JP2003185762A - Direction based basic wind speed map, method of creating it, method of estimating basic wind speed for each direction, method of creating chart of isogram of physical quantity, and method of estimating physical quantity - Google Patents

Direction based basic wind speed map, method of creating it, method of estimating basic wind speed for each direction, method of creating chart of isogram of physical quantity, and method of estimating physical quantity

Info

Publication number
JP2003185762A
JP2003185762A JP2001386727A JP2001386727A JP2003185762A JP 2003185762 A JP2003185762 A JP 2003185762A JP 2001386727 A JP2001386727 A JP 2001386727A JP 2001386727 A JP2001386727 A JP 2001386727A JP 2003185762 A JP2003185762 A JP 2003185762A
Authority
JP
Japan
Prior art keywords
wind
measurement
value
wind speed
measurement points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001386727A
Other languages
Japanese (ja)
Other versions
JP4043779B2 (en
Inventor
Hideji Nakamura
秀治 中村
Tomomi Ishikawa
智巳 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2001386727A priority Critical patent/JP4043779B2/en
Publication of JP2003185762A publication Critical patent/JP2003185762A/en
Application granted granted Critical
Publication of JP4043779B2 publication Critical patent/JP4043779B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To read estimates of wind speeds in different directions at a desired point. <P>SOLUTION: The measurements of wind speeds in different directions at each of a plurality of measuring points are statistically processed to determine the basic wind speeds in different directions at each measuring point. Also, simulations or experiments reflecting the influence of geography between the measuring points are conducted to determine virtual measurements of wind speeds in different directions at and between the measuring points. The virtual measurements are corrected to make the basic wind speeds equal to the virtual measurements at all the measuring points so as to determine estimated basic wind speeds in different directions between the measuring points. Using the estimated wind speeds and the basic wind speeds in different directions, adjacent equal values or values belonging to a certain numerical range are connected by lines, whereby isotachs of estimated basic wind speeds in different directions are drawn on a map. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、実測定値と、シミ
ュレーション値または実験値とを用いて、任意の地点に
おける風速等の物理量の値を推定する技術に関する。さ
らに詳述すると、本発明は、風向別風速について所望の
地点での推定値が読み取れるマップ及びそのマップの作
成方法及び所望の地点での風向別風速を推定する方法、
並びに測定対象である物理量について所望の地点での推
定値が読み取れる物理量の等値線図の作成方法及び測定
対象である物理量の所望の地点での値を推定する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for estimating a value of a physical quantity such as wind speed at an arbitrary point by using an actual measurement value and a simulation value or an experimental value. More specifically, the present invention is a map which can read the estimated value at a desired point for the wind speed according to the wind direction, a method for creating the map, and a method for estimating the wind speed according to the wind direction at the desired point,
In addition, the present invention relates to a method of creating an isoline map of a physical quantity in which an estimated value of a physical quantity to be measured can be read at a desired point, and a method of estimating a value of a physical quantity to be measured at a desired point.

【0002】[0002]

【従来の技術】送電線路を構成する送電鉄塔や架渉線に
作用する主要な外力は風荷重であり、耐風設計は極めて
重要である。送電鉄塔及び架渉線が長大橋梁・高層建築
物・煙突等他の構造物に比べて特異な点としては、送
電鉄塔と架渉線という振動特性の全く異なる構成要素の
連成挙動を考慮する必要があること、架渉線の受ける
風荷重の占める比率が高く、強度的に方向特性が顕著に
現れやすいこと、内陸部山岳地の稜線や海岸近くの斜
面あるいは収束して吹き抜けるような増速地形に建設さ
れることが多いこと、などが挙げられる。
2. Description of the Related Art A main external force acting on a transmission tower or an overhead line that constitutes a transmission line is a wind load, and a wind resistant design is extremely important. As a peculiar point of the power transmission tower and the overhead line compared to other structures such as long bridges, high-rise buildings, and chimneys, consider the coupling behavior of the transmission tower and the overhead line, which have completely different vibration characteristics. It is necessary, the proportion of wind load on the overhead lines is high, the directional characteristics are likely to appear remarkably in terms of strength, and the speed increases such that the ridgeline of the inland mountainous area or the slope near the coast or converge and blow through Often built on terrain, and so on.

【0003】従来、我が国で送電鉄塔を設計する場合に
参照される基準類としては、電気設備に関する技術基
準(経済産業省令)および解釈、架空送電規程(JE
AC6001−1993(電気協会))、送電用支持
物設計標準(JEC127−1979(電気学会))が
ある。これらの基準類について、耐風設計の観点からそ
の特徴をまとめたものを表1に示す。
[0003] Conventionally, as the standards to be referred to when designing a transmission tower in Japan, technical standards (Ministry of Economy, Trade and Industry ordinance) and interpretation regarding electrical equipment, overhead transmission rules (JE
AC6001-1993 (The Institute of Electrical Engineers of Japan), and support design standards for power transmission (JEC127-1979 (The Institute of Electrical Engineers of Japan)). Table 1 summarizes the features of these standards from the viewpoint of wind resistant design.

【表1】 [Table 1]

【0004】[0004]

【発明が解決しようとする課題】しかしながら、表1に
示す従来の基準類では、設計風速が全ての風向で一律に
定められている。即ち、全ての風向に対して、電気設備
に関する技術基準では一律40m/s、送電用支持物設
計標準では行政区分毎に設計風速が規定されている。こ
のため、既往の設計法は、送電鉄塔には複数の風向から
の風荷重を考慮する一方、架渉線には風向が直交すると
した最大瞬間風速ベースの静的設計である。結果とし
て、水平角の大きい送電鉄塔の場合や実際に架渉線が受
ける最大風速の風向が架渉線に直交しない場合等には過
度に裕度が大きくなるなど、送電鉄塔毎の耐荷力に差異
の生じ得ることが推測され、合理化検討の必要がある。
However, in the conventional standards shown in Table 1, the design wind speed is uniformly set for all wind directions. That is, for all wind directions, the design standard for electrical equipment is 40 m / s, and the design standard for power transmission supports defines the design wind speed for each administrative division. For this reason, the existing design method is a static design based on the maximum instantaneous wind speed in which the wind loads from multiple wind directions are taken into consideration for the transmission tower, while the wind directions are orthogonal to the overhead lines. As a result, in the case of a transmission tower with a large horizontal angle or when the wind direction of the maximum wind speed actually received by the overhead line is not orthogonal to the overhead line, the margin becomes excessively large and the load bearing capacity of each transmission tower is increased. It is presumed that a difference may occur, and it is necessary to consider rationalization.

【0005】合理化検討は、風速算定と風荷重算定の両
面から行う必要がある。風荷重算定の際には複数の風向
に対して構造強度の検討を行うが、風速が全風向で一律
であれば、支配的な風向は構造物(送電鉄塔や架渉線)
の構造配置と形状のみで定まることとなる。更なる合理
化検討を行うには、建設地点における風の方向特性、す
なわち風向別風速の合理的設定が不可欠である。
The rationalization study needs to be performed from both aspects of wind speed calculation and wind load calculation. When calculating the wind load, structural strength is examined for multiple wind directions, but if the wind speed is uniform in all wind directions, the dominant wind direction is the structure (power transmission tower or overhead line).
It will be determined only by the structural arrangement and shape of. In order to conduct further rationalization study, it is indispensable to set the wind direction characteristics at the construction site, that is, rational setting of wind speed for each wind direction.

【0006】その一方で、最近の傾向として送電線の大
容量化が進み、これに伴い送電鉄塔の大型化と山間部の
設置が増え、予測以上の強風によって思わぬ被害を受け
るおそれもある。例えば1991年の台風19号は、中
国、四国、九州地方の送電鉄塔が倒れるなど、送電に大
きな障害をもたらした。
[0006] On the other hand, as a recent tendency, the capacity of transmission lines has been increased, and along with this, the size of transmission towers has been increased and the number of mountain areas has been increased, which may cause unexpected damage due to stronger winds than expected. For example, Typhoon No. 19 of 1991 caused major obstacles to power transmission, such as the fall of power transmission towers in the Chugoku, Shikoku, and Kyushu regions.

【0007】以上のことから、安全かつ合理的な送配電
設備の設計のために、各建設地点においてどの程度の強
さの風がどの方向から吹く可能性があるのかを十分に検
討することが望ましい。しかしながら、例えば50年若
しくは100年再現期間値というように将来発生し得る
風向別風速を求めるためには、過去に蓄積されたデータ
を統計処理するため、一般に気象官署(気象台)にて観
測され蓄積されたデータを利用する必要がある。ところ
が、風は地形の影響を大きく受けるから、建設地点にお
ける実際の風向別風速は、近隣の気象官署におけるデー
タから大きくかけ離れる場合がある。このため、気象官
署間の任意の位置における風向別風速を推定することは
困難であり、事実、風向別風速の採用は、土木・建築分
野における技術指針類にも従来例が無く(以下参考文
献:日本道路協会の道路橋耐風設計便覧,1991、本
州四国連絡橋公団の本四連絡橋耐風設計基準,1976
および1993、日本建築学会:建築物荷重指針・同解
説,1993)、British Standard(参考文献:BS810
0, Part 1, 1986)、Australian Standard(参考文献:
SAA Loading Code, Part2: Wind loads, 1989)におい
て、観測データの多い都市部に対して風向別係数の導入
という形での規定が見られる程度である。しかも、これ
らの適用対象は、強風の成因が比較的日常的な低気圧の
通過に起因する地域のみであり、ハリケーン地域に対し
ては適用外である。
[0007] From the above, in order to design a safe and rational power transmission and distribution facility, it is necessary to sufficiently examine how strong and possibly the wind may blow from each construction point. desirable. However, in order to obtain the wind speed according to the wind direction that may occur in the future, such as the 50-year or 100-year return period value, data accumulated in the past is statistically processed, so that it is generally observed and accumulated at a meteorological station (meteorological station). It is necessary to use the data obtained. However, since the wind is greatly affected by the topography, the actual wind speed according to the wind direction at the construction site may be significantly different from the data at the nearby meteorological office. Therefore, it is difficult to estimate the wind speed according to the wind direction at any position between the meteorological offices, and in fact, the adoption of the wind speed according to the wind direction does not exist in the technical guidelines in the field of civil engineering and construction (see the following references). : Japan Highway Association Road Bridge Windproof Design Handbook, 1991, Honshu Shikoku Connecting Bridge Public Corporation Honshi Connecting Bridge Windproof Design Standard, 1976
And 1993, Architectural Institute of Japan: Building Load Guidelines / Commentary, 1993), British Standard (Reference: BS810)
0, Part 1, 1986), Australian Standard (references:
In the SAA Loading Code, Part2: Wind loads, 1989), there is only a regulation that can be seen in the form of introducing a coefficient for each wind direction in urban areas where there are many observation data. Moreover, these are applicable only to areas where strong winds are caused by relatively low pressure passage, and are not applicable to hurricane areas.

【0008】そこで本発明は、風向別風速について所望
の地点での推定値が読み取れる風向別基本風速マップ及
びその作成方法及び所望の地点での風向別風速を推定す
る方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a basic wind speed map for each wind direction by which an estimated value of the wind speed for each wind direction can be read, a method for creating the map, and a method for estimating the wind speed for each wind direction at a desired point. To do.

【0009】また、本発明は、測定対象である物理量に
ついて所望の地点での推定値が読み取れる物理量の等値
線図の作成方法及び測定対象である物理量の所望の地点
での値を推定する方法を提供することを目的とする。
The present invention also relates to a method of creating an isoline map of a physical quantity in which an estimated value of a physical quantity to be measured can be read, and a method of estimating the value of the physical quantity to be measured at a desired point. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】かかる目的を達成するた
め、請求項1記載の風向別基本風速マップは、推定され
る風向別風速の等風速線を地図上に描いて成るものであ
る。
In order to achieve the above object, the basic wind speed map according to the wind direction according to the first aspect of the present invention is formed by drawing iso wind speed lines of the estimated wind speed according to the wind direction on the map.

【0011】したがって、地図上で所望の地点を探して
当該地点の等風速線を読み取れば、当該地点における風
向別風速の推定値を極めて容易に得ることができる。こ
れにより、安全かつ合理的な構造物の設計に寄与でき
る。
Therefore, if a desired point is searched for on the map and the constant wind velocity line at that point is read, the estimated value of the wind speed for each wind direction at that point can be obtained very easily. This can contribute to a safe and rational structure design.

【0012】また、この風向別基本風速マップは、例え
ば請求項2記載の発明によって作成することができる。
請求項2記載の風向別基本風速マップの作成方法は、複
数の測定地点毎の風向別風速の実測定値を統計処理して
測定地点毎の風向別基本風速を求めるとともに、測定地
点間の地形の影響を反映させたシミュレーションまたは
実験を行って測定地点及び測定地点間における風向別風
速の仮想測定値を求めて、全ての測定地点において風向
別基本風速と仮想測定値とを一致させるように仮想測定
値を補正して測定地点間における推定風向別基本風速を
求め、当該推定風向別基本風速と風向別基本風速を用い
て隣接する等しい値または一定数値範囲に属する値を線
で結び等風速線を地図上に描くようにしている。
The basic wind speed map for each wind direction can be created by the invention according to claim 2, for example.
The basic wind speed map for each wind direction according to claim 2 statistically processes actual measurement values of wind speeds for each measurement point to obtain the basic wind speed for each measurement point, and at the same time, maps the topography between measurement points. A virtual measurement value of the wind speed for each wind direction between the measurement points is obtained by performing a simulation or experiment that reflects the effect, and virtual measurement is performed so that the basic wind speed for each wind direction matches the virtual measurement value at all measurement points. The estimated basic wind speed for each wind direction between the measurement points is calculated by correcting the values, and the estimated basic wind speed for each wind direction and the basic wind speed for each wind direction are used to connect adjacent equal values or values belonging to a certain numerical range with a line to form an equal wind speed line. I try to draw it on the map.

【0013】したがって、風向別風速に関する実測定値
と、適切なシミュレーション解析結果または実験結果を
もとに、風向別基本風速マップを容易に作成できる。
Therefore, the basic wind speed map for each wind direction can be easily created on the basis of the actual measurement value regarding the wind speed for each wind direction and the appropriate simulation analysis result or experimental result.

【0014】また、請求項3記載の風向別基本風速の推
定方法は、複数の測定地点毎の風向別風速の実測定値を
統計処理して測定地点毎の風向別基本風速を求めるとと
もに、測定地点間の地形の影響を反映させたシミュレー
ションまたは実験を行って測定地点及び測定地点間にお
ける風向別風速の仮想測定値を求めて、全ての測定地点
において風向別基本風速と仮想測定値とを一致させるよ
うに仮想測定値を補正して、測定地点間における所望の
地点の風向別基本風速を推定するようにしている。
In the method for estimating the basic wind speed for each wind direction according to claim 3, the actual measurement value of the wind speed for each wind direction at each of the plurality of measurement points is statistically processed to obtain the basic wind speed for each wind direction, and the basic wind speed for each measurement point is calculated. Perform a simulation or experiment that reflects the influence of the terrain between the measurement points to obtain virtual measurement values of the wind speed for each wind direction between the measurement points and match the basic wind speed for each wind direction with the virtual measurement value at all measurement points. Thus, the virtual measurement value is corrected to estimate the basic wind speed for each wind direction at a desired point between the measurement points.

【0015】この場合、風向別基本風速マップの作成を
伴わずとも、測定地点間の任意の位置について、地形影
響が反映された風向別基本風速の推定値を計算によって
得ることができる。
In this case, it is possible to obtain the estimated value of the basic wind speed for each wind direction, which reflects the influence of the topography, at any position between the measurement points without the need to create the basic wind speed map for each wind direction.

【0016】また、請求項4記載の物理量の等値線図の
作成方法は、複数の測定地点における測定対象である物
理量の実測定値を求め又は実測定値を統計処理すること
で測定地点毎の基準値を求めるとともに、測定地点間の
地形の影響を反映させたシミュレーションまたは実験を
行って測定地点及び測定地点間における物理量の仮想測
定値を求めて、全ての測定地点において実測定値または
基準値と仮想測定値とを一致させるように仮想測定値を
補正して測定地点間における推定物理量値を求め、実測
定値または基準値と推定物理量値とを用いて隣接する等
しい値または予め定めた数値範囲に属する値を線で結び
等値線を地図上に描くようにしている。
Further, the method of creating the contour map of physical quantity according to claim 4 is to obtain the actual measurement value of the physical quantity to be measured at a plurality of measurement points or statistically process the actual measurement value to obtain a standard for each measurement point. In addition to obtaining the value, a simulation or experiment that reflects the influence of the topography between the measurement points is performed to obtain the virtual measurement value of the physical quantity between the measurement points and the measurement points, and the actual measurement value or the reference value and the virtual value at all measurement points Calculate the estimated physical quantity value between the measurement points by correcting the virtual measured value so that the measured value matches, and use the actual measured value or the reference value and the estimated physical quantity value to make an adjacent equal value or belong to a predetermined numerical range. I connect the values with a line and draw an isoline on the map.

【0017】この場合、風向別風速の推定に限らず、測
定可能な物理量全般について測定地点間の任意の位置に
おける値を推定するマップを作成できる。特に、地形の
影響を受けて大きく変化し得る物理量の推定に有用であ
る。
In this case, not only the estimation of the wind speed for each wind direction but also a map for estimating the value at any position between measurement points can be created for all measurable physical quantities. In particular, it is useful for estimating physical quantities that can change significantly under the influence of topography.

【0018】また、請求項5記載の物理量の推定方法
は、複数の測定地点における測定対象である物理量の実
測定値を求め又は実測定値を統計処理することで測定地
点毎の基準値を求めるとともに、測定地点間の地形の影
響を反映させたシミュレーションまたは実験を行って測
定地点及び測定地点間における物理量の仮想測定値を求
めて、全ての測定地点において実測定値または基準値と
仮想測定値とを一致させるように仮想測定値を補正し
て、測定地点間における所望の地点の物理量の値を推定
するようにしている。
Further, the physical quantity estimating method according to claim 5 obtains a reference value for each measurement point by obtaining an actual measurement value of the physical quantity to be measured at a plurality of measurement points or by statistically processing the actual measurement value, Perform a simulation or experiment that reflects the influence of topography between measurement points to obtain virtual measurement values of the physical quantity between the measurement points and the measurement points, and match the actual measurement value or reference value with the virtual measurement value at all measurement points The virtual measurement value is corrected so that the value of the physical quantity at a desired point between the measurement points is estimated.

【0019】この場合、物理量の等値線図の作成を伴わ
ずとも、測定地点間の任意の位置について、地形影響が
反映された物理量の推定値を計算によって得ることがで
きる。
In this case, it is possible to obtain an estimated value of the physical quantity in which the influence of the topography is reflected at an arbitrary position between the measurement points without making the contour map of the physical quantity.

【0020】[0020]

【発明の実施の形態】以下、本発明の構成を図面に示す
実施形態に基づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The structure of the present invention will be described below in detail based on the embodiments shown in the drawings.

【0021】図1から図14に本発明の風向別基本風速
マップ及びその作成方法の実施の一形態を示す。この風
向別基本風速マップは、推定される風向別風速の等風速
線を地図上に描いて成るものである。この風向別基本風
速マップは、例えば図5に示す流れで作成される。即
ち、複数の測定地点毎の風向別風速の実測定値を統計処
理して測定地点毎の風向別基本風速を求める(ステップ
1)。また、測定地点間の地形の影響を反映させたシミ
ュレーションまたは実験を行って測定地点及び測定地点
間における風向別風速の仮想測定値を求める(ステップ
2)。そして、全ての測定地点において風向別基本風速
と仮想測定値とを一致させるように仮想測定値を補正し
て測定地点間における推定風向別基本風速を求める(ス
テップ3)。そして、風向別基本風速と推定風向別基本
風速を用いて隣接する等しい値または一定数値範囲に属
する値を線で結ぶようにして、推定される風向別基本風
速の等風速線を地図上に描くようにする(ステップ
4)。これにより、風向別基本風速マップが作成され
る。
1 to 14 show an embodiment of a basic wind velocity map for each wind direction and a method for creating the same according to the present invention. This basic wind speed map according to wind direction is formed by drawing iso-velocity lines of estimated wind speed according to wind direction on the map. This basic wind speed map for each wind direction is created, for example, according to the flow shown in FIG. That is, the actual measurement value of the wind speed for each wind direction at each of the plurality of measurement points is statistically processed to obtain the basic wind speed for each wind direction at each measurement point (step 1). In addition, a simulation or experiment that reflects the influence of the topography between the measurement points is performed to obtain virtual measurement values of the wind speed for each wind direction between the measurement points (step 2). Then, the virtual measured values are corrected so that the wind direction-specific basic wind speeds and the virtual measured values match at all the measurement points, and the estimated wind direction-specific basic wind speeds between the measurement points are obtained (step 3). Then, using the basic wind speed for each wind direction and the estimated basic wind speed for each wind direction to connect adjacent equal values or values belonging to a certain numerical range with a line, draw an iso-velocity line of the estimated basic wind speed for each wind direction on the map. (Step 4). As a result, a basic wind speed map for each wind direction is created.

【0022】先ず、ステップ1について説明する。ここ
で、基本風速とは、使用目的(例えば構造物の設計の指
標等)に適するように設定される風速である。測定地点
毎の風向別基本風速は、例えば、使用目的に適合するよ
うな一定の基準を予め定めておき、当該一定基準に従っ
て、測定地点の実測定値を統計処理することで求めるこ
とができる。本実施形態では、風向別基本風速として、
再現期間値(統計的にみれば再現期間中に1度しか発生
し得ないような風向別最大風速)を求めるようにする。
ただし、本発明にいう統計処理とは、再現期間値を求め
るものに限定されるものではなく、例えば実測定値の平
均値や最大値の算出などを含み、場合によっては実測定
値の平均値や最大値などを風向別基本風速として設定し
ても良い。ここで、再現期間としては50年若しくは1
00年が一般的であり、本実施形態では100年再現期
間値を採用する。再現期間値は、過去の実測定値(必ず
しも再現期間に満たなくても良い)に基いて、既知また
は新規の数学的手法を用いた統計処理により求めること
ができる。
First, step 1 will be described. Here, the basic wind speed is a wind speed set so as to be suitable for the purpose of use (for example, an index for designing a structure). The basic wind speed for each wind direction at each measurement point can be obtained, for example, by presetting a certain standard suitable for the purpose of use and statistically processing the actual measurement value at the measurement point according to the certain standard. In this embodiment, as the basic wind speed for each wind direction,
The reproduction period value (statistically, the maximum wind speed for each wind direction that can occur only once during the reproduction period) is calculated.
However, the statistical processing referred to in the present invention is not limited to obtaining the reproduction period value, and includes, for example, calculation of an average value or maximum value of actual measurement values, and in some cases, an average value or maximum value of actual measurement values. A value or the like may be set as the basic wind speed for each wind direction. Here, the return period is 50 years or 1
The year 00 is common, and in the present embodiment, a 100-year reproduction period value is adopted. The reproduction period value can be obtained by statistical processing using a known or new mathematical method based on the past actual measurement value (which does not necessarily have to be shorter than the reproduction period).

【0023】過去の実測定値を収集するにあたっては、
例えば日本各地にある気象官署(気象台)のデータの利
用が好適である。各気象官署では種々の観測がなされて
おり、信頼性の高いデータが蓄積されているからであ
る。以下、本実施形態でいう測定地点とは、気象官署が
ある地点を指す。より具体的には本実施形態では表2に
示すデータを利用する。
In collecting past actual measurement values,
For example, it is preferable to use data from meteorological offices (meteorological stations) located in various parts of Japan. This is because various observations have been made at each meteorological office, and highly reliable data has been accumulated. Hereinafter, the measurement point in the present embodiment refers to a point where the meteorological office is located. More specifically, in this embodiment, the data shown in Table 2 is used.

【表2】 [Table 2]

【0024】ここで、表2に示すオリジナルデータの風
向は16方向であるが、例えば本実施形態では風向を8
方向に設定する。これは、数十年程度の統計では発現す
る強風風向の偶然性が大きいので、偶然性による誤差の
発生を少なくするために、ある程度の幅を持たせるよう
に片側22.5度までの範囲のデータを用いて統計処理
することが好ましいと考えられるからである。この場合
の風向の区分を表3に示す。NNE、ENE、ESE、
SSE、SSW、WSW、WNW、NNWは2つの風向
区分に属している。
Here, the wind direction of the original data shown in Table 2 is 16 directions. For example, in the present embodiment, the wind direction is 8 directions.
Set to the direction. This is because the strong wind direction that occurs in statistics for several decades has a large contingency, so in order to reduce the occurrence of errors due to contingency, the data of the range up to 22.5 degrees on one side should be provided with a certain width. This is because it is considered preferable to use them for statistical processing. Table 3 shows the classification of wind directions in this case. NNE, ENE, ESE,
SSE, SSW, WSW, WNW and NNW belong to two wind direction sections.

【表3】 [Table 3]

【0025】例えば本実施形態では、100年再現期間
値を求める準備として、先ず表2に示すデータから各気
象官署における風向別の年最大風速を抽出する。ここ
で、風速計の変遷に伴う風速の測器補正を行うことが、
データの信頼性を高めるために好ましい。例えば本実施
形態では、風車型自記風向風速計を基準風速計として、
表2に示すオリジナルデータまたは表2に示すデータか
ら抽出された気象官署毎の風向別の年最大風速に対し
て、表4に示す補正方法に従って測器補正を行うように
する。
For example, in this embodiment, as preparation for obtaining the 100-year reproduction period value, first, the maximum annual wind speed for each wind direction at each meteorological station is extracted from the data shown in Table 2. Here, it is possible to correct the wind velocity with the transition of the anemometer.
It is preferable for increasing the reliability of data. For example, in the present embodiment, the wind turbine type self-recording wind anemometer is used as the reference anemometer,
The original data shown in Table 2 or the annual maximum wind speed for each wind direction for each meteorological office extracted from the data shown in Table 2 is corrected by the instrument according to the correction method shown in Table 4.

【表4】 [Table 4]

【0026】さらに、気象官署ごとに風速計の高さや周
辺の地表面粗度が異なるため、それらを補正して統一化
することが、データの信頼性をより高めるために好まし
い。例えば本実施形態では、風速計高度を10mに統一
するようにし、地表面粗度を粗度IIに統一するように
する。例えば、ある高さ以上の上空では地表面の摩擦の
影響のない傾度風が吹いており、その高さ以上では風速
は一定で、その高さは地表面粗度で決まるという仮定を
設ける。そして、数式1を用いて、表2に示すデータか
ら抽出された各気象官署の風向別の年最大風速であって
上述した測器補正がなされたものについて、風速計高度
を10mに統一する補正と地表面粗度を粗度IIに統一
する補正を行う。
Further, since the height of the anemometer and the surface roughness of the surroundings are different for each meteorological office, it is preferable to correct and standardize them in order to further enhance the reliability of the data. For example, in this embodiment, the anemometer altitude is unified to 10 m, and the ground surface roughness is unified to roughness II. For example, it is assumed that there is a gradient wind that is not affected by the friction of the ground surface above a certain height, and that the wind speed is constant above the height and that height is determined by the surface roughness. Then, using Formula 1, for the yearly maximum wind speed for each wind direction of each meteorological office that is extracted from the data shown in Table 2 and for which the above-described instrument correction has been performed, correction that unifies the anemometer altitude to 10 m And the surface roughness is corrected to the roughness II.

【数1】 ここで、 V:補正された風速[m/S] V:観測された風速[m/S] h:気象官署の実際の風速計高度[m] Z:気象官署周辺の地表面粗度に対応する傾度風の下
限高度[m] ZG0:基準化する地表面粗度に対応する傾度風の下限
高度[m] α:気象官署周辺の地表面粗度に対応するべき指数 α:基準化する地表面粗度に対応するべき指数 である。
[Equation 1] Where: V 0 : corrected wind speed [m / S] V: observed wind speed [m / S] h: actual anemometer altitude of the meteorological station [m] Z G : surface roughness around the meteorological station Lower limit altitude [m] Z G0 of gradient wind corresponding to [m] Z G0 : Lower limit altitude of gradient wind corresponding to the standardized surface roughness [m] α: Exponent α 0 corresponding to the surface roughness around the meteorological station: It is an index that should correspond to the standardized surface roughness.

【0027】地表面粗度と傾度風の下限高度Zおよび
べき指数αの対応は、例えば表5に示す日本建築学会の
建築物荷重指針・同解説に従う。なお、本実施形態で
は、基準化する地表面粗度はIIとするので、ZG0
350m、α=0.15となる。
Correspondence between the ground surface roughness, the lower limit altitude Z G of gradient wind and the exponent α is in accordance with, for example, the Building Load Guidelines and their explanations of the Architectural Institute of Japan shown in Table 5. In this embodiment, since the standardized surface roughness is II, Z G0 =
350 m, α 0 = 0.15.

【表5】 [Table 5]

【0028】地表面粗度は、例えば各風向毎各年毎に設
定する。年次別風向別の各地表面粗度を周辺地域の地表
面の状況に応じて定めるにあたっては、例えば気象官署
観測環境資料集のうちの写真集を利用するのが好適であ
る。当該写真集から、観測環境の変遷を知ることができ
るからである。当該写真集は、表6に示すように、最近
の昭和60年次(撮影は昭和60年前後、ただし大阪管
区気象台管内については平成2年前後)の他に、昭和5
0年次(撮影は昭和55年前後)及び昭和40年次(撮
影は昭和46年前後)の気象官署の周辺写真から構成さ
れている。
The surface roughness is set, for example, for each wind direction and for each year. In order to determine the surface roughness for each year by wind direction according to the condition of the ground surface in the surrounding area, it is preferable to use, for example, a photograph collection of the observation environment data collection of the Meteorological Office. This is because the changes in the observation environment can be known from the photo book. As shown in Table 6, the photo book is in addition to the latest year 1985 (taken around 1985, but for the Osaka District Meteorological Observatory, around 1990),
It is composed of photographs around the meteorological office in the 0th year (photographed around 1980) and in the 1st year 1965 (photographed around 1946).

【表6】 [Table 6]

【0029】地表面粗度区分は、例えば表7に示す日本
建築学会の建築物荷重指針・同解説に従う。
The ground surface roughness classification complies with, for example, the building load guideline / commentary of the Japan Institute of Architecture shown in Table 7.

【表7】 [Table 7]

【0030】また、地表面粗度は中間値も用いて定める
ことが好ましい。例えば、8風向毎の地表面粗度はその
風向の粗度を示すのでそのまま用い、NNE、ENE、
ESE、SSE、SSW、WSW、WNW、NNWのよ
うに間にある風向は両隣の地表面粗度の中間値(平均
値)を使用する。また、各年毎の地表面粗度は、例えば
各年次間を内挿した値を使用する。例えば、昭和40年
次が地表面粗度IIであり、昭和50年次が地表面粗度
IIIである場合に、昭和48年の地表面粗度を求める
には、次式に示すようになる。
Further, it is preferable to determine the ground surface roughness by using an intermediate value. For example, the ground surface roughness for every 8 wind directions indicates the roughness of the wind direction, so it is used as it is, NNE, ENE,
For ESE, SSE, SSW, WSW, WNW, NNW, the intervening wind direction uses the intermediate value (average value) of the surface roughness on both sides. As the surface roughness for each year, for example, a value obtained by interpolating each year is used. For example, when the surface roughness of Year 1965 is II and the surface roughness of Year 1950 is III, in order to obtain the surface roughness of 1948, the following formula is used. .

【数2】昭和48年の地表面粗度 ={昭和40年次の
地表面粗度×(昭和50年次の撮影年−地表面粗度を求
める対象年)+昭和50年次の地表面粗度×(地表面粗
度を求める対象年−昭和40年次の撮影年)}/(昭和
50年次の撮影年−昭和40年次の撮影年)={2×
(55−48)+3×(48−46)}/(55−4
6)≒2.2
[Equation 2] Surface roughness in 1973 = {Surface roughness in 1965 × (1950 shooting year-target year for which surface roughness is sought) + 1975 surface surface Roughness x (year for which surface roughness is obtained-shooting year in 1965)} / (shooting year in 1975-shooting year in 1965) = {2x
(55-48) + 3 × (48-46)} / (55-4
6) ≈ 2.2

【0031】なお、昭和40年次以前ならびに昭和60
年以降の地表面粗度は一律とする。昭和40年次は昭和
46年前後に、昭和50年次は昭和55年前後に、昭和
60年次は昭和60年前後(ただし、大阪管区気象台管
内については平成2年前後)に撮影されており、これら
の事実を反映させて年別風向別地表面粗度区分を決める
ようにする。
It should be noted that before 1965 and 1960
The surface roughness after 1 year is uniform. The 1940s were taken around 1946, the 1950s around 1955, and the 1960s around 1960 (however, for the Osaka District Meteorological Observatory jurisdiction around 1990). , Reflecting these facts, determine the surface roughness classification according to yearly wind direction.

【0032】以上の内容で求められた各気象官署の8風
向別の年最大風速を用いて、次に年最大風速の再現期間
値を算出する。例えば本実施形態では、再現期間値を求
めるためにあたり、Gumbelの極値分布の考え方に
従い、数式3を用いる。ただし、再現期間値の算出方法
はこれに限定されるものではなく、他の既知または新規
の数学的手法を用いても良い。
Using the yearly maximum wind speed for each of the eight wind directions of each meteorological office obtained as described above, the reproduction period value of the annual maximum wind speed is then calculated. For example, in this embodiment, in order to obtain the reproduction period value, Expression 3 is used in accordance with the idea of the extreme value distribution of Gumbel. However, the calculation method of the return period value is not limited to this, and another known or new mathematical method may be used.

【数3】 ここで、 T:再現期間(年) V:再現期間T年の年最大風速の再現期間値[m/
s] VAVE:資料年数N年の年最大風速の平均値 S:資料年数N年の年最大風速の標準偏差 S:yの標準偏差 yAVE:yの平均値 ただし、
[Equation 3] Here, T: Return period (year) V T : Return period Return period value of annual maximum wind speed in year T [m /
s] V AVE: material life N years of annual maximum wind speed of the average value S v: material life N years of annual maximum wind speed standard deviation of the S y: y i standard deviation y AVE: Average value of y i However,

【数4】 である。[Equation 4] Is.

【0033】上記の計算式から、100年再現期間値を
求めた計算結果を表8から表10に示す。なお、同表中
の「全風向」とは、全ての風向のデータから年最大風速
を抽出し、数式3および数式4を用いて算出したもの
で、本実施形態での風向別基本風速マップの作成には用
いなくても良い。
Tables 8 to 10 show the calculation results of the 100-year reproduction period values obtained from the above formulas. In addition, "all wind directions" in the same table is the one obtained by extracting the maximum yearly wind speed from the data of all wind directions and calculating it by using Expression 3 and Expression 4, and the basic wind speed map for each wind direction in the present embodiment. It does not have to be used for creation.

【表8】 [Table 8]

【表9】 [Table 9]

【表10】 [Table 10]

【0034】次に、ステップ2について説明する。本実
施形態におけるシミュレーションまたは実験とは、地形
を考慮した擬似環境の中での気流の振る舞いを解析する
ものである。シミュレーションは、例えばコンピュータ
解析によって実現でき、実験は、例えば模型を用いた風
洞実験によって実現できる。例えば本実施形態では、風
速その他の物理量を未知数とした方程式を基に流れのコ
ンピュータ解析を行う。
Next, step 2 will be described. The simulation or experiment in this embodiment is to analyze the behavior of the airflow in a simulated environment in consideration of the topography. The simulation can be realized by, for example, computer analysis, and the experiment can be realized by, for example, a wind tunnel experiment using a model. For example, in the present embodiment, the computer analysis of the flow is performed based on the equation in which the wind speed and other physical quantities are unknowns.

【0035】ここで、流体解析においては、乱流エネル
ギーκとその消散率εを用いた乱流モデル(標準κ−ε
モデル)の採用が一般的である。本実施形態では、この
標準κ−εモデルに基づく気流解析を採用する。なお、
標準κ−εモデルの他にも、各々特性の異なる種々の変
形型が提案されており(例えば、Shihのモデル(参
考文献:Shih, T.H., Zhu, J. and Lumley, J.L.: A ne
w Reynolds stress algebraic equation model, Compu
t. Methods Appl. Mech. Eng., Vol.125, 1995,pp.287-
302)等)、標準κ−εモデル以外の乱流モデルを必要
に応じて用いても良いのは勿論である。なお、各乱流モ
デルを用いて解析を行った際の精度や妥当性は、使用経
験に基く以外にないことが知られている。
Here, in fluid analysis, a turbulent flow model (standard κ-ε) using the turbulent flow energy κ and its extinction coefficient ε is used.
(Model) is generally adopted. In this embodiment, an airflow analysis based on this standard κ-ε model is adopted. In addition,
In addition to the standard κ-ε model, various modified types with different characteristics have been proposed (for example, Shih's model (reference: Shih, TH, Zhu, J. and Lumley, JL: A ne.
w Reynolds stress algebraic equation model, Compu
t. Methods Appl. Mech. Eng., Vol.125, 1995, pp.287-
302) etc.), and turbulence models other than the standard κ-ε model may be used as required. It is known that the accuracy and validity of the analysis using each turbulence model are based on experience.

【0036】例えば本実施形態の気流解析に用いる基礎
方程式は、非圧縮粘性流体で、浮力や温度の影響などは
考慮しない場合の運動方程式と、質量保存式である。こ
こで、本実施形態の乱流モデルとして採用した標準κ−
εモデルでは、地形が全くの水平面とした場合に、風下
に行くにしたがって地表面付近の境界層が発達する現象
が生じる。この事自体は、境界層が発達していくという
現象を正しく表しているものと考えられるが、台風時の
ように絶えず上空からエネルギーの供給があり、平坦地
上での風速は水平位置によらず同一分布と仮定するよう
な場合、次のような人為的な圧力勾配を付加して、境界
層の発達を抑制しておくのが適切と考えられる。即ち、
気流の流入方向およびその流速をx軸方向およびuと
し、それと水平直角方向およびその流速をy軸方向およ
びvとし、鉛直方向およびその流速をz軸方向およびw
としたとき、解析領域の流入部で、u=U(z),v
=0,w=0,∂/∂x=0,∂/∂y=0を仮定し定
常状態とすると、x軸方向の運動方程式より数式5が求
められる。
For example, the basic equations used for the air flow analysis of the present embodiment are an incompressible viscous fluid, a motion equation in the case of not considering the influence of buoyancy and temperature, and a mass conservation equation. Here, the standard κ− adopted as the turbulence model of the present embodiment.
In the ε model, a phenomenon occurs in which the boundary layer near the ground surface develops further downwind when the terrain is entirely horizontal. It is thought that this fact correctly represents the phenomenon that the boundary layer develops, but as in the case of typhoons, there is a constant supply of energy from the sky, and the wind speed on flat ground does not depend on the horizontal position. In the case of assuming the same distribution, it is considered appropriate to add the following artificial pressure gradient to suppress the development of the boundary layer. That is,
The inflow direction of the air flow and its flow velocity are x-axis direction and u, the horizontal right-angle direction and its flow velocity are y-axis direction and v, and the vertical direction and its flow velocity are z-axis direction and w.
, U = U I (z), v at the inflow part of the analysis region
Assuming = 0, w = 0, ∂ / ∂x = 0, and ∂ / ∂y = 0 to be in a steady state, Equation 5 can be obtained from the equation of motion in the x-axis direction.

【数5】 ここで、 p:圧力 v:動粘性係数 z:鉛直方向座標 である。[Equation 5] Here, p: pressure v t : kinematic viscosity coefficient z: vertical coordinate.

【0037】入力風速の鉛直分布形状u=U(z)を
保つためには、この−(1/ρ)(∂p/∂x)を外力
fと考えて、数式6をx軸方向の運動方程式のみに付加
すれば良い。
In order to maintain the vertical distribution shape u = U I (z) of the input wind speed, this − (1 / ρ) (∂p / ∂x) is considered as the external force f, and Equation 6 is applied in the x-axis direction. It should be added only to the equation of motion.

【数6】 [Equation 6]

【0038】本実施形態で用いる3次元非定常の気流シ
ミュレーションコード(電力中央研究所水理部開発)
は、例えば次の計算をコンピュータに実行させるもので
ある。即ち、上述した基礎方程式すべてを地形に沿った
3次元一般曲線座標系に変換し、時間変化項はクランク
・ニコルソン法、運動方程式の移流項は3次風上法、κ
−ε方程式の移流項は1次風上法、また、すべての拡散
項はクロス微分を考慮した中央差分法で、それぞれ完全
陰解法で差分化した後、SIMPLE法に従って流速、
圧力、およびκ、εを計算する。
Three-dimensional unsteady airflow simulation code used in this embodiment (developed by Hydraulic Department, Central Research Institute of Electric Power Industry)
Is for causing a computer to execute the following calculation, for example. That is, all of the basic equations described above are converted into a three-dimensional general curve coordinate system along the terrain, the time-varying term is the Crank-Nicolson method, the advection term of the equation of motion is the third-order upwind method, κ
-The advection term of the ε equation is the first-order upwind method, and all the diffusion terms are the central difference method considering the cross differentiation. After the difference is made by the complete implicit method, the flow velocity is calculated according to the SIMPLE method.
Calculate pressure and κ, ε.

【0039】ここで、境界条件としては、例えば地表面
でκ=ε=0、τ(せん断応力)=−ρv∂u/∂Z
が成り立つものとする。なお、τは例えば地表面の粗度
高さを与えた流速の対数則により求まる摩擦速度で与え
る。また例えば、上空と側面はフリースリップ条件、流
入部では流速はu=U(z)、v=w=0とし、κ、
εはこの流速分布に適合する分布を与え、その後一定距
離の水平部を設けるようにする。さらに、流出部は逆流
が生じないようにした自由流出条件とする。なお、初期
条件は静止状態とし、流入流速、κ、εを一定時間で増
加させ、定常となるまで計算を行うものとする。
Here, as boundary conditions, for example, κ = ε = 0, τ (shear stress) = − ρv t ∂u / ∂Z on the ground surface.
Shall hold. It should be noted that τ is given as a friction velocity obtained by the logarithmic law of the flow velocity given the roughness height of the ground surface. Further, for example, the sky and the side surface are free-slip conditions, the flow velocity at the inflow portion is u = U I (z), v = w = 0, and κ,
ε gives a distribution that fits this flow velocity distribution, and then a horizontal portion with a constant distance is provided. In addition, the outflow section shall have free outflow conditions that prevent backflow. Note that the initial condition is a stationary state, the inflow velocity, κ, and ε are increased for a certain period of time, and calculation is performed until it becomes steady.

【0040】また、解析領域として例えば日本を4ブロ
ック(北海道、東北、関東・中部・北陸・近畿、
中国・四国・九州)に分けて(表11及び図6〜図9
参照)、各解析領域毎に8風向からの気流シミュレーシ
ョンを行う。
As an analysis area, for example, 4 blocks of Japan (Hokkaido, Tohoku, Kanto / Chubu / Hokuriku / Kinki,
It is divided into Chugoku / Shikoku / Kyushu (Table 11 and Figures 6-9).
Air flow simulation from 8 wind directions for each analysis region.

【表11】 [Table 11]

【0041】ここで、本実施形態の乱流モデルとして採
用した標準κ−εモデルは、一般に、温度・気圧・空気
密度など気象学的要因の無視できない数10kmオーダ
ー以上の大領域に適用するのは、実現象の再現性の観点
からは問題が多い。しかしながら、本実施形態における
気流解析は、地形影響を考慮した測定地間における風向
別基本風速を推定することを目的としており、一般の気
流解析のように同一時刻における広域の風速分布の予測
を目的とするものではない。また、測定地(気象官署)
における風向別基本風速(本実施形態では再現期間値)
は、必ずしも同一の台風によって決められたものではな
く、地形影響と気象学的強風発生条件が重なった結果と
しての観測結果によるものである。したがって、一般に
懸念される問題は無視でき、表11及び図6〜図9に示
すような数100km四方の領域の解析が可能である。
Here, the standard κ-ε model adopted as the turbulent flow model of the present embodiment is generally applied to a large region of several tens of kilometers or more where meteorological factors such as temperature, pressure and air density cannot be ignored. Is problematic in terms of reproducibility of actual phenomena. However, the airflow analysis in the present embodiment is intended to estimate the basic wind speed for each wind direction between measurement sites in consideration of the influence of topography, and to predict the wind speed distribution over a wide area at the same time as in general airflow analysis. Not meant to be. Measurement location (meteorological office)
Basic wind speed for each wind direction (reproduction period value in this embodiment)
Is not necessarily determined by the same typhoon, but is the result of observation as a result of overlapping topographic effects and meteorological strong wind conditions. Therefore, problems that are of general concern can be ignored, and an area of several 100 km square as shown in Table 11 and FIGS. 6 to 9 can be analyzed.

【0042】また、水平方向のメッシュ分割は、例えば
10〜20km規模の地形影響を反映できるように、メ
ッシュ幅を例えば2kmに設定する。また、水平方向の
各メッシュ点の標高値は、例えば国土地理院発行の数値
地図をもとに定めることが好適である。また、当該数値
地図は50m間隔で標高が与えられており、水平方向2
kmメッシュの各点を中心として周囲に位置する50m
メッシュの各点を含めた合計9点の標高値の平均を用い
ることがより好ましい。この場合、水平方向の各メッシ
ュ点の標高値が、局所的な地形の凹凸に引きずられてし
まうことを回避できる。
In the horizontal mesh division, the mesh width is set to, for example, 2 km so that the influence of the terrain on the scale of 10 to 20 km can be reflected. The elevation value of each horizontal mesh point is preferably determined based on, for example, a numerical map issued by the Geographical Survey Institute. In addition, the digital map is provided with elevations at intervals of 50 m, and the elevation is 2
50m around each point of the km mesh
It is more preferable to use the average of the elevation values of 9 points in total including each point of the mesh. In this case, it is possible to prevent the elevation value of each horizontal mesh point from being dragged by the unevenness of the local topography.

【0043】また、入口条件は、殆んど海からであり、
粗度Iの鉛直プロファイルとし、例えば設計風速程度を
入力条件とする。なお、陸続きの個所の条件設定は個別
に詳細検討して、例えば海からなだらかなスロープを設
ける等を行うのが好適である。
The entrance conditions are almost from the sea,
A vertical profile of roughness I is used, and for example, a design wind speed is used as an input condition. In addition, it is preferable that the condition setting of the continuation of land should be individually examined in detail, and for example, a gentle slope should be provided from the sea.

【0044】また、地表面粗度については、例えば、海
は粗度I、陸地は一律粗度IIIに設定するのが好適で
あることが、本発明者等が種々実験・検討した結果知見
された。ただし、海を粗度I、平地を粗度II、山岳地
を粗度IIIに設定することも可能である。
Regarding the surface roughness, for example, it is found from the results of various experiments and studies by the present inventors that it is preferable to set the sea surface roughness I and the land surface to the uniform roughness III. It was However, it is possible to set the sea to the roughness I, the flat land to the roughness II, and the mountainous area to the roughness III.

【0045】また、鉛直方向のメッシュ分割を決めるに
あたって、水平方向メッシュ間隔との比が極端に小さく
なるのを避けるため、本発明者等が実地形で種々検討を
行ったところ、水平方向メッシュ幅が2kmであれば、
最下層を地表から100mとし、等間隔で500mまで
上げていき、それ以上は等比級数的に幅を広げていくの
が、計算効率と精度の両面から適していることが確認さ
れた。最下層のメッシュ点以下は、例えば数式1及び表
5を用いて地表面粗度にあわせたべき指数で内挿して、
任意の地表高における風速を算出するものとする。例え
ば本実施形態では、ステップ1において風速計高度を1
0mに統一する補正と地表面粗度を粗度IIに統一する
補正を行っているので、例えば地表高100mにおける
気流解析値を数式1を用いて地表高10m及び粗度II
に修正して内挿に利用するようにする。この方法と、実
際に地表高100m以下にメッシュ点を設けた場合で、
ほとんど違いのないことを地表高50m位置について確
認している。
Further, in determining the mesh division in the vertical direction, in order to prevent the ratio with the horizontal mesh interval from becoming extremely small, the inventors of the present invention conducted various examinations on actual terrain, and found that the horizontal mesh width Is 2 km,
It has been confirmed that it is suitable from the viewpoint of both calculation efficiency and accuracy to set the bottom layer to 100 m from the surface of the earth, raise it to 500 m at equal intervals, and further increase the width in a geometric progression. Below the mesh point of the bottom layer, for example, using Equation 1 and Table 5, interpolating with a power index that matches the ground surface roughness,
The wind speed at any surface height shall be calculated. For example, in this embodiment, the anemometer altitude is set to 1 in step 1.
Since the correction to unify to 0 m and the correction to unify the surface roughness to Roughness II are made, for example, the air flow analysis value at a surface height of 100 m is calculated by using the mathematical formula 1, and the ground surface height is 10 m and the roughness II.
To be used for interpolation. With this method and the case where mesh points are actually provided below the surface height of 100 m,
It has been confirmed that there is almost no difference at a ground surface height of 50 m.

【0046】4分割された領域(北海道、東北、
関東・中部・北陸・近畿、中国・四国・九州)の各々
について、8方向からの気流解析を行ったうちの南風に
ついての例(地上高さ100mでの水平断面風速ベクト
ルコンター図)を図10から図13に示す。なお、本実
施形態の気流解析結果である風速分布は、水平方向2k
mメッシュ点の地表高10mにおける各気流解析値(即
ち、離散した有限点の気流解析値)を指しているが、メ
ッシュを更に細分化しても良く、またメッシュ間を内挿
(例えば直線内挿)して、メッシュ点及びメッシュ点間
を含んだ任意点の気流解析値が得られるようにしても良
い。
Area divided into four (Hokkaido, Tohoku,
Figure showing an example of south winds (horizontal cross-section wind velocity vector contour map at 100m above ground) of airflow analysis from 8 directions for each of Kanto, Chubu, Hokuriku, Kinki, and Chugoku, Shikoku, Kyushu) 10 to 13 show. The wind velocity distribution, which is the result of the air flow analysis of this embodiment, is 2 k in the horizontal direction.
Although each airflow analysis value (that is, an airflow analysis value at a discrete finite point) at a ground surface height of 10 m at m mesh points is indicated, the mesh may be further subdivided, and interpolation between meshes (for example, linear interpolation). ), And the airflow analysis value at any point including the mesh points and between the mesh points may be obtained.

【0047】次に、ステップ3について説明する。ステ
ップ2のシミュレーションを行うにあたって入り口から
吹き込む風速レベルをどの程度に設定するかは任意であ
り、測定地点(本実施形態では気象官署位置)における
推定風向別基本風速(気流解析値)と、ステップ1で求
めた風向別基本風速(本実施形態では100年再現期間
値)とは、同一地点であっても差異が生じ得る。そこ
で、全ての測定地点において風向別基本風速と仮想測定
値とを一致させるように仮想測定値側を補正するように
する。当該補正方法としては、種々の数学的手法を用い
ることができ、特定の方法に限定されるものではない
が、例えば本実施形態では次のようにしている。
Next, step 3 will be described. When performing the simulation of step 2, it is arbitrary how much the wind speed level blown from the entrance is set, and the estimated basic wind speed for each wind direction (air flow analysis value) at the measurement point (in this embodiment, the position of the meteorological office) and step 1 There may be a difference with the basic wind speed for each wind direction (100-year reproduction period value in the present embodiment) calculated in step 1 even at the same point. Therefore, the virtual measured value side is corrected so that the basic wind speed for each wind direction matches the virtual measured value at all measurement points. Various mathematical methods can be used as the correction method, and the correction method is not limited to a specific method. For example, in the present embodiment, the correction method is as follows.

【0048】先ず、全ての測定地点における気流解析結
果と100年再現期間値との差異の二乗和が最小になる
ように、気流解析結果を比例的に増減して調整する。次
に、当該調整された気流解析結果に対して、各測定地点
での100年再現期間値との差異を無くすため、図14
に示すように気象官署位置を節点とした三角形のメッシ
ュ分割図を作成する。各三角形内では、有限要素法にお
けるのと同様の面積座標を用い、各節点における差異を
節点変位と同様に見立てて、三角形の節点および三角形
内の解析値を補正する。これにより、気象官署位置にお
いては強制的に100年再現期間値に一致するように気
流解析結果を補正し、気象官署位置間では徐々に補正量
を減らして隣接気象官署位置で補正量0がとなるように
補正操作を行なうようにする。その結果、気象官署位置
ではステップ1で求めた100年再現期間値(風向別基
本風速)となり、気象官署位置間は補正された気流解析
結果(推定風向別基本風速)で内挿されることになる。
ここで、図14における3角形メッシュの領域外につい
ては、基本的に補正は行わなくても良いが、3角形メッ
シュの境界線近傍については、風速値に段差が生じるの
を避けるため、数km〜10km位の間でなだらかに風
速値が変化するような操作を施すことが好ましい。
First, the airflow analysis results are proportionally increased / decreased and adjusted so that the sum of squares of the differences between the airflow analysis results and the 100-year reproduction period values at all the measurement points is minimized. Next, in order to eliminate the difference between the adjusted airflow analysis result and the 100-year return period value at each measurement point, FIG.
Create a triangular mesh division diagram with nodes at the meteorological office as shown in. Within each triangle, the same area coordinates as in the finite element method are used, and the difference at each node is regarded as a node displacement, and the nodes of the triangle and the analysis value within the triangle are corrected. As a result, at the meteorological office positions, the airflow analysis results are forcibly corrected so as to match the 100-year reproduction period value, and the correction amount is gradually reduced between the meteorological office positions so that the correction amount is 0 at the adjacent meteorological office positions. Correcting operation is performed so that As a result, the 100-year reproduction period value (basic wind speed by wind direction) obtained in step 1 is obtained at the positions of the meteorological office, and the corrected airflow analysis results (basic wind speed by estimated wind direction) are interpolated between the positions of the meteorological office. .
Here, outside the area of the triangular mesh in FIG. 14, basically no correction is required, but in the vicinity of the boundary of the triangular mesh, in order to avoid a step difference in the wind speed value, several kilometers are required. It is preferable to perform an operation such that the wind speed value changes gently in the range of about 10 km.

【0049】そして、ステップ4では、例えばコンピュ
ータによる既知または新規の画像処理技術を利用し、推
定風向別基本風速と風向別基本風速のうち隣接する等し
い値または一定数値範囲に属する値を線で結ぶようにし
て、推定される風向別基本風速のコンター(等風速線)
を日本地図上に描いて、図1から図4に示す風向別基本
風速マップを作成する(ステップ4)。なお、同図1か
ら図4は南風についての風速マップを示す。
In step 4, for example, a known or new image processing technique by a computer is used to connect a line between the estimated basic wind speeds by wind direction and the basic wind speeds by wind direction that are adjacent to each other or belong to a certain numerical value range. In this way, the contour of the estimated basic wind speed for each wind direction (iso-velocity line)
Is drawn on the map of Japan to create the basic wind speed map for each wind direction shown in FIGS. 1 to 4 (step 4). 1 to 4 show wind velocity maps for south winds.

【0050】この際、例えばコンピュータによる既知ま
たは新規の画像処理技術によって、全体にスムージング
操作を1、2回行った上で、等風速線を描くことが好ま
しい。また、領域分割のため陸続きの箇所を分断した地
域(例えば中国と近畿、関東と東北のような陸続きの個
所)については、両方の解析結果をもとに滑らかに連続
させる操作を施すことが好ましい。また、各等風速線が
示す風速値を容易に読み取れるように、各等風速線の近
傍には該当する風速値を付記することが好ましい。ま
た、風向別基本風速マップを見易くするために、風速別
または風速範囲別に各等風速線を色分けして表示するよ
うにしても良い。
At this time, it is preferable that the smoothing operation is performed once or twice on the whole by, for example, a known or new image processing technique by a computer, and then the contour line is drawn. In addition, for areas where land connections are divided for area division (for example, land connections such as China and Kinki, Kanto and Tohoku), it is preferable to perform a smooth continuous operation based on both analysis results. . Further, in order to easily read the wind speed value indicated by each constant wind speed line, it is preferable to additionally write the corresponding wind speed value near each constant wind speed line. Further, in order to make the basic wind speed map for each wind direction easier to see, each iso-wind speed line may be displayed in different colors for each wind speed or each wind speed range.

【0051】なお、本実施形態においては、表12に示
す気象官署位置の風速データは、同表に示す理由により
風向別基本風速マップの作成には用いていない。
In the present embodiment, the wind speed data at the position of the meteorological office shown in Table 12 is not used for creating the basic wind speed map for each wind direction for the reason shown in the same table.

【表12】 [Table 12]

【0052】以上のように本発明によれば、風向別基本
風速について所望の地点での推定値が読み取れる風向別
基本風速マップを作成することができる。この風向別基
本風速マップを利用すれば、例えば構造物の建設地また
は建設予定地を地図上で探して当該地点の等風速線を読
み取ることで、当該地点における風向別基本風速の推定
値を極めて容易に得ることができる。これにより、安全
かつ合理的な構造物の設計に寄与できる。特に強度面で
方向特性の強い送配電設備の設計への利用が好適であ
る。
As described above, according to the present invention, it is possible to create a basic wind speed map for each wind direction in which an estimated value at the desired point can be read for the basic wind speed for each wind direction. By using this basic wind speed map by wind direction, for example, by searching for the construction site or planned construction site of the structure on the map and reading the iso-velocity line of that point, the estimated value of the basic wind speed by wind direction at that point can be extremely calculated. Can be easily obtained. This can contribute to a safe and rational structure design. In particular, it is suitable for use in designing power transmission and distribution equipment having strong directional characteristics in terms of strength.

【0053】なお、上述の実施形態は本発明の好適な実
施の一例ではあるがこれに限定されるものではなく、本
発明の要旨を逸脱しない範囲において種々変形実施可能
である。例えば、風向別基本風速は、必ずしも上述の実
施形態のように再現期間値を用いるものに限られず、風
向別基本風速マップの用途によっては、例えば過去一定
期間の平均風速または過去一定期間内の最大風速などを
風向別基本風速として設定しても良い。また、上述の実
施形態では再現期間値として100年再現期間値を用い
たが、50年再現期間値を用いても良い。また、上述の
実施形態では、再現期間値の算出に年最大風速を用いる
ようにしたが、季別年最大風速を用いても良い。季別年
最大風速には、高温季(4月から11月)と低温季(1
2月から3月)の年最大風速とがあり、この季別年最大
風速を利用することで、高温季についての風向別基本風
速マップは台風に備えた設計に利用し、低温季について
の風向別基本風速マップは着雪に対する設計に利用する
といったことが可能となる。また例えば、各風向別に強
風の再現値計算を行った場合、データ総数の減少により
統計的に有意でない結果を導く可能性があることに対す
る詳細検討と、観測値が官署周辺地形、風速計、設置条
件などの影響を受けている可能性に対する詳細検討を行
い、必要があれば適切な補正を施すようにしても良い。
The above-described embodiment is an example of a preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention. For example, the basic wind speed by wind direction is not necessarily limited to the one using the reproduction period value as in the above-described embodiment, and depending on the use of the basic wind speed map by wind direction, for example, the average wind speed in the past certain period or the maximum in the past certain period. The wind speed or the like may be set as the basic wind speed for each wind direction. Further, although the 100-year reproduction period value is used as the reproduction period value in the above embodiment, a 50-year reproduction period value may be used. Further, in the above-described embodiment, the maximum annual wind speed is used to calculate the reproduction period value, but the annual maximum seasonal wind speed may be used. The maximum annual wind speed for each season is as follows: high temperature season (April to November) and low temperature season (1
(February to March) There is an annual maximum wind speed. By using this seasonal maximum annual wind speed, the basic wind speed map by wind direction for high temperature seasons is used for designing for typhoons, and the wind direction for low temperature seasons is used. The different basic wind speed map can be used for designing against snow accretion. In addition, for example, when a simulated value of strong winds is calculated for each wind direction, a detailed study on the possibility that statistically insignificant results may result due to a decrease in the total number of data, and observation values around the government office topography, anemometers, installations, etc. It is also possible to perform a detailed study on the possibility of being affected by conditions and make appropriate corrections if necessary.

【0054】また、風向毎に風速マップを作成するもの
に限られず、例えば風向別に等風速線の線種(破線や二
点鎖線等)や線色を変えて、同一地図上に異なる風向の
風速マップを描くようにしても良い。
Further, the wind velocity map is not limited to each wind direction. For example, the wind velocity of different wind directions on the same map can be changed by changing the line type (dashed line, two-dot chain line, etc.) and line color of the constant wind velocity line for each wind direction. You may draw a map.

【0055】また、上述の実施形態では、コンピュータ
を利用してシミュレーションを実現したが、場合によっ
ては例えば模型を用いた風洞実験を利用して風向別風速
の仮想測定値を求めるようにしても良い。
In the above-described embodiment, the computer is used to perform the simulation. However, in some cases, for example, a wind tunnel experiment using a model may be used to obtain the virtual measurement value of the wind speed for each wind direction. .

【0056】また、上述の実施形態では、10〜20k
m規模の地形影響を反映した風向別基本風速マップを作
成したが、例えば1kmスケール程度の局所的な小規模
地形の影響を考慮して、局所的な風の増速率を別途評価
して、風向別基本風速マップに反映させるようにしても
良く、若しくは風向別基本風速マップから読み取った値
に当該局所的な風の増速率をかけることにより設計風速
を求めるようにしても良い。この場合、山の後ろ斜面を
吹き降りる「だし」や「おろし」などと呼ばれる気象学
的要因による特定の地域に特有な局地的強風についても
考慮した更に信頼性の高いマップが得られる。また、1
0〜20km規模の地形影響を反映した風向別基本風速
マップに限定されず、例えば更にメッシュを細分化して
全体としてより詳細な地形影響を反映した風向別基本風
速マップを作成するようにしても良い。
In the above embodiment, 10 to 20k.
A basic wind velocity map was created for each wind direction reflecting m-scale topographic effects. For example, the local wind speed increase rate is separately evaluated in consideration of the influence of local small-scale topography of about 1 km scale to determine the wind direction. The design wind speed may be obtained by reflecting it on the different basic wind speed map, or by multiplying the value read from the wind direction-specific basic wind speed map by the local wind speed increase rate. In this case, it is possible to obtain a more reliable map that takes into consideration the local strong wind that is unique to a specific area due to meteorological factors such as "dashi" and "grated" that blow down the back slope of the mountain. Also, 1
The basic wind speed map by wind direction is not limited to the wind direction-specific basic wind speed map that reflects the topographic effect of 0 to 20 km. For example, the mesh may be further subdivided to create a detailed wind direction-specific basic wind speed map that reflects the detailed topographic effect. .

【0057】また、各測定地点(例えば気象官署位置)
における年最大クラスの強風は、必ずしも全ての測定地
点で同じ台風が原因となるものではなく、また必ずしも
同時刻において観測されるものではない。したがって、
任意の地で発生し得る最大クラスの風向別風速を推定す
るためには、上述の実施形態のように、複数の測定地点
における風向別基本風速を求めて、これらに基き風向別
基本風速マップを作成することが好ましい。ただし、例
えば各測定地点における風向別基本風速が同時刻に観測
されたデータを基に算定される場合や、狭い地域(例え
ば10km四方程度以下)を対象とした風向別基本風速
マップを作成する場合等には、複数の測定地点(気象官
署位置)の風向別基本風速を求めるとともに気流解析を
行い当該気流解析値を補正して測定地点間の内挿に用い
る、という手順を必ずしも踏まなくても良い。例えば、
少なくとも一ヶ所の測定地点(例えば気象官署位置)に
おける風向別基本風速を求め、当該測定地点と同位置に
おいて当該求めた風向別基本風速と値が一致する条件で
地形影響を反映した気流解析(シミュレーションまたは
風洞実験)を行うようにする。この場合、気流解析値の
補正を行うことなく、気流解析値そのものを用いて、地
形影響を反映した気象官署間の風向別基本風速が推定で
き又風向別基本風速マップを作成できる。
Further, each measurement point (for example, the position of the meteorological office)
The strongest winds of the year's largest class in the year are not necessarily caused by the same typhoon at all measurement points, and are not always observed at the same time. Therefore,
In order to estimate the maximum wind speed according to the wind direction at any place, the basic wind speed according to the wind direction at a plurality of measurement points is obtained as in the above-described embodiment, and the basic wind speed map according to the wind direction is based on these. It is preferable to create. However, for example, when the basic wind speed by wind direction at each measurement point is calculated based on the data observed at the same time, or when creating a basic wind speed map by wind direction for a narrow area (for example, 10 km square or less) For example, it is not necessary to follow the procedure of obtaining basic wind speeds for different wind directions at multiple measurement points (meteorological office positions), performing airflow analysis, correcting the airflow analysis values, and using the values for interpolation between measurement points. good. For example,
The basic wind speed for each wind direction at at least one measurement point (for example, the position of the meteorological office) is obtained, and the airflow analysis that reflects the topographic effect under the condition that the obtained basic wind speed for each wind direction at the same position as the measurement point is reflected (simulation Or wind tunnel experiment). In this case, without correcting the airflow analysis value, the airflow analysis value itself can be used to estimate the basic wind speed for each wind direction between meteorological offices that reflects the influence of the topography, and to create a basic wind speed map for each wind direction.

【0058】また例えば、広域での風は、上空の影響が
および、高さ方向の密度分布、温度分布やコリオリの力
を受けることになるので、更にこれらを考慮した気象モ
デルを用いて解析して、比較検討しておくようにしても
良い。
Further, for example, the wind over a wide area is affected by the sky and is subjected to the density distribution in the height direction, the temperature distribution, and the Coriolis force. It may be possible to make a comparative examination.

【0059】また例えば、地形による風向の曲がりが大
きい場所についての詳細検討を行なうようにしても良
い。例えば、最下層のメッシュ点で22.5°以上風向
が曲がるような地点については、マップ化から除外する
などの対策を施しても良い。
Further, for example, a detailed examination may be conducted on a place where the wind direction is greatly curved due to the terrain. For example, it is possible to take a measure such as excluding from a map the point where the wind direction is bent by 22.5 ° or more at the mesh point of the lowermost layer.

【0060】また、本発明は、風向別基本風速マップの
作成を伴わずとも、測定地点間の任意の位置について、
地形影響が反映された風向別基本風速の推定値を計算に
よって得ることができる。この場合、複数の測定地点毎
の風向別風速の実測定値を統計処理して測定地点毎の風
向別基本風速を求めるとともに、測定地点間の地形の影
響を反映させたシミュレーションまたは実験を行って測
定地点及び測定地点間における風向別風速の仮想測定値
を求めて、全ての測定地点において風向別基本風速と仮
想測定値とを一致させるように仮想測定値を補正して、
測定地点間における所望の地点の風向別基本風速を推定
するようにすれば良い。
Further, according to the present invention, even if the basic wind velocity map for each wind direction is not created, an arbitrary position between measurement points
It is possible to obtain the estimated value of the basic wind speed for each wind direction, which reflects the effect of topography. In this case, the statistical measurement of the wind speed for each wind direction at each measurement point is performed to obtain the basic wind speed for each wind direction at each measurement point, and the measurement is performed by performing a simulation or experiment that reflects the influence of the topography between the measurement points. Obtain the virtual measurement value of the wind speed by wind direction between the point and the measurement point, correct the virtual measurement value to match the basic wind speed by wind direction and the virtual measurement value at all measurement points,
The basic wind speed for each wind direction at a desired point between the measurement points may be estimated.

【0061】また、本発明は、風向別風速の推定に限ら
ず、測定可能な物理量全般について測定地点間の任意の
位置における値を推定するマップの作成に適用できる。
特に、地形の影響を受けて大きく変化し得る物理量の推
定に有用である。この場合、複数の測定地点における測
定対象である物理量の実測定値を求め又は実測定値を統
計処理することで測定地点毎の基準値を求めるととも
に、測定地点間の地形の影響を反映させたシミュレーシ
ョンまたは実験を行って測定地点及び測定地点間におけ
る物理量の仮想測定値を求めて、全ての測定地点におい
て実測定値または基準値と仮想測定値とを一致させるよ
うに仮想測定値を補正して測定地点間における推定物理
量値を求め、実測定値または基準値と推定物理量値とを
用いて隣接する等しい値または予め定めた数値範囲に属
する値を線で結ぶようにして、地図上に測定対象である
物理量の等値線を描くようにする。
Further, the present invention is not limited to the estimation of the wind speed for each wind direction, but can be applied to the creation of a map for estimating the value at any position between measurement points for all measurable physical quantities.
In particular, it is useful for estimating physical quantities that can change significantly under the influence of topography. In this case, the actual measurement value of the physical quantity to be measured at a plurality of measurement points is obtained, or the reference value for each measurement point is obtained by statistically processing the actual measurement value, and a simulation that reflects the influence of the topography between the measurement points or Perform an experiment to obtain virtual measurement values of physical quantities between measurement points and between measurement points, and correct virtual measurement values so that actual measurement values or reference values and virtual measurement values match at all measurement points Obtain the estimated physical quantity value in, and connect the adjacent measured value or a reference value and the estimated physical quantity value with a line that connects the equal value or a value belonging to a predetermined numerical range, and the physical quantity of the physical quantity to be measured on the map. Try to draw contour lines.

【0062】この場合、例えば汚染物質、花粉、飛散塩
分等,環境問題に関連する観測値と、適切なシミュレー
ション解析結果または模擬模型等を用いた実験結果をも
とに、これらの分布予測マップを容易に作成できる。こ
こで、基準値とは、例えば実測定値を統計処理して得ら
れる最大値や平均値または再現期間値などを指すが、場
合によっては基準値を用いずに、実測定値そのものを用
いても良い。また、本発明でいう地形とは陸上に限らず
海底・川底・湖底等における地形も含み、本発明は水中
においても適用することが可能である。さらに、物理量
の等値線図の作成を伴わずとも、測定地点間の任意の位
置について、地形影響が反映された物理量の推定値を計
算によって得ることができる。この場合、複数の測定地
点における測定対象である物理量の実測定値を求め又は
実測定値を統計処理することで測定地点毎の基準値を求
めるとともに、測定地点間の地形の影響を反映させたシ
ミュレーションまたは実験を行って測定地点及び測定地
点間における物理量の仮想測定値を求めて、全ての測定
地点において実測定値または基準値と仮想測定値とを一
致させるように仮想測定値を補正して、測定地点間にお
ける所望の地点の物理量の値を推定するようにすれば良
い。
In this case, for example, based on the observation values related to environmental problems such as pollutants, pollen, and flying salt, and the appropriate simulation analysis results or experimental results using a simulated model, these distribution prediction maps are prepared. Can be easily created. Here, the reference value refers to, for example, a maximum value, an average value, or a reproduction period value obtained by statistically processing the actual measurement value, but in some cases, the actual measurement value itself may be used without using the reference value. . Further, the terrain referred to in the present invention is not limited to land, and includes terrain on the seabed, riverbed, lakebed, etc., and the present invention can be applied underwater. Furthermore, it is possible to obtain the estimated value of the physical quantity in which the influence of the topography is reflected at an arbitrary position between the measurement points without the need to create the contour map of the physical quantity. In this case, the actual measurement value of the physical quantity to be measured at a plurality of measurement points is obtained, or the reference value for each measurement point is obtained by statistically processing the actual measurement value, and the simulation that reflects the influence of the topography between the measurement points or Perform an experiment to obtain virtual measurement values of the physical quantity between the measurement points and the measurement points, correct the virtual measurement values to match the virtual measurement values with the actual measurement values or reference values at all measurement points, and then measure the measurement points. The value of the physical quantity at a desired point in the interval may be estimated.

【0063】[0063]

【発明の効果】以上の説明から明らかなように、請求項
1記載の風向別基本風速マップによれば、地図上で所望
の地点を探して当該地点の等風速線を読み取ることで、
当該地点における風向別基本風速の推定値を極めて容易
に得ることができる。これにより、安全かつ合理的な構
造物の設計に寄与できる。特に強度面で方向特性の強い
送配電設備の設計に有用である。
As is apparent from the above description, according to the wind direction-specific basic wind velocity map of claim 1, by searching for a desired point on the map and reading the iso-velocity line of that point,
The estimated value of the basic wind speed for each wind direction at the point can be obtained very easily. This can contribute to a safe and rational structure design. It is especially useful for designing power transmission and distribution equipment with strong directional characteristics in terms of strength.

【0064】さらに、請求項2記載の風向別基本風速マ
ップの作成方法によれば、風向別風速に関する実測定値
と、適切なシミュレーション解析結果または実験結果を
もとに、風向別基本風速マップを容易に作成できる。
Furthermore, according to the method for creating the basic wind speed map for each wind direction, the basic wind speed map for each wind direction can be easily created based on the actual measurement value regarding the wind speed by each wind direction and the appropriate simulation analysis result or experimental result. Can be created.

【0065】さらに、請求項3記載の風向別基本風速の
推定方法によれば、風向別基本風速マップの作成を伴わ
ずとも、測定地点間の任意の位置について、地形影響が
反映された風向別基本風速の推定値を計算によって得る
ことができる。
Further, according to the method for estimating the basic wind speed for each wind direction according to the third aspect, the wind direction for each arbitrary position between the measurement points in which the terrain influence is reflected is created without the creation of the basic wind speed map for each wind direction. An estimate of the basic wind speed can be obtained by calculation.

【0066】さらに、請求項4記載の物理量の等値線図
の作成方法によれば、風向別風速の推定に限らず、測定
可能な物理量全般について、測定地点間の任意の位置に
おける当該物理量の値を推定するマップを作成できる。
特に、地形の影響を受けて大きく変化し得る物理量の推
定に有用である。例えば、汚染物質、花粉、飛散塩分
等、環境問題に関連する観測値と、適切なシミュレーシ
ョン解析結果または実験結果をもとに、これらの分布予
測マップを容易に作成できる。
Further, according to the method for creating a contour map of a physical quantity according to claim 4, not only the estimation of the wind speed by wind direction but also the measurable physical quantity in general, the physical quantity of the physical quantity at any position between the measurement points is measured. You can create a map that estimates the value.
In particular, it is useful for estimating physical quantities that can change significantly under the influence of topography. For example, it is possible to easily create a distribution prediction map for these based on observation values related to environmental problems such as pollutants, pollen, and flying salt, and appropriate simulation analysis results or experimental results.

【0067】さらに、請求項5記載の物理量の推定方法
によれば、物理量の等値線図の作成を伴わずとも、測定
地点間の任意の位置について、地形影響が反映された物
理量の推定値を計算によって得ることができる。
Further, according to the physical quantity estimating method of the fifth aspect, the estimated value of the physical quantity in which the influence of the topography is reflected at any position between the measurement points without the need to create the contour map of the physical quantity. Can be obtained by calculation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の風向別基本風速マップの一例を示し、
南風についての例(北海道)を示す図である。
FIG. 1 shows an example of a basic wind velocity map for each wind direction of the present invention,
It is a figure which shows the example (Hokkaido) about a south wind.

【図2】本発明の風向別基本風速マップの一例を示し、
南風についての例(東北)を示す図である。
FIG. 2 shows an example of a basic wind velocity map for each wind direction of the present invention,
It is a figure which shows the example (Tohoku) about the south wind.

【図3】本発明の風向別基本風速マップの一例を示し、
南風についての例(関東・中部・北陸・近畿)を示す図
である。
FIG. 3 shows an example of a basic wind velocity map for each wind direction of the present invention,
It is a figure showing an example about the south wind (Kanto, Chubu, Hokuriku, Kinki).

【図4】本発明の風向別基本風速マップの一例を示し、
南風についての例(中国・四国・九州)を示す図であ
る。
FIG. 4 shows an example of a basic wind velocity map for each wind direction of the present invention,
It is a figure which shows the example (Chugoku, Shikoku, Kyushu) about the south wind.

【図5】本発明の風向別基本風速マップの作成方法の一
例を示すフローチャートである。
FIG. 5 is a flowchart showing an example of a method for creating a basic wind speed map for each wind direction of the present invention.

【図6】地形の影響を反映させたシミュレーションを行
う場合の解析領域の一例(北海道)を示す。
FIG. 6 shows an example of an analysis region (Hokkaido) in the case of performing a simulation that reflects the influence of topography.

【図7】地形の影響を反映させたシミュレーションを行
う場合の解析領域の一例(東北)を示す。
FIG. 7 shows an example of an analysis area (Tohoku) in the case of performing a simulation that reflects the influence of topography.

【図8】地形の影響を反映させたシミュレーションを行
う場合の解析領域の一例(関東・中部・北陸・近畿)を
示す。
FIG. 8 shows an example of an analysis area (Kanto / Chubu / Hokuriku / Kinki) in the case of performing a simulation that reflects the influence of topography.

【図9】地形の影響を反映させたシミュレーションを行
う場合の解析領域の一例(中国・四国・九州)を示す。
FIG. 9 shows an example of analysis areas (Chugoku / Shikoku / Kyushu) when performing a simulation that reflects the influence of topography.

【図10】シミュレーション結果の一例を示し、南風に
ついての例(北海道)を示す図である。
FIG. 10 is a diagram showing an example of a simulation result and showing an example (Hokkaido) regarding south wind.

【図11】シミュレーション結果の一例を示し、南風に
ついての例(東北)を示す図である。
FIG. 11 is a diagram showing an example of a simulation result and showing an example (Tohoku) regarding a southerly wind.

【図12】シミュレーション結果の一例を示し、南風に
ついての例(関東・中部・北陸・近畿)を示す図であ
る。
FIG. 12 is a diagram showing an example of a simulation result, showing an example of a southerly wind (Kanto, Chubu, Hokuriku, Kinki).

【図13】シミュレーション結果の一例を示し、南風に
ついての例(中国・四国・九州)を示す図である。
FIG. 13 is a diagram showing an example of a simulation result and showing an example (Chugoku / Shikoku / Kyushu) of south wind.

【図14】測定地点間に内挿するためにシミュレーショ
ン結果を補正する操作の一例を示す図である。
FIG. 14 is a diagram showing an example of an operation for correcting a simulation result for interpolating between measurement points.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 推定される風向別風速の等風速線を地図
上に描いて成ることを特徴とする風向別基本風速マッ
プ。
1. A basic wind speed map according to wind direction, characterized in that iso wind speed lines of estimated wind speeds according to wind direction are drawn on a map.
【請求項2】 複数の測定地点毎の風向別風速の実測定
値を統計処理して前記測定地点毎の風向別基本風速を求
めるとともに、前記測定地点間の地形の影響を反映させ
たシミュレーションまたは実験を行って前記測定地点及
び測定地点間における風向別風速の仮想測定値を求め
て、全ての前記測定地点において前記風向別基本風速と
前記仮想測定値とを一致させるように前記仮想測定値を
補正して前記測定地点間における推定風向別基本風速を
求め、当該推定風向別基本風速と前記風向別基本風速を
用いて隣接する等しい値または一定数値範囲に属する値
を線で結び等風速線を地図上に描くことを特徴とする風
向別基本風速マップの作成方法。
2. A simulation or experiment in which actual measurement values of wind speeds according to wind directions at a plurality of measurement points are statistically processed to obtain basic wind speeds according to wind directions at the measurement points, and the influence of topography between the measurement points is reflected. Performing the above to obtain virtual measurement values of wind speeds according to wind direction between the measurement points and the measurement points, and correcting the virtual measurement values so that the basic wind speeds according to the wind direction and the virtual measurement values at all the measurement points match. Then, the estimated basic wind speed for each wind direction between the measurement points is obtained, and the estimated basic wind speed for each wind direction and the basic wind speed for each wind direction are used to connect adjacent equal values or values belonging to a certain numerical range with a line to map the equal wind speed lines. A method for creating a basic wind speed map by wind direction, which is characterized by being drawn above.
【請求項3】 複数の測定地点毎の風向別風速の実測定
値を統計処理して前記測定地点毎の風向別基本風速を求
めるとともに、前記測定地点間の地形の影響を反映させ
たシミュレーションまたは実験を行って前記測定地点及
び測定地点間における風向別風速の仮想測定値を求め
て、全ての前記測定地点において前記風向別基本風速と
前記仮想測定値とを一致させるように前記仮想測定値を
補正して、前記測定地点間における所望の地点の風向別
基本風速を推定することを特徴とする風向別基本風速の
推定方法。
3. A simulation or experiment in which actual measurement values of wind speeds according to wind directions at a plurality of measurement points are statistically processed to obtain basic wind speeds according to wind directions at the measurement points, and the influence of topography between the measurement points is reflected. Performing the above to obtain virtual measurement values of wind speeds according to wind direction between the measurement points and the measurement points, and correcting the virtual measurement values so that the basic wind speeds according to the wind direction and the virtual measurement values at all the measurement points match. Then, the method for estimating the basic wind speed for each wind direction at a desired point between the measurement points is estimated.
【請求項4】 複数の測定地点における測定対象である
物理量の実測定値を求め又は前記実測定値を統計処理す
ることで前記測定地点毎の基準値を求めるとともに、前
記測定地点間の地形の影響を反映させたシミュレーショ
ンまたは実験を行って前記測定地点及び測定地点間にお
ける前記物理量の仮想測定値を求めて、全ての前記測定
地点において前記実測定値または前記基準値と前記仮想
測定値とを一致させるように前記仮想測定値を補正して
前記測定地点間における推定物理量値を求め、前記実測
定値または前記基準値と前記推定物理量値とを用いて隣
接する等しい値または予め定めた数値範囲に属する値を
線で結び等値線を地図上に描くことを特徴とする物理量
の等値線図の作成方法。
4. An actual measurement value of a physical quantity to be measured at a plurality of measurement points is obtained or a reference value for each measurement point is obtained by statistically processing the actual measurement value, and the influence of the topography between the measurement points is calculated. Obtain a virtual measurement value of the physical quantity between the measurement point and the measurement point by performing a reflected simulation or experiment, and match the virtual measurement value with the actual measurement value or the reference value at all the measurement points To obtain the estimated physical quantity value between the measurement points by correcting the virtual measurement value, the actual measurement value or the reference value and the estimated physical quantity value adjacent to the equal value or a value belonging to a predetermined numerical value range. A method for creating a contour map of a physical quantity, which is characterized by drawing contour lines on a map by connecting lines.
【請求項5】 複数の測定地点における測定対象である
物理量の実測定値を求め又は前記実測定値を統計処理す
ることで前記測定地点毎の基準値を求めるとともに、前
記測定地点間の地形の影響を反映させたシミュレーショ
ンまたは実験を行って前記測定地点及び測定地点間にお
ける前記物理量の仮想測定値を求めて、全ての前記測定
地点において前記実測定値または前記基準値と前記仮想
測定値とを一致させるように前記仮想測定値を補正し
て、前記測定地点間における所望の地点の前記物理量の
値を推定することを特徴とする物理量の推定方法。
5. A reference value for each measurement point is obtained by obtaining an actual measurement value of a physical quantity to be measured at a plurality of measurement points or by statistically processing the actual measurement value, and at the same time, determining the influence of topography between the measurement points. Obtain a virtual measurement value of the physical quantity between the measurement point and the measurement point by performing a reflected simulation or experiment, and match the virtual measurement value with the actual measurement value or the reference value at all the measurement points A method of estimating a physical quantity, comprising: correcting the virtual measurement value to estimate the value of the physical quantity at a desired point between the measurement points.
JP2001386727A 2001-12-19 2001-12-19 Basic wind speed map creation method by wind direction and basic wind speed estimation method by wind direction Expired - Fee Related JP4043779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001386727A JP4043779B2 (en) 2001-12-19 2001-12-19 Basic wind speed map creation method by wind direction and basic wind speed estimation method by wind direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001386727A JP4043779B2 (en) 2001-12-19 2001-12-19 Basic wind speed map creation method by wind direction and basic wind speed estimation method by wind direction

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006175001A Division JP4297921B2 (en) 2006-06-26 2006-06-26 Method for creating contour map of physical quantity and method for estimating physical quantity

Publications (2)

Publication Number Publication Date
JP2003185762A true JP2003185762A (en) 2003-07-03
JP4043779B2 JP4043779B2 (en) 2008-02-06

Family

ID=27595797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001386727A Expired - Fee Related JP4043779B2 (en) 2001-12-19 2001-12-19 Basic wind speed map creation method by wind direction and basic wind speed estimation method by wind direction

Country Status (1)

Country Link
JP (1) JP4043779B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275568A (en) * 2007-03-30 2008-11-13 Railway Technical Res Inst Railroad traffic control method in strong wind
KR100975202B1 (en) 2008-08-21 2010-08-10 한국전력공사 Method of estimating distribution of wind velocities
JP2013195170A (en) * 2012-03-16 2013-09-30 Toshiba Corp Air flow state prediction device, air flow state prediction method, diffusion state prediction device and diffusion state prediction method
US10242131B2 (en) * 2012-11-09 2019-03-26 Korea Institute Of Energy Research Numerical simulation system and numerical simulation method for atmospheric flow by computational fluid dynamics
WO2020159034A1 (en) * 2019-01-30 2020-08-06 서울대학교 산학협력단 Artificial intelligence-based method and system for automatic determination of design wind speed
US11754424B2 (en) 2021-09-30 2023-09-12 Fujitsu Limited Computer-readable non-transitory medium, estimation device and estimation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102053548B1 (en) * 2018-10-31 2019-12-06 주식회사 포디솔루션 Method for producing lower wind data based on reanalysis data

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275568A (en) * 2007-03-30 2008-11-13 Railway Technical Res Inst Railroad traffic control method in strong wind
KR100975202B1 (en) 2008-08-21 2010-08-10 한국전력공사 Method of estimating distribution of wind velocities
JP2013195170A (en) * 2012-03-16 2013-09-30 Toshiba Corp Air flow state prediction device, air flow state prediction method, diffusion state prediction device and diffusion state prediction method
US10242131B2 (en) * 2012-11-09 2019-03-26 Korea Institute Of Energy Research Numerical simulation system and numerical simulation method for atmospheric flow by computational fluid dynamics
WO2020159034A1 (en) * 2019-01-30 2020-08-06 서울대학교 산학협력단 Artificial intelligence-based method and system for automatic determination of design wind speed
US11754424B2 (en) 2021-09-30 2023-09-12 Fujitsu Limited Computer-readable non-transitory medium, estimation device and estimation method

Also Published As

Publication number Publication date
JP4043779B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
He et al. High-resolution dataset of urban canopy parameters for Beijing and its application to the integrated WRF/Urban modelling system
Radhi et al. Impacts of urbanisation on the thermal behaviour of new built up environments: A scoping study of the urban heat island in Bahrain
CN111369059A (en) Urban waterlogging prediction method and system based on rapid waterlogging simulation coupling model
Mochida et al. Up-scaling CWE models to include mesoscale meteorological influences
JP4297921B2 (en) Method for creating contour map of physical quantity and method for estimating physical quantity
CN106296462B (en) A kind of existing wind power plant roughness value based on double anemometer tower data determines method
Ricci et al. Static downscaling of mesoscale wind conditions into an urban canopy layer by a CFD microscale model
CN114357571A (en) Inversion method and system for atmospheric boundary layer wind field characteristics in constructed building environment
CN115146564A (en) Urban ground wind speed refined simulation method based on vertical hierarchical downscaling technology
Li et al. Effects of inflow conditions on mountainous/urban wind environment simulation
CN114528672B (en) Urban hydrologic station network layout method and system based on 3S technology
JP4043779B2 (en) Basic wind speed map creation method by wind direction and basic wind speed estimation method by wind direction
CN104123671B (en) Meteorological reference station partition method
Thiis et al. 3D numerical simulations and full scale measurements of snow depositions on curved roofs
Burian et al. Morphological analyses using 3D building databases: Oklahoma City, Oklahoma
Bharat et al. Effects of high rise building complex on the wind flow patterns on surrounding urban pockets
Li et al. Estimating omnidirectional urban vertical wind speed with direction-dependent building morphologies
CN108399507B (en) Typhoon disaster influence assessment method and device
Araújo et al. An approach to simulate wind fields around an urban environment for wind energy application
Carraça et al. Modelling the impact of high‐rise buildings in urban areas on precipitation initiation
CN110263369B (en) Building surface wind resistance grade design method based on climate analysis and numerical simulation
Huang et al. Prediction of design typhoon wind speeds and profiles using refined typhoon wind field model
Ashie et al. Numerical simulation of urban heat island in a ten-kilometer square area of central Tokyo
Dayal et al. A grid sensitivity study of the Weather Research and Forecasting (WRF) model for simulating surface winds over the small island state of Fiji
Simões et al. A first methodology for wind energy resource assessment in urbanised areas in Portugal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees