JP2003221226A - Layered double hydroxide containing glycine as intercalating anion - Google Patents

Layered double hydroxide containing glycine as intercalating anion

Info

Publication number
JP2003221226A
JP2003221226A JP2002022770A JP2002022770A JP2003221226A JP 2003221226 A JP2003221226 A JP 2003221226A JP 2002022770 A JP2002022770 A JP 2002022770A JP 2002022770 A JP2002022770 A JP 2002022770A JP 2003221226 A JP2003221226 A JP 2003221226A
Authority
JP
Japan
Prior art keywords
layered double
double hydroxide
glycine
producing
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002022770A
Other languages
Japanese (ja)
Other versions
JP4019138B2 (en
Inventor
Toshiyuki Hibino
俊行 日比野
Toshiharu Ise
敏晴 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002022770A priority Critical patent/JP4019138B2/en
Publication of JP2003221226A publication Critical patent/JP2003221226A/en
Application granted granted Critical
Publication of JP4019138B2 publication Critical patent/JP4019138B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a layered double hydroxide capable of being exfoliated and dispersed to the extent of a single basic layer thereof, thereby capable of being mixed with a resin in a state of a molecular level or nearly molecular level, having extremely preferable characteristics as an additive for a resin without causing problems such as impairing stability of the resin or insufficient manifesting of the characteristics of the additive itself. <P>SOLUTION: This layered double hydroxide is constructed by metal hydroxides other than Mg-Al system using glycine as an intercalating ion. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、樹脂用配合剤とし
て分散性が好適な層状複水酸化物に関するものである。
TECHNICAL FIELD The present invention relates to a layered double hydroxide having a suitable dispersibility as a compounding agent for resins.

【0002】[0002]

【従来の技術】層状複水酸化物またはハイドロタルサイ
トと呼ばれる化合物は、以下の一般式で表される層状化
合物である。 [M2+ 1-xM3+ x(OH)2][An- x/n・mH2O] ここで M2+ は2価金属、 M3+ は3価金属、 An- は層間
陰イオンで、mは適当な有理数、nは整数、xは1を超えな
い有理数である。一般式において前半部の[M2+ 1 -xM
3+ x(OH)2]は、層状複水酸化物の基本層またはホスト層
と呼ばれる金属水酸化物層であり、この基本層が一般式
後半部の陰イオンと水分子から成る中間層またはゲスト
層と呼ばれる層と交互に積み重なっている。
2. Description of the Related Art A compound called layered double hydroxide or hydrotalcite is a layered compound represented by the following general formula. [M 2+ 1-x M 3+ x (OH) 2 ] [A n- x / n・ mH 2 O] where M 2+ is a divalent metal, M 3+ is a trivalent metal, and A n- is Interlayer anion, where m is an appropriate rational number, n is an integer, and x is a rational number that does not exceed 1. In the general formula, the first half [M 2 + 1 -x M
3+ x (OH) 2 ] is a metal hydroxide layer called a basic layer or host layer of layered double hydroxide, and this basic layer is an intermediate layer composed of anions and water molecules in the latter half of the general formula or It is stacked alternately with layers called guest layers.

【0003】層状複水酸化物は、難燃化剤、安定剤、成
型改質剤および保温性改良剤などとして樹脂に添加され
利用されてきた。しかし、層状複水酸化物は、樹脂に混
錬する際のなじみがよくなく、樹脂中での分散性の改良
が望まれてきた。最近になりT. Hibino and W. Jones
(2000年、Journal of Materials Chemistry、第11巻、1
321-1323頁)やF. Leroux and J.-P. Besse (2001年、Ch
emistry of Materials、第13巻、3507-3515頁)の論文に
おいて、ナノスケールで樹脂と層状複水酸化物が混合で
きる可能性が示唆された。
Layered double hydroxides have been used by being added to resins as flame retardants, stabilizers, molding modifiers and heat retention modifiers. However, the layered double hydroxide does not fit well when kneaded with a resin, and improvement in dispersibility in the resin has been desired. Recently T. Hibino and W. Jones
(2000, Journal of Materials Chemistry, Volume 11, 1
321-1323) and F. Leroux and J.-P. Besse (2001, Ch
In the paper of "Emistry of Materials, Vol. 13, pp. 3507-3515), it was suggested that resin and layered double hydroxide could be mixed at nanoscale.

【0004】両者とも層状複水酸化物を有機溶媒中で、
基本層単層にまで剥離させて分散させる技術を報告して
いる。この技術を利用すれば、溶媒中で層状複水酸化物
を基本層単層まで剥離・分散し、溶媒に溶かした樹脂と
溶液中で分子レベルまたは分子レベルに近い状態で混合
可能である。剥離・分散に要する条件は、前者は溶媒と
してホルムアミドを用いて室温で攪拌するだけでよいの
に対し、後者では、ブタノールを用いて120℃−16時間
もの還流を必要とする。前者はMg-Al-系層状複水酸化物
において、層間陰イオンとしてグリシンを用い、後者
は、Zn-Al系層状複水酸化物においてドデシル硫酸を用
いている。
In both cases, the layered double hydroxide is added in an organic solvent,
We have reported a technique to separate and disperse the base layer into a single layer. By using this technique, the layered double hydroxide can be peeled and dispersed up to the basic layer single layer in a solvent, and can be mixed with the resin dissolved in the solvent at the molecular level or in a state close to the molecular level in the solution. As for the conditions required for peeling / dispersion, the former only needs to be stirred at room temperature using formamide as a solvent, whereas the latter requires butanol to be refluxed at 120 ° C. for 16 hours. The former uses glycine as an interlayer anion in Mg-Al-based layered double hydroxide, and the latter uses dodecylsulfate in Zn-Al based layered double hydroxide.

【0005】前記2つの方法では、室温で即時に剥離反
応が起こるMg-Al-グリシン系層状複水酸化物の方が、は
るかに効果的であるが、Mg系層状複水酸化物だけでは、
樹脂の安定剤として十分な特性が得られないことがあ
る。この理由は明らかにはされていないが、Mg系では塩
基性が強すぎるために、マグネシウムより塩基性の低
い、亜鉛やニッケルなどでないと所定の特性が発現しな
い可能性がある。例えば、特開平11-255973では、ポリ
オレフィン樹脂の耐熱劣化性と成型加工機の発錆防止性
を向上させるには、層状複水酸化物を添加物とした場
合、Mg系層状複水酸化物からZn系層状複水酸化物に切り
替えると良好な結果が得られることを報告している。
In the above-mentioned two methods, the Mg-Al-glycine-based layered double hydroxide, which causes an immediate exfoliation reaction at room temperature, is far more effective, but only with the Mg-based layered double hydroxide,
It may not be possible to obtain sufficient properties as a resin stabilizer. Although the reason for this has not been clarified, since the Mg system is too basic, the predetermined properties may not be exhibited unless it is zinc, nickel, or the like that is less basic than magnesium. For example, in JP-A-11-255973, in order to improve the heat deterioration resistance of the polyolefin resin and the rust prevention of the molding machine, when the layered double hydroxide is used as an additive, the Mg-based layered double hydroxide is used. It has been reported that good results can be obtained by switching to the Zn-based layered double hydroxide.

【0006】しかし、グリシンを用いて、Mg以外の2
価金属で同様な層状複水酸化物を作製しようとした場
合、グリシン等のアミノ酸類はキレート効果があり、M
g以外の2価金属はMgよりもキレート化され易いため、
グリシンを用いる上述した論文にある方法では、Mg以外
の金属系層状複水酸化物を得るのは困難となる。したが
って、このような経緯からMg系以外の層状複水酸化物で
も基本層単相への剥離・分散を効果的に起こす層状複水
酸化物が望まれてはいたが、未だ満足のいくものは得ら
れてはいない。
However, with the use of glycine, 2 other than Mg
When trying to make a similar layered double hydroxide with a valent metal, amino acids such as glycine have a chelating effect and M
Since divalent metals other than g are more easily chelated than Mg,
According to the method described in the above-mentioned paper using glycine, it is difficult to obtain a metal-based layered double hydroxide other than Mg. Therefore, from such a background, a layered double hydroxide that effectively causes exfoliation / dispersion into the base layer single phase even in the case of a layered double hydroxide other than the Mg-based one has been desired, but what is still satisfactory is Not obtained.

【0007】[0007]

【発明の解決しようとする課題】本発明の課題は、Mg-A
l系層状複水酸化物の上記樹脂配合剤としての問題点に
鑑み、Mg-Al系以外の層状複水酸化物において、その基
本層単層まで容易に剥離・分散可能で、これにより分子
レベルまたは分子レベルに近い状態で樹脂と混合しうる
層状複水酸化物を提供することにある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In view of the problems of the l-based layered double hydroxide as the above-mentioned resin compounding agent, in the layered double hydroxide other than Mg-Al system, even the basic layer single layer can be easily peeled / dispersed, and thereby, at the molecular level. Another object is to provide a layered double hydroxide that can be mixed with a resin in a state close to the molecular level.

【0008】[0008]

【課題を解決するための手段】本発明者等は、Mg-Al系
以外の層状複水酸化物において、グリシンを層間陰イオ
ンとして使用する手段について鋭意研究の結果、グリシ
ンを適当な条件下用いれば、Mg-Al系以外の層状複水酸
化物であっても、その基本層単層まで容易に剥離・分散
可能となり、これにより分子レベルまたは分子レベルに
近い状態で樹脂と混合し得るとともに、樹脂配合剤とし
て好適な特性を有する層状複水酸化物を得ることに初め
て成功し、本発明を完成させたものである。
Means for Solving the Problems The inventors of the present invention have earnestly studied the means of using glycine as an interlayer anion in a layered double hydroxide other than Mg-Al system, and as a result, glycine was used under appropriate conditions. For example, even if it is a layered double hydroxide other than Mg-Al-based, it becomes possible to easily peel and disperse up to its basic layer single layer, whereby it is possible to mix with the resin at the molecular level or a state close to the molecular level, The present invention was completed by succeeding in obtaining a layered double hydroxide having suitable properties as a resin compounding agent for the first time.

【0009】すなわち、本発明は次の(1)〜(12)
に関するものである。 (1)1種または2種以上の2価金属、及び/または1
種または2種以上の3価金属の水酸化物層を有する層状
複水酸化物において(但し、金属水酸化物層の構成金属
がマグネシウムとアルミニウムとの組み合わせのみから
なる場合を除く)、層間陰イオンとして、グリシンを含
有することを特徴とする層状複水酸化物。 (2)1種または2種以上の2価金属塩、及び/または
1種または2種以上の3価金属塩(但し、金属塩として
マグネシウムとアルミニウムのみを組み合わせて使用す
る場合を除く)と、グリシンをアルカリ条件下、溶液状
態で混合することにより共沈殿させて得られたものであ
る上記(1)に記載の層状複水酸化物。 (3)グリシンの使用量が、使用する金属塩中の陰イオ
ン成分の合計モル数の2倍未満である上記(2)に記載
の層状複水酸化物。 (4)上記(1)〜(3)のいずれか一に記載の層状複
水酸化物が、基本層である金属水酸化物層に剥離、分散
された形態で含有する液状物。 (5)上記(1)〜(3)のいずれか一に記載の層状複
水酸化物にホルムアミドを添加したものである請求項4
に記載の液状物。 (6)(1)〜(3)のいずれか一に記載の層状複水酸
化物、若しくは(4)または(5)に記載の液状物を含
有する樹脂用配合剤。 (7)1種または2種以上の2価金属塩、及び/または
1種または2種以上の3価金属塩(但し、金属塩として
マグネシウムとアルミニウムのみを組み合わせて使用す
る場合を除く)と、グリシンをアルカリ条件下、溶液状
態で混合することにより共沈殿させることを特徴とする
層状複水酸化物の製造法。 (8)グリシンの使用量が、使用する金属塩中の陰イオ
ン成分の合計モル数の2倍未満である上記(7)に記載
の層状複水酸化物の製造方法。 (9)1種または2種以上の2価金属塩、及び/または
1種または2種以状の3価金属塩と、グリシンを、グリ
シンの使用量が使用する金属塩中の陰イオン成分の合計
モル数の2倍未満になるようにして、アルカリ条件下、
溶液状態で混合することにより共沈殿させることを特徴
とする層状複水酸化物の製造法。 (10)共沈殿の後、共沈殿物を洗浄、乾燥することを
特徴とする上記(7)〜(10)いずれか一項に記載の
層状複水酸化物の製造方法。 (11)層状複水酸化物の製造工程を、二酸化炭素及び
/または炭酸イオン非存在下で行うことを特徴とする請
求(7)〜(10)いずれか1に記載の層状複水酸化物
の製造方法。 (12)層状複水酸化物の製造工程を、窒素気流中で行
うことを特徴とする(11)に記載の層状複水酸化物の
製造方法。
That is, the present invention provides the following (1) to (12).
It is about. (1) One or more divalent metals, and / or 1
In a layered double hydroxide having a hydroxide layer of one or two or more trivalent metals (excluding the case where the constituent metal of the metal hydroxide layer is only a combination of magnesium and aluminum), an interlayer shadow A layered double hydroxide containing glycine as an ion. (2) one or more divalent metal salts, and / or one or more trivalent metal salts (provided that only magnesium and aluminum are used in combination as metal salts), The layered double hydroxide according to (1) above, which is obtained by coprecipitation by mixing glycine in a solution state under alkaline conditions. (3) The layered double hydroxide according to (2) above, wherein the amount of glycine used is less than twice the total number of moles of the anionic components in the metal salt used. (4) A liquid material containing the layered double hydroxide according to any one of (1) to (3) above in a form in which the layered double hydroxide is peeled off and dispersed in the metal hydroxide layer which is the basic layer. (5) A formamide is added to the layered double hydroxide according to any one of (1) to (3) above.
The liquid substance described in. (6) A compounding agent for resins containing the layered double hydroxide according to any one of (1) to (3), or the liquid material according to (4) or (5). (7) one or more divalent metal salts, and / or one or more trivalent metal salts (provided that only magnesium and aluminum are used in combination as the metal salt), A method for producing a layered double hydroxide, which comprises co-precipitating glycine by mixing it in a solution under alkaline conditions. (8) The method for producing a layered double hydroxide as described in (7) above, wherein the amount of glycine used is less than twice the total number of moles of the anionic components in the metal salt used. (9) One or more divalent metal salts, and / or one or more trivalent metal salts, and glycine are used as the anion component in the metal salt used in the amount of glycine used. Under alkaline conditions such that the total number of moles is less than twice
A method for producing a layered double hydroxide, which comprises coprecipitating by mixing in a solution state. (10) The method for producing a layered double hydroxide as described in any one of (7) to (10) above, which comprises washing and drying the coprecipitate after the coprecipitation. (11) The layered double hydroxide according to any one of (7) to (10), wherein the step of producing the layered double hydroxide is performed in the absence of carbon dioxide and / or carbonate ions. Production method. (12) The method for producing a layered double hydroxide according to (11), wherein the step of producing the layered double hydroxide is performed in a nitrogen stream.

【0010】本発明の層状複水酸化物は、1種または2
種以上の2価金属塩、及び/または1種または2種以上
の3価金属塩(但し、金属塩としてマグネシウムとアル
ミニウムのみを組み合わせて使用する場合を除く)と、
グリシンとをアルカリ条件下、溶液状態で混合すること
により共沈殿させることにより得られ、金属水酸化物か
らなる基本層と、陰イオン及び水分子とからなる中間層
が交互に積層した層状複水酸化物において、中間層を構
成する層間イオンとして、グリシンを含有するものであ
る。
The layered double hydroxide of the present invention is one kind or two kinds.
One or more divalent metal salts, and / or one or more trivalent metal salts (excluding the case where only magnesium and aluminum are used in combination as the metal salt),
Obtained by co-precipitation by mixing glycine and glycine in a solution state in a solution state, a layered compound water in which a basic layer made of a metal hydroxide and an intermediate layer made of anions and water molecules are alternately laminated. In the oxide, glycine is contained as an interlayer ion forming the intermediate layer.

【0011】本発明の層状複水酸化物を一般式で表す
と、以下のとおりである。 [M2+ 1-xM3+ x(OH)2][ΣAn− ・mH2O] 式中、M2+ は、使用した金属塩由来の2価金属イオン、
M3+ は、使用した金属塩由来の3価金属イオンであり
(ただし、M2+がMgで、かつM3+がAlである場合を除
く。)、 一般式において前半部の[M2+ 1-xM3+ x(OH)2]
は、層状複水酸化物の基本層またはホスト層と呼ばれる
金属水酸化物層である。同後半部の[ΣAn− ・mH2O]
は、は陰イオン群と水分子からなる中間層であり、A
n−は、グリシン、金属塩由来の陰イオン、及びその他
上記共沈殿溶液中に含まれる水酸化物イオン等の各陰イ
オンを表し、yは上記一般式における組成比、nはイオ
ン価数を示す。したがって、ΣAn− 、は各陰イオン
を合わせたイオン群の総体を示し、各陰イオンにおける
yに価数nを掛けたものは全陰イオンに対する各陰イオ
ンの電荷量としての割合(電荷占有率)を意味し、合計
した数(Σy×n)はxに一致する。また、xは1を越え
ない有理数であり、mは、不定な有理数を示す。
The layered double hydroxide of the present invention is represented by the following general formula. [M 2+ 1-x M 3+ x (OH) 2 ] [ΣA n− y · mH 2 O] In the formula, M 2+ is a divalent metal ion derived from the metal salt used,
M 3+ is a trivalent metal ions from the metal salt used (although, M 2+ is at Mg, and unless M 3+ is Al.), In the general formula of the first half [M 2 + 1-x M 3+ x (OH) 2 ]
Is a metal hydroxide layer called a base layer or host layer of layered double hydroxide. [ΣA n− y · mH 2 O] in the latter half
Is an intermediate layer consisting of anions and water molecules.
n- represents glycine, an anion derived from a metal salt, and other anions such as hydroxide ion contained in the coprecipitation solution, y represents a composition ratio in the above general formula, and n represents an ionic valence. Show. Therefore, ΣA n− y represents the total number of ion groups including each anion, and y multiplied by the valence number n in each anion is the ratio (charge) of each anion to the total anions. Occupancy rate), and the total number (Σy × n) matches x. Further, x is a rational number that does not exceed 1, and m is an indefinite rational number.

【0012】本発明の層状複酸化物をさらに具体的に説
明すると、上記2価金属イオンは、具体的には、M
g2+、Zn2+、Co2+、Ni2+及びCu2+等であり、
同3価金属イオンは、Al3+、Fe3+、Cr3+及びCo
3+等である。また、上記金属塩由来の陰イオンには、C
l、NO3 及びSO4 2−等が挙げられる。
The layered complex oxide of the present invention will be described more specifically. The divalent metal ion is specifically M.
g 2+ , Zn 2+ , Co 2+ , Ni 2+, Cu 2+, etc.,
The same trivalent metal ions are Al 3+ , Fe 3+ , Cr 3+ and Co.
3+ etc. Further, the anion derived from the metal salt, C
l , NO 3 −, SO 4 2− and the like.

【0013】本発明の層状酸化物としては、Mg-Al系層
状複酸化物、Ni-Al系層状複酸化物、Co-Al系層状複酸化
物あるいはZn-Al系層状複酸化物が挙げられるが、特に
これらに限定されるものではない。また、上記構造式中
xは0.167〜0.250が好ましい。また上記グリシン陰イオ
ンの電荷占有率y×nは、高々20%でも単層剥離を起こ
すのに十分である。
Examples of the layered oxide of the present invention include Mg-Al layered double oxide, Ni-Al layered double oxide, Co-Al layered double oxide or Zn-Al layered double oxide. However, it is not particularly limited thereto. Further, in the above structural formula, x is preferably 0.167 to 0.250. Further, even if the charge occupancy y × n of the glycine anion is at most 20%, it is sufficient to cause the monolayer peeling.

【0014】本発明に用いる層状複水酸化物の製造手段
は、すでに公知となっている他の層状複水酸化物の共沈
殿による合成法、例えばS. Miyata (1980年、Clays and
Clay Minerals、第28巻、50-56頁)などに報告されてい
る方法と類似するが、上述したように、グリシンを用い
る場合、グリシンはキレート作用があり、一方Mg以外
の2価金属はMgよりもキレート化され易いため、水酸化
物合成時においてグリシンによる金属イオンのキレート
化により金属水酸化物の形成が抑制され、Mg系以外では
層状複水酸化物を得るのが難しくなる。キレート化され
た金属イオン(特に2価金属)は、アルカリ性において
も水溶液中に安定に存在し、主に3価金属のみが水酸化
物となって沈殿してくるため、2価-3価金属の共沈殿物
である層状複水酸化物は得られない。
The means for producing the layered double hydroxide used in the present invention is a known synthesis method by coprecipitation of other layered double hydroxides, for example, S. Miyata (1980, Clays and
Clay Minerals, Vol. 28, pp. 50-56), but as described above, when glycine is used, glycine has a chelating action, while divalent metals other than Mg are Mg. Since it is more easily chelated, the formation of a metal hydroxide is suppressed by chelation of a metal ion with glycine during hydroxide synthesis, and it becomes difficult to obtain a layered double hydroxide except for the Mg type. Chelated metal ions (especially divalent metals) exist stably in aqueous solution even in alkaline conditions, and mainly trivalent metals precipitate as hydroxides, resulting in divalent and trivalent metals. A layered double hydroxide that is a co-precipitate of is not obtained.

【0015】これに対して、本発明においては、グリシ
ンと水酸化物イオン以外の陰イオン、すなわち使用する
金属塩における陰イオン成分の総モル数に対し、総モル
数の2倍未満の量で、グリシンを使用することにより、
水酸化物合成時のアミノ酸と金属イオンのキレート化を
防止する。この場合のグリシンの使用量についてさらに
具体的にいうと、グリシンの使用量は、好ましくは使用
する金属塩における陰イオン成分の総モル数に対し、総
モル数で2倍未満、さらに好ましくは0.1倍前後である。
On the other hand, in the present invention, the amount of anion other than glycine and hydroxide ion, that is, less than twice the total number of moles of the anion component in the metal salt used, is used. By using glycine,
Prevents chelation of amino acids and metal ions during hydroxide synthesis. To be more specific about the amount of glycine used in this case, the amount of glycine used is preferably less than twice the total number of moles of the anionic component in the metal salt used, and more preferably 0.1. It is around double.

【0016】また、グリシンの使用量を、この範囲で行
えば、Mg−Al系の層状複酸化物の製造においても、
金属イオンのキレート化が抑制される結果、層状複酸化
物の収率は向上する。一方、空気中に存在する二酸化炭
素由来の炭酸イオンが生産物に混入すると、基本層単相
への剥離現象が起きにくくなるので、合成およびその後
の洗浄・乾燥は工程は、二酸化炭素及び/または炭酸イ
オンの非存在下、例えば窒素気流中で行う。また、使用
する水等においては予め炭酸イオンを除去しておくこと
が好ましい。
Further, if the amount of glycine used is within this range, in the production of the Mg-Al-based layered double oxide,
As a result of suppressing chelation of metal ions, the yield of layered double oxide is improved. On the other hand, when carbon dioxide derived from carbon dioxide existing in the air is mixed in the product, the phenomenon of exfoliation into the basic layer single phase is less likely to occur, so the steps of synthesis and subsequent washing / drying are carbon dioxide and / or It is carried out, for example, in a nitrogen stream in the absence of carbonate ions. In addition, it is preferable to remove carbonate ions from the water used in advance.

【0017】本発明における共沈殿による合成法は、例
えば、亜鉛、コバルト、ニッケル等の2価金属、及び/
またはアルミニウム、鉄、クロム等の3価金属の硝酸
塩、塩化物あるいは硫酸塩を溶かした水溶液と、グリシ
ンを溶かした水溶液を調整し、この2つの水溶液をゆっ
くりと混合する方法が好適である。
The synthesis method by coprecipitation in the present invention is, for example, a divalent metal such as zinc, cobalt or nickel, and /
Alternatively, it is preferable to prepare an aqueous solution in which a nitrate, chloride or sulfate of a trivalent metal such as aluminum, iron or chromium is dissolved and an aqueous solution in which glycine is dissolved, and slowly mix the two aqueous solutions.

【0018】この場合、混合するときは、NaOH水溶液等
を適宜加えて常にpHがアルカリ性側にあるようにする。
これにより、上記アミノ酸は、水溶液中では一価の陰イ
オンとして存在し、合成される層状複水酸化物の層間陰
イオン成分の一部として中間層を形成する。
In this case, when mixing, an aqueous NaOH solution or the like is appropriately added so that the pH is always on the alkaline side.
As a result, the amino acid exists as a monovalent anion in the aqueous solution and forms an intermediate layer as a part of the interlayer anion component of the synthesized layered double hydroxide.

【0019】得られた本発明の層状複水酸化物は、適当
な溶媒、例えばホルムアミドを用いることにより、極め
て容易に各基本層が剥離し、溶媒中に分散する。本発明
による層状複水酸化物は、ホルムアミドに投入すれば、
単に攪拌するだけで剥離現象が発現する。
In the obtained layered double hydroxide of the present invention, each basic layer is very easily peeled off and dispersed in the solvent by using a suitable solvent such as formamide. The layered double hydroxide according to the present invention, when added to formamide,
The peeling phenomenon appears by simply stirring.

【0020】したがって、本発明の層状複水酸化物を上
記ホルムアミド等の適当な溶媒に分散した液状物は、樹
脂配合剤として、分子レベルまたは分子レベルに近い状
態で樹脂と混合することができる。また、このような予
め溶媒に分散させて用いずとも、本発明の層状複水酸化
物を樹脂に直接添加したのち上記適当な溶媒を添加し、
混練してもよい。
Therefore, the liquid material obtained by dispersing the layered double hydroxide of the present invention in a suitable solvent such as the above formamide can be mixed with the resin as a resin compounding agent at a molecular level or in a state close to the molecular level. Also, without using such a pre-dispersed solvent, after adding the layered double hydroxide of the present invention directly to the resin, the appropriate solvent is added,
You may knead.

【0021】本発明の層状複水酸化物が配合される樹脂
としては、極性基を適当に導入して変性したポリエチレ
ン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル及
びそれらのポリマーアロイなどが挙げられる。
Examples of the resin to which the layered double hydroxide of the present invention is added include polyethylene, polypropylene, polystyrene, polyvinyl chloride and polymer alloys thereof, which are modified by appropriately introducing polar groups.

【0022】また、本発明の層状複水酸化物は、Mg系の
層状複水酸化物と比べて塩基性が強くなく、このため樹
脂の安定性を損なったり、あるいは配合剤自体の性能を
十分発揮できない等の問題を生じることがなく、しか
も、層状水酸化物の基本層単層まで容易に剥離・分散可
能であって、これにより分子レベルまたは分子レベルに
近い状態で樹脂と混合し得るので、樹脂配合剤として極
めて好適な特性を有する。
Further, the layered double hydroxide of the present invention is less basic than the Mg-based layered double hydroxide, so that the stability of the resin is impaired or the performance of the compounding agent itself is insufficient. It does not cause problems such as not being able to exhibit, and it can easily peel and disperse even the basic layer single layer of layered hydroxide, so that it can be mixed with the resin at the molecular level or a state close to the molecular level. , Has extremely suitable characteristics as a resin compounding agent.

【0023】したがって、本発明の層状複水酸化物は、
樹脂に対する難燃化剤、安定剤、成型改質剤および保温
性改良剤等の配合剤として極めて有用なものである。
Therefore, the layered double hydroxide of the present invention is
It is extremely useful as a compounding agent for resins such as flame retardants, stabilizers, molding modifiers and heat retention improvers.

【0024】以下に、本発明の実施例を示すが、本発明
は特にこれにより限定されるものではない。
Examples of the present invention will be shown below, but the present invention is not limited thereto.

【実施例1】硝酸亜鉛と硝酸アルミニウムを、モル比でZ
n:Al=3:1となるように秤量し、水を加えてZn+Al=0.5 モ
ル/リットルの濃度の水溶液とした。これとは別に、前
述硝酸アルミニウムの2倍モル量のグリシンを、水に溶
かした後、2N-NaOH水溶液を適量加えてpHを8に調整し
た。これに前述の硝酸亜鉛-硝酸アルミニウム水溶液を5
0ml/hの速度で加えた。このとき、混合溶液は常にpHが8
となるように、2N-NaOH水溶液を適宜加えた。ここで、
上記グリシンの使用モル数は、硝酸イオンのモル数に対
して、2/9に相当する量である。以上により得られた
共沈殿物を、水洗・風乾後、メノウ乳鉢により摩砕して
粉末試料を得た。これら一連の実験は、空気中からの炭
酸イオンの混入を避けるため、合成および洗浄・乾燥
は、すべて窒素気流中で行い、使用する水も脱イオン・
蒸留処理の後、JIS K 0102に従って炭酸を除去した。得
られた粉末試料はX線回折装置によって測定され、層状
複水酸化物単相であることが確認された。この層状複水
酸化物に適量のホルムアミドを加えたところ、基本層の
剥離により、容器下部に沈殿してくる固相のない半透明
な液状物が得られた。
[Example 1] Zinc nitrate and aluminum nitrate in a molar ratio of Z
It was weighed so that n: Al = 3: 1, and water was added to prepare an aqueous solution having a concentration of Zn + Al = 0.5 mol / liter. Separately, glycine in an amount twice the molar amount of aluminum nitrate was dissolved in water, and then an appropriate amount of 2N-NaOH aqueous solution was added to adjust the pH to 8. Add the above-mentioned zinc nitrate-aluminum nitrate aqueous solution to this.
Added at a rate of 0 ml / h. At this time, the pH of the mixed solution is always 8
2N-NaOH aqueous solution was appropriately added so that here,
The number of moles of glycine used is an amount corresponding to 2/9 with respect to the number of moles of nitrate ions. The coprecipitate obtained above was washed with water and air-dried, and then ground in an agate mortar to obtain a powder sample. In these series of experiments, in order to avoid mixing of carbonate ions from the air, synthesis, washing and drying were all performed in a nitrogen stream, and the water used was also deionized.
After the distillation treatment, carbonic acid was removed according to JIS K 0102. The obtained powder sample was measured by an X-ray diffractometer and confirmed to be a layered double hydroxide single phase. When an appropriate amount of formamide was added to this layered double hydroxide, a semi-transparent liquid substance without a solid phase which precipitated in the lower part of the container was obtained due to peeling of the basic layer.

【0025】[0025]

【実施例2】実施例1の条件のうち、グリシン量をその半
分にした以外は、全く同じ操作で試料を作製した。ここ
で、上記グリシンの使用モル数は、硝酸イオンのモル数
に対して、1/9に相当する量である。上記条件にて得
られた粉末試料はX線回折装置によって測定され、層状
複水酸化物単相であることが確認された。この層状複水
酸化物に適量のホルムアミドを加えたところ、基本層の
剥離により、容器下部に沈殿してくる固相のない半透明
な液状物が得られた。
Example 2 A sample was prepared by the same procedure as in Example 1 except that the amount of glycine was halved. Here, the number of moles of glycine used is an amount corresponding to 1/9 of the number of moles of nitrate ions. The powder sample obtained under the above conditions was measured by an X-ray diffractometer, and was confirmed to be a layered double hydroxide single phase. When an appropriate amount of formamide was added to this layered double hydroxide, a semi-transparent liquid substance without a solid phase which precipitated in the lower part of the container was obtained due to peeling of the basic layer.

【0026】[0026]

【実施例3】硝酸ニッケルと硝酸アルミニウムを、モル
比でNi:Al=4:1となるように秤量し、水を加えてNi+Al=
0.5 モル/リットルの濃度の水溶液とした。これとは別
に、前述硝酸アルミニウムの2倍モル量のグリシンを、
水に溶かした後、2N-NaOH水溶液を適量加えてpHを8に調
整した。ここで、上記グリシンの使用モル数は、硝酸イ
オンのモル数に対して、2/11に相当する量である。
これに前述の硝酸ニッケル-硝酸アルミニウム水溶液を5
0ml/hの速度で加えた。このとき、混合溶液は常にpHが8
となるように、2N-NaOH水溶液を適宜加えた。以上によ
り得られた共沈殿物を、水洗・風乾後、メノウ乳鉢によ
り摩砕して粉末試料を得た。これら一連の実験は、空気
中からの炭酸イオンの混入を避けるため、合成および洗
浄・乾燥は、すべて窒素気流中で行い、使用する水も脱
イオン・蒸留処理の後、JIS K 0102に従って炭酸を除去
した。得られた粉末試料はX線回折装置によって測定さ
れ、層状複水酸化物単相であることが確認された。この
層状複水酸化物に適量のホルムアミドを加えたところ、
基本層の剥離により、容器下部に沈殿してくる固相のな
い半透明な液状物が得られた。
Example 3 Nickel nitrate and aluminum nitrate were weighed so that the molar ratio was Ni: Al = 4: 1, water was added, and Ni + Al =
An aqueous solution having a concentration of 0.5 mol / liter was prepared. Apart from this, twice the molar amount of glycine of the above-mentioned aluminum nitrate,
After dissolving in water, the pH was adjusted to 8 by adding an appropriate amount of 2N-NaOH aqueous solution. Here, the number of moles of glycine used is an amount corresponding to 2/11 with respect to the number of moles of nitrate ions.
Add the above nickel nitrate-aluminum nitrate aqueous solution to this.
Added at a rate of 0 ml / h. At this time, the pH of the mixed solution is always 8
2N-NaOH aqueous solution was appropriately added so that The coprecipitate obtained above was washed with water and air-dried, and then ground in an agate mortar to obtain a powder sample. In these series of experiments, in order to avoid mixing of carbonate ions from the air, synthesis, washing and drying were all performed in a nitrogen stream, and the water used was also deionized and distilled, and then carbonated according to JIS K 0102. Removed. The obtained powder sample was measured by an X-ray diffractometer and confirmed to be a layered double hydroxide single phase. When an appropriate amount of formamide was added to this layered double hydroxide,
By peeling off the base layer, a semi-transparent liquid substance without a solid phase that precipitated at the bottom of the container was obtained.

【0027】[0027]

【比較例1】硝酸亜鉛と硝酸アルミニウムを、モル比でZ
n:Al=3:1となるように秤量し、水を加えてZn+Al=0.5 モ
ル/リットルの濃度の水溶液とした。これとは別にグリ
シンを、硝酸亜鉛と硝酸アルミニウムに含まれる全硝酸
モル数の2倍量を秤量して水に溶かした後、2N-NaOH水溶
液を適量加えてpHを8に調整した。これに前述の硝酸亜
鉛-硝酸アルミニウム水溶液を50ml/hの速度で加えた。
このとき、混合溶液は常にpHが8となるように、2N-NaOH
水溶液を適宜加えた。以上により得られた共沈殿物を、
水洗・風乾後、メノウ乳鉢により摩砕して粉末試料を得
た。これら一連の実験は、空気中からの炭酸イオンの混
入を避けるため、合成および洗浄・乾燥は、すべて窒素
気流中で行い、使用する水も脱イオン・蒸留処理の後、
JIS K0102に従って炭酸を除去した。得られた粉末試料
はX線回折装置によって測定したところ、層状複水酸化
物とは同定されない回折パターンが得られた。この不明
な回折パターンは水酸化アルミニウムのものに類似して
いた。この産物に適量のホルムアミドを加えたが、この
産物はすべて容器下部に沈殿した。
[Comparative Example 1] Zinc nitrate and aluminum nitrate in a molar ratio of Z
It was weighed so that n: Al = 3: 1, and water was added to prepare an aqueous solution having a concentration of Zn + Al = 0.5 mol / liter. Separately, glycine was weighed and dissolved in water in an amount of twice the total number of moles of nitric acid contained in zinc nitrate and aluminum nitrate, and then the pH was adjusted to 8 by adding an appropriate amount of 2N-NaOH aqueous solution. The above zinc nitrate-aluminum nitrate aqueous solution was added to this at a rate of 50 ml / h.
At this time, the pH of the mixed solution is always adjusted to 8 with 2N-NaOH.
Aqueous solution was added as appropriate. The coprecipitate obtained by the above,
After washing with water and air-drying, the mixture was ground in an agate mortar to obtain a powder sample. In these series of experiments, in order to avoid contamination of carbonate ions from the air, synthesis and washing / drying were all performed in a nitrogen stream, and the water used was also deionized / distilled.
Carbonic acid was removed according to JIS K0102. When the obtained powder sample was measured by an X-ray diffractometer, a diffraction pattern which was not identified as a layered double hydroxide was obtained. This unknown diffraction pattern was similar to that of aluminum hydroxide. An appropriate amount of formamide was added to this product, but all of this product precipitated at the bottom of the container.

【0028】[0028]

【比較例2】合成時のpHを10に調整した以外は比較例1と
同じ条件で試料を作製した。得られた粉末試料はX線回
折装置によって測定したところ、層状複水酸化物とは同
定されない回折パターンが得られた。この不明な回折パ
ターンは比較例1と同じく、水酸化アルミニウムのもの
に類似していた。この産物に適量のホルムアミドを加え
たが、この産物はすべて容器下部に沈殿した。
Comparative Example 2 A sample was prepared under the same conditions as in Comparative Example 1 except that the pH during synthesis was adjusted to 10. When the obtained powder sample was measured by an X-ray diffractometer, a diffraction pattern which was not identified as a layered double hydroxide was obtained. This unknown diffraction pattern was similar to that of aluminum hydroxide, as in Comparative Example 1. An appropriate amount of formamide was added to this product, but all of this product precipitated at the bottom of the container.

【0029】[0029]

【比較例3】合成時のpHを7に調整した以外は比較例1と
同じ条件で試料を作製した。得られた粉末試料はX線回
折装置によって測定したところ、層状複水酸化物とは同
定されない回折パターンが得られた。この不明な回折パ
ターンは比較例1と同じく、水酸化アルミニウムのもの
に類似していた。この産物に適量のホルムアミドを加え
たが、この産物はすべて容器下部に沈殿した。
Comparative Example 3 A sample was prepared under the same conditions as in Comparative Example 1 except that the pH during synthesis was adjusted to 7. When the obtained powder sample was measured by an X-ray diffractometer, a diffraction pattern which was not identified as a layered double hydroxide was obtained. This unknown diffraction pattern was similar to that of aluminum hydroxide, as in Comparative Example 1. An appropriate amount of formamide was added to this product, but all of this product precipitated at the bottom of the container.

【0030】[0030]

【発明の効果】本発明に係る層状複水酸化物は、基本層
単層までに容易に剥離・分散可能であり、分子レベルあ
るいは分子に近い状態で樹脂に配合できるとともに、Mg
系の層状複水酸化物のように塩基性が強くなく、このた
め樹脂の安定性を損なったり、あるいは配合剤自体の性
能を十分発揮できない等の問題を生じることがない。し
たがって、本発明の層状複水酸化物は、樹脂配合剤とし
て極めて好適な特性を有する。
EFFECTS OF THE INVENTION The layered double hydroxide according to the present invention can be easily peeled / dispersed up to the base layer single layer, and can be blended with the resin at the molecular level or in a state close to the molecule, and Mg
It is not strongly basic like the layered double hydroxide of the system, and therefore does not cause problems such as impairing the stability of the resin or insufficient performance of the compounding agent itself. Therefore, the layered double hydroxide of the present invention has extremely suitable characteristics as a resin compounding agent.

フロントページの続き Fターム(参考) 4G076 AA10 AA18 AA19 AA26 AB06 AB11 BA11 CA40 DA30 4H006 AA03 AB48 BS10 BU32 4J002 BB021 BB131 BB201 BC031 BD031 DD066 DD076 EN116 FB086 Continued front page    F-term (reference) 4G076 AA10 AA18 AA19 AA26 AB06                       AB11 BA11 CA40 DA30                 4H006 AA03 AB48 BS10 BU32                 4J002 BB021 BB131 BB201 BC031                       BD031 DD066 DD076 EN116                       FB086

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】1種または2種以上の2価金属、及び/ま
たは1種または2種以上の3価金属の水酸化物層を有す
る層状複水酸化物において(但し、金属水酸化物層の構
成金属がマグネシウムとアルミニウムとの組み合わせの
みからなる場合を除く)、層間陰イオンとして、グリシ
ンを含有することを特徴とする層状複水酸化物。
1. A layered double hydroxide having a hydroxide layer of one or more divalent metals and / or one or more trivalent metals (provided that the metal hydroxide layer is Except for the case where the constituent metal thereof is only a combination of magnesium and aluminum), and glycine as an interlayer anion, a layered double hydroxide.
【請求項2】1種または2種以上の2価金属塩、及び/
または1種または2種以上の3価金属塩(但し、金属塩
としてマグネシウムとアルミニウムのみを組み合わせて
使用する場合を除く)と、グリシンをアルカリ条件下、
溶液状態で混合することにより共沈殿させて得られたも
のである請求項1記載の層状複水酸化物。
2. One or more divalent metal salts, and / or
Alternatively, one or two or more trivalent metal salts (excluding the case where only magnesium and aluminum are used in combination as the metal salt) and glycine under alkaline conditions,
The layered double hydroxide according to claim 1, which is obtained by coprecipitation by mixing in a solution state.
【請求項3】グリシンの使用量が、使用する金属塩中の
陰イオン成分の合計モル数の2倍未満である請求項2に
記載の層状複水酸化物。
3. The layered double hydroxide according to claim 2, wherein the amount of glycine used is less than twice the total number of moles of anionic components in the metal salt used.
【請求項4】請求項1〜3のいずれか一項に記載の層状
複水酸化物が、基本層である金属水酸化物層に剥離、分
散された形態で含有する液状物。
4. A liquid material containing the layered double hydroxide according to any one of claims 1 to 3 in a form of being peeled and dispersed in a metal hydroxide layer which is a basic layer.
【請求項5】請求項1〜3のいずれか一項記載の層状複
水酸化物にホルムアミドを添加したものである請求項4
に記載の液状物。
5. The layered double hydroxide according to claim 1, to which formamide is added.
The liquid substance described in.
【請求項6】請求項1〜3のいずれか一項記載の層状複
水酸化物、若しくは請求項4または5に記載の液状物を
含有する樹脂用配合剤。
6. A compounding agent for resins containing the layered double hydroxide according to any one of claims 1 to 3 or the liquid material according to claim 4 or 5.
【請求項7】1種または2種以上の2価金属塩、及び/
または1種または2種以上の3価金属塩(但し、金属塩
としてマグネシウムとアルミニウムのみを組み合わせて
使用する場合を除く)と、グリシンをアルカリ条件下、
溶液状態で混合することにより共沈殿させることを特徴
とする層状複水酸化物の製造法。
7. One or more divalent metal salts, and / or
Alternatively, one or two or more trivalent metal salts (excluding the case where only magnesium and aluminum are used in combination as the metal salt) and glycine under alkaline conditions,
A method for producing a layered double hydroxide, which comprises coprecipitating by mixing in a solution state.
【請求項8】グリシンの使用量が、使用する金属塩中の
陰イオン成分の合計モル数の2倍未満である請求項7に
記載の層状複水酸化物の製造方法。
8. The method for producing a layered double hydroxide according to claim 7, wherein the amount of glycine used is less than twice the total number of moles of anionic components in the metal salt used.
【請求項9】1種または2種以上の2価金属塩、及び/
または1種または2種以状の3価金属塩と、グリシン
を、グリシンの使用量が使用する金属塩中の陰イオン成
分の合計モル数の2倍未満になるようにして、アルカリ
条件下、溶液状態で混合することにより共沈殿させるこ
とを特徴とする層状複水酸化物の製造法。
9. One or more divalent metal salts, and / or
Alternatively, one or more trivalent metal salts and glycine are used under alkaline conditions such that the amount of glycine used is less than twice the total number of moles of the anionic component in the metal salt used. A method for producing a layered double hydroxide, which comprises coprecipitating by mixing in a solution state.
【請求項10】共沈殿の後、共沈殿物を洗浄、乾燥する
ことを特徴とする請求項7〜10いずれか一項に記載の
層状複水酸化物の製造方法。
10. The method for producing a layered double hydroxide according to claim 7, wherein the coprecipitate is washed and dried after the coprecipitation.
【請求項11】層状複水酸化物の製造工程を、二酸化炭
素および/または炭酸イオンの非存在下で行うことを特
徴とする請求項7〜10いずれか1項に記載の層状複水
酸化物の製造方法。
11. The layered double hydroxide according to claim 7, wherein the step of producing the layered double hydroxide is carried out in the absence of carbon dioxide and / or carbonate ions. Manufacturing method.
【請求項12】層状複水酸化物の製造工程を、窒素気流
中で行うことを特徴とする請求項11に記載の層状複水
酸化物の製造方法。
12. The method for producing a layered double hydroxide according to claim 11, wherein the step for producing a layered double hydroxide is performed in a nitrogen stream.
JP2002022770A 2002-01-31 2002-01-31 Layered double hydroxide containing glycine as interlayer anion Expired - Lifetime JP4019138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002022770A JP4019138B2 (en) 2002-01-31 2002-01-31 Layered double hydroxide containing glycine as interlayer anion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002022770A JP4019138B2 (en) 2002-01-31 2002-01-31 Layered double hydroxide containing glycine as interlayer anion

Publications (2)

Publication Number Publication Date
JP2003221226A true JP2003221226A (en) 2003-08-05
JP4019138B2 JP4019138B2 (en) 2007-12-12

Family

ID=27745682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002022770A Expired - Lifetime JP4019138B2 (en) 2002-01-31 2002-01-31 Layered double hydroxide containing glycine as interlayer anion

Country Status (1)

Country Link
JP (1) JP4019138B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238194A (en) * 2004-02-27 2005-09-08 National Institute Of Advanced Industrial & Technology Colloid particulate hydroxide base compounding agent for resin and resin composition containing the same
JP2007031189A (en) * 2005-07-25 2007-02-08 National Institute For Materials Science Method for peeling layered double hydroxide, double hydroxide nanosheet, composite thin film material thereof, method for producing the same, and method for producing layered double hydroxide thin film material
JP2007039549A (en) * 2005-08-03 2007-02-15 Tayca Corp Rust preventive coating material composition using layered composite hydroxide exfoliating in water
WO2009051130A1 (en) * 2007-10-18 2009-04-23 National Institute For Materials Science Acrylic adhesive composition and pressure-sensitive adhesive sheet using the same
JP2016511300A (en) * 2013-01-17 2016-04-14 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH Method for producing anticorrosion coating
CN109647344A (en) * 2018-12-28 2019-04-19 北京理工大学 A method of based on the Gly insertion material of hydroxy double salts containing Zn to uranium absorption
CN110898796A (en) * 2019-11-27 2020-03-24 清华大学深圳国际研究生院 Preparation method of magnetic layered double hydroxide, magnetic layered double hydroxide and application thereof
CN110898797A (en) * 2019-11-27 2020-03-24 清华大学深圳国际研究生院 Preparation method of layered double hydroxide, layered double hydroxide and application
WO2023199754A1 (en) * 2022-04-13 2023-10-19 セトラスホールディングス株式会社 Composite of hydrotalcite compound and amino acid

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572289B2 (en) * 2004-02-27 2010-11-04 独立行政法人産業技術総合研究所 Colloidal particle-formed hydroxide resin compounding agent and resin composition containing the same
JP2005238194A (en) * 2004-02-27 2005-09-08 National Institute Of Advanced Industrial & Technology Colloid particulate hydroxide base compounding agent for resin and resin composition containing the same
JP2007031189A (en) * 2005-07-25 2007-02-08 National Institute For Materials Science Method for peeling layered double hydroxide, double hydroxide nanosheet, composite thin film material thereof, method for producing the same, and method for producing layered double hydroxide thin film material
JP2007039549A (en) * 2005-08-03 2007-02-15 Tayca Corp Rust preventive coating material composition using layered composite hydroxide exfoliating in water
US8895653B2 (en) 2007-10-18 2014-11-25 National Institute For Materials Science Acrylic adhesive composition, and pressure-sensitive adhesive sheet employing the same
JP2009096930A (en) * 2007-10-18 2009-05-07 Nitto Denko Corp Acrylic adhesive composition and pressure-sensitive adhesive sheet using the same
WO2009051130A1 (en) * 2007-10-18 2009-04-23 National Institute For Materials Science Acrylic adhesive composition and pressure-sensitive adhesive sheet using the same
JP2016511300A (en) * 2013-01-17 2016-04-14 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH Method for producing anticorrosion coating
CN109647344A (en) * 2018-12-28 2019-04-19 北京理工大学 A method of based on the Gly insertion material of hydroxy double salts containing Zn to uranium absorption
CN109647344B (en) * 2018-12-28 2020-10-23 北京理工大学 Method for adsorbing uranium based on Gly inserted Zn-containing hydroxyl double salt material
CN110898796A (en) * 2019-11-27 2020-03-24 清华大学深圳国际研究生院 Preparation method of magnetic layered double hydroxide, magnetic layered double hydroxide and application thereof
CN110898797A (en) * 2019-11-27 2020-03-24 清华大学深圳国际研究生院 Preparation method of layered double hydroxide, layered double hydroxide and application
WO2023199754A1 (en) * 2022-04-13 2023-10-19 セトラスホールディングス株式会社 Composite of hydrotalcite compound and amino acid

Also Published As

Publication number Publication date
JP4019138B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
Zhang et al. Synthesis of layered double hydroxide anionic clays intercalated by carboxylate anions
US6852670B1 (en) Method for manufacturing anion-layered double hydroxide intercalation compounds and compounds produced thereby
JP4129521B2 (en) Layered double hydroxide
JP2003221226A (en) Layered double hydroxide containing glycine as intercalating anion
Giovanoli et al. Crystallization of metal substituted ferrihydrites
JP6557597B2 (en) Layered double hydroxide
CN1645530A (en) Method for synthesizing series single-dispersed ferrite nanometer magnetic beads
CN110467226B (en) Preparation method of iron-based hydrotalcite
CN1792822A (en) Zinc iron type hydrotalcite and preparation process thereof
JP4178238B2 (en) Highly dispersible layered double hydroxide
JP4572289B2 (en) Colloidal particle-formed hydroxide resin compounding agent and resin composition containing the same
Ma et al. Hydrothermal preparation and anion exchange of Co2+–Ni2+–Fe3+ CO32− LDHs materials with well regular shape
US10543478B2 (en) Catalyst for oxidative dehydrogenation and method of preparing the same
CN1772622A (en) Surfactant intercalated magnetic hydrotalcite material and its prepn
JP2004091421A (en) Lamellar double hydroxide incorporating ascorbic acid, and cosmetic composition containing the same
CN109502656B (en) Spherical Co (II) Co (III) hydrotalcite-like material and preparation method thereof
Ageshina et al. Structure of cobalt (II) cymantrenecarboxylates prepared by recrystallization from methanol, THF, and acetonitrile
JP2004352541A (en) Method for producing layered double hydroxide having organic acid between layers
Koroteev et al. Heterometallic Carboxylate Complexes as Precursors for Mixed Oxides: II. d–d Carboxylates
Cao et al. A facile strategy for synthesis of spinel ferrite nano-granules and their potential applications
Jamhour Intercalation and complexation of Co (II) and Ni (II) by chelating ligands incorporated in Zn-Al layered double hydroxides
Gao et al. The mechanism on the pH value influencing the property of glutamic acid/layered double hydroxide compounds
US20180207621A1 (en) Method of preparing catalyst for oxidative dehydrogenation
JP2018095546A5 (en)
JP2000247633A (en) Planar mg-al base hydrotalcite type grain powder and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

R150 Certificate of patent or registration of utility model

Ref document number: 4019138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term