JP2003208913A - Power controller, power generating system and control method of power controller - Google Patents

Power controller, power generating system and control method of power controller

Info

Publication number
JP2003208913A
JP2003208913A JP2002323054A JP2002323054A JP2003208913A JP 2003208913 A JP2003208913 A JP 2003208913A JP 2002323054 A JP2002323054 A JP 2002323054A JP 2002323054 A JP2002323054 A JP 2002323054A JP 2003208913 A JP2003208913 A JP 2003208913A
Authority
JP
Japan
Prior art keywords
power
control
charging
output
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002323054A
Other languages
Japanese (ja)
Other versions
JP2003208913A5 (en
JP4430292B2 (en
Inventor
Shinji Miyauchi
伸二 宮内
Tetsuya Ueda
哲也 上田
Masataka Ozeki
正高 尾関
Hiroyuki Jinbo
裕行 神保
Kiichi Koike
喜一 小池
Original Assignee
Matsushita Electric Ind Co Ltd
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001345089 priority Critical
Priority to JP2001-345089 priority
Application filed by Matsushita Electric Ind Co Ltd, 松下電器産業株式会社 filed Critical Matsushita Electric Ind Co Ltd
Priority to JP2002323054A priority patent/JP4430292B2/en
Publication of JP2003208913A publication Critical patent/JP2003208913A/en
Publication of JP2003208913A5 publication Critical patent/JP2003208913A5/ja
Application granted granted Critical
Publication of JP4430292B2 publication Critical patent/JP4430292B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an economic and highly reliable fuel cell power controller and a power generating system using the same wherein a demand change of electric power is promptly coped with and wherein a needed electric power amount is generated in a high efficiency. <P>SOLUTION: This controller is provided with a secondary battery 11 to charge a direct current power generated by the fuel cell 1, a converter part 5 to receive the direct current input and to convert this voltage, an inverter 6 to convert an output power of the converter part 5 into alternating current, a reverse-flow preventing diode 14, a charge control means 12 and a discharge control means 13 to supply the direct current of the fuel cell 1 to the secondary battery 11 and to output the electric power from the secondary battery 11 to the converter 5 side, a load power detecting means 9, and a fuel cell control means 15 to control the action of the charge-discharge means based on the amount of the load power. The output voltage of the fuel cell 1 is converted into the charge voltage of the secondary battery 11, and the discharge voltage of the secondary battery 11 is converted into the output voltage of the fuel cell 1. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】本発明は、例えば燃料電池の
ような直流電力発生手段を用いて発電を行う電力制御装
置等に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power control device and the like for generating power using a DC power generating means such as a fuel cell.
【0002】[0002]
【従来の技術】従来より、燃料電池発電システムとして
は、図7に示すようなものが知られている(例えば特許
文献1を参照)。図7において、燃料電池41は燃料電
池本体で、水素供給手段42から供給される水素と空気
供給手段43から供給される空気中の酸素とを反応さ
せ、直流電力を発生させ、電力変換器44によって交流
電力に変換され出力される。制御装置45は充放電装置
46と電力変換器44を制御し、燃料電池本体41の発
電量が固定されていても、充放電装置46からの放電ま
たは充放電装置46への充電によって、出力される電力
を可変して出力するよう制御できるものである。
2. Description of the Related Art Conventionally, a fuel cell power generation system as shown in FIG. 7 has been known (for example, refer to Patent Document 1). In FIG. 7, a fuel cell 41 is a fuel cell main body, in which hydrogen supplied from a hydrogen supply means 42 reacts with oxygen in the air supplied from an air supply means 43 to generate a DC power and a power converter 44. Is converted into AC power and output. The control device 45 controls the charging / discharging device 46 and the power converter 44, and even if the power generation amount of the fuel cell main body 41 is fixed, it is output by discharging from the charging / discharging device 46 or charging the charging / discharging device 46. It is possible to control the output power by varying the output power.
【0003】しかしながら、このような燃料電池発電シ
ステムにおいては、燃料電池本体41の出力電圧を充放
電装置46の充放電電圧に合わせる必要があるが、充放
電装置46は、充放電制御のための手段を持たないた
め、燃料電池本体41の出力と、充放電装置46内の二
次電池等の蓄電手段の定格との差を埋め合わせて、充放
電装置46を高精度に充放電制御することは困難であっ
た。
However, in such a fuel cell power generation system, it is necessary to match the output voltage of the fuel cell main body 41 with the charging / discharging voltage of the charging / discharging device 46, but the charging / discharging device 46 is used for charging / discharging control. Since there is no means, the difference between the output of the fuel cell body 41 and the rating of the storage means such as the secondary battery in the charging / discharging device 46 can be compensated to control the charging / discharging device 46 with high accuracy. It was difficult.
【0004】このような不具合を解消する技術として、
次のようなものが考えられる。図8に従来例2の燃料電
池発電システムの構成を示す。図8において、燃料電池
51は燃料電池本体で、水素と空気中の酸素とを反応さ
せ直流電力を発生させる。DC−DCコンバータ52
は、燃料電池51の直流電力の電圧を昇圧する。電力変
換器(インバータ)53は、DC−DCコンバータ52
により昇圧された直流電力を交流電力に変換し、電力負
荷55に対し出力する。制御装置54は、電力負荷55
の負荷電流を負荷電流検知器56により検知し、双方向
DC−DCコンバータ57とDC−DCコンバータ52
と電力変換器53を制御する手段である。
As a technique for solving such a problem,
The following can be considered. FIG. 8 shows the configuration of a fuel cell power generation system of Conventional Example 2. In FIG. 8, a fuel cell 51 is a fuel cell main body, and hydrogen reacts with oxygen in the air to generate DC power. DC-DC converter 52
Boosts the voltage of the DC power of the fuel cell 51. The power converter (inverter) 53 is a DC-DC converter 52.
The DC power boosted by is converted into AC power and output to the power load 55. The controller 54 controls the power load 55.
The load current detector 56 detects the load current of the bidirectional DC-DC converter 57 and the DC-DC converter 52.
And a means for controlling the power converter 53.
【0005】制御装置54は、電力負荷55の負荷電流
に応じて燃料電池本体51からの出力電流値が負荷電流
値を超過した場合は、双方向DC−DCコンバータ57
を介して蓄電池58へ電力を貯えるとともに、燃料電池
本体51からの出力電流値が負荷電流値に対して不足し
た場合は、蓄電池58の電力を双方向DC−DCコンバ
ータ57を介して電力負荷55へ供給する。
When the output current value from the fuel cell main body 51 exceeds the load current value according to the load current of the electric power load 55, the control device 54 bidirectional DC-DC converter 57.
When the output current value from the fuel cell main body 51 is insufficient with respect to the load current value while the electric power is stored in the storage battery 58 via the electric power load 55 via the bidirectional DC-DC converter 57. Supply to.
【0006】[0006]
【特許文献1】特開平6−325774号公報[Patent Document 1] Japanese Patent Laid-Open No. 6-325774
【0007】[0007]
【発明が解決しようとする課題】上記従来例2(図8)
の燃料電池発電システムは、電力変換器53が、直流電
力を交流電力に変換させるために必要な電圧まで昇圧さ
せるDC−DCコンバータ52の出力と結合した蓄電池
58の充放電制御用の双方向DC−DCコンバータ57
に接続された構成を有する。DC−DCコンバータ52
により燃料電池51本体側の出力を制御するとともに、
双方向DC−DCコンバータ57の制御によって蓄電池
58の充放電効率を高めるようにしている。このとき、
燃料電池51から蓄電池58への充電は、DC−DCコ
ンバータ52と双方向DC−DCコンバータ57の2つ
の電圧制御手段を通して行われている。
[Problems to be Solved by the Invention] Conventional Example 2 (FIG. 8)
In this fuel cell power generation system, the power converter 53 is a bidirectional DC for charge / discharge control of the storage battery 58 coupled with the output of the DC-DC converter 52 that boosts the voltage to a voltage required to convert the DC power into the AC power. -DC converter 57
Has a configuration connected to. DC-DC converter 52
Controls the output of the main body of the fuel cell 51 by
By controlling the bidirectional DC-DC converter 57, the charging / discharging efficiency of the storage battery 58 is improved. At this time,
Charging from the fuel cell 51 to the storage battery 58 is performed through two voltage control means, a DC-DC converter 52 and a bidirectional DC-DC converter 57.
【0008】しかしながら、蓄電池58の充放電圧と、
DC−DCコンバータ52により昇圧された出力の電圧
との間には大きな差があり(一般にDC−DCコンバー
タ52により昇圧された出力電圧のほうが大きい)、こ
れに合わせて双方向DC−DCコンバータ57の昇圧や
降圧電位差も大きくする必要があり、電力変換効率を高
くすることが困難になっていた。
However, the charging and discharging voltage of the storage battery 58,
There is a large difference between the output voltage boosted by the DC-DC converter 52 (the output voltage boosted by the DC-DC converter 52 is generally larger), and the bidirectional DC-DC converter 57 is adjusted accordingly. It is also necessary to increase the step-up or step-down potential difference, and it is difficult to increase the power conversion efficiency.
【0009】さらに、双方向DC−DCコンバータ57
の電力変換効率と、蓄電池58の充放電効率との積の総
合電力変換効率が低くなるため運転経済性が悪く、かつ
双方向DC−DCコンバータ57自身の価格も高く、コ
スト高となるといった課題があった。
Further, the bidirectional DC-DC converter 57.
Since the total power conversion efficiency, which is the product of the power conversion efficiency of the storage battery 58 and the charging / discharging efficiency of the storage battery 58, is low, the operating economy is poor, and the bidirectional DC-DC converter 57 itself has a high price, resulting in a high cost. was there.
【0010】本発明は、上記従来の課題を考慮し、電力
の需要変化に速やかに対応し、必要とされる電力量を高
効率に発生させ、経済的かつ信頼性の高い燃料電池電力
制御装置およびそれを用いた発電システム等を提供する
ことを目的とする。
In consideration of the above-mentioned conventional problems, the present invention promptly responds to changes in the demand for electric power, efficiently generates the required amount of electric power, and is an economical and highly reliable fuel cell power controller. And to provide a power generation system and the like using the same.
【0011】[0011]
【課題を解決するための手段】上記の目的を達成するた
めに、第1の本発明は、直流電力を発生する直流電力発
生手段(1)から出力された直流電力を貯蔵する電力貯
蔵手段(11)と、直流入力を受けるとその電圧を変換
するDC/DC変換器(5)を少なくとも含む電力変換
手段(4)と、前記直流電力発生手段と、前記電力貯蔵
手段と、前記電力変換手段との間に設けられ、前記直流
電力発生手段の直流電力を前記電力貯蔵手段に充電する
とともに、前記電力貯蔵手段からの電力を前記電力変換
手段へ放電する充放電手段(12,13,14,100
a、100b、100c、101a、101b、101
c)と、少なくとも前記電力変換手段からの電力が供給
される外部電力負荷の負荷電力量を検知する検知手段
(9)と、前記検知された負荷電力量に基づき、前記充
放電手段の動作を制御する制御手段(15)とを備え、
前記充放電手段は、DC/DC変換機能を有し、前記直
流電力発生手段の出力電圧を前記電力貯蔵手段の充電圧
に変換し、前記電力貯蔵手段の放電圧を前記直流電力発
生手段の出力電圧に変換する電力制御装置である。
In order to achieve the above-mentioned object, the first aspect of the present invention is to provide a power storage means for storing the DC power output from the DC power generation means (1) for generating DC power ( 11), a power conversion means (4) including at least a DC / DC converter (5) for converting the voltage when receiving a DC input, the DC power generation means, the power storage means, and the power conversion means. And a charging / discharging means (12, 13, 14, for charging the power storage means with the DC power of the DC power generation means and discharging the power from the power storage means to the power conversion means). 100
a, 100b, 100c, 101a, 101b, 101
c), a detection unit (9) for detecting the load power amount of at least the external power load to which the power from the power conversion unit is supplied, and the operation of the charging / discharging unit based on the detected load power amount. A control means (15) for controlling,
The charging / discharging means has a DC / DC converting function, converts an output voltage of the DC power generating means into a charging voltage of the power storing means, and outputs a discharge voltage of the power storing means to the DC power generating means. It is a power control device that converts the voltage.
【0012】また、第2の本発明は、前記制御手段は、
前記外部電力負荷が低負荷時であるときに前記充放電手
段に前記充電の動作を行わせ、前記外部電力負荷が高負
荷時であるときに前記充放電手段に前記放電の動作を行
わせる制御を行う第1の本発明の電力制御装置である。
According to a second aspect of the present invention, the control means is
Control for causing the charging / discharging means to perform the charging operation when the external power load is low load, and causing the charging / discharging means to perform the discharging operation when the external power load is high load Is a power control device of the first aspect of the present invention.
【0013】また、第3の本発明は、直流電力発生手段
の出力から前記電力貯蔵手段への電圧変換量は、前記電
力変換手段の前記DC/DC変換器による前記直流電力
発生手段の出力の電圧変換量に比べて小さい第1の本発
明の電力制御装置である。
According to the third aspect of the present invention, the amount of voltage conversion from the output of the DC power generation means to the power storage means is the output of the DC power generation means by the DC / DC converter of the power conversion means. The power control device according to the first aspect of the present invention is smaller than the voltage conversion amount.
【0014】また、第4の本発明は、前記充放電手段
は、前記直流電力発生手段の出力電圧を前記電力貯蔵手
段の充電圧に変換する充電側変換手段(12)と、前記
電力貯蔵手段の放電圧を前記直流電力発生手段の出力電
圧に変換する放電側変換手段(13)とを備えた第1の
本発明の燃料電池電力制御装置である。
According to a fourth aspect of the present invention, the charging / discharging means includes a charging side converting means (12) for converting an output voltage of the DC power generating means into a charging pressure of the power storing means, and the power storing means. Is a discharge side conversion means (13) for converting the discharge voltage of the above into the output voltage of the DC power generation means, and is the fuel cell power control device according to the first aspect of the present invention.
【0015】また、第5の本発明は、前記充放電手段
は、前記直流電力発生手段の出力電圧を前記電力貯蔵手
段の充電圧に変換する充電側変換動作、または前記電力
貯蔵手段の放電圧を前記直流電力発生手段の出力電圧に
変換する放電側変換動作を行う共用変換手段(18)
と、前記共用変換手段の入力側が、前記直流電力発生手
段の出力側または前記電力貯蔵手段の出力側に接続され
るよう制御する第1の制御スイッチ(16)と、前記共
用変換手段の出力側が、前記DC/DC変換器の入力側
または前記電力貯蔵手段の入力側に接続されるよう制御
する第2の制御スイッチ(17)とを備え、前記充電側
変換動作を行うときは、前記第1の制御スイッチは前記
直流電力発生手段の出力側と前記共用変換手段の入力側
とを接続するとともに、前記第2の制御スイッチは、前
記共用変換手段の出力側と前記電力貯蔵手段の入力側と
を接続し、前記放電側変換動作を行うときは、前記第1
の制御スイッチは前記電力貯蔵発生手段の出力側と前記
共用変換手段の入力側とを接続するとともに、前記第2
の制御スイッチは、前記共用変換手段の出力側と前記D
C/DC変換器の入力側とを接続する第1の本発明の電
力制御装置である。
In a fifth aspect of the present invention, the charging / discharging means converts the output voltage of the DC power generating means into a charging voltage of the power storage means, or a discharging voltage of the power storage means. Common conversion means (18) for performing discharge side conversion operation for converting the output voltage to the output voltage of the DC power generation means
A first control switch (16) for controlling the input side of the shared conversion means to be connected to the output side of the DC power generation means or the output side of the power storage means, and the output side of the shared conversion means A second control switch (17) for controlling to connect to the input side of the DC / DC converter or the input side of the power storage means, and when performing the charging side conversion operation, the first control switch Control switch connects the output side of the DC power generating means and the input side of the shared conversion means, and the second control switch connects the output side of the shared conversion means and the input side of the power storage means. When the discharge side conversion operation is performed by connecting the
The control switch connects the output side of the power storage generation means and the input side of the shared conversion means, and
The control switch of the D is connected to the output side of the shared conversion means and the D
It is a power control apparatus according to the first aspect of the present invention, which is connected to an input side of a C / DC converter.
【0016】また、第6の本発明は、前記直流電力発生
手段の出力電圧を検知する出力電圧検知手段(23)を
さらに備え、前記制御手段は、前記検知された出力電圧
および前記検知された負荷電力に基づき、前記検知され
た出力電圧が高く、前記検知された負荷電力が低い時に
前記充放電手段に前記充電の動作を行わせ、前記検知さ
れた出力電圧が低く、前記検知された負荷電力が高い時
に前記充放電手段に前記放電の動作を行わせる第1の本
発明の電力制御装置である。
The sixth aspect of the present invention further comprises an output voltage detection means (23) for detecting the output voltage of the DC power generation means, and the control means has the detected output voltage and the detected output voltage. Based on load power, when the detected output voltage is high and the detected load power is low, the charging / discharging means performs the charging operation, the detected output voltage is low, and the detected load is It is the power control apparatus according to the first aspect of the present invention that causes the charging / discharging means to perform the discharging operation when the power is high.
【0017】また、第7の本発明は、前記電力貯蔵手段
の電力貯蔵量を検出する電力貯蔵量検出手段(15,1
9,20)をさらに備え、前記制御手段は、前記検知さ
れた電力貯蔵量に基づいて、前記充放電手段の動作を制
御する第1の本発明の電力制御装置である。
The seventh aspect of the present invention is a power storage amount detecting means (15, 1) for detecting the power storage amount of the power storage means.
9, 20), and the control means is the power control device according to the first aspect of the present invention, which controls the operation of the charging / discharging means based on the detected power storage amount.
【0018】また、第8の本発明は、前記検知された負
荷電力を時間の関数として計測する負荷電力計測手段
(15,21)をさらに備え、前記直流電力発生手段の
発電スケジュールは、前記負荷電力計測手段によりあら
かじめ計測された負荷電力量に基づき決定されるもので
ある第6の本発明の電力制御装置である。
The eighth aspect of the present invention further comprises load power measuring means (15, 21) for measuring the detected load power as a function of time, and the power generation schedule of the DC power generating means is the load. It is a power control device according to the sixth aspect of the present invention, which is determined based on the load power amount measured in advance by the power measuring means.
【0019】また、第9の本発明は、第1から第8のい
ずれかの本発明の電力制御装置と、直流電力を発生する
直流電力発生手段(1)とを備え、前記検知された負荷
電力量に基づき、前記直流電力発生手段の入力エネルギ
ーを制御する発電システムである。
Further, a ninth aspect of the present invention is provided with the power control device according to any one of the first to eighth aspects of the present invention and a DC power generating means (1) for generating a DC power, and the detected load. It is a power generation system that controls the input energy of the DC power generation means based on the amount of electric power.
【0020】また、第10の本発明は、第1の本発明の
電力制御装置の制御方法であって、前記負荷電力量を時
間の関数として計測し、前記直流電力発生手段の発電ス
ケジュールを、前記計測により得られた負荷電力量に基
づき決定する電力制御装置の制御方法である。
The tenth aspect of the present invention is the control method of the power control device according to the first aspect of the present invention, wherein the load electric energy is measured as a function of time, and the power generation schedule of the DC power generating means is It is a control method of a power control device, which is determined based on the load power amount obtained by the measurement.
【0021】[0021]
【発明の実施の形態】以下、本発明の実施の形態を、図
面にもとづいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
【0022】(実施の形態1)図1は本発明の実施の形
態1における燃料電池発電装置の構成図である。
(Embodiment 1) FIG. 1 is a configuration diagram of a fuel cell power generator according to Embodiment 1 of the present invention.
【0023】本発明の直流電力発生手段に相当する燃料
電池1には、改質器・水素貯蔵合金・水素ボンベなどに
代表される水素を含有する燃料ガス供給手段2と、送風
ファン・送風ポンプなどに代表される酸素を含有する酸
化剤ガス供給手段3とが接続されている。電力変換手段
4は、交流電力を直流電力に変換する手段で、まずコン
バータ部5にて直流電圧を昇圧し、インバータ部6が昇
圧された電圧を交流電力に変換し出力するように構成さ
れている。
The fuel cell 1 corresponding to the DC power generating means of the present invention includes a fuel gas supply means 2 containing hydrogen represented by a reformer, a hydrogen storage alloy, a hydrogen cylinder, a blower fan, and a blower pump. The oxygen-containing oxidant gas supply means 3 represented by, for example, is connected. The power conversion means 4 is means for converting alternating current power into direct current power, and is configured such that first, the converter part 5 boosts the direct current voltage, and the inverter part 6 converts the boosted voltage to alternating current power and outputs it. There is.
【0024】出力線7は電力変換手段4に電気的に接続
された手段で、また、電力負荷10に電気的に接続され
ている。また、負荷電力検知手段9は電力負荷10の動
作に基づき、出力線7が出力する電力を検知する手段で
ある。二次電池11は本発明の電力貯蔵手段に相当し、
電力を充電して蓄積し、または蓄積した電力を放電する
手段である。充電制御手段12は、燃料電池1の直流電
力を二次電池11の充電電圧に適する電圧に変換して二
次電池11へ充電する手段であり、例えば昇降圧チョッ
パー回路により実現される。また、放電制御手段13は
二次電池11から放電される貯蔵電力を燃料電池1の直
流出力電圧とほぼ同じ電圧に変換して電力変換手段4に
出力する手段であり、例えば昇降圧チョッパー回路等か
ら実現される。逆流防止ダイオード14は放電制御手段
13からの直流電力が燃料電池1に逆流するのを防止す
る手段である。燃料電池制御手段15は、燃料ガス供給
手段2から燃料電池1への燃料ガスの供給量、及び/又
は、酸化剤ガス供給手段3から燃料電池1への酸化剤ガ
スの供給量を制御するとともに、電力負荷10に応じて
充電制御手段12と放電制御手段13を制御して二次電
池11の貯蔵電力の入出力を制御する手段である。
The output line 7 is a means electrically connected to the power conversion means 4, and is also electrically connected to the power load 10. The load power detection unit 9 is a unit that detects the power output from the output line 7 based on the operation of the power load 10. The secondary battery 11 corresponds to the power storage means of the present invention,
It is a means for charging and storing electric power or discharging the stored electric power. The charging control unit 12 is a unit that converts the DC power of the fuel cell 1 into a voltage suitable for the charging voltage of the secondary battery 11 and charges the secondary battery 11, and is realized by, for example, a buck-boost chopper circuit. The discharge control unit 13 is a unit that converts the stored power discharged from the secondary battery 11 into a voltage that is substantially the same as the DC output voltage of the fuel cell 1 and outputs the voltage to the power conversion unit 4, such as a buck-boost chopper circuit. Is realized from. The backflow prevention diode 14 is means for preventing the direct current power from the discharge control means 13 from flowing back to the fuel cell 1. The fuel cell control unit 15 controls the supply amount of the fuel gas from the fuel gas supply unit 2 to the fuel cell 1 and / or the supply amount of the oxidant gas from the oxidant gas supply unit 3 to the fuel cell 1. , A means for controlling the charge control means 12 and the discharge control means 13 according to the power load 10 to control the input / output of the stored power of the secondary battery 11.
【0025】二次電池11を設けた目的は、系統連系に
おいて負荷電力に対する出力電力の過不足による経済性
の悪化に対して、二次電池11の充放電を利用し、経済
性を良化させるためである。
The purpose of providing the secondary battery 11 is to improve the economical efficiency by utilizing the charging and discharging of the secondary battery 11 against the deterioration of the economical efficiency due to the excess or deficiency of the output power against the load power in the grid interconnection. This is to allow it.
【0026】つぎに、本実施の形態1における動作を説
明するとともに、これにより、本発明者の発明の電力制
御方法の一実施の形態について説明を行う。
Next, the operation of the first embodiment will be described, and the embodiment of the power control method of the present inventor will be described.
【0027】燃料ガス供給手段2から供給される燃料ガ
スと酸化剤ガス供給手段3から供給される酸化剤ガス中
の酸素は、燃料電池1の中で反応し直流電流を発生させ
る。発生した直流電流は電力変換手段4に送られる。電
力変換手段4において、直流電流はコンバータ部5によ
って昇圧された後、インバータ部6によって電力負荷1
0と同じ電圧の交流電流に変換され、出力線7を通って
電力負荷10に供給される。
The fuel gas supplied from the fuel gas supply means 2 and the oxygen in the oxidant gas supplied from the oxidant gas supply means 3 react in the fuel cell 1 to generate a direct current. The generated direct current is sent to the power conversion means 4. In the power conversion means 4, the DC current is boosted by the converter unit 5, and then the power load 1 is supplied by the inverter unit 6.
It is converted into an alternating current having the same voltage as 0, and is supplied to the power load 10 through the output line 7.
【0028】ここで、負荷電力検知手段9の検知する電
力量に基づき、電力負荷10の負荷電力に対し燃料電池
1の出力電力に不足がある場合は、燃料電池制御手段1
5は、電力負荷10に対する発電電力の不足分は二次電
池11より放電制御手段13を介して補充出力させる。
Here, when the output power of the fuel cell 1 is insufficient with respect to the load power of the power load 10 based on the amount of power detected by the load power detection means 9, the fuel cell control means 1
Numeral 5 causes the secondary battery 11 to replenish and output the shortage of the generated power to the power load 10 through the discharge control means 13.
【0029】このとき、本実施の形態においては、二次
電池11への充電の際には、充電制御手段12によっ
て、燃料電池1からの出力電圧を、二次電池11の充電
圧と実質同一に変換してから二次電池11に充電するよ
うにし、二次電池11から電力変換手段4への放電の際
には、放電制御手段13によって、二次電池11からの
出力電圧を、燃料電池1の出力電圧と実質同一に変換し
てから電力変換手段4のコンバータ部5へ出力するよう
にしているため、二次電池11の充放電効率を高いまま
維持することができる。このとき、燃料電池1の出力電
圧と、二次電池11の充電圧との上下関係において、燃
料電池1のほうが電圧が高い場合は、充電制御手段12
は降圧を行い、放電制御手段13は昇圧を行うようにす
る。
At this time, in the present embodiment, when charging the secondary battery 11, the output voltage from the fuel cell 1 is made substantially the same as the charging pressure of the secondary battery 11 by the charge control means 12. When the secondary battery 11 is discharged to the power conversion means 4, the discharge control means 13 changes the output voltage from the secondary battery 11 into the fuel cell. Since the output voltage of the secondary battery 11 is converted to substantially the same as the output voltage of 1, and then output to the converter unit 5 of the power conversion unit 4, the charge / discharge efficiency of the secondary battery 11 can be maintained high. At this time, in the vertical relation between the output voltage of the fuel cell 1 and the charging pressure of the secondary cell 11, when the voltage of the fuel cell 1 is higher, the charge control means 12
Reduces the voltage, and the discharge control unit 13 increases the voltage.
【0030】また、燃料電池1のほうが電圧が低い場合
は、充電制御手段12は昇圧を行い、放電制御手段13
は降圧を行うようにする。このとき、昇降圧の基準は、
燃料電池1の出力電圧または二次電池11の充放電圧の
いずれとしてもよい。また、燃料電池1の出力電圧は、
燃料電池1を測定して得られた測定値であってもよい
し、定格等に基づきあらかじめ定めた値(固定値)とし
てもよい。
When the voltage of the fuel cell 1 is lower, the charge control means 12 boosts the voltage and the discharge control means 13
Try to step down. At this time, the reference for the buck-boost is
It may be either the output voltage of the fuel cell 1 or the charging / discharging voltage of the secondary battery 11. The output voltage of the fuel cell 1 is
It may be a measured value obtained by measuring the fuel cell 1, or may be a predetermined value (fixed value) based on the rating or the like.
【0031】さらに、本実施の形態においては、二次電
池11への充電は、燃料電池1の出力から充電制御手段
12へ直接電力を取り出し、二次電池11から電力変換
手段4への出力は、コンバータ部5への直前で、燃料電
池1の出力電圧に合わせた形で行っている。
Further, in the present embodiment, when charging the secondary battery 11, power is directly extracted from the output of the fuel cell 1 to the charging control means 12, and the output from the secondary battery 11 to the power conversion means 4 is output. Immediately before the conversion to the converter section 5, the operation is performed according to the output voltage of the fuel cell 1.
【0032】このとき、充電制御手段12による二次電
池11への電圧変換量は、図8に示す従来例2と比して
極めて少なく、数ボルトから数十ボルト程度、かつ放電
制御手段13による電力変換手段4への電圧変換量も同
様に、数ボルトから数十ボルト程度で少ないものとな
る。
At this time, the amount of voltage conversion to the secondary battery 11 by the charge control means 12 is extremely smaller than that of the conventional example 2 shown in FIG. Similarly, the amount of voltage conversion to the power conversion means 4 is as small as several volts to several tens of volts.
【0033】したがって、充電制御手段12、放電制御
手段13の電力変換素子の電力損失(スイッチング損
失、リアクトルの鉄損、銅損)等が少なくなり、充放電
電力量が1〜2kW程度である場合の電力変換効率は9
0数%と高くなる。
Therefore, when the power loss (switching loss, reactor iron loss, copper loss) of the power conversion elements of the charge control means 12 and the discharge control means 13 is reduced, and the charge / discharge power amount is about 1 to 2 kW. Power conversion efficiency is 9
It becomes as high as 0%.
【0034】また、二次電池11の充放電効率も92〜
93%であるため、二次電池11を使用した場合の総合
充放電エネルギー効率も高くできるため燃料電池1の出
力の過不足を補う蓄電システムとして経済的な運転が得
られるとともに、充電制御手段12、放電制御手段13
の制御回路構成も低コストに実現でき、経済性の高い燃
料電池発電装置を提供できる。
The charging / discharging efficiency of the secondary battery 11 is also 92-
Since it is 93%, the overall charge / discharge energy efficiency when the secondary battery 11 is used can be increased, so that an economical operation can be obtained as a power storage system that compensates for excess and deficiency of the output of the fuel cell 1, and the charge control means 12 , Discharge control means 13
The control circuit configuration can be realized at low cost, and a highly economical fuel cell power generator can be provided.
【0035】なお、本実施の形態は図9に示す構成とし
ても良い。図1に示す構成と異なる点は以下の通りであ
る。すなわち、逆流防止ダイオード14を省き、燃料電
池1の出力を2系統設けて、その一方は電力変換手段4
のコンバータ部5と直接接続する接続経路100aとし
て用い、他方は充電制御手段12と接続する接続経路1
00bとして用いる。また、放電制御手段13と電力変
換手段4のコンバータ部5とを直接接続する接続経路1
00cを設ける。
The present embodiment may have the configuration shown in FIG. The difference from the configuration shown in FIG. 1 is as follows. That is, the backflow prevention diode 14 is omitted, and two outputs of the fuel cell 1 are provided, one of which is the power conversion means 4
Used as the connection path 100a directly connected to the converter section 5 of the other, and the other connection path 1 connected to the charging control means 12
Used as 00b. Further, the connection path 1 that directly connects the discharge control unit 13 and the converter unit 5 of the power conversion unit 4
00c is provided.
【0036】この場合、図1より単純かつ安価な構成
で、放電制御手段13からの出力が燃料電池1または充
電制御手段12へ逆流することを完全に防止することが
できる。
In this case, it is possible to completely prevent the output from the discharge control means 13 from flowing back to the fuel cell 1 or the charge control means 12 with a simpler and cheaper configuration than that of FIG.
【0037】(実施の形態2)図3は本発明の実施の形
態2における燃料電池発電装置の構成図である。
(Second Embodiment) FIG. 3 is a configuration diagram of a fuel cell power generator according to a second embodiment of the present invention.
【0038】図3において、図1で示した実施の形態1
の燃料電池発電装置と同じ機能を有するものについて
は、同一符号を付与しており、それらの機能の詳細は、
図1のものに準ずるものとして説明を省略する。
Referring to FIG. 3, the first embodiment shown in FIG.
The same reference numerals are given to those having the same functions as those of the fuel cell power generator of, and the details of those functions are
The description is omitted because it is similar to that of FIG.
【0039】充放電制御手段18は燃料電池1で発電し
た直流電力を電力貯蔵手段としての二次電池11に貯蔵
し、かつ、二次電池11へから貯蔵電力を電力変換手段
4のコンバータ部5へ出力するための充電と放電を制御
する手段であり、例えば昇降圧チョッパー回路等から構
成されている。電流切換手段16および17は、燃料電
池1からの充電と電力変換手段4のコンバータ部5への
放電の電流の方向を切り換える手段であり、電流切換手
段16は、充放電制御手段18と、燃料電池1の出力側
または二次電池11の出力側とが接続されるような切換
を行う。また、電流切替手段17は、充放電制御手段1
8と、電力変換手段4のコンバータ部5の入力側または
二次電池11の入力側とが接続されるような切換を行
う。また、電流切換手段16および17は、いずれも半
導体スイッチまたは機械式スイッチ等で構成されてい
る。
The charging / discharging control means 18 stores the DC power generated by the fuel cell 1 in the secondary battery 11 as the power storage means, and stores the stored power from the secondary battery 11 in the converter section 5 of the power conversion means 4. It is a means for controlling charging and discharging for outputting to and including, for example, a buck-boost chopper circuit. The current switching means 16 and 17 are means for switching the direction of current for charging from the fuel cell 1 and discharging to the converter section 5 of the power conversion means 4, and the current switching means 16 includes the charge / discharge control means 18 and the fuel. The switching is performed so that the output side of the battery 1 or the output side of the secondary battery 11 is connected. Further, the current switching means 17 is the charge / discharge control means 1
8 and the input side of the converter section 5 of the power conversion means 4 or the input side of the secondary battery 11 are switched. The current switching means 16 and 17 are each composed of a semiconductor switch or a mechanical switch.
【0040】つぎに、本実施の形態2の動作を説明す
る。ただし実施の形態1と同様の部分は省略し、相違点
を中心に述べる。
Next, the operation of the second embodiment will be described. However, the same parts as those in the first embodiment are omitted, and the differences will be mainly described.
【0041】燃料電池発電装置の運転において、電力負
荷10に対する装置側の電力の不足を負荷電力検知手段
9が検知すると、燃料電池制御手段15は、電力負荷1
0に対する発電電力の不足分を二次電池11より供給す
るため、電流切換手段16を二次電池11の出力側と充
放電制御手段18の入力側とが接続するように制御し、
電流切換手段17を充放電制御手段18の出力側と電力
変換手段4のコンバータ部5の入力側とが接続するよう
制御を行う。
In the operation of the fuel cell power generator, when the load power detecting means 9 detects a shortage of electric power on the side of the device with respect to the electric power load 10, the fuel cell control means 15 causes the electric power load 1
In order to supply the shortage of generated power to 0 from the secondary battery 11, the current switching means 16 is controlled so that the output side of the secondary battery 11 and the input side of the charge / discharge control means 18 are connected,
The current switching means 17 is controlled so that the output side of the charge / discharge control means 18 and the input side of the converter section 5 of the power conversion means 4 are connected.
【0042】これにより、二次電池11から出力される
電力は、電流切換手段16、充放電制御手段18、電流
切換手段17、電力変換手段4の順に供給される。
As a result, the electric power output from the secondary battery 11 is supplied to the current switching means 16, the charging / discharging control means 18, the current switching means 17, and the power conversion means 4 in this order.
【0043】次に、燃料電池1の電力負荷が低く、かつ
二次電池11の充電に適した燃料電池1の出力電圧が高
い時間帯などには、燃料電池制御手段15は、二次電池
11を充電するため、電流切換手段16を燃料電池1の
出力側と充放電制御手段18の入力側とが接続するよう
に制御し、電力切換手段17を充放電制御手段18の出
力側と二次電池11の入力側とが接続するよう制御を行
う。
Next, during a time period when the power load of the fuel cell 1 is low and the output voltage of the fuel cell 1 suitable for charging the secondary cell 11 is high, the fuel cell control means 15 causes the secondary cell 11 to operate. In order to charge the battery, the current switching means 16 is controlled so that the output side of the fuel cell 1 is connected to the input side of the charge / discharge control means 18, and the power switching means 17 is connected to the output side of the charge / discharge control means 18 and the secondary side. The control is performed so that the input side of the battery 11 is connected.
【0044】これにより、燃料電池1から出力される電
力は、電流切換手段16、充放電制御手段18、電流切
換手段17、二次電池11の順に供給される。
As a result, the electric power output from the fuel cell 1 is supplied to the current switching means 16, the charging / discharging control means 18, the current switching means 17, and the secondary battery 11 in this order.
【0045】燃料電池発電装置において、二次電池11
に対する充電動作と放電動作は、同時に行われることは
ないため、充電制御と放電制御のいずれかが動作してい
るとき、残りは不要になる。したがって、二次電池11
への充放電制御を、1つの充放電制御手段と2つの電流
切換手段で動作毎に切り替えて行うことにより、実施の
形態1では2つあった電圧制御のための手段を一つにす
ることができ、充放電制御構成の簡素化・小型化と低コ
スト化が可能となる。
In the fuel cell power generator, the secondary battery 11
Since the charging operation and the discharging operation with respect to (1) are not performed at the same time, when either the charging control or the discharging control is operating, the rest becomes unnecessary. Therefore, the secondary battery 11
The charge / discharge control to and from the charge / discharge control means is switched by one charge / discharge control means and two current switching means for each operation, so that there is one means for voltage control, which is the two in the first embodiment. Therefore, the charge / discharge control configuration can be simplified and downsized, and the cost can be reduced.
【0046】なお、本実施の形態は、実施の形態1の場
合と同様、図10に示す構成としても良い。図3に示す
構成と異なる点は以下の通りである。すなわち、逆流防
止ダイオード14を省き、燃料電池1の出力を2系統設
けて、その一方は電力変換手段4のコンバータ部5と直
接接続する接続経路101aとして用い、他方は電流切
替手段16と接続する接続経路101bとして用いる。
また、電流切替手段17と電力変換手段4のコンバータ
部5とを直接接続する接続経路101cを設ける。
Note that this embodiment may have the configuration shown in FIG. 10 as in the case of the first embodiment. Differences from the configuration shown in FIG. 3 are as follows. That is, the backflow prevention diode 14 is omitted, two outputs of the fuel cell 1 are provided, and one of them is used as the connection path 101a that is directly connected to the converter section 5 of the power conversion means 4, and the other is connected to the current switching means 16. It is used as the connection path 101b.
Further, a connection path 101c that directly connects the current switching unit 17 and the converter unit 5 of the power conversion unit 4 is provided.
【0047】この場合、図1より単純かつ安価な構成
で、充放電制御手段18からの出力が燃料電池1へ逆流
することを完全に防止することができる。
In this case, it is possible to completely prevent the output from the charge / discharge control means 18 from flowing back to the fuel cell 1 with a simpler and cheaper configuration than that of FIG.
【0048】(実施の形態3)図4は本発明の実施の形
態3における燃料電池発電装置の構成図である。図4に
おいて、図1で示した実施の形態1の燃料電池発電装
置、図3で示した実施の形態2の燃料電池発電装置と同
じ機能を有するものについては、同一符号を付与してお
り、それらの機能の詳細は、図1、3のものに準ずるも
のとして説明を省略する。
(Embodiment 3) FIG. 4 is a configuration diagram of a fuel cell power generator according to Embodiment 3 of the present invention. 4, the same reference numerals are given to those having the same functions as those of the fuel cell power generator of the first embodiment shown in FIG. 1 and the fuel cell power generator of the second embodiment shown in FIG. The details of these functions are similar to those of FIGS.
【0049】電流センサ19は、燃料電池1からの発電
反応による電力を充電制御手段12を介して二次電池1
1へ充電するときの充電電流を検知する手段である。ま
た、電流センサ20は、二次電池11からの貯蔵電力を
放電制御手段13を介して電力変換手段4へ放電すると
きの放電電流を検知する手段である。
The current sensor 19 supplies electric power generated by the fuel cell 1 to the secondary battery 1 via the charging control means 12.
It is a means for detecting the charging current when charging to 1. The current sensor 20 is a means for detecting a discharge current when the stored power from the secondary battery 11 is discharged to the power conversion means 4 via the discharge control means 13.
【0050】つぎに、本実施の形態3の動作を説明す
る。ただし実施の形態1と同様の部分は省略し、相違点
を中心に述べる。
Next, the operation of the third embodiment will be described. However, the same parts as those in the first embodiment are omitted, and the differences will be mainly described.
【0051】燃料電池制御手段15は、電流センサ19
からの充電電流と、電流センサ20からの放電電流を常
時監視し、それぞれ時間積分および積算演算することに
より、二次電池11の貯蔵電力量を常時把握している。
The fuel cell control means 15 includes a current sensor 19
The charging current from the battery and the discharging current from the current sensor 20 are constantly monitored, and the accumulated power amount of the secondary battery 11 is constantly grasped by performing time integration and integration calculation respectively.
【0052】そして、燃料電池制御手段15は、二次電
池11の放電時には、電力貯蔵量が第1の電力貯蔵量以
下になると放電制御手段13を制御して、放電を停止さ
せる。ここで、第1の電力貯蔵量は、二次電池11のS
OC(State Of Charge)またはDOD
(Depth Of Discharge)である電池
残存容量の充放電特性に適した領域の下限値であり、例
えば電池容量の約50%付近に設定されている。
Then, when the secondary battery 11 is discharged, the fuel cell control means 15 controls the discharge control means 13 to stop the discharge when the power storage amount becomes equal to or less than the first power storage amount. Here, the first power storage amount is S of the secondary battery 11.
OC (State Of Charge) or DOD
(Depth Of Discharge), which is the lower limit value of the region suitable for the charge / discharge characteristics of the battery remaining capacity, and is set to, for example, about 50% of the battery capacity.
【0053】次に、燃料電池制御手段15は燃料電池1
の電力負荷が低く、かつ二次電池11の充電に適した燃
料電池1の出力電圧が高い時間帯などに、二次電池11
を充電する。このとき、燃料電池制御手段15は、電力
貯蔵量が第2の電力貯蔵量以上になると充電制御手段1
2を制御して、充電を停止させる。ここで、第2の電力
貯蔵量は、二次電池11のSOCまたはDODである電
池残存容量の充放電特性に適した領域の上限値であり、
例えば電池容量の約80〜90%付近に設定されてい
る。
Next, the fuel cell control means 15 controls the fuel cell 1
Of the secondary battery 11 at a time when the power load of the fuel cell 1 is low and the output voltage of the fuel cell 1 suitable for charging the secondary battery 11 is high.
To charge. At this time, the fuel cell control means 15 will charge the charging control means 1 when the power storage amount becomes equal to or more than the second power storage amount.
2 is controlled to stop charging. Here, the second power storage amount is the upper limit value of the region suitable for the charge / discharge characteristics of the SOC of the secondary battery 11 that is the SOC or the DOD of the battery,
For example, it is set to about 80 to 90% of the battery capacity.
【0054】従って、二次電池11の充放電量を、第1
の電力貯蔵量から第2の電力貯蔵量の間で常に管理する
ことにより、二次電池11の耐久性が著しく向上すると
ともに、燃料電池1の電力供給の補助手段構成として極
めて経済的構成になり、発電装置の設備コストが低減さ
れる。
Therefore, the charge / discharge amount of the secondary battery 11 is
By constantly managing the electric power storage amount between the second electric power storage amount and the second electric power storage amount, the durability of the secondary battery 11 is significantly improved, and the fuel cell 1 has an extremely economical structure as an auxiliary means structure for supplying electric power. The equipment cost of the power generator is reduced.
【0055】なお、上記の実施の形態においては、充電
電流を検知する電流センサ19および放電電流を検知す
る電流センサ20を用い、これらセンサの検出値に基づ
いて二次電池11の電力貯蔵量を算出するものとして説
明を行ったが、二次電池11内の電力貯蔵量を直接測定
し、これに基づき制御動作を行うようにしてもよい。
In the above embodiment, the current sensor 19 for detecting the charging current and the current sensor 20 for detecting the discharging current are used, and the power storage amount of the secondary battery 11 is determined based on the detection values of these sensors. Although the description has been made assuming that it is calculated, the power storage amount in the secondary battery 11 may be directly measured and the control operation may be performed based on this.
【0056】(実施の形態4)図5は本発明の実施の形
態4における燃料電池発電装置の構成図である。図5に
おいて、図1で示した実施の形態1の燃料電池発電装
置、図3で示した実施の形態2の燃料電池発電装置、図
4で示した実施の形態3の燃料電池発電装置と同じ機能
を有するものについては、同一符号を付与しており、そ
れらの機能の詳細は、図1、3、4のものに準ずるもの
として説明を省略する。
(Embodiment 4) FIG. 5 is a configuration diagram of a fuel cell power generator according to Embodiment 4 of the present invention. 5, the same as the fuel cell power generator of Embodiment 1 shown in FIG. 1, the fuel cell power generator of Embodiment 2 shown in FIG. 3, and the fuel cell power generator of Embodiment 3 shown in FIG. The same reference numerals are given to those having functions, and the details of those functions are the same as those in FIGS.
【0057】本実施の形態の特徴は、燃料電池制御手段
15に対し、時刻、時間を計測するタイマー等の計時手
段21からの計時信号と、各時刻の使用電力量を記憶す
る半導体メモリ等の電力量記憶手段22からの使用電力
量パターン情報とを入力する構成とした点である。
The feature of this embodiment is that the fuel cell control means 15 is provided with a semiconductor memory or the like for storing the time signal from the time measuring means 21 such as a timer for measuring time and time and the amount of electric power used at each time. The point is that the used power amount pattern information from the power amount storage means 22 is input.
【0058】つぎに、本実施の形態4の動作を説明す
る。ただし上記各実施の形態と同様の部分は省略し、相
違点を中心に述べる。
Next, the operation of the fourth embodiment will be described. However, the same parts as those in the above-mentioned respective embodiments are omitted, and the different points will be mainly described.
【0059】燃料電池制御手段15は、負荷電力検知手
段9によって検知された負荷電力量を計時手段21によ
り時刻に関する電力として負荷電力量モニタ情報(1日
の時刻と使用電力量の関係)として電力量記憶手段22
に記憶させる。そして、この負荷電力量モニタ情報を基
に、記憶後の電力出力が負荷電力量モニタ情報と対応す
る各タイミングにおいて同じ出力になるように、燃料ガ
ス供給手段2と酸化剤ガス供給手段3へ信号を出力す
る。さらに、燃料電池制御手段15は燃料電池1の電力
負荷が低く、かつ二次電池11の充電に適した燃料電池
1の出力電圧が高い時間帯に充電制御手段12を介して
二次電池11への充電を行い充電時間を確保する。さら
に所定運転時間毎に、電力量記憶手段22に記憶されて
いる電力量のパターンに基づいて、燃料電池からの発電
出力が所定出力以下の時間帯に、充電制御手段12を介
して電力貯蔵量が満量貯蔵電力量に達し、かつ満量貯蔵
電力量に達した充電時間が所定時間を超えるまで二次電
池11に充電する。
The fuel cell control means 15 uses the load power amount detected by the load power detection means 9 as load power amount monitor information (relationship between time of day and used power amount) as power relating to time by the time counting means 21. Quantity storage means 22
To memorize. Then, based on the load power amount monitor information, a signal is sent to the fuel gas supply means 2 and the oxidant gas supply means 3 so that the stored power output becomes the same output at each timing corresponding to the load power amount monitor information. Is output. Further, the fuel cell control means 15 transfers to the secondary battery 11 via the charge control means 12 during a time period when the power load of the fuel cell 1 is low and the output voltage of the fuel cell 1 suitable for charging the secondary cell 11 is high. Charge and secure the charging time. Further, based on the pattern of the electric energy stored in the electric energy storage means 22 at every predetermined operating time, during the time period when the power generation output from the fuel cell is equal to or less than the predetermined output, the electric power storage amount is supplied via the charging control means 12. Has reached the full storage power amount, and the secondary battery 11 is charged until the charging time at which the full storage power amount has reached exceeds a predetermined time.
【0060】このとき、所定運転時間毎とは、電力貯蔵
手段である二次電池11の充放電特性を良好に維持する
上で欠かせないリフレッシュ充電動作を行う時間間隔で
あり、およそ1週間から10日毎である。また、満量貯
蔵電力量に達した充電時間が所定時間を超えるまでと
は、二次電池11が満充電に達したのち、充電動作を完
了するための定電圧充電(押し込み充電)であり所定時
間とは充電電流がほぼゼロになった状態が2〜3時間経
過する時間である。
At this time, "every predetermined operation time" means a time interval for performing the refresh charge operation which is indispensable for maintaining good charge / discharge characteristics of the secondary battery 11 which is the electric power storage means, and is from about one week. Every 10 days. Further, the time until the charging time when the full storage power amount is reached exceeds the predetermined time is constant voltage charging (push-in charging) for completing the charging operation after the secondary battery 11 reaches the full charge, which is a predetermined time. The time is a time period during which the charging current becomes almost zero and a few hours elapse.
【0061】これら一連の運転制御は、負荷電力量モニ
タ情報に基づく平均出力電力に対して実際の負荷電力は
変動分が大きいため、二次電池11の蓄電量が常に補償
されるような放電量と充電量がほぼ同等になるような電
力出力制御になるとは限らないため、電力量記憶手段2
2の負荷電力量モニタ情報により充電が確保できる時間
帯に二次電池11の蓄電量を確保するようにし、かつ二
次電池11の充放電特性を良好に維持するようにしたも
のである。
In this series of operation control, the actual load power has a large variation with respect to the average output power based on the load power monitor information. Therefore, the discharge amount such that the storage amount of the secondary battery 11 is always compensated. Therefore, the power output control is not always performed so that the charging amounts become substantially equal to each other.
The amount of stored electricity in the secondary battery 11 is ensured during a time period when charging can be ensured by the load power amount monitor information of No. 2, and the charge / discharge characteristics of the secondary battery 11 are maintained well.
【0062】従って、電力量記憶手段22に記憶されて
いる電力量のパターンに基づいて、燃料電池からの発電
出力が所定出力以下の時間帯に、充電制御手段12を介
して電力貯蔵量が満量貯蔵電力量に達し、かつ満量貯蔵
電力量に達した充電時間が所定時間を超えるまで二次電
池11に充電するので、二次電池11の定期的充電リフ
レッシュ動作を確保できるため、二次電池11の寿命特
性が大幅に向上する。
Therefore, based on the pattern of the electric energy stored in the electric energy storage means 22, during the time when the power generation output from the fuel cell is equal to or less than the predetermined output, the electric power storage amount becomes full via the charge control means 12. Since the secondary battery 11 is charged until the amount of stored electric power reaches the full amount of stored electric power and the charging time when the amount of stored electric power reaches the full amount of stored electric power exceeds a predetermined time, it is possible to ensure a periodic charge refresh operation of the secondary battery 11. The life characteristics of the battery 11 are significantly improved.
【0063】(実施の形態5)図6は本発明の実施の形
態5における燃料電池発電装置の構成図である。図6に
おいて、図1で示した実施の形態1の燃料電池発電装
置、図3に示した実施の形態3の燃料電池発電装置と同
じ機能を有するものについては、同一符号を付与してお
り、それらの機能の詳細は、図1、3のものに準ずるも
のとして説明を省略する。
(Embodiment 5) FIG. 6 is a configuration diagram of a fuel cell power generator according to Embodiment 5 of the present invention. 6, the same reference numerals are given to those having the same functions as those of the fuel cell power generator of Embodiment 1 shown in FIG. 1 and the fuel cell power generator of Embodiment 3 shown in FIG. The details of these functions are similar to those of FIGS.
【0064】本実施の形態の特徴は、燃料電池1の出力
電圧を検知する燃料電池出力電圧検知手段23を設け、
燃料電池1の寿命劣化等に伴う電力負荷に応じた出力電
流に対する出力電圧の低下による二次電池11への充放
電制御における昇圧電圧または降圧電圧量の補正を行う
構成とした点である。
The feature of this embodiment is that a fuel cell output voltage detecting means 23 for detecting the output voltage of the fuel cell 1 is provided,
The point is that the boosted voltage or the stepped-down voltage amount is corrected in the charge / discharge control of the secondary battery 11 due to the decrease of the output voltage with respect to the output current according to the electric power load due to the deterioration of the life of the fuel cell 1 or the like.
【0065】つぎに、本実施の形態5の動作を説明す
る。ただし上記各実施の形態と同様の部分は省略し、相
違点を中心に述べる。
Next, the operation of the fifth embodiment will be described. However, the same parts as those in the above-mentioned respective embodiments are omitted, and the different points will be mainly described.
【0066】燃料電池1は寿命劣化等に伴って、一般に
図2に示すように、燃料電池1の出力電流に対して、出
力電圧が電流の増加とともに低下する特性を持っている
が、この出力特性そのものが全体的に電圧に対して低下
する方向に移行する。燃料電池制御手段15は、燃料電
池出力電圧検知手段23および負荷電力検知手段9によ
り電力負荷10の負荷電力に対する燃料電池1の出力電
圧を常時監視する。燃料電池1の負荷電力に対する出力
電圧特性にずれ(出力電圧低下)が発生すると、その電
圧差を電力貯蔵手段としての二次電池11の充電制御手
段12および放電制御手段13の充放電制御における昇
圧レベル、降圧レベルの補正量として調整する。
As shown in FIG. 2, the fuel cell 1 generally has a characteristic that, as shown in FIG. 2, the output voltage with respect to the output current of the fuel cell 1 decreases as the current increases. The characteristic itself shifts in the direction of decreasing with respect to the voltage as a whole. The fuel cell control means 15 constantly monitors the output voltage of the fuel cell 1 with respect to the load power of the power load 10 by means of the fuel cell output voltage detection means 23 and the load power detection means 9. When the output voltage characteristic with respect to the load power of the fuel cell 1 deviates (output voltage decrease), the voltage difference is boosted in the charge / discharge control of the charge control means 12 and the discharge control means 13 of the secondary battery 11 as the power storage means. Adjust as a correction amount for the level and step-down level.
【0067】従って、燃料電池1の出力電圧を常時監視
し、出力特性低下の寿命劣化等に伴う電力負荷に応じた
出力電流に対する出力電圧の低下に対して、二次電池1
1への充放電制御における昇圧電圧または降圧電圧量の
補正量を適正に確保するため、信頼性の高い、保守性の
良い発電装置を提供できる。
Therefore, the output voltage of the fuel cell 1 is constantly monitored, and the secondary battery 1 is checked for a decrease in the output voltage with respect to the output current according to the electric power load accompanying the life deterioration due to the deterioration of the output characteristics.
Since the correction amount of the step-up voltage or the step-down voltage amount in the charging / discharging control to 1 is properly secured, it is possible to provide a highly reliable and maintainable power generation device.
【0068】なお、上記の各実施の形態において、燃料
電池1は本発明の直流電力発生手段の一例であり、二次
電池11は本発明の電力貯蔵手段の一例であり、コンバ
ータ部5は本発明のDC/DC変換器の一例であり、電
力変換手段4は本発明の電力変換手段の一例であり、負
荷電力検知手段9は本発明の検知手段の一例であり、燃
料電池制御手段15は本発明の制御手段の一例である。
In each of the above embodiments, the fuel cell 1 is an example of the DC power generation means of the present invention, the secondary battery 11 is an example of the power storage means of the present invention, and the converter section 5 is 1 is an example of a DC / DC converter of the present invention, power conversion means 4 is an example of power conversion means of the present invention, load power detection means 9 is an example of detection means of the present invention, and fuel cell control means 15 is It is an example of the control means of the present invention.
【0069】さらに、充電制御手段12は、本発明の充
放電手段の充電側変換手段の一例であり、放電制御手段
13は、本発明の充放電手段の放電側変換手段の一例で
ある。また、充放電制御手段18は、本発明の充放電手
段の共用変換手段の一例であり、電流切換手段16は本
発明の第1の制御スイッチの一例であり、電流切換手段
17は本発明の第2の制御スイッチの一例である。ま
た、逆流防止ダイオード14、接続経路100a、10
0b、100c、101a、101b、101cは本発
明の充放電手段に含まれる。
Further, the charge control means 12 is an example of the charge side conversion means of the charge / discharge means of the present invention, and the discharge control means 13 is an example of the discharge side conversion means of the charge / discharge means of the present invention. Further, the charge / discharge control means 18 is an example of the common conversion means of the charge / discharge means of the present invention, the current switching means 16 is an example of the first control switch of the present invention, and the current switching means 17 is of the present invention. It is an example of a second control switch. In addition, the backflow prevention diode 14, the connection paths 100a, 10
0b, 100c, 101a, 101b, 101c are included in the charging / discharging means of the present invention.
【0070】また、燃料電池出力電圧検知手段23は、
本発明の出力電圧検知手段の一例であり、電流センサ1
9,20および燃料電池制御手段15は本発明の電力貯
蔵量検出手段の一例である。また、計時手段21および
燃料電池制御手段15は、本発明の負荷電力計測手段の
一例であり、電力量記憶手段22は、本発明の制御手段
に含まれる手段である。また、電力量記憶手段22に記
憶されている負荷電力量モニタ情報は、本発明のあらか
じめ計測された負荷電力量の一例である。
Further, the fuel cell output voltage detecting means 23 is
The current sensor 1 is an example of the output voltage detecting means of the present invention.
9, 20 and the fuel cell control means 15 are examples of the electric power storage amount detection means of the present invention. Further, the time counting means 21 and the fuel cell control means 15 are examples of the load power measuring means of the present invention, and the power amount storage means 22 is a means included in the control means of the present invention. Further, the load power amount monitor information stored in the power amount storage means 22 is an example of the pre-measured load power amount of the present invention.
【0071】さらに、上記の各実施の形態においては、
本発明の発電システムの一例として、燃料電池発電装置
の説明を行ったが、本発明は、電力制御装置として、各
実施の形態の構成から、燃料電池1,燃料ガス供給手段
2、酸化剤ガス供給手段3および電力負荷10を省いた
構成にて実現してもよい。
Further, in each of the above embodiments,
Although the fuel cell power generation device has been described as an example of the power generation system of the present invention, the present invention is based on the configuration of each embodiment as the power control device, and includes the fuel cell 1, the fuel gas supply unit 2, and the oxidant gas. It may be realized by a configuration in which the supply means 3 and the power load 10 are omitted.
【0072】また、本発明の発電システムにおいて、直
流電力発生手段は、燃料電池に限定する必要はなく、例
えば電池、ガスタービン発電器、ゼーベック効果を利用
した熱電発電器など、直流電力を発生できるものであれ
ばその種類に限定されない。一例として、図11に、ガ
スタービン発電器を用いた構成を示す。ガスタービン発
電器は、図に示すように、制御手段150により制御さ
れる都市ガス供給部110から供給される都市ガスと、
制御手段150により制御される空気供給部111から
供給される空気により動作するガスタービン112と、
ガスタービン112に接続された交流発電機113と、
交流発電機114の高周波数の交流出力を直流電力に変
換するAC−DCコンバータ114とから構成される。
基本的には燃料電池1の場合と同様であり、ガスタービ
ン112が交流発電機114の電力供給量を一定となる
よう運転させる場合でも、電力負荷10に応じて充電制
御手段12および放電制御手段13が二次電池11に充
電または放電を行わせることにより、電力制御を行うこ
とができる。
Further, in the power generation system of the present invention, the DC power generating means is not limited to the fuel cell, and can generate DC power, for example, a battery, a gas turbine generator, a thermoelectric generator utilizing the Seebeck effect. If it is a thing, it is not limited to the kind. As an example, FIG. 11 shows a configuration using a gas turbine generator. The gas turbine generator, as shown in the figure, contains the city gas supplied from the city gas supply unit 110 controlled by the control means 150,
A gas turbine 112 operated by air supplied from an air supply unit 111 controlled by the control unit 150;
An alternator 113 connected to the gas turbine 112,
The AC-DC converter 114 converts the high-frequency AC output of the AC generator 114 into DC power.
Basically, it is the same as in the case of the fuel cell 1, and even when the gas turbine 112 is operated so that the power supply amount of the AC generator 114 becomes constant, the charge control means 12 and the discharge control means according to the power load 10. The power control can be performed by causing the secondary battery 11 to charge or discharge the secondary battery 11.
【0073】[0073]
【発明の効果】以上の説明から明らかなように、本発明
は、電力貯蔵手段のエネルギー利用効率を高めた経済的
かつ信頼性の高い電力制御装置等を提供することができ
る。
As is apparent from the above description, the present invention can provide an economical and highly reliable power control device and the like in which the energy use efficiency of the power storage means is improved.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の実施の形態1における燃料電池発電装
置のブロック構成図
FIG. 1 is a block configuration diagram of a fuel cell power generator according to Embodiment 1 of the present invention.
【図2】本発明の実施の形態5における燃料電池発電装
置の燃料電池出力特性図
FIG. 2 is a fuel cell output characteristic diagram of a fuel cell power generator according to a fifth embodiment of the present invention.
【図3】本発明の実施の形態2における燃料電池発電装
置のブロック構成図
FIG. 3 is a block configuration diagram of a fuel cell power generator according to a second embodiment of the present invention.
【図4】本発明の実施の形態3における燃料電池発電装
置のブロック構成図
FIG. 4 is a block configuration diagram of a fuel cell power generator according to a third embodiment of the present invention.
【図5】本発明の実施の形態4における燃料電池発電装
置のブロック構成図
FIG. 5 is a block configuration diagram of a fuel cell power generator according to a fourth embodiment of the present invention.
【図6】本発明の実施の形態5における燃料電池発電装
置のブロック構成図
FIG. 6 is a block configuration diagram of a fuel cell power generation device according to a fifth embodiment of the present invention.
【図7】従来の燃料電池発電システムのブロック構成図FIG. 7 is a block configuration diagram of a conventional fuel cell power generation system.
【図8】従来の燃料電池発電システムのブロック構成図FIG. 8 is a block configuration diagram of a conventional fuel cell power generation system.
【図9】本発明の実施の形態1における燃料電池発電装
置の他の構成を示す図
FIG. 9 is a diagram showing another configuration of the fuel cell power generator according to Embodiment 1 of the present invention.
【図10】本発明の実施の形態2における燃料電池発電
装置の他の構成を示す図
FIG. 10 is a diagram showing another configuration of the fuel cell power generator according to the second embodiment of the present invention.
【図11】本発明の他の実施の形態の構成を示す図FIG. 11 is a diagram showing the configuration of another embodiment of the present invention.
【符号の説明】[Explanation of symbols]
1 燃料電池 2 燃料ガス供給手段 3 酸化剤ガス供給手段 4 電力変換手段 5 コンバータ部 6 インバータ部 9 負荷電力検知手段 10 電力負荷 11 二次電池 12 充電制御手段 13 放電制御手段 14 逆流防止ダイオード 15 燃料電池制御手段 1 fuel cell 2 Fuel gas supply means 3 Oxidant gas supply means 4 Power conversion means 5 Converter section 6 Inverter section 9 Load power detection means 10 power load 11 Secondary battery 12 Charge control means 13 Discharge control means 14 Backflow prevention diode 15 Fuel cell control means
───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾関 正高 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 神保 裕行 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小池 喜一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H027 AA02 DD03 KK52 KK54 MM27 5H030 AA01 AS20 BB01 BB02 BB10 BB21    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masataka Ozeki             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Hiroyuki Jimbo             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Kiichi Koike             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5H027 AA02 DD03 KK52 KK54 MM27                 5H030 AA01 AS20 BB01 BB02 BB10                       BB21

Claims (10)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 直流電力を発生する直流電力発生手段か
    ら出力された直流電力を貯蔵する電力貯蔵手段と、 直流入力を受けるとその電圧を変換するDC/DC変換
    器を少なくとも含む電力変換手段と、 前記直流電力発生手段と、前記電力貯蔵手段と、前記電
    力変換手段との間に設けられ、前記直流電力発生手段の
    直流電力を前記電力貯蔵手段に充電するとともに、前記
    電力貯蔵手段からの電力を前記電力変換手段へ放電する
    充放電手段と、少なくとも前記電力変換手段からの電力
    が供給される外部電力負荷の負荷電力量を検知する検知
    手段と、 前記検知された負荷電力量に基づき、前記充放電手段の
    動作を制御する制御手段とを備え、 前記充放電手段は、DC/DC変換機能を有し、前記直
    流電力発生手段の出力電圧を前記電力貯蔵手段の充電圧
    に変換し、前記電力貯蔵手段の放電圧を前記直流電力発
    生手段の出力電圧に変換する電力制御装置。
    1. A power storage unit for storing DC power output from a DC power generation unit for generating DC power; and a power conversion unit including at least a DC / DC converter for converting the voltage when receiving a DC input. Provided between the DC power generation means, the power storage means, and the power conversion means, and charging the DC power of the DC power generation means to the power storage means, and the power from the power storage means Charging and discharging means for discharging to the power conversion means, a detection means for detecting at least the load power amount of the external power load to which the power from the power conversion means is supplied, based on the detected load power amount, Control means for controlling the operation of the charging / discharging means, the charging / discharging means has a DC / DC conversion function, and outputs the output voltage of the DC power generating means to the power storage means. The power control unit for converting into a voltage, converts the discharging voltage of the power storage means to the output voltage of the DC power generating means.
  2. 【請求項2】 前記制御手段は、前記外部電力負荷が低
    負荷時であるときに前記充放電手段に前記充電の動作を
    行わせ、前記外部電力負荷が高負荷時であるときに前記
    充放電手段に前記放電の動作を行わせる制御を行う請求
    項1に記載の電力制御装置。
    2. The control means causes the charging / discharging means to perform the charging operation when the external electric power load is in a low load, and the charging / discharging operation is performed when the external electric power load is in a high load. The electric power control device according to claim 1, wherein the electric power control device controls the means to perform the discharge operation.
  3. 【請求項3】 直流電力発生手段の出力から前記電力貯
    蔵手段への電圧変換量は、前記電力変換手段の前記DC
    /DC変換器による前記直流電力発生手段の出力の電圧
    変換量に比べて小さい請求項1に記載の電力制御装置。
    3. The voltage conversion amount from the output of the DC power generation means to the power storage means is the DC of the power conversion means.
    The power control device according to claim 1, which is smaller than the voltage conversion amount of the output of the DC power generation means by the / DC converter.
  4. 【請求項4】 前記充放電手段は、 前記直流電力発生手段の出力電圧を前記電力貯蔵手段の
    充電圧に変換する充電側変換手段と、 前記電力貯蔵手段の放電圧を前記直流電力発生手段の出
    力電圧に変換する放電側変換手段とを備えた請求項1に
    記載の燃料電池電力制御装置。
    4. The charging / discharging means converts the output voltage of the DC power generating means into a charging voltage of the power storage means, and the discharging voltage of the power storage means of the DC power generating means. The fuel cell power control device according to claim 1, further comprising a discharge-side conversion unit that converts the output voltage.
  5. 【請求項5】 前記充放電手段は、 前記直流電力発生手段の出力電圧を前記電力貯蔵手段の
    充電圧に変換する充電側変換動作、または前記電力貯蔵
    手段の放電圧を前記直流電力発生手段の出力電圧に変換
    する放電側変換動作を行う共用変換手段と、 前記共用変換手段の入力側が、前記直流電力発生手段の
    出力側または前記電力貯蔵手段の出力側に接続されるよ
    う制御する第1の制御スイッチと、 前記共用変換手段の出力側が、前記DC/DC変換器の
    入力側または前記電力貯蔵手段の入力側に接続されるよ
    う制御する第2の制御スイッチとを備え、 前記充電側変換動作を行うときは、前記第1の制御スイ
    ッチは前記直流電力発生手段の出力側と前記共用変換手
    段の入力側とを接続するとともに、前記第2の制御スイ
    ッチは、前記共用変換手段の出力側と前記電力貯蔵手段
    の入力側とを接続し、 前記放電側変換動作を行うときは、前記第1の制御スイ
    ッチは前記電力貯蔵発生手段の出力側と前記共用変換手
    段の入力側とを接続するとともに、前記第2の制御スイ
    ッチは、前記共用変換手段の出力側と前記DC/DC変
    換器の入力側とを接続する請求項1に記載の電力制御装
    置。
    5. The charging / discharging means converts the output voltage of the DC power generation means into a charging voltage of the power storage means, or a discharge voltage of the power storage means of the DC power generation means. A common conversion means for performing a discharge side conversion operation for converting into an output voltage, and a first control for controlling an input side of the common conversion means to be connected to an output side of the DC power generation means or an output side of the power storage means. The charging side conversion operation includes a control switch and a second control switch that controls the output side of the shared conversion means to be connected to the input side of the DC / DC converter or the input side of the power storage means. When performing the above, the first control switch connects the output side of the DC power generating means and the input side of the shared conversion means, and the second control switch is connected to the shared conversion means. When the discharge side conversion operation is performed by connecting the output side of the power storage means to the input side of the power storage means, the first control switch connects the output side of the power storage generation means and the input side of the shared conversion means. The power control device according to claim 1, wherein the second control switch connects the output side of the shared conversion means and the input side of the DC / DC converter together with the connection.
  6. 【請求項6】 前記直流電力発生手段の出力電圧を検知
    する出力電圧検知手段をさらに備え、 前記制御手段は、前記検知された出力電圧および前記検
    知された負荷電力に基づき、前記検知された出力電圧が
    高く、前記検知された負荷電力が低い時に前記充放電手
    段に前記充電の動作を行わせ、前記検知された出力電圧
    が低く、前記検知された負荷電力が高い時に前記充放電
    手段に前記放電の動作を行わせる請求項1に記載の電力
    制御装置。
    6. The output voltage detection means for detecting an output voltage of the DC power generation means is further provided, and the control means is configured to detect the detected output voltage based on the detected output voltage and the detected load power. When the voltage is high and the detected load power is low, the charging / discharging means performs the charging operation, and when the detected output voltage is low and the detected load power is high, the charging / discharging means is operated. The power control device according to claim 1, which performs a discharging operation.
  7. 【請求項7】 前記電力貯蔵手段の電力貯蔵量を検出す
    る電力貯蔵量検出手段をさらに備え、 前記制御手段は、前記検知された電力貯蔵量に基づい
    て、前記充放電手段の動作を制御する請求項1に記載の
    電力制御装置。
    7. A power storage amount detection means for detecting a power storage amount of the power storage means is further provided, and the control means controls an operation of the charging / discharging means based on the detected power storage amount. The power control device according to claim 1.
  8. 【請求項8】 前記検知された負荷電力を時間の関数と
    して計測する負荷電力計測手段をさらに備え、 前記直流電力発生手段の発電スケジュールは、前記負荷
    電力計測手段によりあらかじめ計測された負荷電力量に
    基づき決定されるものである請求項6に記載の電力制御
    装置。
    8. A load power measuring means for measuring the detected load power as a function of time is further provided, wherein the power generation schedule of the DC power generating means is the load power amount previously measured by the load power measuring means. The power control device according to claim 6, which is determined based on the above.
  9. 【請求項9】 請求項1から8のいずれかに記載の電力
    制御装置と、 直流電力を発生する直流電力発生手段とを備え、 前記検知された負荷電力量に基づき、前記直流電力発生
    手段の入力エネルギーを制御する発電システム。
    9. The power control device according to claim 1, further comprising: a DC power generation unit that generates DC power, wherein the DC power generation unit of the DC power generation unit is based on the detected load power amount. A power generation system that controls the input energy.
  10. 【請求項10】 請求項1に記載の電力制御装置の制御
    方法であって、 前記負荷電力量を時間の関数として計測し、 前記直流電力発生手段の発電スケジュールを、前記計測
    により得られた負荷電力量に基づき決定する電力制御装
    置の制御方法。
    10. The control method of the power control device according to claim 1, wherein the load power amount is measured as a function of time, and the power generation schedule of the DC power generation means is the load obtained by the measurement. A control method for a power control device, which is determined based on the amount of power.
JP2002323054A 2001-11-09 2002-11-06 Power control device, power generation system, and control method of power control device Expired - Fee Related JP4430292B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001345089 2001-11-09
JP2001-345089 2001-11-09
JP2002323054A JP4430292B2 (en) 2001-11-09 2002-11-06 Power control device, power generation system, and control method of power control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002323054A JP4430292B2 (en) 2001-11-09 2002-11-06 Power control device, power generation system, and control method of power control device

Publications (3)

Publication Number Publication Date
JP2003208913A true JP2003208913A (en) 2003-07-25
JP2003208913A5 JP2003208913A5 (en) 2005-12-08
JP4430292B2 JP4430292B2 (en) 2010-03-10

Family

ID=27667071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002323054A Expired - Fee Related JP4430292B2 (en) 2001-11-09 2002-11-06 Power control device, power generation system, and control method of power control device

Country Status (1)

Country Link
JP (1) JP4430292B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100637224B1 (en) 2005-04-21 2006-10-20 삼성에스디아이 주식회사 Power supply apparatus using fuel cell, method of controling the power supply apparatus, and computer readable recoding medium
JP2006310271A (en) * 2005-03-30 2006-11-09 Sanyo Electric Co Ltd Fuel cell system
JP2007244179A (en) * 2006-03-13 2007-09-20 Sanyo Electric Co Ltd Hybrid power system
JP2007318938A (en) * 2006-05-26 2007-12-06 Honda Motor Co Ltd Power system for fuel-cell vehicle
KR100902508B1 (en) * 2007-04-23 2009-06-15 삼성전자주식회사 Power conditioner and managing method thereof
KR100902507B1 (en) * 2007-04-17 2009-06-15 삼성전자주식회사 Power conditioner and managing method thereof
US7722970B2 (en) 2004-08-02 2010-05-25 Honda Motor Co., Ltd. Systems and methods for charging a fuel cell vehicle
US7946365B2 (en) 2006-02-03 2011-05-24 Honda Motor Co., Ltd. Control method for fuel cell vehicle, and fuel cell vehicle
CN101795016B (en) * 2004-08-06 2012-09-05 三洋电机株式会社 Method for controlling fuel cell system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722970B2 (en) 2004-08-02 2010-05-25 Honda Motor Co., Ltd. Systems and methods for charging a fuel cell vehicle
CN101795016B (en) * 2004-08-06 2012-09-05 三洋电机株式会社 Method for controlling fuel cell system
JP2006310271A (en) * 2005-03-30 2006-11-09 Sanyo Electric Co Ltd Fuel cell system
KR100637224B1 (en) 2005-04-21 2006-10-20 삼성에스디아이 주식회사 Power supply apparatus using fuel cell, method of controling the power supply apparatus, and computer readable recoding medium
US7946365B2 (en) 2006-02-03 2011-05-24 Honda Motor Co., Ltd. Control method for fuel cell vehicle, and fuel cell vehicle
JP2007244179A (en) * 2006-03-13 2007-09-20 Sanyo Electric Co Ltd Hybrid power system
JP4509051B2 (en) * 2006-03-13 2010-07-21 三洋電機株式会社 Hybrid power supply
US7661494B2 (en) 2006-05-26 2010-02-16 Honda Motor Co., Ltd. Power supply system of fuel cell vehicle
JP2007318938A (en) * 2006-05-26 2007-12-06 Honda Motor Co Ltd Power system for fuel-cell vehicle
KR100902507B1 (en) * 2007-04-17 2009-06-15 삼성전자주식회사 Power conditioner and managing method thereof
KR100902508B1 (en) * 2007-04-23 2009-06-15 삼성전자주식회사 Power conditioner and managing method thereof

Also Published As

Publication number Publication date
JP4430292B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
US6800963B2 (en) Power controller, power generation system, and control method of power controller
JP4430292B2 (en) Power control device, power generation system, and control method of power control device
EP2793345B1 (en) Electric power supply system
EP2793352B1 (en) Power supply system and power conditioner for charging and discharging
JP3469228B2 (en) Power storage device charge / discharge control device, charge / discharge control method, and power storage system
JP4765162B2 (en) Power storage type solar power generation system
CN102549878B (en) Switching circuit, control apparatus, and power generating system
JP2004180467A (en) Systematically interconnecting power supply system
CN100349356C (en) Independent electric power supply
JP2013042627A (en) Dc power supply control device and dc power supply control method
JP2011182503A (en) Energy storage system
JP2004357377A (en) Distributed power generation system
JP2002369406A (en) System-interconnected power system
JP2008017652A (en) Power supply system
US9136730B2 (en) Energy storage system
CN102195312A (en) A battery system
JP2008131736A (en) Distributed power system and step-up/step-down chopper device
JP2012050167A (en) Dc power supply system
JP3795414B2 (en) AC power supply system
JP2006060984A (en) Power supply device
US6670063B1 (en) Fuel cell system
JP2001231176A (en) Fuel cell power supply
JP2003153448A (en) Power generation system
JP5676847B2 (en) Fuel cell power supply
JP2004039506A (en) Fuel cell system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees