弁23の弁座開口部26を通過して、対
向壁29に衝突した被計測流体は壁面に沿って下流側へ
流れ、板状部材51の上流側61に当たる。そして流れ
は板状部材51の斜面に沿って下流側に広がりながら板
状部材51に設けた孔52を通って下流側へ流れること
となり、板状部材51の下流側では極めて微弱な偏流と
なる。実施例2と比べて、偏流が流体制御手段25を構
成する板状部材51の上流側の全面に広がり易いので、
板状部材51での圧力損失は減少し、下流側における偏
流も一層削減出来る。
In the ultrasonic flow rate measuring device configured as described above, the fluid to be measured which has passed through the valve seat opening 26 of the on-off valve 23 and collided with the facing wall 29 flows downstream along the wall surface, It hits the upstream side 61 of the plate member 51. Then, the flow spreads downstream along the slope of the plate-shaped member 51 and flows downstream through the holes 52 provided in the plate-shaped member 51, resulting in extremely weak drift on the downstream side of the plate-shaped member 51. . As compared with the second embodiment, the uneven flow is more likely to spread over the entire upstream surface of the plate-shaped member 51 forming the fluid control unit 25.
The pressure loss in the plate member 51 is reduced, and the drift in the downstream side can be further reduced.

【0032】(実施例4)図5は本発明の第4の実施例
の超音波流量計測装置の流体制御手段25を構成する多
孔性の板状部材51の孔の設置状況を示す断面図であ
る。図5において、実施例3と異なる点は、板状部材5
1の孔52の大きさが上流側61では小さく、下流側6
2では大きい点である。
(Embodiment 4) FIG. 5 is a cross-sectional view showing the installation condition of the holes of the porous plate member 51 constituting the fluid control means 25 of the ultrasonic flow rate measuring apparatus of the fourth embodiment of the present invention. is there. In FIG. 5, the difference from the third embodiment is that the plate-shaped member 5
The size of the hole 52 of No. 1 is small on the upstream side 61, and the size of the downstream side 6
2 is a big point.

【0033】以上の様に構成された超音波流量計測装置
において、板状部材51の上流側61は最も偏流が強い
ので、大きな圧力を有しており、小さな孔の大きな通過
圧損で通過流体の流速が弱められ、偏流が板状部材51
の傾斜面に沿って設けられた孔52に分流しながら流れ
て順次偏流の勢いが弱くなり、最も下流側62では勢い
の弱った偏流が大な孔を通過するので、板状部材51で
の圧力損失は小さくなり、流体制御手段25の下流側で
は偏流が極めて小さいものとなる。
In the ultrasonic flow rate measuring device configured as described above, the upstream side 61 of the plate-like member 51 has the largest uneven flow, so that it has a large pressure and the passing fluid loss due to a large passing pressure loss of a small hole. The flow velocity is weakened and uneven flow is generated by the plate-shaped member 51.
In the plate-shaped member 51, since the flow of the partial flow gradually weakens due to the flow while branching into the holes 52 provided along the inclined surface of the plate 52, and the weak flow of the partial flow passes through the large holes on the most downstream side 62. The pressure loss is small, and the drift is extremely small on the downstream side of the fluid control unit 25.

【0034】(実施例5)図6は本発明の第5の実施例
の超音波流量計測装置の流体制御手段25として用いる
多孔性の板状部材51の孔の設置状況を示す断面図であ
る。図6において、実施例4と異なる点は、板状部材5
1の上流側61には無孔部63を設けた点である。
(Embodiment 5) FIG. 6 is a cross-sectional view showing the installation condition of the holes of a porous plate member 51 used as the fluid control means 25 of the ultrasonic flow rate measuring apparatus of the fifth embodiment of the present invention. . In FIG. 6, the difference from the fourth embodiment is that the plate-shaped member 5
1 is that a non-hole portion 63 is provided on the upstream side 61.

【0035】以上の様に構成された超音波流量計測装置
において、開閉弁下流側流路24で発生した強い偏流
は、板状部材51の孔の無孔部63で板状部材51の斜
面に沿った方向に変わる。この事により、強い偏流の方
向に向いた孔がある時に生ずる偏流の漏れ現象が無くな
る。又、孔52は偏流の流れの方向と角度をなして開口
しているので、孔52がある部分では板状部材51の上
流側表面に沿って流れる偏流の流路方向分力の不均等性
が減少し、孔52を通る流体の不均一性が改善できる事
等で、板状部材51下流部の偏流が低減できる。
In the ultrasonic flow rate measuring device configured as described above, the strong uneven flow generated in the flow path 24 on the downstream side of the on-off valve is caused by the non-perforated portion 63 of the hole of the plate member 51 on the slope of the plate member 51. Change in the direction along. This eliminates the leakage phenomenon of the uneven flow that occurs when there is a hole oriented in the direction of the strong uneven flow. Further, since the hole 52 is opened at an angle with the direction of the non-uniform flow, the non-uniformity of the flow-direction component force of the non-uniform flow that flows along the upstream surface of the plate-shaped member 51 in the portion where the hole 52 is present. Can be reduced and the non-uniformity of the fluid passing through the holes 52 can be improved, so that the drift in the downstream portion of the plate-shaped member 51 can be reduced.

【0036】(実施例6)図7は本発明の第6の実施例
の超音波流量計測装置の流体制御手段25の形状を示す
断面図である。図7において、実施例3、4と異なる点
は、流体制御手段25を構成する多孔性の板状部材51
の下流側62に切り欠き部71を設けた点である。
(Embodiment 6) FIG. 7 is a sectional view showing the shape of a fluid control means 25 of an ultrasonic flow rate measuring apparatus according to a sixth embodiment of the present invention. In FIG. 7, the difference from the third and fourth embodiments is that the porous plate-shaped member 51 that constitutes the fluid control means 25.
The point is that the cutout portion 71 is provided on the downstream side 62.

【0037】以上の様に構成された超音波流量計測装置
において、流路の大きさに比較して流路を流れる流量が
少ない時は板状部材51の上流側61の偏流は弱く、板
状部材51の斜面に沿って適宜、孔52に分流しながら
流れ、板状部材51の下流部先端の切り欠き部71を残
余の偏流が流れる事によりほとんど通過圧損を生ずるこ
となく偏流抑制作用を行う事が出来る。
In the ultrasonic flow rate measuring device configured as described above, when the flow rate flowing through the flow path is smaller than the size of the flow path, the uneven flow on the upstream side 61 of the plate-like member 51 is weak and the plate-like member is weak. Flows while appropriately branching into the hole 52 along the slope of the member 51, and residual uneven flow flows through the notch 71 at the tip of the downstream end of the plate-like member 51, thereby performing a non-uniform flow suppressing action with almost no passage pressure loss. I can do things.

【0038】(実施例7)図8は本発明の第7の実施例
の超音波流量計測装置の流体制御手段25形状を示す断
面図である。図8において、流体制御手段25は偏流が
生ずる壁面29に対向する壁面に設けたひさし状の邪魔
板81と、偏流のある上流側61から偏流の無い下流側
62へ向けて傾斜し、かつ下流側62の先端に切り欠き
部71を設けた多孔性の板状部材51とよりなる。
(Embodiment 7) FIG. 8 is a sectional view showing the shape of a fluid control means 25 of an ultrasonic flow rate measuring apparatus according to a seventh embodiment of the present invention. In FIG. 8, the fluid control means 25 includes an eaves-shaped baffle plate 81 provided on a wall surface opposed to the wall surface 29 where uneven flow occurs, and an inclined side from the upstream side 61 with uneven flow to the downstream side 62 without uneven flow, and the downstream. The porous plate member 51 is provided with a cutout portion 71 at the tip of the side 62.

【0039】以上のように構成された超音波流量計測装
置において、流体制御手段25の上流で発生した偏流
は、板状部材51の上流側61に当たり、流れの向きを
変えて板状部材51の傾斜に沿って流れ、その一部は順
次、板状部材51に設けた孔52を通り、下流側に流れ
る。孔52に分流できなかった流れは、切り欠き部71
を通り、邪魔板81に当たり流路の中央に向けて流れる
が、前記の孔52を通った流れに押されて偏流を作るこ
となく下流へ流れる。又邪魔板81の下流側では渦が発
生し、この渦に引っ張られて、流れが流路全体に広がる
ことで、流体制御手段25の下流における偏流の強さを
実用上問題の無い程度に減少させることが出来る。
In the ultrasonic flow rate measuring device configured as described above, the drift generated upstream of the fluid control means 25 hits the upstream side 61 of the plate-shaped member 51 and changes the direction of the flow to change the direction of the plate-shaped member 51. It flows along the slope, and a part thereof sequentially passes through the holes 52 provided in the plate-shaped member 51 and flows downstream. The flow that could not be diverted to the hole 52 is the cutout 71.
Flow toward the center of the flow path through the baffle plate 81, but flow downstream without being biased by the flow passing through the hole 52. Further, a vortex is generated on the downstream side of the baffle plate 81, and is drawn by the vortex to spread the flow over the entire flow path, so that the strength of the non-uniform flow in the downstream of the fluid control means 25 is reduced to such an extent that there is no practical problem. It can be done.

【0040】[0040]

【発明の効果】以上のように、本発明によれば、流体制
御手段の上流側の開閉弁の弁座開口部近辺で発生する強
力な偏流の抑制、解消を行うことができ、計測流路入口
に設けた整流手段の働きを補強して計測流路に流れる流
体を整流化することができるので、流体流路の短縮化、
開閉弁の設置部外形の小型化に有効であり、超音波流量
計測装置の小型化と精度向上を行うことができる。
As described above, according to the present invention, it is possible to suppress and eliminate the strong drift that occurs near the valve seat opening of the on-off valve on the upstream side of the fluid control means. Since the function of the rectifying means provided at the inlet can be reinforced to rectify the fluid flowing in the measurement channel, the fluid channel can be shortened,
It is effective for downsizing the outer shape of the installation portion of the on-off valve, and it is possible to downsize the ultrasonic flow rate measuring device and improve its accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における超音波流量計測装置
の断面図
FIG. 1 is a sectional view of an ultrasonic flow rate measuring device according to a first embodiment of the present invention.

【図2】本発明の実施例1における超音波流量計測装置
の一部破断上面図
FIG. 2 is a partially cutaway top view of the ultrasonic flow rate measuring device according to the first embodiment of the present invention.

【図3】本発明の実施例2における超音波流量計測装置
の流体制御手段部の断面図
FIG. 3 is a sectional view of a fluid control means portion of an ultrasonic flow rate measuring device according to a second embodiment of the present invention.

【図4】本発明の実施例3における超音波流量計測装置
の流体制御手段部の断面図
FIG. 4 is a sectional view of a fluid control means portion of an ultrasonic flow rate measuring device according to a third embodiment of the present invention.

【図5】本発明の実施例4における超音波流量計測装置
の流体制御手段部の断面図
FIG. 5 is a sectional view of a fluid control means portion of an ultrasonic flow rate measuring device according to a fourth embodiment of the present invention.

【図6】本発明の実施例5における超音波流量計測装置
の流体制御手段部の断面図
FIG. 6 is a sectional view of a fluid control means portion of an ultrasonic flow rate measuring device according to a fifth embodiment of the present invention.

【図7】本発明の実施例6における超音波流量計測装置
の流体制御手段部の断面図
FIG. 7 is a sectional view of a fluid control means portion of an ultrasonic flow rate measuring device according to a sixth embodiment of the present invention.

【図8】本発明の実施例7における超音波流量計測装置
の流体制御手段部の断面図
FIG. 8 is a sectional view of a fluid control means portion of an ultrasonic flow rate measuring device according to a seventh embodiment of the present invention.

【図9】従来の超音波流量計測装置の整流部と計測流路
の上面図
FIG. 9 is a top view of a rectifying unit and a measurement flow path of a conventional ultrasonic flow rate measuring device.

【図10】従来の超音波流量計測装置の流路の断面図FIG. 10 is a sectional view of a flow path of a conventional ultrasonic flow rate measuring device.

【図11】従来の超音波流量計測手段の流れ方向規制手
段の外観図
FIG. 11 is an external view of a flow direction regulating unit of a conventional ultrasonic flow rate measuring unit.

【符号の説明】[Explanation of symbols]

1 計測流路 2、3 一対の超音波送受信器 4 計測流路入口部 21 導入路 23 開閉弁 24 開閉弁下流側流路 25 流体制御手段 32 整流手段 38 計測制御手段 39 演算手段 51 板状部材 52 孔 61 板状部材の上流側 62 板状部材の下流側 63 無孔部 71 切り欠き部 81 邪魔板 1 measurement channel A couple of ultrasonic transceivers 4 Measurement channel inlet 21 Introduction route 23 Open / close valve 24 Open / close valve downstream flow path 25 Fluid control means 32 rectifying means 38 measurement control means 39 computing means 51 plate member 52 holes 61 upstream side of plate member 62 Downstream of plate member 63 No hole 71 Notch 81 baffle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新村 紀夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 乾 善紀 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2F030 CA03 CE04 CF01 CF05 CF08 2F031 AB09 2F035 DA14    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Norio Niimura             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Yoshinori Inui             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 2F030 CA03 CE04 CF01 CF05 CF08                 2F031 AB09                 2F035 DA14

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 開閉弁及び前記開閉弁の下流側流路に装
着した流体制御手段とを有する導入路と、前記導入路の
後端から屈曲して配設され、その入口部に整流手段を有
する計測流路と、前記計測流路の対向壁面に設けた少な
くとも一対の超音波送受信器と、前記超音波送受信器間
の超音波の伝搬時間を計測する計測制御手段と、前記計
測制御手段からの信号に基づいて流量を算出する演算手
段とを備えてなる超音波流量計測装置。
1. An introduction path having an opening / closing valve and a fluid control means mounted in a downstream side passage of the opening / closing valve, and a bending means arranged at a rear end of the introduction path, and a rectifying means at an inlet portion thereof. From the measurement control means, and a measurement control means for measuring the propagation time of the ultrasonic wave between the ultrasonic transmitter-receiver, at least a pair of ultrasonic transmitter-receiver provided on the opposing wall surface of the measurement flow path An ultrasonic flow rate measuring device, comprising: an arithmetic means for calculating a flow rate based on the signal of.
【請求項2】 流体制御手段は導入路を覆い、流路の方
向に多孔性を有する板状部材である請求項1記載の超音
波流量計測装置。
2. The ultrasonic flow rate measuring device according to claim 1, wherein the fluid control means is a plate-like member which covers the introduction passage and has porosity in the direction of the passage.
【請求項3】 流体制御手段は流路内の最も偏流の強い
部分を上流側とし、偏流の弱い部分を下流側となるよう
に傾斜した多孔性を有する板状部材である請求項2記載
の超音波流量計測装置。
3. The fluid control means is a plate-shaped member having a porosity that is inclined so that a portion having the strongest flow deviation in the flow path is on the upstream side and a portion having the weakest flow is on the downstream side. Ultrasonic flow rate measuring device.
【請求項4】 流体制御手段は下流側に行くほど通過圧
損が低くなる開口面積を有する多孔性の板状部材である
請求項3記載の超音波流量計測装置。
4. The ultrasonic flow rate measuring device according to claim 3, wherein the fluid control means is a porous plate-like member having an opening area in which the passing pressure loss decreases toward the downstream side.
【請求項5】 流体制御手段は流路内の最も偏流が強く
当たる部分には流体通過孔を有さない板状部材である請
求項2、3、4記載の超音波流量計測装置。
5. The ultrasonic flow rate measurement device according to claim 2, wherein the fluid control means is a plate-shaped member having no fluid passage hole in a portion of the flow path where the most uneven flow hits.
【請求項6】 流体制御手段は最も偏流が弱い下流側部
分に切り欠き部を有する板状部材である請求項3、4記
載の超音波流量計測装置。
6. The ultrasonic flow rate measuring device according to claim 3, wherein the fluid control means is a plate-shaped member having a cutout portion in the downstream side portion where the drift is weakest.
【請求項7】 流体制御手段は流路内の最も偏流の強い
部分を上流側とし、偏流の弱い部分を下流側となるよう
に傾斜し、かつ偏流が弱い下流側部分に切り欠き部があ
る多孔性性を有する板状部材と、前記切り欠き部より下
流側に設けたひさし状の邪魔板とよりなる請求項1記載
の超音波流量計測装置。
7. The fluid control means is inclined such that the portion with the most uneven flow in the flow path is on the upstream side and the portion with the weakest flow is on the downstream side, and there is a notch in the downstream portion where the uneven flow is weak. The ultrasonic flow rate measuring device according to claim 1, comprising a plate-shaped member having porosity and an eaves-shaped baffle plate provided on the downstream side of the cutout portion.
JP2002045644A 2002-02-22 2002-02-22 Ultrasonic flow measuring device Expired - Lifetime JP3922044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002045644A JP3922044B2 (en) 2002-02-22 2002-02-22 Ultrasonic flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002045644A JP3922044B2 (en) 2002-02-22 2002-02-22 Ultrasonic flow measuring device

Publications (2)

Publication Number Publication Date
JP2003247875A true JP2003247875A (en) 2003-09-05
JP3922044B2 JP3922044B2 (en) 2007-05-30

Family

ID=28659373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002045644A Expired - Lifetime JP3922044B2 (en) 2002-02-22 2002-02-22 Ultrasonic flow measuring device

Country Status (1)

Country Link
JP (1) JP3922044B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010414A (en) * 2005-06-29 2007-01-18 Kimmon Mfg Co Ltd Ultrasonic gas meter
JP2008111714A (en) * 2006-10-30 2008-05-15 Ricoh Elemex Corp Flowmeter
JP2010066177A (en) * 2008-09-12 2010-03-25 Yamatake Corp Flowmeter and flow control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6375519B2 (en) * 2016-01-12 2018-08-22 パナソニックIpマネジメント株式会社 Gas meter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010414A (en) * 2005-06-29 2007-01-18 Kimmon Mfg Co Ltd Ultrasonic gas meter
JP2008111714A (en) * 2006-10-30 2008-05-15 Ricoh Elemex Corp Flowmeter
JP2010066177A (en) * 2008-09-12 2010-03-25 Yamatake Corp Flowmeter and flow control device

Also Published As

Publication number Publication date
JP3922044B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
US7360449B2 (en) Ultrasonic fluid measurement instrument having a plurality of split channels formed by partition boards
US6216544B1 (en) Ultrasonic flowmeter having reduced phase difference
EP1816443A2 (en) Ultrasonic flow meter
JP2004264064A (en) Ultrasonic flow rate measuring apparatus
JP2003247875A (en) Ultrasonic flow measuring device
JP4447205B2 (en) Ultrasonic flow meter
JP3922078B2 (en) Ultrasonic flow measuring device
JP2003194605A (en) Ultrasonic flow measuring instrument
JP2009264906A (en) Flow meter
JP2003065817A (en) Ultrasonic flow-measuring instrument
JP3824236B2 (en) Ultrasonic flow measuring device
JP3514259B1 (en) Ultrasonic flow meter
JP2008014829A (en) Ultrasonic flowmeter
JP2004251700A (en) Fluid measuring device
JP2004212180A (en) Flow rate measuring instrument
JP4048871B2 (en) Ultrasonic flow measuring device
JP3781424B2 (en) Ultrasonic flow measuring device
JP2007147562A (en) Ultrasonic meter device
JP2002122451A (en) Ultrasonic flow measuring device
JP2021124358A (en) Ultrasonic flowmeter
JPH11351926A (en) Ultrasonic flow rate measuring device
JP3627729B2 (en) Flow measuring device
JP2000337935A (en) Straightening device
JP2004340634A (en) Ultrasonic flowmeter
JP2001208585A (en) Flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040915

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

R151 Written notification of patent or utility model registration

Ref document number: 3922044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term