JP2003184758A - Fiber reinforced resin screw rotor - Google Patents

Fiber reinforced resin screw rotor

Info

Publication number
JP2003184758A
JP2003184758A JP2001382467A JP2001382467A JP2003184758A JP 2003184758 A JP2003184758 A JP 2003184758A JP 2001382467 A JP2001382467 A JP 2001382467A JP 2001382467 A JP2001382467 A JP 2001382467A JP 2003184758 A JP2003184758 A JP 2003184758A
Authority
JP
Japan
Prior art keywords
fiber
rotor
surface layer
resin
screw rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001382467A
Other languages
Japanese (ja)
Other versions
JP4013537B2 (en
Inventor
Norio Takeda
憲生 竹田
Tomohiro Naruse
友博 成瀬
Toshio Hattori
敏雄 服部
Yasushi Takatsu
恭 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001382467A priority Critical patent/JP4013537B2/en
Publication of JP2003184758A publication Critical patent/JP2003184758A/en
Application granted granted Critical
Publication of JP4013537B2 publication Critical patent/JP4013537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber reinforced resin rotor having superior strength, impact resistance, and abrasion resistance and having high dimension accuracy and stability and to provide its manufacturing method. <P>SOLUTION: A surface layer is formed of a sheet formed by impregnating thermosetting resin in reinforcing fiber, and a rotor tooth part is molded by filling a preparatory molding material obtained by kneading reinforcing short fiber with the thermosetting resin in a space between the surface layer and a central shaft. This constitution can reinforce the vicinity of the rotor surface by relatively long fiber chopped into the length 10-100 mm or continuous fiber and fill the space between the surface layer and the central shaft with the fiber reinforced resin. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、繊維強化樹脂製ス
クリュロータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced resin screw rotor.

【0002】[0002]

【従来の技術】従来の繊維強化樹脂製スクリュロータ
は、例えば、特開平10−141262号公報に記載の
ように、成形金型に中心軸を収容したのち、強化繊維を
含む熱硬化性樹脂からなるロータ歯部を中心軸の外周に
一体成形したものがある。ここで、強化繊維は繊維長が
10mm以下の短いガラス繊維、炭素繊維あるいはアラ
ミド繊維などで強化したものである。
2. Description of the Related Art A conventional screw rotor made of fiber-reinforced resin is manufactured from a thermosetting resin containing reinforcing fibers after a central shaft is housed in a molding die as described in, for example, Japanese Patent Laid-Open Publication No. 10-141262. There is a rotor tooth portion integrally formed on the outer periphery of the central axis. Here, the reinforcing fibers are those reinforced with short glass fibers having a fiber length of 10 mm or less, carbon fibers, aramid fibers, or the like.

【0003】また、特開平2−27180号公報に記載
のように、ロータ表面の潤滑性、耐摩耗性を向上させる
ため、成形した繊維強化樹脂製のロータ歯部をフッ素樹
脂などでコーティングしたものがある。
Further, as described in JP-A-2-27180, in order to improve the lubricity and wear resistance of the rotor surface, the molded rotor teeth made of fiber reinforced resin are coated with fluororesin or the like. There is.

【0004】[0004]

【発明が解決しようとする課題】一般的に繊維強化樹脂
製ロータは、限られた小型、小容量のロータにしか応用
されていない。これは、従来のように短繊維強化樹脂製
の一体構造ロータは、大型、大容量のロータでは強度お
よび耐衝撃性が不足し、割れ破壊が発生する問題がある
ためである。また、繊維強化樹脂製ロータは耐摩耗性に
乏しいことが原因で、ロータ表面が摩耗して圧縮効率が
低下したり、高温高湿下での寸法安定性が悪かったりす
るため、ロータ歯部の変形によって異常摩耗が生じる問
題があった。さらに、樹脂の成形収縮率、線膨張係数が
大きいため、成形時に要求される寸法精度を満足でき
ず、特に中、大型のロータでは寸法精度の問題が致命的
であるため実用化には至っていない。
Generally, the fiber-reinforced resin rotor is applied only to a limited small-sized and small-capacity rotor. This is because the conventional monolithic rotor made of short fiber reinforced resin lacks strength and impact resistance in a large-sized and large-capacity rotor, which causes a problem of cracking and breaking. Also, because the fiber-reinforced resin rotor has poor wear resistance, the rotor surface wears and compression efficiency decreases, and dimensional stability under high temperature and high humidity deteriorates. There is a problem that abnormal deformation causes abnormal wear. Further, since the resin has large molding shrinkage and linear expansion coefficient, the dimensional accuracy required at the time of molding cannot be satisfied, and in particular, the problem of dimensional accuracy is fatal for medium and large size rotors, so it has not been put to practical use. .

【0005】本発明の目的は、強度、耐衝撃性および耐
摩耗性に優れ、かつ寸法精度、寸法安定性の高い繊維強
化樹脂製ロータおよびその製造法の提供することにあ
る。
An object of the present invention is to provide a rotor made of fiber reinforced resin which is excellent in strength, impact resistance and abrasion resistance, and has high dimensional accuracy and dimensional stability, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】上記目的は、熱硬化性樹
脂を繊維で強化した繊維強化樹脂製スクリュロータにお
いて、強化繊維に熱硬化性樹脂を含浸したシートで表面
層を形成し、補強用短繊維と熱硬化性樹脂を混練して得
られる予備成形材料を該表面層と中心軸の間に充填して
ロータ歯部を成形することにより達成される。
Means for Solving the Problems The above object is to provide a screw rotor made of a fiber-reinforced resin in which a thermosetting resin is reinforced with fibers, in which a surface layer is formed by a sheet in which reinforcing fibers are impregnated with the thermosetting resin, This is achieved by filling a preforming material obtained by kneading short fibers and a thermosetting resin between the surface layer and the central axis to form the rotor tooth portion.

【0007】また、上記目的は、表面層の繊維配向をス
クリュロータの円周に沿う方向としたことすることによ
り達成される。
Further, the above object is achieved by setting the fiber orientation of the surface layer in the direction along the circumference of the screw rotor.

【0008】また、上記目的は、表面層の繊維配向をス
クリュロータ稼動時のロータの主応力に沿う方向とした
ことすることにより達成される。
Further, the above object can be achieved by setting the fiber orientation of the surface layer in a direction along the principal stress of the rotor during operation of the screw rotor.

【0009】また、上記目的は、表面層がガラス繊維、
炭素繊維もしくはアラミド繊維を含むシートモールディ
ングコンパウンドで構成されることすることにより達成
される。
Further, the above-mentioned object is that the surface layer is made of glass fiber,
It is achieved by comprising a sheet molding compound containing carbon fibers or aramid fibers.

【0010】また、上記目的は、表面層と中心軸の間に
充填する予備成形材料がガラス繊維、炭素繊維もしくは
アラミド繊維を含むバルクモールディングコンパウンド
で構成されることすることにより達成される。
The above object is also achieved by the fact that the preforming material filled between the surface layer and the central axis is composed of a bulk molding compound containing glass fiber, carbon fiber or aramid fiber.

【0011】また、上記目的は、熱硬化性樹脂を繊維で
強化した繊維強化樹脂製スクリュロータにおいて、強化
繊維に熱硬化性樹脂を含浸したシートを予め金型内に配
置し、該シートと中心軸の間に補強用短繊維と熱硬化性
樹脂を混練して得られる予備成形材料を射出成形、また
はトランスファ成形してロータ歯部を成形することによ
り達成される。
Further, in the above-mentioned object, in a screw rotor made of a fiber reinforced resin in which a thermosetting resin is reinforced with fibers, a sheet in which reinforcing fibers are impregnated with the thermosetting resin is placed in advance in a mold, and the sheet and the center This is accomplished by injection molding or transfer molding of a preforming material obtained by kneading the reinforcing short fibers and the thermosetting resin between the shafts to form the rotor tooth portion.

【0012】[0012]

【発明の実施の形態】以下、この発明を具体化した実施
の形態を添付図を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0013】図1は、本発明の繊維強化樹脂製スクリュ
ロータの一実施例を示す側面図である。図2は、図1の
A−A’線断面図である。図3は、図1のB−B’線断
面図である。図1〜図3において、表面層1は強化繊維
に樹脂を含浸した予備成形シートを成形して形成され
る。予備成形シートには、繊維長10〜100mmにチ
ョップされた強化繊維を不織布に加工した後、樹脂を含
浸して成形されたSMC、あるいは連続した繊維を織物
状に加工したシートに樹脂を含浸したSMC、あるいは
樹脂に低収縮剤、難燃剤、着色剤などの副資材を混練し
ている。ついで、均一に分散した混合材に増粘剤を混合
したコンパウンドに、繊維長10〜100mmにチョッ
プされた強化繊維を圧着含浸させたSMCなどが適用さ
れる。
FIG. 1 is a side view showing an embodiment of the screw rotor made of fiber reinforced resin of the present invention. FIG. 2 is a sectional view taken along the line AA ′ of FIG. FIG. 3 is a sectional view taken along the line BB ′ of FIG. 1 to 3, the surface layer 1 is formed by molding a preformed sheet in which a reinforcing fiber is impregnated with a resin. For the preformed sheet, the reinforcing fibers chopped to have a fiber length of 10 to 100 mm were processed into a non-woven fabric, and then SMC formed by impregnating with resin, or a sheet obtained by processing continuous fibers into a fabric was impregnated with resin. SMC or resin is kneaded with auxiliary materials such as a low shrinkage agent, a flame retardant, and a coloring agent. Then, SMC or the like obtained by impregnating the compound obtained by mixing the uniformly dispersed mixture with the thickener with the reinforcing fiber chopped to have a fiber length of 10 to 100 mm is applied.

【0014】特定の方向への配向が多くなるように、チ
ョップした繊維の分散を調節したSMC、あるいは連続
繊維を織物状に加工したものに樹脂を含浸したSMCで
は、繊維方向がスクリュロータの円周方向や主応力方向
に一致するように金型内にSMCを配置して表面層1を
形成する。これにより、強度が必要な箇所、方向を効率
的に強化した表面層1が形成できる。2は中心軸であ
る。3は短繊維強化樹脂層である。
In the SMC in which the dispersion of chopped fibers is adjusted so that the orientation in a specific direction is increased, or in the SMC in which a continuous fiber is processed into a woven state and impregnated with a resin, the fiber direction is a circle of the screw rotor. The surface layer 1 is formed by arranging SMC in the mold so as to match the circumferential direction and the principal stress direction. Thereby, the surface layer 1 in which the strength and the direction are required to be efficiently strengthened can be formed. 2 is a central axis. 3 is a short fiber reinforced resin layer.

【0015】ところで、成形型の表面に繊維強化樹脂層
3を形成する方法として、ハンドレイアップ法やスプレ
ーアップ法が一般的であるが、両者は大型成形品へ適用
される方法である。スクリュロータの金型表面は閉じた
空間内にあり、ロータ径が最大でも250mm程度であ
ることを考えれば、ハンドレイアップ法やスプレーアッ
プ法による表面層の形成は不可能である。
By the way, as a method for forming the fiber reinforced resin layer 3 on the surface of the molding die, a hand lay-up method and a spray-up method are generally used, but both methods are applied to a large-sized molded product. Considering that the mold surface of the screw rotor is in a closed space and the rotor diameter is about 250 mm at the maximum, it is impossible to form the surface layer by the hand lay-up method or the spray-up method.

【0016】SMCは常温では軟質かつ粘着性の無いシ
ートであるため、複雑な形状をもつスクリュロータの金
型でも、容易に金型内の任意の位置にシートを配置でき
る。また、SMCは粘土状であり、粘度が高いため、表
面層成形時の加熱、加圧によって強化繊維が過度に流動
することが無く、繊維強化したいスクリュロータ歯部の
適切な位置に強化繊維を配置することができ、均一な厚
さの表面層が形成できる。
Since SMC is a sheet that is soft and does not have tackiness at room temperature, even with a screw rotor die having a complicated shape, the sheet can be easily placed at any position in the die. In addition, since SMC is clay-like and has a high viscosity, the reinforcing fibers do not flow excessively due to heating and pressurization during surface layer molding, and the reinforcing fibers are placed at appropriate positions on the screw rotor tooth portion to be fiber-reinforced. It can be arranged and a surface layer of uniform thickness can be formed.

【0017】粘度の低い液状の成形材料と強化繊維を金
型内に投入して、金型を回転させる遠心成形による表面
層の成形では、成形時に強化繊維および樹脂が大きく流
動する。スクリュロータでは、歯先円と歯底円の径が極
端に違うので、前記遠心成形では強化繊維および樹脂が
流動し、強化繊維の不適正配置や表面層厚さの偏りが生
じてしまう。それに比べて、粘度の高いSMCではスク
リュロータに強化繊維が所望の位置に配置され、かつ均
一な厚さの表面層が形成できる。
In the molding of the surface layer by centrifugal molding in which a liquid molding material having a low viscosity and reinforcing fibers are put into a mold and the mold is rotated, the reinforcing fibers and the resin largely flow during molding. In the screw rotor, since the diameters of the tip circle and the bottom circle are extremely different, the reinforcing fibers and the resin flow in the centrifugal molding, resulting in improper arrangement of the reinforcing fibers and uneven thickness of the surface layer. On the other hand, in the SMC having a high viscosity, the reinforcing fibers are arranged at a desired position on the screw rotor, and the surface layer having a uniform thickness can be formed.

【0018】歯車のように、中心軸方向には断面形状の
変化が無い部品であれば、円板もしくは円環状の繊維強
化樹脂を成形した後に、歯部を機械切削により形成する
ことが比較的容易であるが、スクリュロータのように、
中心軸方向に断面形状が変化する部品では機械切削によ
る歯部の形成は容易でない。したがって、ロータ表面が
繊維強化された樹脂製スクリュロータの成形には、機械
切削を必要としないSMCによる表面層の形成が有効で
ある。
For parts such as gears whose cross-sectional shape does not change in the direction of the central axis, it is comparatively preferable to form the teeth by mechanical cutting after molding the disc or annular fiber reinforced resin. Easy, but like a screw rotor,
It is not easy to form teeth by mechanical cutting in parts whose cross-sectional shape changes in the central axis direction. Therefore, in forming a resin screw rotor having a fiber surface reinforced on the rotor surface, it is effective to form a surface layer by SMC that does not require mechanical cutting.

【0019】SMCの樹脂としては、不飽和ポリエステ
ル、ビニルエステルなどの熱硬化性樹脂が使用される。
不飽和ポリエステルは安価であり、かつ硬化条件を目的
に応じて変化させることができるため、成形の自由度が
非常に大きい。スクリュ圧縮機の圧縮作用空間内に水を
噴出して該空間内の潤滑、冷却および密封を行うように
した水潤滑式スクリュ圧縮機では、スクリュロータは高
温高湿環境下で稼動する。不飽和ポリエステルは、高温
高湿下での寸法安定性に優れているため、水潤滑式スク
リュ圧縮機のスクリュロータの材料として好適である。
また、低収縮率、耐衝撃性、耐摩耗性など、様々な特性
を有する不飽和ポリエステルのSMCが市販されている
ので、用途に応じた選択ができる。ビニルエステルをマ
トリックス樹脂としたSMCは、不飽和ポリエステルの
ものより高強度となるので、大容量のスクリュ圧縮機の
ロータ材としての適用が考えられる。
As the SMC resin, thermosetting resins such as unsaturated polyester and vinyl ester are used.
Unsaturated polyester is inexpensive and the curing conditions can be changed according to the purpose, so that the degree of freedom in molding is very large. In a water-lubricated screw compressor in which water is jetted into the compression action space of the screw compressor to lubricate, cool and seal the space, the screw rotor operates in a high temperature and high humidity environment. Unsaturated polyester has excellent dimensional stability under high temperature and high humidity, and is therefore suitable as a material for a screw rotor of a water-lubricated screw compressor.
Further, since unsaturated polyester SMC having various characteristics such as low shrinkage, impact resistance, and abrasion resistance are commercially available, it can be selected according to the application. Since SMC using vinyl ester as a matrix resin has higher strength than that of unsaturated polyester, it can be considered to be applied as a rotor material of a large-capacity screw compressor.

【0020】SMCの強化繊維としてはガラス繊維、炭
素繊維などの無機繊維、アラミド繊維、ポリアリレート
繊維、高強度ポリエチレン繊維などの有機繊維が適用さ
れる。
As the reinforcing fibers of SMC, inorganic fibers such as glass fibers and carbon fibers, organic fibers such as aramid fibers, polyarylate fibers and high strength polyethylene fibers are applied.

【0021】ガラス繊維は不飽和ポリエステル樹脂、エ
ポキシ樹脂、フェノール樹脂などの熱硬化性樹脂とカッ
プリング剤を介して強固な化学結合するので、安価かつ
強度の高い表面層1が形成できる。炭素繊維は軽くて強
いので、特にスクリュロータの表面付近に使用すれば、
ロータ表面のき裂とともにロータの回転の遠心力を低減
でき、遠心力によるロータ破壊を防止できる。有機繊維
は、炭素繊維よりも軽く、強靭な性質を有するため、衝
撃特性、振動減衰特性に優れている。
Since the glass fiber is strongly chemically bonded to the thermosetting resin such as unsaturated polyester resin, epoxy resin or phenol resin through the coupling agent, the surface layer 1 which is inexpensive and has high strength can be formed. Carbon fiber is light and strong, so if you use it especially near the surface of the screw rotor,
It is possible to reduce the centrifugal force of the rotation of the rotor along with the cracks on the rotor surface, and prevent the rotor from being damaged by the centrifugal force. Organic fibers are lighter and tougher than carbon fibers, and therefore have excellent impact characteristics and vibration damping characteristics.

【0022】したがって、有機繊維を表面層に適用すれ
ば、ロータの回転時の遠心力を大幅に低減でき、かつ起
動時の衝撃負荷に対して強度的な信頼性が高くなる。ア
ラミド繊維は耐摩耗性に優れるため、ロータ表面の摩耗
による圧縮効率低下の少ないスクリュ圧縮機が実現でき
る。ポリアリレート繊維は、ポリエステル系の繊維であ
るため、水を吸わないので、水潤滑式のスクリュ圧縮機
のロータに採用すれば、寸法安定性に優れたロータを実
現できる。高強度ポリエチレン繊維は、有機繊維の中で
も最も高強度、高弾性の繊維に分類されるため、強度的
に優れた表面層を形成できる。
Therefore, if the organic fiber is applied to the surface layer, the centrifugal force at the time of rotation of the rotor can be greatly reduced, and the reliability of the strength against the impact load at the time of start-up becomes high. Since aramid fiber has excellent wear resistance, it is possible to realize a screw compressor in which compression efficiency is less likely to decrease due to wear of the rotor surface. Since the polyarylate fiber is a polyester fiber and does not absorb water, it can be used as a rotor of a water-lubricated screw compressor to realize a rotor having excellent dimensional stability. Since the high-strength polyethylene fiber is classified into the highest-strength and high-elasticity fibers among the organic fibers, a surface layer excellent in strength can be formed.

【0023】表面層1と中心軸2の間には補強用短繊維
と熱硬化性樹脂を混練して得られる予備成形材料を充填
した短繊維強化樹脂層3がある。この予備成形材料に
は、樹脂と低収縮剤、着色剤などの副資材をニーダーで
混練し、ついで増粘剤を混合して強化繊維を均一に分散
したBMCなどが適用される。
Between the surface layer 1 and the central axis 2 is a short fiber reinforced resin layer 3 filled with a preforming material obtained by kneading reinforcing short fibers and a thermosetting resin. As this preforming material, BMC in which a reinforcing material is uniformly dispersed by kneading a resin and auxiliary materials such as a low-shrinking agent and a colorant with a kneader, and then mixing a thickener is applied.

【0024】BMCの樹脂は不飽和ポリエステル樹脂な
どの熱硬化性樹脂が使用される。不飽和ポリエステルを
マトリックス樹脂としたBMCは、低収縮剤などの副資
材を調整することにより、成形収縮率を0〜0.02
%、線膨張係数を20×10 /K以下とすることが
できるため、寸法精度に優れた成形が可能である。特
に、複雑な3次元形状を有するスクリュロータでは切削
加工が非常に複雑となるため、金型による一体成形がで
きれば製作コストを大幅に削減できる。また、不飽和ポ
リエステルのBMCは、温度や湿度に対する寸法安定性
に優れているので、水潤滑式スクリュ圧縮機のロータ材
として適用できる。
As the BMC resin, a thermosetting resin such as unsaturated polyester resin is used. BMC using unsaturated polyester as a matrix resin has a molding shrinkage rate of 0 to 0.02 by adjusting auxiliary materials such as a low shrinkage agent.
%, The coefficient of linear expansion 20 × 10 - it is possible to less 6 / K, it is possible to better molding dimensional accuracy. In particular, since a screw rotor having a complicated three-dimensional shape is extremely complicated in cutting work, if it can be integrally molded with a die, the manufacturing cost can be significantly reduced. Further, since unsaturated polyester BMC has excellent dimensional stability against temperature and humidity, it can be applied as a rotor material for a water-lubricated screw compressor.

【0025】補強用短繊維としては、ガラス繊維、炭素
繊維などの無機繊維、アラミド繊維、ポリアリレート繊
維、高強度ポリエチレン繊維などの有機繊維が適用され
る。ガラス繊維は不飽和ポリエステル樹脂、エポキシ樹
脂、フェノール樹脂などの熱硬化性樹脂とカップリング
剤を介して強固な化学結合するので、安価かつ高強度の
繊維強化樹脂層となる。炭素繊維は軽くて強いので、炭
素繊維を強化繊維とすれば、スクリュロータ全体が軽量
となり、スクリュ圧縮機の起動時における原動駆動機の
瞬時負荷力を大幅に低減できるほか、ロータの回転の遠
心力によるロータ破壊を防止できる。有機繊維は、炭素
繊維よりも軽く、強靭な性質を有するため、衝撃特性、
振動減衰特性に優れている。有機繊維を短繊維強化樹脂
層に適用すれば、前記炭素繊維強化型の特徴に加えて、
スクリュ圧縮機の起動時の衝撃負荷に対してスクリュロ
ータの強度的な信頼性が高くなる。
As the reinforcing short fibers, inorganic fibers such as glass fibers and carbon fibers, organic fibers such as aramid fibers, polyarylate fibers and high strength polyethylene fibers are used. The glass fiber is chemically bonded to a thermosetting resin such as an unsaturated polyester resin, an epoxy resin, or a phenol resin through a coupling agent, so that the glass fiber becomes an inexpensive and high-strength fiber-reinforced resin layer. Since carbon fiber is light and strong, if carbon fiber is used as a reinforcing fiber, the overall weight of the screw rotor will be lighter, and the instantaneous load force of the prime mover when starting the screw compressor will be significantly reduced. It is possible to prevent rotor destruction due to force. Since organic fibers are lighter and tougher than carbon fibers, impact properties,
Excellent vibration damping characteristics. If organic fibers are applied to the short fiber reinforced resin layer, in addition to the characteristics of the carbon fiber reinforced type,
The reliability of the strength of the screw rotor is improved with respect to the impact load at the time of starting the screw compressor.

【0026】図4は、本発明の繊維強化樹脂製スクリュ
ロータの製造工程を示す図である。図4において、表面
層1は、強化繊維に熱硬化性樹脂を含浸したSMCのシ
ート5を予め金型6内に配置し、シート5と中心軸2の
間7に補強用短繊維と熱硬化性樹脂を混練して得られる
予備成形材料を射出成形、またはトランスファ成形して
ロータ歯部を形成する。
FIG. 4 is a diagram showing a manufacturing process of the fiber-reinforced resin screw rotor of the present invention. In FIG. 4, as the surface layer 1, an SMC sheet 5 in which reinforcing fibers are impregnated with a thermosetting resin is placed in a mold 6 in advance, and reinforcing short fibers and thermosetting are provided between the sheet 5 and the central axis 2 7. The preform material obtained by kneading the resin is injection-molded or transfer-molded to form the rotor tooth portion.

【0027】このような製造方法では、強化繊維に熱硬
化性樹脂を含浸したシートを材料とする表面層1とその
内部の短繊維強化樹脂層3を同時に成形できるため、製
造工程の増加に伴うコストを低減できる。また、同時に
成形することによって、表面層1とその内側の繊維強化
樹脂層3の接着性が良好なロータが製造できる。さら
に、スクリュロータのような複雑な形状であっても、ロ
ータ表面にほぼ均一な厚さの表面層1が形成できる。
In such a manufacturing method, since the surface layer 1 made of a sheet in which the reinforcing fibers are impregnated with the thermosetting resin and the short fiber reinforced resin layer 3 inside the surface layer 1 can be simultaneously molded, the number of manufacturing steps increases. Cost can be reduced. Further, by molding at the same time, it is possible to manufacture a rotor in which the surface layer 1 and the fiber-reinforced resin layer 3 inside thereof are excellent in adhesiveness. Furthermore, even with a complicated shape such as a screw rotor, the surface layer 1 having a substantially uniform thickness can be formed on the rotor surface.

【0028】強化繊維に熱硬化性樹脂を含浸したシート
を金型6内に配置した後、金型を回転させて遠心力で表
面層1を形成することもできる。SMCのように軟質な
シートの場合、このような製造方法でも繊維および樹脂
が過度に流動することなく、厚さが均一な表面層を形成
できる。
It is also possible to arrange the sheet in which the reinforcing fibers are impregnated with the thermosetting resin in the mold 6 and then rotate the mold to form the surface layer 1 by centrifugal force. In the case of a soft sheet such as SMC, the surface layer having a uniform thickness can be formed by such a manufacturing method without excessive flow of fibers and resin.

【0029】前記実施例では表面層1のみを強化繊維に
熱硬化性樹脂を含浸したシートで形成しているが、該シ
ートで中心軸近傍に中心層を形成することもできる。
In the above-mentioned embodiment, only the surface layer 1 is formed of a sheet in which reinforcing fibers are impregnated with a thermosetting resin, but the sheet may form the central layer in the vicinity of the central axis.

【0030】図5は、本発明の第2の実施形態を備えた
繊維強化樹脂製スクリュロータの断面図であり、図2に
相当する図である。図6は、図5に同じく第2の実施形
態を備えた繊維強化樹脂製のスクリュロータの断面図で
あり、図3に相当する図である。図5、図6において、
スクリュロータの形状によっては、稼動時の遠心力に起
因する発生応力が中心層4で極端に大きくなる場合があ
る。このような場合、短繊維強化層3よりも強度が高い
中心層4を形成することが有効である。表面層1を形成
したSMCを中心層にも使用すれば、スクリュロータ稼
動時の主応力方向に相当する円周方向に繊維が配向させ
ることができ、かつ均一な厚さの中心層を容易に形成で
きる。
FIG. 5 is a cross-sectional view of a screw rotor made of fiber reinforced resin provided with the second embodiment of the present invention, and is a view corresponding to FIG. FIG. 6 is a sectional view of a screw rotor made of fiber reinforced resin, which is also equipped with the second embodiment shown in FIG. 5, and corresponds to FIG. 3. 5 and 6,
Depending on the shape of the screw rotor, the generated stress due to the centrifugal force during operation may be extremely large in the central layer 4. In such a case, it is effective to form the center layer 4 having higher strength than the short fiber reinforced layer 3. If the SMC having the surface layer 1 is also used as the center layer, the fibers can be oriented in the circumferential direction corresponding to the main stress direction during operation of the screw rotor, and the center layer having a uniform thickness can be easily formed. Can be formed.

【0031】図7は、第2の実施形態を備えたスクリュ
ロータの製造行程を示す図である。図7において、表面
層1および中心層4となるSMCのシート5を予め金型
内に配置し、表面層シートと中心層シートから成る空間
8に補強用短繊維と熱硬化性樹脂を混練して得られる予
備成形材料を射出成形、またはトランスファ成形して短
繊維強化層を形成する。このような成形方法により、表
面層、中心層と短繊維強化層の接着性が良好なロータを
製造する。
FIG. 7 is a diagram showing a manufacturing process of a screw rotor provided with the second embodiment. In FIG. 7, a sheet 5 of SMC to be the surface layer 1 and the center layer 4 is placed in advance in a mold, and a reinforcing short fiber and a thermosetting resin are kneaded in a space 8 composed of the surface layer sheet and the center layer sheet. The preformed material thus obtained is injection-molded or transfer-molded to form a short fiber reinforced layer. By such a molding method, a rotor having good adhesion between the surface layer, the center layer and the short fiber reinforced layer is manufactured.

【0032】以上のように本発明は、強化繊維に熱硬化
性樹脂を含浸したシートで表面層を成形することによ
り、ロータ表面付近を長さ10〜100mmにチョップ
された比較的長い繊維、あるいは連続繊維で強化するこ
とができるため、ロータ表面の割れおよびロータ歯部の
変形に起因する異常摩耗が生じにくい。一方、表面層と
中心軸の間も繊維強化樹脂で充填されるため、高速回転
時の遠心力に起因するロータの破壊も起こりにくい。
As described above, according to the present invention, a relatively long fiber chopped to a length of 10 to 100 mm near the rotor surface is formed by forming a surface layer with a sheet in which reinforcing fibers are impregnated with a thermosetting resin, or Since it can be reinforced with continuous fibers, abnormal wear due to cracks on the rotor surface and deformation of rotor teeth is unlikely to occur. On the other hand, the space between the surface layer and the central axis is also filled with the fiber-reinforced resin, so that the rotor is less likely to be broken due to the centrifugal force during high-speed rotation.

【0033】また、ロータ稼動時に支配的なロータ表面
付近の周方向応力を、円周方向に沿った強化繊維で効率
的に緩和できる。したがって、ロータ表面の割れおよび
ロータ歯部の変形に起因する異常摩耗が生じにくい。
Further, the circumferential stress near the rotor surface, which is dominant when the rotor is in operation, can be efficiently relieved by the reinforcing fibers along the circumferential direction. Therefore, abnormal wear due to cracks on the rotor surface and deformation of the rotor teeth is unlikely to occur.

【0034】また、ロータ稼動時に発生するロータ表面
付近の応力に沿って強化繊維が配向されているため、ロ
ータ表面の割れが生じにくい。一方、強化繊維によりロ
ータ歯部の変形が抑えられるため、変形に起因する異常
摩耗が生じにくい。
Further, since the reinforcing fibers are oriented along the stress near the rotor surface generated when the rotor is in operation, cracks on the rotor surface are unlikely to occur. On the other hand, since the reinforcing fibers suppress the deformation of the rotor teeth, abnormal wear due to the deformation is unlikely to occur.

【0035】また、熱可塑性樹脂に比べて成形収縮率、
線膨張係数が小さいシートモールディングコンパウンド
(以下SMC)を表面層とするため、成形品の寸法精度
が良い。ガラス繊維を強化繊維とすれば、安価で高強度
のロータが実現できる。炭素繊維を強化繊維とすれば、
軽量かつ高強度のロータが実現できる。アラミド繊維を
強化繊維とすれば、高強度かつ耐衝撃性、耐摩耗性に優
れるロータが実現できる。
In addition, the molding shrinkage is higher than that of the thermoplastic resin.
Since the surface layer is a sheet molding compound having a small linear expansion coefficient (hereinafter referred to as SMC), the dimensional accuracy of the molded product is good. If glass fiber is used as the reinforcing fiber, an inexpensive and high-strength rotor can be realized. If carbon fiber is used as the reinforcing fiber,
A lightweight and high-strength rotor can be realized. When the aramid fiber is used as the reinforcing fiber, a rotor having high strength, impact resistance and abrasion resistance can be realized.

【0036】また、バルクモールディングコンパウンド
(以下BMC)の成形収縮率が0〜0.02%であり、
線膨張係数も20×10−6/K以下と小さいため、成
形品の寸法精度が非常に良い。ガラス繊維は安価であ
り、マトリックス樹脂と強固に化学結合するため、安価
で遠心力に起因するロータの破壊を防止することができ
る。炭素繊維はガラス繊維より軽く、発生する遠心力を
低減できるため、炭素繊維を適用したロータでは、遠心
力に起因するロータの破壊が起こりにくい。アラミド繊
維は高強度かつ耐衝撃性に優れるため、遠心力に起因す
るロータの破壊が起こりにくく、起動時に生じる衝撃負
荷に対しも信頼性が高い。
Further, the molding shrinkage of the bulk molding compound (hereinafter BMC) is 0 to 0.02%,
Since the coefficient of linear expansion is as small as 20 × 10 −6 / K or less, the dimensional accuracy of the molded product is very good. Since glass fiber is inexpensive and chemically bonded to the matrix resin firmly, it is inexpensive and can prevent the rotor from being damaged due to centrifugal force. Since carbon fibers are lighter than glass fibers and can reduce the generated centrifugal force, the rotor to which the carbon fibers are applied is less likely to be damaged by the centrifugal force. Since aramid fiber has high strength and excellent impact resistance, the rotor is less likely to be damaged by centrifugal force, and has high reliability against an impact load generated at the time of starting.

【0037】また、強化繊維に熱硬化性樹脂を含浸した
シートを材料とする表面層とその内部の短繊維強化樹脂
層を同時に成形できるため、製造工程の増加に伴うコス
トを低減できる。一方、同時に成形することによって、
表面層とその内側の繊維強化樹脂層の接着性が良好なロ
ータが製造できる。
Further, since the surface layer made of a sheet in which reinforcing fibers are impregnated with a thermosetting resin and the short fiber reinforced resin layer inside thereof can be molded at the same time, the cost associated with the increase of the manufacturing process can be reduced. On the other hand, by molding at the same time,
A rotor having good adhesion between the surface layer and the fiber-reinforced resin layer inside the surface layer can be manufactured.

【0038】更に、回転による遠心力が強化繊維に熱硬
化性樹脂を含浸したシートに均一に加わるため、厚さが
均一な表面層を形成することができる。したがって、強
度や耐衝撃性など機械的特性のばらつきの少ないロータ
が製造できる。
Furthermore, since the centrifugal force due to the rotation is uniformly applied to the sheet in which the reinforcing fibers are impregnated with the thermosetting resin, the surface layer having a uniform thickness can be formed. Therefore, it is possible to manufacture a rotor with little variation in mechanical properties such as strength and impact resistance.

【0039】[0039]

【発明の効果】本発明によれば、強度、耐衝撃性および
耐摩耗性に優れ、かつ寸法精度、寸法安定性の高い繊維
強化樹脂製スクリュロータを提供できる。
Industrial Applicability According to the present invention, it is possible to provide a screw rotor made of a fiber reinforced resin which is excellent in strength, impact resistance and abrasion resistance, and has high dimensional accuracy and dimensional stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の実施の形態における一つの繊
維強化樹脂製スクリュロータを概略示す側面図である。
FIG. 1 is a side view schematically showing one fiber-reinforced resin screw rotor according to an embodiment of the present invention.

【図2】図2は、図1のA−A’断面図である。2 is a cross-sectional view taken along the line A-A ′ of FIG.

【図3】図3は、図1のB−B’断面図である。3 is a cross-sectional view taken along the line B-B 'of FIG.

【図4】図4は、同上実施の繊維強化樹脂製スクリュロ
ータの製造方法を概略示す断面図である。
FIG. 4 is a cross-sectional view schematically showing a method for manufacturing a fiber-reinforced resin screw rotor according to the above.

【図5】図5は、本発明の他の実施形態を備えた繊維強
化樹脂製スクリュロータの図2相当断面図である。
FIG. 5 is a cross-sectional view of a screw rotor made of fiber reinforced resin according to another embodiment of the present invention, which corresponds to FIG.

【図6】図6は、同上実施形態を備えた繊維強化樹脂製
スクリュロータの図3相当断面図である。
FIG. 6 is a cross-sectional view corresponding to FIG. 3 of a fiber-reinforced resin screw rotor including the same embodiment.

【図7】図7は、同上実施形態を備えた繊維強化樹脂製
スクリュロータの製造方法を示す断面図である。
FIG. 7 is a cross-sectional view showing a method for manufacturing a fiber-reinforced resin screw rotor including the embodiment.

【符号の説明】[Explanation of symbols]

1…表面層、2…中心軸、3…短繊維強化樹脂層、4…
中心層、5…SMC、6…金型、7…表面層シートと中
心軸から成る空間、8…表面層シートと中心層シートか
ら成る空間。
1 ... Surface layer, 2 ... Central axis, 3 ... Short fiber reinforced resin layer, 4 ...
Center layer, 5 ... SMC, 6 ... Mold, 7 ... Space consisting of surface layer sheet and center axis, 8 ... Space consisting of surface layer sheet and center layer sheet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 服部 敏雄 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 高津 恭 茨城県土浦市神立町603番地 株式会社日 立製作所産業機械システム事業部内 Fターム(参考) 3H041 AA00 BB05 CC13 CC15 DD05 DD33 3H044 AA00 BB04 CC12 CC14 DD05 DD23    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshio Hattori             502 Kintatemachi, Tsuchiura City, Ibaraki Japan             Tate Seisakusho Mechanical Research Center (72) Inventor K. Takatsu             603 Jinmachi-cho, Tsuchiura-shi, Ibaraki Japan Co., Ltd.             Tate Manufacturing Industrial Machinery Systems Division F term (reference) 3H041 AA00 BB05 CC13 CC15 DD05                       DD33                 3H044 AA00 BB04 CC12 CC14 DD05                       DD23

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】熱硬化性樹脂を繊維で強化した繊維強化樹
脂製スクリュロータにおいて、強化繊維に熱硬化性樹脂
を含浸したシートで表面層を形成し、補強用短繊維と熱
硬化性樹脂を混練して得られる予備成形材料を該表面層
と中心軸の間に充填してロータ歯部を成形することを特
徴とする繊維強化樹脂製スクリュロータ。
1. In a screw rotor made of a fiber-reinforced resin in which a thermosetting resin is reinforced with fibers, a surface layer is formed by a sheet in which reinforcing fibers are impregnated with the thermosetting resin, and reinforcing short fibers and thermosetting resin are formed. A fiber-reinforced resin screw rotor, characterized in that a preform material obtained by kneading is filled between the surface layer and a central axis to form a rotor tooth portion.
【請求項2】表面層の繊維配向をスクリュロータの円周
に沿う方向としたことを特徴とする請求項1記載の繊維
強化樹脂製スクリュロータ。
2. The screw rotor made of fiber reinforced resin according to claim 1, wherein the fiber orientation of the surface layer is in the direction along the circumference of the screw rotor.
【請求項3】表面層の繊維配向をスクリュロータ稼動時
のロータの主応力に沿う方向としたことを特徴とする請
求項1記載の繊維強化樹脂製スクリュロータ。
3. A fiber-reinforced resin screw rotor according to claim 1, wherein the fiber orientation of the surface layer is in a direction along the principal stress of the rotor during operation of the screw rotor.
【請求項4】表面層がガラス繊維、炭素繊維もしくはア
ラミド繊維を含むシートモールディングコンパウンドで
構成されることを特徴とする請求項1記載の繊維強化樹
脂製スクリュロータ。
4. The fiber-reinforced resin screw rotor according to claim 1, wherein the surface layer is made of a sheet molding compound containing glass fiber, carbon fiber or aramid fiber.
【請求項5】表面層と中心軸の間に充填する予備成形材
料がガラス繊維、炭素繊維もしくはアラミド繊維を含む
バルクモールディングコンパウンドで構成されることを
特徴とする請求項1記載の繊維強化樹脂製スクリュロー
タ。
5. The fiber-reinforced resin according to claim 1, wherein the preforming material filled between the surface layer and the central axis is composed of a bulk molding compound containing glass fiber, carbon fiber or aramid fiber. Screw rotor.
【請求項6】熱硬化性樹脂を繊維で強化した繊維強化樹
脂製スクリュロータにおいて、強化繊維に熱硬化性樹脂
を含浸したシートを予め金型内に配置し、該シートと中
心軸の間に補強用短繊維と熱硬化性樹脂を混練して得ら
れる予備成形材料を射出成形、またはトランスファ成形
してロータ歯部を成形することを特徴とする繊維強化樹
脂製スクリュロータの製造法。
6. In a screw rotor made of a fiber-reinforced resin in which a thermosetting resin is reinforced with fibers, a sheet in which reinforcing fibers are impregnated with the thermosetting resin is placed in advance in a mold, and the sheet is placed between the sheet and the central axis. A method for producing a screw rotor made of a fiber-reinforced resin, which comprises molding a rotor tooth portion by injection molding or transfer molding a preforming material obtained by kneading reinforcing short fibers and a thermosetting resin.
【請求項7】熱硬化性樹脂を繊維で強化した繊維強化樹
脂製スクリュロータにおいて、強化繊維に熱硬化性樹脂
を含浸したシートを金型内に配置し、金型を回転させて
遠心力で表面層を形成した後、補強用短繊維と熱硬化性
樹脂を混練して得られる予備成形材料を該表面層と中心
軸の間に充填してロータ歯部を成形することを特徴とす
る繊維強化樹脂製スクリュロータの製造法。
7. In a screw rotor made of a fiber-reinforced resin in which a thermosetting resin is reinforced with fibers, a sheet in which reinforced fibers are impregnated with the thermosetting resin is placed in a mold, and the mold is rotated by centrifugal force. A fiber characterized by forming a surface layer and then filling a preforming material obtained by kneading reinforcing short fibers and a thermosetting resin between the surface layer and the central axis to form a rotor tooth portion. Reinforcement resin screw rotor manufacturing method.
JP2001382467A 2001-12-17 2001-12-17 Fiber reinforced resin screw rotor Expired - Fee Related JP4013537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001382467A JP4013537B2 (en) 2001-12-17 2001-12-17 Fiber reinforced resin screw rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001382467A JP4013537B2 (en) 2001-12-17 2001-12-17 Fiber reinforced resin screw rotor

Publications (2)

Publication Number Publication Date
JP2003184758A true JP2003184758A (en) 2003-07-03
JP4013537B2 JP4013537B2 (en) 2007-11-28

Family

ID=27592799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001382467A Expired - Fee Related JP4013537B2 (en) 2001-12-17 2001-12-17 Fiber reinforced resin screw rotor

Country Status (1)

Country Link
JP (1) JP4013537B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016049514A1 (en) * 2014-09-25 2016-03-31 Eaton Corporation Composite molded rotary component
US20170101989A1 (en) * 2014-03-12 2017-04-13 Eaton Corporation Methods for making a low inertia laminated rotor
US9932983B2 (en) 2013-03-15 2018-04-03 Eaton Intelligent Power Limited Low inertia laminated rotor
US10208656B2 (en) 2012-11-20 2019-02-19 Eaton Intelligent Power Limited Composite supercharger rotors and methods of construction thereof
US10630121B1 (en) * 2015-09-23 2020-04-21 Regal Beloit America, Inc. Rigid rotor structures for conical air gap electrodynamic machines
WO2024059511A1 (en) * 2022-09-13 2024-03-21 BladeX Technologies, LLC Fiber reinforced polymer blade

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10208656B2 (en) 2012-11-20 2019-02-19 Eaton Intelligent Power Limited Composite supercharger rotors and methods of construction thereof
US9932983B2 (en) 2013-03-15 2018-04-03 Eaton Intelligent Power Limited Low inertia laminated rotor
US20170101989A1 (en) * 2014-03-12 2017-04-13 Eaton Corporation Methods for making a low inertia laminated rotor
WO2016049514A1 (en) * 2014-09-25 2016-03-31 Eaton Corporation Composite molded rotary component
CN107073846A (en) * 2014-09-25 2017-08-18 伊顿公司 Composite molding rotary part
US10630121B1 (en) * 2015-09-23 2020-04-21 Regal Beloit America, Inc. Rigid rotor structures for conical air gap electrodynamic machines
WO2024059511A1 (en) * 2022-09-13 2024-03-21 BladeX Technologies, LLC Fiber reinforced polymer blade

Also Published As

Publication number Publication date
JP4013537B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
JP6414668B2 (en) Gears and manufacturing method thereof
JP2739529B2 (en) Excavator arm made of polymer composite material and method of manufacturing the same
CN1191429C (en) Elastomerized phenolic resin ablative insulation for rocket motors
US5301940A (en) Baseball bat and production thereof
US7331764B1 (en) High-strength low-weight fan blade assembly
US3655863A (en) Method of making a contoured composite product
EP2340160B1 (en) A method of manufacturing a polymer composite member by use of two or more resins
JP2002539992A (en) Composites comprising structural and non-structural fibers
KR20150106703A (en) A linerless pressure vessel by centrifugal forced weaving and a method for manufacturing thereof
SE0950790A1 (en) Method for manufacturing a composite material
EP1297400A1 (en) Composite rotors for flywheels and methods of fabrication thereof
JP2003184758A (en) Fiber reinforced resin screw rotor
US5049342A (en) Method of fabricating composite structures
JP2016527112A (en) Composite form manufacturing method, composite form, sandwich component, rotor blade element, and wind power generator
US20130216815A1 (en) Composite materials and methods and apparatus for making same
US3876327A (en) Non-metallic pump
CN105882081A (en) Composite abrasion-proof damping material and preparing method thereof
CN109664524A (en) Forming process of fiber reinforced composite material reinforcing beam and vehicle using same
JPH06218839A (en) Production of ring for gear having internal teeth and external teeth and use of said combination ring for forming internal gear and external gear
JP5433325B2 (en) Manufacturing method of fiber reinforced composite material molded article
JP2007271079A (en) Torque transmission shaft
US20220250335A1 (en) Lightweight thermoplastic composite products and methods of making same
JP2002284559A (en) Artificial marble
JPH11210687A (en) Impeller with shroud
JP3785214B2 (en) Fiber reinforced composite resin gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041018

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070821

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100921

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100921

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120921

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120921

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130921

LAPS Cancellation because of no payment of annual fees