JP2003207613A - Optical element and hologram laser unit - Google Patents

Optical element and hologram laser unit

Info

Publication number
JP2003207613A
JP2003207613A JP2002008985A JP2002008985A JP2003207613A JP 2003207613 A JP2003207613 A JP 2003207613A JP 2002008985 A JP2002008985 A JP 2002008985A JP 2002008985 A JP2002008985 A JP 2002008985A JP 2003207613 A JP2003207613 A JP 2003207613A
Authority
JP
Japan
Prior art keywords
optical element
diffraction grating
semiconductor laser
transparent substrates
laser unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002008985A
Other languages
Japanese (ja)
Inventor
Shinko Murakawa
真弘 村川
Yoshiharu Oi
好晴 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002008985A priority Critical patent/JP2003207613A/en
Publication of JP2003207613A publication Critical patent/JP2003207613A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an optical element of a small size having functions of two diffraction gratings and one phaser and further to obtain a hologram laser unit which is integrated with a semiconductor laser, a photodetector and an optical diffraction element, is small in size and prevents the exit return light from a semiconductor laser from affecting the transmission of the semiconductor laser. <P>SOLUTION: The optical element 9 is obtained by superposing two transparent substrates 4 and 5 and laminating the phaser 3 consisting of a thin organic matter film between the transparent substrates 4 and 5 to constitute a laminated plate consisting of the transparent substrates 4 and 5 and the phaser 3 and forming the hologram diffraction grating 1 and the straight diffraction grating 2 on the front and rear 2 surfaces, respectively, of the laminated plate. The hologram laser unit is obtained by integrally forming the semiconductor laser, the photodetector and the optical element 9. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光学素子およびホ
ログラムレーザユニットに関し、さらに詳しくは光記録
媒体の情報の記録、再生を行う光ヘッド装置などに用い
られる光学素子およびホログラムレーザユニットに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element and a hologram laser unit, and more particularly to an optical element and a hologram laser unit used in an optical head device for recording and reproducing information on an optical recording medium.

【0002】[0002]

【従来の技術】光ヘッド装置の小型化、または光ヘッド
装置を構成する光学部品数の削減のために、半導体レー
ザ、光検出器および回折光学素子を一体化したホログラ
ムレーザユニットが使用されている。
2. Description of the Related Art A hologram laser unit in which a semiconductor laser, a photodetector and a diffractive optical element are integrated is used in order to downsize an optical head device or reduce the number of optical parts constituting the optical head device. .

【0003】[0003]

【発明が解決しようとする課題】特に情報の記録用の光
ヘッド装置における高倍速化が進むなかで、光記録媒体
である光ディスクからの戻り光により、半導体レーザの
発振が不安定になる問題が生じている。この問題は、半
導体レーザからの光が光ディスクへ向かう光路中に4分
の1波長板を挿入することで解決できたが、一方では光
ヘッド装置を構成する光学部品数が増加して、光ヘッド
装置の小型化の妨げになっていた。そのため、光学部品
数を減らす光学素子、およびこの光学素子が一体に形成
された小型の光源ユニットが求められていた。
In particular, as the optical head device for recording information is becoming higher in speed, there is a problem that the oscillation of the semiconductor laser becomes unstable due to the returning light from the optical disk which is the optical recording medium. Has occurred. This problem has been solved by inserting a quarter-wave plate in the optical path of the light from the semiconductor laser toward the optical disc. On the other hand, however, the number of optical components that make up the optical head device increases, and It was an obstacle to the miniaturization of the device. Therefore, there has been a demand for an optical element that reduces the number of optical components and a small light source unit in which the optical element is integrally formed.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の課題を
解決するためになされたものであり、複数枚の透明基板
が重ねられ、隣接する透明基板間の少なくとも1つに有
機物薄膜からなる位相子が挟持され、重ねられた透明基
板と位相子とを含む積層板が構成されて、積層板の表裏
2表面のそれぞれに回折格子が形成されていることを特
徴とする光学素子を提供する。
The present invention has been made to solve the above-mentioned problems, and a plurality of transparent substrates are stacked, and an organic thin film is formed on at least one of adjacent transparent substrates. Provided is an optical element characterized in that a laminated plate including a transparent substrate and a retarder laminated with a retarder sandwiched therebetween is formed, and a diffraction grating is formed on each of the front and back 2 surfaces of the laminated plate. .

【0005】また、前記位相子に加えさらに偏光選択性
の回折格子が積層されている上記の光学素子を提供す
る。
Also provided is the above-mentioned optical element in which a polarization-selective diffraction grating is laminated in addition to the retarder.

【0006】さらに、少なくとも半導体レーザと、光検
出器と、回折光学素子とが一体に形成されたホログラム
レーザユニットであって、回折光学素子として上記の光
学素子が用いられていることを特徴とするホログラムレ
ーザユニットを提供する。
Furthermore, a hologram laser unit in which at least a semiconductor laser, a photodetector and a diffractive optical element are integrally formed is characterized in that the above optical element is used as the diffractive optical element. A hologram laser unit is provided.

【0007】[0007]

【発明の実施の形態】本発明の光学素子の第1実施態様
として、複数枚の透明基板が重ねられ、隣接する透明基
板間の少なくとも1つに有機物薄膜からなる位相子が挟
持され、重ねられた透明基板と位相子とを含む積層板が
構成されて、積層板の表裏2表面のそれぞれに回折格子
が形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION As a first embodiment of the optical element of the present invention, a plurality of transparent substrates are stacked, and a retarder made of an organic thin film is sandwiched and stacked on at least one of adjacent transparent substrates. A laminated plate including the transparent substrate and the retarder is formed, and a diffraction grating is formed on each of the front and back surfaces 2 of the laminated plate.

【0008】透明基板の枚数は3枚でも4枚でもよく、
例えば3枚の場合、3枚の透明基板が形成する2つの基
板間に、有機物薄膜からなる位相子が積層されて積層板
が構成される。また、2表面の回折格子は、断面が矩形
状のもの、ブレーズド回折格子状のもの、その他の形状
のものでもよく、さらにそれぞれの面で形状が異なって
いてもよい。
The number of transparent substrates may be three or four,
For example, in the case of three sheets, a retarder made of an organic thin film is laminated between two substrates formed by three transparent substrates to form a laminated plate. The diffraction gratings on the two surfaces may have a rectangular cross section, a blazed diffraction grating shape, or any other shape, and the surfaces may have different shapes.

【0009】以下ここでは簡単のために、透明基板の枚
数が2枚で、2表面の回折格子の断面が矩形状のものの
場合を例にとり、図1を参照して本発明の光学素子の第
1実施態様を説明する。
Hereinafter, for simplification, the case where the number of transparent substrates is two and the diffraction gratings on the two surfaces are rectangular in section will be taken as an example, and referring to FIG. One embodiment will be described.

【0010】図1に示すように、本発明の第1実施態様
の光学素子9は、断面が矩形状で平面が曲線状のホログ
ラフィック回折格子1を表面に形成した透明基板4と、
断面が矩形状で平面が直線状の直線回折格子2を形成し
た透明基板5との間に有機物薄膜からなる位相子3を積
層し固定した構成となっている。
As shown in FIG. 1, an optical element 9 according to the first embodiment of the present invention includes a transparent substrate 4 having a holographic diffraction grating 1 having a rectangular cross section and a curved plane as its surface,
A retarder 3 made of an organic thin film is laminated and fixed between a transparent substrate 5 and a linear diffraction grating 2 having a rectangular cross section and a linear plane.

【0011】ホログラフィック回折格子1および直線回
折格子2は、石英ガラスまたは光学的等方性の光学ガラ
スからなる透明基板4および透明基板5に直接加工形成
してもよく、透明基板4および透明基板5の格子加工面
に、透明かつ光学的等方性の石英ガラスなどの無機物薄
膜またはポリイミドなどの有機物薄膜を成膜したのち、
格子を加工形成してもよい。ホログラフィック回折格子
1と直線回折格子2を構成する材料は異なっていてもよ
いし、また透明基板4および透明基板5を構成する材料
も異なっていてもよい。
The holographic diffraction grating 1 and the linear diffraction grating 2 may be directly processed and formed on the transparent substrate 4 and the transparent substrate 5 made of quartz glass or optically isotropic optical glass. After forming a transparent and optically isotropic inorganic thin film such as quartz glass or an organic thin film such as polyimide on the lattice processed surface of 5,
The grating may be processed and formed. The materials forming the holographic diffraction grating 1 and the linear diffraction grating 2 may be different, and the materials forming the transparent substrate 4 and the transparent substrate 5 may be different.

【0012】有機物薄膜からなる位相子3として、ポリ
カーボネートなどを延伸することで複屈折を発現させた
フィルムを用いてもよく、透明基板4および透明基板5
に液晶配向処理を施し、液晶モノマーを塗布し硬化させ
て形成した高分子液晶薄膜を用いてもよい。さらに、有
機物薄膜からなる位相子3の有するリタデーション値
は、光学素子9を透過する光の中心波長に対して例えば
4分の1波長の奇数倍に選択することで、光学素子9を
往復する光波の振動方向を、往路と復路で直交させるこ
とができて好ましい。
As the retarder 3 made of an organic thin film, a film in which birefringence is exhibited by stretching polycarbonate or the like may be used, and the transparent substrate 4 and the transparent substrate 5 are used.
It is also possible to use a polymer liquid crystal thin film formed by subjecting the above to liquid crystal alignment treatment, applying a liquid crystal monomer and curing the same. Further, the retardation value of the phase shifter 3 made of an organic thin film is selected to be, for example, an odd multiple of a quarter wavelength with respect to the center wavelength of the light passing through the optical element 9, so that the optical wave traveling back and forth through the optical element 9 is changed. It is preferable that the vibration directions can be made orthogonal to each other on the forward and return paths.

【0013】すなわち、本発明の第1実施態様の光学素
子9においては、図1の例えば下方に光源として半導体
レーザがあり上方に光ディスクがある場合、光ディスク
により反射して光学素子9を往復して半導体レーザに戻
る光は、半導体レーザを出射する光と干渉しないので、
半導体レーザは安定して動作できる。
That is, in the optical element 9 according to the first embodiment of the present invention, when the semiconductor laser is as a light source and the optical disk is above, for example, in FIG. 1, the optical element 9 is reflected by the optical disk to reciprocate the optical element 9. Since the light returning to the semiconductor laser does not interfere with the light emitted from the semiconductor laser,
The semiconductor laser can operate stably.

【0014】本発明の光学素子の第2実施態様として、
前記位相子に加えさらに偏光選択性の回折格子が積層さ
れていることが好ましい。この偏光選択性の回折格子
は、位相子に重ねて透明基板間に積層してもよいし、複
数の透明基板間がある場合それぞれに分けて積層しても
よいが、積層板をより小型化する場合は重ねて積層する
ことが好ましい。以下、ここでは重ねて積層する場合を
例にとり、図2に基づいて説明する。
As a second embodiment of the optical element of the present invention,
In addition to the retarder, it is preferable that a polarization selective diffraction grating is further laminated. This polarization-selective diffraction grating may be stacked on the retarder and laminated between the transparent substrates, or may be separately laminated when there are a plurality of transparent substrates, but the laminated plate can be made smaller. In that case, it is preferable to stack the layers. Hereinafter, the case of stacking layers will be described as an example with reference to FIG.

【0015】図2に示すように、本発明の第2実施態様
の光学素子10は、ホログラフィック回折格子1を表面
に形成した透明基板4と、直線回折格子2を形成した透
明基板5の間に有機物薄膜からなる位相子3と偏光選択
性の回折格子6と重ねて積層する。ホログラフィック回
折格子1、直線回折格子2および有機物薄膜からなる位
相子3は第1実施態様と同様のプロセスで作製できる。
As shown in FIG. 2, an optical element 10 according to a second embodiment of the present invention includes a transparent substrate 4 having a holographic diffraction grating 1 formed on its surface and a transparent substrate 5 having a linear diffraction grating 2 formed thereon. Then, the retarder 3 made of an organic thin film and the polarization-selective diffraction grating 6 are superposed and laminated. The holographic diffraction grating 1, the linear diffraction grating 2, and the retarder 3 made of an organic thin film can be manufactured by the same process as in the first embodiment.

【0016】有機物薄膜からなる位相子3の有するリタ
デーション値は、第1実施態様と同様に、光学素子10
を透過する光の中心波長に対して例えば4分の1波長の
奇数倍に選択することで、光学素子10を往復する光波
の振動方向を、往路と復路で直交させることができて好
ましい。
The retardation value of the retarder 3 made of an organic thin film is the same as that in the first embodiment.
It is preferable to select, for example, an odd multiple of a quarter wavelength with respect to the center wavelength of the light passing through, because the oscillation directions of the light waves that reciprocate in the optical element 10 can be made orthogonal to each other on the outward path and the return path.

【0017】偏光選択性の回折格子6は、透明基板5に
通常の液晶配向処理を施し、液晶モノマーを塗布し硬化
させて形成した高分子液晶薄膜を格子状に加工したの
ち、高分子液晶の常光屈折率と屈折率が等しい、光学的
等方性の充填剤で格子間を埋めて構成される。このとき
光学素子10に入射する直線偏光が常光の場合、偏光選
択性の回折格子6を透過しても光は回折されずに直進透
過するが、光学素子10に入射する直線偏光が異常光の
場合、光は回折する。
The polarization-selective diffraction grating 6 is produced by subjecting the transparent substrate 5 to a usual liquid crystal alignment treatment, applying a liquid crystal monomer and curing it to form a polymer liquid crystal thin film, and processing the polymer liquid crystal thin film into a lattice shape. It is configured by filling the interstitial spaces with an optically isotropic filler having the same refractive index as the ordinary light refractive index. At this time, if the linearly polarized light incident on the optical element 10 is ordinary light, the light is not diffracted even though it is transmitted through the polarization-selective diffraction grating 6, but is transmitted straight through, but the linearly polarized light incident on the optical element 10 is abnormal light. In that case, the light is diffracted.

【0018】このとき高分子液晶の異常光屈折率を
、充填剤の屈折率をn、偏光選択性の回折格子6
の高さをd、光学素子10に入射する光の波長をλとし
て、(n −n)×d×2π/λで与えられる位相差
がλ/2になるように、高さdを決める。すなわち、偏
光選択性の回折格子6によって回折される異常光の0次
回折光成分(直進透過成分)が0になるので好ましい。
At this time, the extraordinary light refractive index of the polymer liquid crystal is
ne, The refractive index of the filler is ns, Polarization-selective diffraction grating 6
Is d, and the wavelength of light incident on the optical element 10 is λ.
, (N e-Ns) × d × 2π / λ
The height d is determined so that is λ / 2. That is, the bias
0th order of extraordinary light diffracted by the photoselective diffraction grating 6
The diffracted light component (straight transmission component) becomes 0, which is preferable.

【0019】すなわち、本発明の第2実施態様の光学素
子10を用いると、図2の下方に光源として半導体レー
ザがあり上方に光ディスクがあって、出射直線偏光が光
学素子10に常光として入射する場合、光ディスクによ
り反射して光学素子10を往復する光は半導体レーザに
戻らないので、半導体レーザは安定して動作できる。
That is, when the optical element 10 according to the second embodiment of the present invention is used, a semiconductor laser is provided as a light source in the lower part of FIG. 2 and an optical disk is provided in the upper part, and outgoing linearly polarized light is incident on the optical element 10 as ordinary light. In this case, since the light reflected by the optical disk and traveling back and forth through the optical element 10 does not return to the semiconductor laser, the semiconductor laser can operate stably.

【0020】本発明のホログラムレーザユニットの実施
態様として、少なくとも半導体レーザと、光検出器と、
回折光学素子とが一体に形成されたホログラムレーザユ
ニットである。そして、この回折光学素子として上記の
光学素子が用いられている。本発明のホログラムレーザ
ユニットの構成の一例を図3に概念図として示す。ホロ
グラムレーザユニット11は、本発明の第1実施態様の
光学素子、半導体レーザ7および光検出器8を一体化し
たものである。したがって、図1に示された符号と同じ
ものは、同じ要素を表す。また、第1実施態様の光学素
子の代わりに第2実施態様の光学素子を用いてもよい。
As an embodiment of the hologram laser unit of the present invention, at least a semiconductor laser, a photodetector, and
This is a hologram laser unit integrally formed with a diffractive optical element. The above optical element is used as this diffractive optical element. An example of the configuration of the hologram laser unit of the present invention is shown in FIG. 3 as a conceptual diagram. The hologram laser unit 11 is one in which the optical element according to the first embodiment of the present invention, the semiconductor laser 7, and the photodetector 8 are integrated. Therefore, the same reference numerals as those shown in FIG. 1 represent the same elements. Further, the optical element of the second embodiment may be used instead of the optical element of the first embodiment.

【0021】第1実施態様の光学素子におけるホログラ
フィック回折格子1の格子平面パターンは、図3上方か
らこの光学素子に入射し、ホログラフィック回折格子1
で回折した1次回折光が、直線回折格子2を透過しない
ように設計される。このとき、透明基板4および透明基
板5を合わせた厚みが1.5mm以下であると、ホログ
ラフィック回折格子1の格子ピッチが1μm以下になる
ため加工が難しくなる。したがって、透明基板4および
透明基板5を合わせた厚みが1.5mmから2.5mm
の間にすることが、ホログラフィック回折格子1を容易
に加工でき、かつ光学素子が大きくならないので好まし
い。
The grating plane pattern of the holographic diffraction grating 1 in the optical element of the first embodiment is incident on this optical element from above in FIG.
The first-order diffracted light diffracted by is designed so as not to pass through the linear diffraction grating 2. At this time, if the total thickness of the transparent substrate 4 and the transparent substrate 5 is 1.5 mm or less, the holographic diffraction grating 1 has a grating pitch of 1 μm or less, which makes processing difficult. Therefore, the total thickness of the transparent substrate 4 and the transparent substrate 5 is 1.5 mm to 2.5 mm.
It is preferable to set the distance between these because the holographic diffraction grating 1 can be easily processed and the optical element does not become large.

【0022】本発明のホログラムレーザユニット11に
よると、半導体レーザへの戻り光によって、発振特性が
乱されないので、ホログラムレーザユニット11は安定
して動作できる。
According to the hologram laser unit 11 of the present invention, the oscillation characteristics are not disturbed by the returning light to the semiconductor laser, so that the hologram laser unit 11 can operate stably.

【0023】[0023]

【実施例】本実施例の光学素子を、図1に示した光学素
子に基づいて製造方法について説明する。ガラス製の透
明基板4の表面にフォトリソグラフィとエッチングの技
術を用いて、ホログラフィック回折格子1を形成した
後、反射防止膜をこの形成面に施した。同様に、ガラス
製の透明基板5の表面に直線回折格子2を形成した後、
同様にこの形成面に反射防止膜を施した。次に、有機物
薄膜からなる位相子3として、ポリカーボネートを一軸
延伸して、光学素子9を透過する光の中心波長に対して
4分の1波長に相当するリタデーション値を発生させた
薄膜を、紫外線硬化型の接着剤を用いて透明基板4と透
明基板5のそれぞれの格子加工面の裏面に挟み込み固定
した。
EXAMPLES A method of manufacturing the optical element of this example will be described based on the optical element shown in FIG. After forming the holographic diffraction grating 1 on the surface of the transparent substrate 4 made of glass by using photolithography and etching, an antireflection film was applied to this surface. Similarly, after forming the linear diffraction grating 2 on the surface of the transparent substrate 5 made of glass,
Similarly, an antireflection film was applied to this formation surface. Next, as the phase shifter 3 formed of an organic thin film, a thin film obtained by uniaxially stretching polycarbonate to generate a retardation value corresponding to a quarter wavelength with respect to the center wavelength of light transmitted through the optical element 9 is irradiated with ultraviolet rays. A curable adhesive was used to sandwich and fix the transparent substrate 4 and the transparent substrate 5 on the back surfaces of the respective lattice-processed surfaces.

【0024】次に、この光学素子9を用いてホログラム
レーザユニットを、図3に示すように組みたてた結果、
ホログラムレーザユニット11は光学素子9が機能し
て、図示しない光ディスクからの反射戻り光により半導
体レーザの発信が乱されることなく、安定にレーザ光を
発振して良好に作動した。
Next, as a result of assembling a hologram laser unit using this optical element 9 as shown in FIG.
In the hologram laser unit 11, the optical element 9 functions, and the laser beam is stably oscillated and operates well without the emission of the semiconductor laser being disturbed by the reflected return light from the optical disk (not shown).

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、表
面に回折格子を形成した2枚の透明基板間に、リタデー
ション値が例えば4分の1波長である有機物薄膜からな
る位相子を挟み込んだ光学素子は、2つの回折格子と1
つの4分の1波長板の機能を合わせ持った、小型の光学
素子を実現できる。
As described above, according to the present invention, a retarder made of an organic thin film having a retardation value of, for example, a quarter wavelength is sandwiched between two transparent substrates having a diffraction grating formed on the surface thereof. The optical element consists of two diffraction gratings and one
It is possible to realize a compact optical element that also has the functions of two quarter-wave plates.

【0026】この光学素子を搭載した本発明のホログラ
ムレーザユニットにおいては小型のユニットが実現し、
また光ヘッド装置にこのユニットを搭載した場合、光学
素子の回折格子が機能して光源である半導体レーザへの
光ディスクからの反射戻り光によりレーザ光の発振が乱
されることなく、安定に動作できる。さらに、光ヘッド
装置の構成部品点数を減らし、装置の小型化が図れる。
A small unit is realized in the hologram laser unit of the present invention equipped with this optical element,
Further, when this unit is mounted in the optical head device, the diffraction grating of the optical element functions and the laser light oscillation is not disturbed by the reflected return light from the optical disk to the semiconductor laser that is the light source, and stable operation is possible. . Further, the number of constituent parts of the optical head device can be reduced and the device can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施態様の光学素子の構成を示す
断面図である。
FIG. 1 is a sectional view showing a configuration of an optical element according to a first embodiment of the present invention.

【図2】本発明の第2実施態様の光学素子の構成を示す
断面図である。
FIG. 2 is a sectional view showing a configuration of an optical element according to a second embodiment of the present invention.

【図3】本発明のホログラムレーザユニットの構成の例
を示す概念図である。
FIG. 3 is a conceptual diagram showing an example of the configuration of a hologram laser unit of the present invention.

【符号の説明】[Explanation of symbols]

1:ホログラフィック回折格子 2:直線回折格子 3:位相子 4、5:透明基板 6:偏光選択性の回折格子 7:半導体レーザ 8:光検出器 9、10:光学素子 11:ホログラムレーザユニット 1: Holographic diffraction grating 2: Linear diffraction grating 3: Phaser 4, 5: transparent substrate 6: Polarization-selective diffraction grating 7: Semiconductor laser 8: Photodetector 9, 10: Optical element 11: Hologram laser unit

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H049 AA03 AA13 AA43 AA45 AA66 BA05 BA07 BA25 BA42 5D119 AA01 AA04 FA05 FA30 JA22 JA23 JA31 5D789 AA01 AA04 FA05 FA30 JA22 JA23 JA31 5F089 BA04 BB02 CA20 GA05    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2H049 AA03 AA13 AA43 AA45 AA66                       BA05 BA07 BA25 BA42                 5D119 AA01 AA04 FA05 FA30 JA22                       JA23 JA31                 5D789 AA01 AA04 FA05 FA30 JA22                       JA23 JA31                 5F089 BA04 BB02 CA20 GA05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数枚の透明基板が重ねられ、隣接する透
明基板間の少なくとも1つに有機物薄膜からなる位相子
が挟持され、重ねられた透明基板と位相子とを含む積層
板が構成されて、積層板の表裏2表面のそれぞれに回折
格子が形成されていることを特徴とする光学素子。
1. A plurality of transparent substrates are stacked, a retarder made of an organic thin film is sandwiched between at least one of adjacent transparent substrates, and a laminated plate including the stacked transparent substrates and the retarder is formed. An optical element having a diffraction grating formed on each of the front and back surfaces 2 of the laminated plate.
【請求項2】前記位相子に加えさらに偏光選択性の回折
格子が積層されている請求項1記載の光学素子。
2. The optical element according to claim 1, further comprising a polarization-selective diffraction grating laminated in addition to the retarder.
【請求項3】少なくとも半導体レーザと、光検出器と、
回折光学素子とが一体に形成されたホログラムレーザユ
ニットであって、回折光学素子として請求項1または請
求項2記載の光学素子が用いられていることを特徴とす
るホログラムレーザユニット。
3. A semiconductor laser, a photodetector, and
A hologram laser unit integrally formed with a diffractive optical element, wherein the optical element according to claim 1 or 2 is used as the diffractive optical element.
JP2002008985A 2002-01-17 2002-01-17 Optical element and hologram laser unit Pending JP2003207613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002008985A JP2003207613A (en) 2002-01-17 2002-01-17 Optical element and hologram laser unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002008985A JP2003207613A (en) 2002-01-17 2002-01-17 Optical element and hologram laser unit

Publications (1)

Publication Number Publication Date
JP2003207613A true JP2003207613A (en) 2003-07-25

Family

ID=27647103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002008985A Pending JP2003207613A (en) 2002-01-17 2002-01-17 Optical element and hologram laser unit

Country Status (1)

Country Link
JP (1) JP2003207613A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100779693B1 (en) 2006-08-09 2007-11-26 주식회사 엘지에스 Wave selection type diffractive optical elements and optical pickup device has them
JP2011510344A (en) * 2008-01-21 2011-03-31 プライムセンス リミテッド Optical design for zero order reduction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100779693B1 (en) 2006-08-09 2007-11-26 주식회사 엘지에스 Wave selection type diffractive optical elements and optical pickup device has them
JP2011510344A (en) * 2008-01-21 2011-03-31 プライムセンス リミテッド Optical design for zero order reduction

Similar Documents

Publication Publication Date Title
EP2376957B1 (en) Optical element, optical apparatus, optical pickup, optical information processing apparatus, optical attenuator, polarization conversion element, projector optical system, and optical apparatus system
US7688700B2 (en) Phase correction element and optical head device
KR20090004696A (en) Non-etched flat polarization-selective diffractive optical elements
EP1361461A1 (en) Wavelength selective diffraction element and optical head device
US7564504B2 (en) Phase plate and an optical data recording/reproducing device
JP5012171B2 (en) Reflective diffractive polarizer and optical device
JP4518009B2 (en) Three-wavelength diffraction element, three-wavelength diffraction element with phase plate, and optical head device
JP2009085974A (en) Polarizing element and method for fabricating the same
JP4300784B2 (en) Optical head device
JPH10302291A (en) Polarization separation element and optical head using the element
JP2012159802A (en) Optical element, optical pickup, optical information processor, optical attenuator, polarization conversion element, projector optical system, isolator and optical instrument
JP2003207613A (en) Optical element and hologram laser unit
KR101097078B1 (en) Diffraction element and optical head device
JP4218393B2 (en) Optical head device
JP2004077806A (en) Phase plate optical element
JP5131244B2 (en) Laminated phase plate and optical head device
JP4427877B2 (en) Aperture limiting element and optical head device
JP2001344800A (en) Optical head device
KR100990347B1 (en) Phase plate and optical information recording/reproducing device
JP2010164752A (en) Optical element, optical pickup, optical information processing device, optical attenuator, polarization conversion element, projector optical system, and optical equipment
JP2002372624A (en) Polalized light separation element, semiconductor laser unit and optical pickup device
JP5082792B2 (en) Optical head device
JP2004069977A (en) Diffraction optical element and optical head unit
JPH1068820A (en) Polarization diffraction element and optical head device formed by using the same
JP2010153039A (en) Diffraction element for three wavelengths, diffraction element for three wavelengths with topology plate and optical head apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715