JP2003156330A - Airborne topography-measuring apparatus and method - Google Patents

Airborne topography-measuring apparatus and method

Info

Publication number
JP2003156330A
JP2003156330A JP2001357961A JP2001357961A JP2003156330A JP 2003156330 A JP2003156330 A JP 2003156330A JP 2001357961 A JP2001357961 A JP 2001357961A JP 2001357961 A JP2001357961 A JP 2001357961A JP 2003156330 A JP2003156330 A JP 2003156330A
Authority
JP
Japan
Prior art keywords
information
laser
aircraft
scanner
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001357961A
Other languages
Japanese (ja)
Inventor
Yoshihiro Asakawa
義博 浅川
Original Assignee
Nec Corp
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corp, 日本電気株式会社 filed Critical Nec Corp
Priority to JP2001357961A priority Critical patent/JP2003156330A/en
Publication of JP2003156330A publication Critical patent/JP2003156330A/en
Application status is Pending legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To simultaneously acquire information about the height, reflection intensity, and colors, and to process data that are related to position coordinates obtained by laser measurement.
SOLUTION: There are provided a laser sensor 1, a line sensor camera 2, an attitude angle sensor 4, a GPS 5, a control means 21 for controlling the laser sensor 1, the line sensor camera 2, and a scanner 3, a data-recording means 22 for recording measured data, and a data-processing means 23 for processing the measured data. The data processing means 23 performs data processing on aircraft position information 6 by the GPS 5, aircraft oscillation information 7 by the posture angle sensor 4, laser ranging value 8 and reflected intensity information 10 by the laser sensor 1, a scanner scanning angle 9 by the scanner 3, color information 11 by the line sensor camera 2 for superimposing as the information on the coordinates position of a point, where height information 17, the reflection intensity information 10, and the color information 11 are measured.
COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、地形計測装置に関し、特にレーザセンサとラインセンサカメラを航空機に搭載する航空機搭載地形計測装置に関する。 BACKGROUND OF THE INVENTION [0001] [Technical Field of the Invention The present invention relates to a terrain measuring device, in particular a laser sensor and the line sensor camera about airborne terrain measuring device to be mounted on an aircraft. 【0002】 【従来の技術】固定翼機或いはヘリコプターといった航空機にレーザセンサを搭載して地形計測を行なうことは、特開平11−6731号公報や特開平11−232 [0002] performing the Morphometry equipped with a laser sensor of the Related Art Aircraft, such fixed-wing aircraft or helicopter, JP-A 11-6731 and JP 11-232
63号公報でこれまでも実施されて来た。 63 JP far also come implemented. しかし、これまでのレーザセンサだけでは高さ情報しか得ることができないものであった。 However, it was those that can not be just get only height information laser sensor far. 【0003】近年、この高さ情報に航空写真に代表される画像(色)の情報等を重畳させる需要が高まっており、これまでの方式では、ステレオ写真から高さを読み取る或いは、レーザセンサとは別に特開平11−232 In recent years, this has been increasing height demand for superimposing the information of the image (color) represented by aerial information, the method so far, or read the height from stereo photographs, a laser sensor Apart from Japanese Patent Laid-Open is 11-232
63号公報のようにビデオカメラで撮影された画像データにレーザで計測した位置高さ情報を重畳するといった時間の掛かる作業を経て画像情報と高さ情報の重畳が行なわれてきた。 Superposition of the image information and the height information has been made through the work time-consuming such superimposing position height information measured by the laser in the image data photographed by a video camera as 63 JP. 【0004】また、特開平11−23263号公報ではレーザの反射強度情報も取得して送電線や樹木の判別に使用しているが、本発明のように反射強度情報をアクティブな近赤外画像という扱いで使用しているものではない。 Further, in the Japanese Patent 11-23263 discloses are used to determine the transmission line and trees also acquired reflection intensity information of the laser, a near-infrared image reflected intensity information active as in the present invention not one that is used in the treatment of. 【0005】 【発明が解決しようとする課題】本発明では、レーザセンサとラインセンサカメラを同時に搭載したセンサにおいて、航空機で飛行しながらレーザセンサでの高さ情報及びこれに同期して取得できる反射強度情報とラインセンサカメラによる色情報とを同時に取得することで、高さ情報、反射強度情報、色情報を同時に取得し、各情報をレーザ計測で得られた位置座標に関連付けたデータとして迅速に処理できる航空機搭載地形計測装置を提供することを課題とする。 [0005] In the [0008] present invention, in the sensor equipped with laser sensor and the line sensor camera at the same time, can be obtained in synchronization fly while height information and thereto at the laser sensor aircraft reflection by simultaneously obtaining a color information by the intensity information and the line sensor camera, quickly as the height information, obtains the reflection intensity information, the color information at the same time, associated with the position coordinates obtained for each information by the laser measurement data and to provide a airborne terrain measuring device can be processed. 【0006】 【課題を解決するための手段】上記の課題を解決するために、請求項1に係わる航空機搭載地形計測装置の発明は、スキャナを用いてレーザ光を走査させるレーザセンサと、受光素子が配列されたラインセンサを用いたラインセンサカメラと、を備え、前記レーザセンサは、前記ラインセンサカメラの画角と同一範囲を走査して航空機から地上面までのレーザ測距値と前記地上面からの反射強度情報と前記スキャナによるスキャナ走査角度を計測し、前記ラインセンサカメラは、前記スキャナの走査周波数に同期して前記地上面からの色情報を計測することを特徴とする。 [0006] In order to solve the above object, according to an aspect of an invention of Airborne Morphometry apparatus according to claim 1, a laser sensor to scan the laser beam using a scanner, the light-receiving element but and a line sensor camera using a line sensor arranged, the laser sensor, the ground plane and the laser distance measurement value from the aircraft by scanning the angle and the same range of the line sensor camera to the ground plane the scanner scanning angle by the scanner and the reflection intensity information from the measuring, the line sensor camera is characterized by measuring the color information from the ground surface in synchronism with the scanning frequency of the scanner. 【0007】また、請求項2に係わる航空機搭載地形計測装置の発明は、スキャナを用いてレーザ光を走査させるレーザセンサと、受光素子が配列されたラインセンサを用いたラインセンサカメラと、航空機の機体の角度を測定する姿勢角センサと、アンテナと受信機を含むGP [0007] The invention of Airborne Morphometry apparatus according to claim 2, a laser sensor to scan the laser beam using a scanner, and a line sensor camera using a line sensor in which the light receiving elements are arranged, the aircraft an attitude angle sensor for measuring the angle of the aircraft, GP including an antenna and a receiver
Sと、前記レーザセンサ、前記ラインセンサカメラ、前記スキャナを制御する制御手段と、前記レーザセンサ、 And S, the laser sensor, the line sensor camera, and control means for controlling the scanner, the laser sensor,
前記ラインセンサカメラ、前記スキャナ、前記姿勢角センサ、前記GPSからの計測データを記録するデータ記録手段と、前記計測データを処理するデータ処理手段と、を備え、前記GPSが、前記航空機の航空機位置情報を計測し、前記姿勢角センサが、前記航空機の航空機動揺情報を計測し、前記レーザセンサが、前記航空機から地上面までの距離を表すレーザ測距値及び前記地上面からの反射強度情報を計測し、前記スキャナが、スキャナ走査角度を計測し、前記ラインセンサカメラが、前記地上面からの色情報を計測し、前記データ処理手段が、 Said line sensor camera, the scanner, the attitude angle sensor, said comprising a data recording means for recording the measurement data from the GPS, and a data processing means for processing the measurement data, wherein the GPS is, the aircraft position of the aircraft measured information, the attitude angle sensor, the aircraft motion information of the aircraft is measured, the laser sensor, the reflection intensity information from the laser distance measurement value representing the distance from the aircraft to the ground surface and the ground surface measured, the scanner, the scanner scanning angle is measured, the line sensor camera, the color information from the ground surface is measured, it said data processing means,
前記航空機位置情報、前記航空機動揺情報、前記レーザ測距値、前記スキャナ走査角度から求めた高さ情報と、 The aircraft position information, and the aircraft motion information, the laser distance measuring values, height information obtained from said scanner scanning angle,
前記反射強度情報と、前記色情報と、を計測した地点の座標位置の情報として重畳させることを特徴とする。 Characterized by superimposing the reflection intensity information, as the information of the coordinate position of the point of measuring the, and the color information. 【0008】さらに、請求項3に係わる航空機搭載地形計測装置の発明は、前記請求項1または前記請求項2に記載の前記レーザセンサと前記ラインセンサカメラとが、前記スキャナで走査されるスキャン面と前記ラインセンサカメラの画角の平面とが平行になるように配置され、前記スキャナの回転軸と前記ラインセンサカメラの画角の中心とが直線上に配置されることを特徴とする。 Furthermore, the invention of Airborne Morphometry apparatus according to claim 3, wherein the scan plane with the laser sensor and the line sensor camera, which is scanned by the scanner according to claim 1 or claim 2 wherein it is arranged such that the plane of the angle of view of the line sensor camera is parallel with the center of the field angle of the rotation axis of the scanner the line sensor camera being arranged on a straight line with. 【0009】さらに、請求項4に係わる航空機搭載地形計測装置の発明は、前記請求項1または前記請求項2に記載の前記レーザセンサが、前記レーザ光を前記航空機の進行方向と垂直に前記スキャナで走査しながら前記航空機から前記地上面までのレーザ測距値及び前記地上面からの反射強度情報を計測し、前記ラインセンサカメラが、前記レーザ光の走査と同期したフレームレートで前記レーザセンサによる計測と同時に前記色情報を計測することを特徴とする。 Furthermore, the invention of Airborne Morphometry apparatus according to claim 4, claim 1 or claim 2 wherein the laser sensor according to the said the laser beam and the perpendicular direction of travel of the aircraft scanner the reflection intensity information from the laser distance measurement value and said ground surface from the aircraft to the ground surface was measured while scanning in the line sensor camera, by the laser sensor at a frame rate synchronized with the scanning of the laser beam characterized by measuring simultaneously the color information and the measurement. 【0010】さらに、請求項5に係わる航空機搭載地形計測装置の発明は、前記請求項2に記載の前記航空機位置情報と、前記航空機動揺情報と、前記レーザ測距値と、前記反射強度情報と、前記スキャナ走査角度と、前記色情報とが、同時に計測されることを特徴とする。 Furthermore, the invention of Airborne Morphometry apparatus according to claim 5, said aircraft position information according to claim 2, and the aircraft motion information, and the laser distance measurement value, and the reflection intensity information , said scanner scanning angle, and the said color information, characterized in that it is measured at the same time. 【0011】さらに、請求項6に係わる航空機搭載地形計測方法の発明は、スキャナを用いてレーザ光を走査させるレーザセンサと、受光素子が配列されたラインセンサを用いたラインセンサカメラと、を用いる航空機搭載地形計測方法であって、前記レーザセンサが計測するレーザ測距値と前記スキャナによるスキャナ走査角度を基に、航空機を基準原点とした前記レーザ測距値での計測地点の座標を演算するステップと、前記座標に対して、 Furthermore, the invention of Airborne Morphometry method according to claim 6 is used and a laser sensor to scan the laser beam using a scanner, and a line sensor camera using a line sensor in which the light-receiving elements are arrayed a airborne topographic measurement method, based on the scanner scanning angle by the scanner and laser distance measurement values ​​the laser sensor is measured, and calculates the coordinates of the measurement point in the laser distance value aircraft with reference origin a step, with respect to the coordinates,
前記航空機に備えるGPSが計測する航空機位置情報と前記航空機に備える姿勢角センサが計測する航空機動揺情報とを使用して前記計測地点の絶対位置座標を求め、 The absolute position coordinates of the measurement point in the attitude angle sensor provided in the aircraft and the aircraft position information GPS provided to the aircraft measurement using the aircraft motion information to be measured,
前記レーザ測距値による前記計測地点のX、Y、Z座標を求めるステップと、前記ラインセンサカメラが計測する色情報に関し、前記レーザ測距値を計測した際の前記スキャナ走査角度に対応する前記ラインセンサカメラの画素を割り当てるステップと、前記レーザ測距値を計測する際に前記レーザセンサで計測される反射強度情報及び前記色情報が前記レーザ測距値から求められる前記計測地点のX、Y座標に関連付けられるステップと、前記計測地点のX、Y座標に、前記計測地点のZ座標である高さ情報、前記反射強度情報、前記色情報を重畳させるステップと、を備えることを特徴とする。 X of the measurement point by the laser distance value, Y, and determining the Z coordinate, relates the color information in which the line sensor camera is measured, the corresponding to the scanner scanning angle when measured with the laser distance value assigning a pixel of the line sensor camera, X of the measurement point of reflection intensity information and the color information is obtained from the laser distance measurement value measured by the laser sensor in measuring the laser distance measurement value, Y a step associated with the coordinates, X of the measurement point, the Y-coordinate, height information which is the Z coordinate of the measurement point, the reflection intensity information, characterized by comprising the steps of: superposing the color information . 【0012】また、請求項7に係わる航空機搭載地形計測方法の発明は、前記請求項6に記載の前記計測地点のX、Y座標に関連付けられた前記色情報を処理し、オルソ画像としての可視画像を得ることを特徴とする。 [0012] The invention of Airborne Morphometry method according to claim 7, X of the measurement point according to claim 6, processes the color information associated with the Y-coordinate, visible as orthoimage characterized in that to obtain an image. 【0013】 【発明の実施の形態】《発明の概要》最初に、本発明の概要について説明する。 DETAILED DESCRIPTION OF THE INVENTION The first to "Summary of the Invention", an overview of the present invention. 本発明では、固定翼機やヘリコプターといった航空機に一次元走査型の高繰り返しレーザセンサ及びラインセンサカメラを搭載し、飛行しながらレーザセンサによる高さ情報、反射強度情報及びラインセンサカメラによる色情報を同時に取得することができる。 In the present invention, equipped with a high repetition laser sensor and the line sensor camera of the one-dimensional scanning in an aircraft such as fixed wing aircraft and helicopters, the height information by the laser sensor while flying, the color information by the reflected intensity information and the line sensor camera it can be acquired at the same time. 飛行中の航空機の絶対位置及び動揺は、GPS及び姿勢角センサを用いて検出する。 Absolute position and upset of the aircraft in flight is detected using the GPS and attitude angle sensor. GPSと姿勢角センサにより検出された航空機の絶対位置を基にレーザセンサのデータから計測した地上の絶対位置及び高さを求めることができ、この地上の絶対位置に反射強度情報及び色情報を容易に重畳させることができる。 Can be determined based on the absolute position of the detected aircraft by GPS and attitude angle sensor absolute position and height of the ground measured from the data of the laser sensor, facilitating the reflection intensity information and color information on the absolute position of the ground it can be superimposed on. このように、 in this way,
各情報を同時に取得し、容易なデータ処理で高さ、反射強度、色の各情報を使った三次元の画像を作成できること、また、反射強度は近赤外の反射率の違いを得るもので、樹木などの植生物と人工的な建造物を反射率の違いで判別することができ、色情報と併せることで、三次元画像化するだけでなく、その画像の情報から植生物や構造物が判別できることを特徴とする。 Takes each information simultaneously, easy data processing in height, reflection intensity, you can create three-dimensional images using the information of the colors, reflection intensity is intended to obtain a difference in reflectance of the near infrared , it is possible to determine the vegetation was artificial structures such as trees in the difference of reflectance, by combining the color information, not only three-dimensional imaging, vegetation product and structures from the information of the image There characterized by an ability to determine. 【0014】《発明の原理》この発明の原理図を図1に示す。 [0014] "the principles of the invention" shows the principle of the invention is shown in FIG. レーザセンサ1とスキャナ3とラインセンサカメラ2と姿勢角センサ4とGPS5(これらをセンサと呼ぶことがある)を使用し、航空機位置情報6、航空機動揺情報7、レーザ測距値8、スキャナ走査角度9、反射強度情報10、色情報11を取得(計測)する。 Use a laser sensor 1 and the scanner 3 and the line sensor camera 2 and the attitude angle sensor 4 GPS 5 (which may be referred to as these sensors), the aircraft position information 6, the aircraft motion information 7, the laser distance measurement value 8, the scanner scans angle 9, the reflection intensity information 10, to get (measured) color information 11. 【0015】レーザセンサ1は、出力するレーザ光16 [0015] The laser sensor 1, the output laser beam 16
をスキャナ3により一次元走査し、ラインセンサカメラ2の画角12と同一範囲のスキャナ走査範囲13の範囲をレーザ光16を走査することで地上面14までの距離であるレーザ測距値8を計測し、さらに地上面14からの反射強度情報10を計測する。 The scanned one-dimensional by the scanner 3, the laser distance measurement value 8 is the distance range of the scanner scanning range 13 of the angle 12 and the same range of the line sensor camera 2 to the ground plane 14 by scanning the laser beam 16 measured, further measuring the reflection intensity information 10 from the ground plane 14. レーザ測距値8と反射強度情報10と同時にその計測時のスキャナ走査角度9 Scanner scan angle 9 between the laser distance measurement value 8 the reflection intensity information 10 simultaneously with the time of measurement
のデータを取得する。 Get the data. 【0016】ラインセンサカメラ2は、スキャナ3の走査周波数に同期して、地上面14からの情報として色情報11を取得する。 The line sensor camera 2 in synchronization with the scanning frequency of the scanner 3, and acquires the color information 11 as information from the ground surface 14. また、航空機位置情報6はGPS5 In addition, aircraft position information 6 GPS5
で、航空機動揺情報7は姿勢角センサ4でそれぞれ取得する。 In aircraft motion information 7 acquires respectively the attitude angle sensor 4. 取得された航空機位置情報6と航空機動揺情報7 Acquired aircraft location information 6 and the aircraft motion information 7
とレーザ測距値8とスキャナ走査角度9によりレーザセンサ1で計測した地点の位置高さ情報(つまり、図3に示されるX、Y、Z座標)を求めることができ、その位置情報(つまり、図3に示されるX、Y座標)に対して反射強度情報10と色情報11を重畳させることができる。 And position the height information of the point measured by the laser sensor 1 by a laser distance measurement value 8 and the scanner scanning angle 9 (i.e., X, shown in Figure 3, Y, Z coordinates) can be obtained, the position information (i.e. it can superimpose the reflected intensity information 10 and color information 11 relative X, Y coordinates), shown in Figure 3. 【0017】センサヘッド部19内ではレーザセンサ1 [0017] The laser sensor 1 is within the sensor head 19
がスキャナ3で走査されるスキャン面とラインセンサカメラ2の画角12の平面が平行になるように、また、スキャナ3の回転軸とラインセンサカメラ2の画角12の中心が直線上に並ぶように各センサを配置する。 So they plan a scan plane and the line angle 12 of the sensor camera 2 to be scanned are parallel with the scanner 3, The center of the rotation axis and the line angle 12 of the sensor camera 2 of the scanner 3 are arranged in a straight line placing each sensor so. こうすることでスキャナ走査範囲13(図1、図3参照)でレーザ光16が走査されてレーザ測距値8を得る地上面上ラインとラインセンサカメラ2で取得される色情報11 Scanner scanning range 13 by way (see FIGS. 1 and 3) color information 11 acquired the laser beam 16 is scanned on the ground plane on the line and the line sensor camera 2 to obtain a laser distance measurement value 8
を得る地上面上ラインを平行にし、且つ走査方向に同じ範囲で計測することができる。 It can be made parallel to the ground plane on the line to obtain, and is measured in the same range in the scanning direction. 【0018】センサヘッド部19を航空機下部に地上面14に向けて配置することで、航空機が飛行することにより三次元のデータとして取得することができる。 [0018] The sensor head portion 19 by disposing toward the ground surface 14 to the aircraft lower can be obtained as three-dimensional data by aircraft flies. 航空機の飛行による機体の絶対位置(航空機位置情報6)及び動揺(航空機動揺情報7)はGPS5と姿勢角センサ4で取得する。 Absolute position of the aircraft due to the flight of an aircraft (aircraft location information 6) and agitation (aircraft motion information 7) is obtained by GPS5 and attitude angle sensor 4. 計測終了後に航空機内部に配置される制御部20(図2参照)内のデータ記録部22から各センサのデータを取り出し、データ処理装置23で高さ情報17(図4、5参照)で示す三次元地形形状データ及びそれに重畳された反射強度情報10と色情報11を得ることができる。 Measurement after the end retrieves the data of each sensor from the data recording unit 22 in the controller 20 (see FIG. 2) disposed inside the aircraft, the three indicated by height information 17 in the data processing unit 23 (see FIGS. 4 and 5) primary it is possible to obtain the original terrain shape data and reflection intensity information 10 and color information 11 superimposed on it. つまり、三次元地形の情報15が得られる。 That is, the information 15 of the three-dimensional topography is obtained. 【0019】《実施形態の構成》図2は本発明の実施形態の構成である。 [0019] "configuration of Embodiment" FIG. 2 is a configuration of an embodiment of the present invention. 大きく分けてセンサヘッド部19、制御部20、データ処理装置23及びGPS5から構成される。 Large sensor head 19 is divided, the control unit 20, and a data processing unit 23 and GPS 5. 【0020】センサヘッド部19は、一次元走査型の高繰り返しレーザセンサ1、受光素子が直線上に配列されたラインセンサを使用したラインセンサカメラ2、レーザ光16を一次元スキャンさせるスキャナ3、ロール角とピッチ角と方位角など航空機の機体の角度を計測する姿勢角センサ4が配置され、地上面14に向けて航空機に搭載される。 The sensor head 19, a high repetition laser sensor 1 of the one-dimensional scanning, the light receiving element is a line sensor camera 2 using the line sensors arranged in a straight line, the scanner 3 to a one-dimensional scan of the laser beam 16, is disposed attitude angle sensor 4 that measures the angle of the aircraft fuselage, such as roll angle and the pitch angle and azimuth angle, is mounted on the aircraft toward the ground surface 14. 【0021】制御部20は、レーザセンサ1と、ラインセンサカメラ2とスキャナ3の制御を行なう制御ユニット21(制御手段)と、レーザセンサ1とラインセンサカメラ2とスキャナ3と姿勢角センサ4とGPS5とで取得される計測データを記録するデータ記録部22(データ記録手段)から構成され、航空機内部に配置される。 The control unit 20 includes a laser sensor 1, the control unit 21 for controlling the line sensor camera 2 and the scanner 3 (control means), a laser sensor 1 and the line sensor camera 2 and the scanner 3 and the attitude angle sensor 4 and a data recording unit 22 (data recording means) for recording measurement data obtained by the GPS 5, disposed within the aircraft. 【0022】データ処理装置23(データ処理手段) [0022] The data processing device 23 (data processing means)
は、地上に配置され、データ記録部22で記録された計測データの三次元処理を行う。 It is placed on the ground, and performs three-dimensional processing of the measurement data recorded by the data recording unit 22. データ処理装置23は、 Data processing device 23,
必要に応じて航空機の内部に配置してもよいし、機能を分割して地上と航空機内部それぞれに配置してもよい。 May be disposed in the interior of the aircraft as needed, it may be placed on the ground and aircraft interior each separate functionality.
体積や重量に余裕があれば、航空機内部への配置は容易である。 If there is room in the volume and weight, the arrangement of the interior aircraft is easy. 【0023】GPS5は、GPS衛星電波を受信するため航空機上部に取り付けられるGPSアンテナ部とGP [0023] GPS5 is, GPS antenna unit mounted to the aircraft top for receiving GPS satellite radio waves and GP
S受信機とを含んで構成されるものである。 It is those composed and a S receiver. 【0024】《実施形態の動作》図3に本装置の主要構成品であるセンサヘッド部19と制御部20を航空機(図3ではヘリコプターで記載しているが、以下、航空機として説明する)に搭載し、地上面14を計測するイメージ図を示す。 [0024] (although described in helicopter in FIG. 3, hereinafter, be described as aircraft) of the sensor head 19 and the control unit 20 which is the main components of the apparatus in FIG. 3 "Operation of the Embodiment" aircraft mounted shows a conceptual diagram for measuring the ground plane 14. 図4は取得データ(計測データ)の処理フロー、図5は二次元平面座標上に各情報を重畳した重畳図である。 Figure 4 is a process flow of acquired data (measurement data), Figure 5 is a superposition view obtained by superimposing the information on a two-dimensional plane coordinates. 【0025】航空機下部に配置されたセンサヘッド部1 The sensor head 1 disposed on an aircraft lower
9ではレーザセンサ1より出力されるレーザ光16を航空機の進行方向(図3に示すY軸方向)と垂直にスキャナ3で走査しながら地上面14までのレーザ測距値8及び反射強度情報10(地上面14に照射されたレーザ光16の反射強度)を取得し、ラインセンサカメラ2は、 Laser distance value 8 and reflection intensity information 10 of the laser beam 16 outputted from the laser sensor 1, 9 to the ground surface 14 while scanning in the vertical scanner 3 (Y-axis direction shown in FIG. 3) the traveling direction of the aircraft get the (reflection intensity of the ground plane 14 laser beam 16 irradiated to), the line sensor camera 2,
レーザ光16の走査と同期したフレームレートでレーザセンサ1による取得データと同時に色情報11を地上面14からの情報として取得する。 It acquires color information 11 simultaneously with the acquired data by the laser sensor 1 in synchronization with the frame rate and the scanning of the laser beam 16 as the information from the ground surface 14. 【0026】センサヘッド部19に搭載されるレーザセンサ1、ラインセンサカメラ2は、共に一次元のライン上のデータを取得するが、本発明の装置全体としては航空機が進行方向に飛行することで、二次元平面上の情報として取得することができる。 The laser sensor 1 to be mounted on the sensor head 19, the line sensor camera 2 is to obtain data on the one-dimensional line together, the whole apparatus of the present invention is that the aircraft flies in the direction of travel it can be acquired as information on the two-dimensional plane. センサヘッド部19と制御及びその取得データを記録する制御部20とは、航空機の機内に配置され、制御部20内にある制御ユニット21で、センサヘッド部19のレーザセンサ1、ラインセンサカメラ2、スキャナ3等の各センサの動作を制御する。 The control unit 20 for recording control and the obtained data and the sensor head 19 is arranged on board of the aircraft, the control unit 21 within the control unit 20, a laser sensor 1 of the sensor head section 19, the line sensor camera 2 , it controls the operation of the sensors of the scanner 3 or the like. 航空機が飛行中の動揺(つまり、航空機動揺情報7)の検出は姿勢角センサ4で、航空機の絶対位置(つまり、航空機位置情報6)は航空機上部に配置されるG Aircraft upset in flight (i.e., aircraft motion information 7) G detection of a posture angle sensor 4, the absolute position of the aircraft (i.e., aircraft position information 6) is disposed on the aircraft upper
PS5で取得する。 To get in PS5. 【0027】各センサから取得された図1に示す航空機位置情報6、航空機動揺情報7、レーザ測距値8、スキャナ走査角度9、反射強度情報10、色情報11(これらをまとめて、取得データまたは計測データと呼ぶ) The aircraft position information 6 shown in FIG. 1 that is obtained from each sensor, the aircraft motion information 7, the laser distance measurement value 8, the scanner scanning angle 9, the reflection intensity information 10, color information 11 (collectively the acquisition data or referred to as the measurement data)
は、図2に示す制御部20内のデータ記録部22に記録される。 It is recorded in the data recording unit 22 in the controller 20 shown in FIG. 【0028】計測データは、図2に示すように航空機に搭載する機器とは別に地上に配置されるデータ処理装置23で図4に示す処理フローのように処理が行われる。 The measured data are processed as the processing flow shown in FIG. 4 the data processor 23 which is arranged separately from the ground to the device to be mounted on an aircraft, as shown in FIG. 2 are performed.
まず、レーザ測距値8とスキャナ走査角度9を基に航空機を基準原点としたレーザ測距値8での計測地点の座標を求める(S1)。 First, the coordinates of the measurement point of the laser distance measurement value 8 and the scanner scanning angle 9 laser distance value 8 on the basis origin aircraft based on (S1). この座標値に対して、航空機位置情報6と航空機動揺情報7を使用することで計測地点の絶対位置座標(例えば、経度(E)、緯度(N)、高度(H))を求めることができ、この時点でレーザ測距値8による計測地点のX、Y座標及び高さ情報17であるZ座標を求める(S2)ことができる。 For this coordinate value, the absolute position coordinates of the measurement point by using the aircraft location information 6 and the aircraft motion information 7 (e.g., longitude (E), latitude (N), altitude (H)) can be obtained , X of measurement point by the laser distance measurement value 8 at this point, can determine the Z-coordinate is the Y coordinate and height information 17 (S2). 【0029】反射強度情報10も色情報11と同様の処理を行うことができるが、反射強度情報10の特徴はレーザ光16の反射強度を取得しているため、ラインセンサカメラ2のような可視画像で現れる影の影響を受けず、また、夜でもアクティブ近赤外画像として取得できる点にある。 [0029] Although the reflection intensity information 10 also can perform the same processing as the color information 11, since the characteristics of the reflected intensity information 10 has acquired reflection intensity of the laser beam 16, the visible, such as the line sensor camera 2 not affected by the shadow that appears in the image, also, there is a point that can be acquired as an active near-infrared image even at night. 【0030】色情報11に関しては、レーザ測距値8を取得した際のスキャナ走査角度9を基に、その角度に対応するラインセンサカメラ2の画素を割り当て、その座標上の色情報11とする(S3)。 [0030] With respect to the color information 11 on the basis of the scanner scanning angle 9 when acquiring the laser distance measurement value 8, assigns the pixels of the line sensor camera 2 corresponding to the angle, and color information 11 on the coordinate (S3). 反射強度情報10 Reflection intensity information 10
は、レーザ測距値8を取得する際に同じレーザセンサ1 The same laser sensor 1 at the time of acquiring the laser distance measurement value 8
で取得されるデータであり、レーザ測距値8から求められる計測地点のX、Y座標に関連づけられ(S4)、高さ情報17(Z座標)と共に1対1で対応する情報である。 A in data obtained, associated with the measurement point obtained from the laser distance value 8 X, the Y-coordinate (S4), the corresponding information in one-to-one with the height information 17 (Z-coordinate). 同時に、色情報11も計測地点のX、Y座標に関連付けられる(S4)。 At the same time, color information 11 also X of measurement point, associated with the Y-coordinate (S4). (つまり、反射強度情報10、色情報11、高さ情報17は、X、Y座標に対応している。)このように求められた各情報は、図5に示すように地上面14を計測した結果の二次元平面座標18の計測地点の座標上に重畳する(つまり、計測地点のX、Y (That is, reflection intensity information 10, color information 11, height information 17, X, and corresponds to the Y coordinate.) Each information obtained in this way, measures the ground surface 14 as shown in FIG. 5 superimposed on the results of the two-dimensional plane coordinates 18 on the coordinate of the measurement point (that is, the measurement point X, Y
座標に高さ情報17、反射強度情報10、色情報11を重畳させたデータとする)(S5)ことができる。 Height information 17 to the coordinates, the reflection intensity information 10, and is superposed data color information 11) (S5) can be. これにより、計測したデータは高さ情報17を基に描かれる三次元画像の他、反射強度画像、色画像をあらわすことができ、また、高さ情報17(Z座標)と色情報11を合わせて三次元画像化することで、三次元写真のような色がついた三次元画像にすることができる。 Thus, another three-dimensional image measurement data is drawn on the basis of height information 17, the reflection intensity image, can represent the color image, also combined height information 17 (Z-coordinate) and the color information 11 Te by three-dimensional imaging may be a three-dimensional image in which colored such as a three-dimensional photograph. 【0031】反射強度情報10では、地上にある樹木等の植生物と人工的な構造物の反射率には可視領域と近外赤外領域において、図6の植生物と構造物の反射率に示すように、例えば草、コンクリート、アスファルトといったように、対象物によって顕著な違いがあるためその判別ができ、色情報11と併せて三次元画像化できるだけでなく、その画像の情報から計測した地上面14に存在するものが植生物か構造物かという判別を行なうことができる。 [0031] In the reflection intensity information 10, in the visible region and Kinsotoaka outside area to the reflectance of the vegetation was Artificial structures such as trees on the ground, the reflectance of the vegetation was and the structure of FIG. 6 as shown, for example grass, concrete, as such asphalt, can the determination because of the significant difference by the object, not only the three-dimensional imaging in conjunction with the color information 11, the land measured from information of the image those present on the upper surface 14 can perform determination of whether vegetation product or structure. 【0032】さらに、反射強度情報10は、地上面14 Furthermore, the reflection intensity information 10, ground plane 14
に照射されたレーザ光16の反射強度を取得するもので、可視カメラと異なり、夜間の暗い環境下でも地上面14からのレーザ光16の反射を計測し、データを取得することができる。 Intended to obtain a reflection intensity of the laser beam 16 irradiated to, unlike the visible camera, nighttime also measures the reflection of the laser beam 16 from the ground plane 14 in a dark environment, it is possible to acquire the data. したがって、夜間の近赤外線画像の計測を実現することができる。 Therefore, it is possible to realize a measurement of the nighttime near infrared image. また、昼間の明るい環境下で計測した場合でも、可視カメラでは太陽による建物の影が写って暗く見えなくなってしまう部分が生じるが、反射強度情報10で画像を作成した場合には、装置から出射したレーザ光16の反射を使用しているため、 Further, even when measured under daylight environment, if it is part visible camera becomes invisible dark reflected the shadow of a building by the solar occurs, that created the image in reflection intensity information 10 is emitted from the device due to the use of reflection of the laser beam 16 that,
太陽による影の影響を受けない影の無い画像を得ることができる。 It is possible to obtain an image free from the shadow that is not affected by the shadow caused by the sun. 道路、樹木、建物等、反射率の違いにより地上の状況を識別することができ、道路のセンターラインや横断歩道といった白線でかかれているような高さ情報17では識別できないものも識別することができる。 Roads, trees, buildings, etc., the difference in reflectance can be identified on the ground conditions, but also to identify those that can not be identified in the height information 17 such as that Kakare by a white line such as center line and a crosswalk road it can. 【0033】ラインセンサカメラ2で取得される色情報11は、可視画像を作成できる情報である。 The color information 11 acquired by the line sensor camera 2 is information that can create a visible image. これまで可視画像取得で行なわれてきた航空写真では、写真の端に行くほど写っている像の倒れこみが生じ、建物などは間延びした画像になる。 In the aerial photograph that has been done in the visible image acquisition ever, crowded the inclination of the image that is reflected toward the end of the photo is produced, such as the building becomes the image was slow. 航空写真ではステレオ撮影をするなどしてこれを補正して画像全体を真上から見たオルソ(正射投影)画像にする手段をとるが非常に時間の掛かる作業であり、高さ情報17を読み取ることにおいては熟練を要する作業であった。 The aerial is a work taking means is very time consuming to ortho (orthographic) image viewed the entire image by correcting it by, for example, a stereo imaging from above, the height information 17 was a work that requires skill in be read. 本発明によれば、その位置座標の色情報11を取得処理することで、地上面14の座標個々の色情報11を得られることである。 According to the present invention, by acquiring processing color information 11 of the position coordinates, it is to obtain the coordinates individual color information 11 of the ground plane 14. その結果、航空写真のような像の倒れこみがなく、オルソ画像としての可視画像を得ることができる。 As a result, no crowded inclination of the image, such as aerial photographs, it is possible to obtain a visible image of the ortho-image. ここで、オルソ画像とは、ラインセンサカメラ2の位置、傾きなどによる歪みを補正して正射投影にした画像である。 Here, the ortho-image, a position of the line sensor camera 2, the inclination is an image obtained by the correction to orthographic distortion due. 【0034】 【発明の効果】第1の効果は、一回の飛行計測作業で地上の計測地点の高さ情報と反射強度情報及び色情報を同時に同期した情報として取得でき、同時に同期を取って取得しているため、地上でのデータ処理で計測地点の位置座標上に高さ情報、反射強度情報、色情報を容易に短時間で重畳させる処理を行えることである。 [0034] [Effect of the Invention] The first effect is a single flight can obtain measurement tasks by the height information of the ground measurement point reflection intensity information and color information as time synchronization information, synchronized simultaneously due to the acquisition is to enable the height information on the position coordinates of the measurement point in the data processing on the ground, the reflection intensity information, a process of superimposing easily in a short time the color information. 位置座標に各情報を当てはめることで二次元平面上での画像化ができるだけでなく、高さ情報と反射強度情報、または高さ情報と色情報を重ね合わせることで、高さ情報だけの三次元画像だけではなく、高さを持った反射強度の三次元画像、高さを持った色(可視)の三次元画像を得ることができる。 Coordinates to not only the image of on a two-dimensional plane by fitting the respective information, height information and the reflected intensity information or to the superimposing level information and color information, only the three-dimensional height information not only the image, it is possible to obtain a three-dimensional image of the three-dimensional image of the reflected intensity with a height, with a height color (visible). 【0035】第2の効果は、航空機位置情報と航空機動揺情報による位置座標情報と共に、その位置座標の色情報を取得処理することで、地上面の座標個々の色情報が得られることである。 The second effect, together with the position coordinate information by aircraft position information and the aircraft motion information and acquiring processes the color information of the position coordinates, is that the coordinates individual color information of the ground surface can be obtained. その結果、航空写真のような像の倒れこみがなく、オルソ画像としての可視画像を得ることができる。 As a result, no crowded inclination of the image, such as aerial photographs, it is possible to obtain a visible image of the ortho-image. 【0036】第3の効果は、各位置座標に高さ情報が色情報と共に重畳されているので、三次元の立体写真を作成することも容易にできることである。 The third effect, the height information at each position coordinate is superimposed with the color information is that it can also easily be created anaglyph three-dimensional.

【図面の簡単な説明】 【図1】本発明の原理図である。 It illustrates the principle of an BRIEF DESCRIPTION OF THE DRAWINGS [Figure 1] present invention. 【図2】実施例の構成である。 2 is a construction of the embodiment. 【図3】センサヘッド部と制御部を搭載して地上面を計測するイメージ図である。 3 is a conceptual diagram for measuring the ground surface mounted a control unit sensor head. 【図4】取得データの処理フローである。 4 is a processing flow of acquired data. 【図5】二次元平面座標上に各情報を重畳した重畳図である。 5 is a superposition view obtained by superimposing the information on a two-dimensional plane coordinates. 【図6】植生物と構造物の反射率である。 6 is a reflectance of planting organisms and structures. 【符号の説明】 1 レーザセンサ2 ラインセンサカメラ3 スキャナ4 姿勢角センサ5 GPS 6 航空機位置情報7 航空機動揺情報8 レーザ測距値9 スキャナ走査角度10 反射強度情報11 色情報12 画角13 スキャナ走査範囲14 地上面15 三次元地形の情報16 レーザ光17 高さ情報18 二次元平面座標19 センサヘッド部20 制御部21 制御ユニット22 データ記録部23 データ処理装置 [Reference Numerals] 1 laser sensor 2 line sensor camera 3 scanner 4 attitude angle sensor 5 GPS 6 aircraft position information 7 aircraft motion information 8 laser distance value 9 scanner scan angle 10 reflected intensity information 11 colors information 12 angle 13 scanner scanning range 14 ground plane 15 information 16 laser beam 17 height of the three-dimensional topographical information 18 a two-dimensional plane coordinates 19 sensor head 20 control unit 21 control unit 22 data recording unit 23 the data processing device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5B050 AA01 BA02 BA17 DA04 EA09 EA19 EA28 5B057 CA01 CA08 CA12 CA16 CB01 CB08 CB13 CB17 CD14 CE08 CE16 5J084 AA04 AA05 AA10 AA13 AA20 AC04 AD01 AD05 BA03 BA34 BA39 BA48 EA05 EA11 ────────────────────────────────────────────────── ─── front page of continued F-term (reference) 5B050 AA01 BA02 BA17 DA04 EA09 EA19 EA28 5B057 CA01 CA08 CA12 CA16 CB01 CB08 CB13 CB17 CD14 CE08 CE16 5J084 AA04 AA05 AA10 AA13 AA20 AC04 AD01 AD05 BA03 BA34 BA39 BA48 EA05 EA11

Claims (1)

  1. 【特許請求の範囲】 【請求項1】 スキャナを用いてレーザ光を走査させるレーザセンサと、受光素子が配列されたラインセンサを用いたラインセンサカメラと、を備え、前記レーザセンサは、前記ラインセンサカメラの画角と同一範囲を走査して航空機から地上面までのレーザ測距値と前記地上面からの反射強度情報と前記スキャナによるスキャナ走査角度を計測し、前記ラインセンサカメラは、前記スキャナの走査周波数に同期して前記地上面からの色情報を計測することを特徴とする航空機搭載地形計測装置。 Comprising a laser sensor to scan the laser light using a [Claims 1 scanner, and a line sensor camera using a line sensor in which the light receiving elements are arranged, the laser sensor, the line by scanning the angle and the same range of the sensor camera measures the scanner scanning angle by the scanner and the reflection intensity information of the laser range values ​​from said ground surface from the aircraft to the ground surface, said line sensor camera, the scanner airborne topography measurement apparatus, characterized by measuring the color information from the ground surface in synchronism with the scanning frequency of the. 【請求項2】 スキャナを用いてレーザ光を走査させるレーザセンサと、受光素子が配列されたラインセンサを用いたラインセンサカメラと、航空機の機体の角度を測定する姿勢角センサと、アンテナと受信機を含むGPS A laser sensor to scan the laser light using a 2. A scanner, a line sensor camera using a line sensor in which the light-receiving elements are arrayed, an attitude angle sensor for measuring the angle of the aircraft fuselage, the antenna and the receiver GPS, including aircraft
    と、前記レーザセンサ、前記ラインセンサカメラ、前記スキャナを制御する制御手段と、前記レーザセンサ、前記ラインセンサカメラ、前記スキャナ、前記姿勢角センサ、前記GPSからの計測データを記録するデータ記録手段と、前記計測データを処理するデータ処理手段と、 When the laser sensor, the line sensor camera, and control means for controlling the scanner, the laser sensor, the line sensor camera, the scanner, the attitude angle sensor, and a data recording means for recording the measurement data from said GPS a data processing means for processing the measurement data,
    を備え、前記GPSが、前記航空機の航空機位置情報を計測し、前記姿勢角センサが、前記航空機の航空機動揺情報を計測し、前記レーザセンサが、前記航空機から地上面までの距離を表すレーザ測距値及び前記地上面からの反射強度情報を計測し、前記スキャナが、スキャナ走査角度を計測し、前記ラインセンサカメラが、前記地上面からの色情報を計測し、前記データ処理手段が、前記航空機位置情報、前記航空機動揺情報、前記レーザ測距値、前記スキャナ走査角度から求めた高さ情報と、前記反射強度情報と、前記色情報と、を計測した地点の座標位置の情報として重畳させることを特徴とする航空機搭載地形計測装置。 Wherein the GPS is, the aircraft position information of the aircraft is measured, the attitude angle sensor, the aircraft motion information of the aircraft is measured, the laser sensor, measuring laser represents the distance from the aircraft to the ground surface the 距値 and reflection intensity information from the ground surface is measured, the scanner, the scanner scanning angle is measured, the line sensor camera, the color information from the ground surface is measured, said data processing means, wherein aircraft position information, the aircraft motion information, the laser distance measurement value, is superimposed with said height information obtained from the scanner scanning angle, and the reflection intensity information, as the information of the coordinate position of the point of measuring the, and the color information airborne topography measurement apparatus, characterized in that. 【請求項3】 前記レーザセンサと前記ラインセンサカメラとが、前記スキャナで走査されるスキャン面と前記ラインセンサカメラの画角の平面とが平行になるように配置され、前記スキャナの回転軸と前記ラインセンサカメラの画角の中心とが直線上に配置されることを特徴とする請求項1または請求項2に記載の航空機搭載地形計測装置。 Wherein said laser sensor and said line sensor camera is positioned so as scan plane to be scanned by the scanner and the plane of the angle of view of the line sensor camera are parallel, the axis of rotation of the scanner airborne topography measurement apparatus according to claim 1 or claim 2 and the center of the field angle of the line sensor camera being arranged on a straight line. 【請求項4】 前記レーザセンサが、前記レーザ光を前記航空機の進行方向と垂直に前記スキャナで走査しながら前記航空機から前記地上面までのレーザ測距値及び前記地上面からの反射強度情報を計測し、前記ラインセンサカメラが、前記レーザ光の走査と同期したフレームレートで前記レーザセンサによる計測と同時に前記色情報を計測することを特徴とする請求項1または請求項2に記載の航空機搭載地形計測装置。 Wherein said laser sensor, a reflection intensity information from the laser distance measurement value and said ground plane of said laser beam from the aircraft while scanning in the traveling direction and perpendicular the scanner of the aircraft to the ground surface measured, the line sensor camera, airborne according to claim 1 or claim 2, characterized in that to measure simultaneously the color information and the measurement by the laser sensor in synchronization with the frame rate and scanning of the laser beam terrain measuring device. 【請求項5】 前記航空機位置情報と、前記航空機動揺情報と、前記レーザ測距値と、前記反射強度情報と、前記スキャナ走査角度と、前記色情報とが、同時に計測されることを特徴とする請求項2に記載の航空機搭載地形計測装置。 And wherein said aircraft position information, and the aircraft motion information, and the laser distance measurement value, and the reflection intensity information, said scanner scanning angle, and the color information, and characterized in that it is measured at the same time airborne topography measurement apparatus according to claim 2. 【請求項6】 スキャナを用いてレーザ光を走査させるレーザセンサと、受光素子が配列されたラインセンサを用いたラインセンサカメラと、を用いる航空機搭載地形計測方法であって、前記レーザセンサが計測するレーザ測距値と前記スキャナによるスキャナ走査角度を基に、 A laser sensor to scan the laser beam 6. using a scanner, a airborne Morphometry method using a line sensor camera using a line sensor in which the light receiving elements are arranged, the laser sensor measurement based on the scanner scanning angle by the scanner and laser distance measurement values,
    航空機を基準原点とした前記レーザ測距値での計測地点の座標を演算するステップと、前記座標に対して、前記航空機に備えるGPSが計測する航空機位置情報と前記航空機に備える姿勢角センサが計測する航空機動揺情報とを使用して前記計測地点の絶対位置座標を求め、前記レーザ測距値による前記計測地点のX、Y、Z座標を求めるステップと、前記ラインセンサカメラが計測する色情報に関し、前記レーザ測距値を計測した際の前記スキャナ走査角度に対応する前記ラインセンサカメラの画素を割り当てるステップと、前記レーザ測距値を計測する際に前記レーザセンサで計測される反射強度情報及び前記色情報が前記レーザ測距値から求められる前記計測地点のX、Y座標に関連付けられるステップと、前記計測地点のX、Y座標 A step of computing the coordinates of the measurement point in the laser distance value aircraft with reference origin, with respect to the coordinates, attitude angle sensor is measured with the aircraft position information and the aircraft GPS is measured with the aircraft using the aircraft motion information the absolute coordinates of the measurement point which, X of the measurement point by the laser distance value, Y, and determining the Z coordinate relates color information said line sensor camera is measured , assigning a pixel of the line sensor camera corresponding to the scanner scanning angle when measured with the laser distance measurement value, the reflection intensity information measured by the laser sensor in measuring the laser distance measuring values ​​and X of the measurement point in which the color information is obtained from the laser distance value, the steps associated with the Y coordinate, X of the measurement point, Y-coordinate 、前記計測地点のZ座標である高さ情報、前記反射強度情報、前記色情報を重畳させるステップと、を備えることを特徴とする航空機搭載地形計測方法。 The height information is Z-coordinate of the measurement point, the reflection intensity information, airborne Morphometry method characterized by comprising the steps of: superposing the color information. 【請求項7】 前記計測地点のX、Y座標に関連付けられた前記色情報を処理し、オルソ画像としての可視画像を得ることを特徴とする請求項6に記載の航空機搭載地形計測方法。 7. the measurement point X, and it processes the color information associated with the Y-coordinate, Airborne topography measuring method according to claim 6, characterized in that obtaining a visible image as ortho-image.
JP2001357961A 2001-11-22 2001-11-22 Airborne topography-measuring apparatus and method Pending JP2003156330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001357961A JP2003156330A (en) 2001-11-22 2001-11-22 Airborne topography-measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357961A JP2003156330A (en) 2001-11-22 2001-11-22 Airborne topography-measuring apparatus and method

Publications (1)

Publication Number Publication Date
JP2003156330A true JP2003156330A (en) 2003-05-30

Family

ID=19169224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357961A Pending JP2003156330A (en) 2001-11-22 2001-11-22 Airborne topography-measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP2003156330A (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252529A (en) * 2005-02-09 2006-09-21 Asia Air Survey Co Ltd Planimetric feature environment condition provision method and program thereof
JP2006284270A (en) * 2005-03-31 2006-10-19 Pasuko:Kk Method and system for laser measurement
WO2007026613A1 (en) 2005-08-31 2007-03-08 Pasco Corporation Laser distance measurement device and laser distance measurement method
WO2007118478A1 (en) 2006-03-31 2007-10-25 Faro Technologies Inc. Apparatus and method for three-dimensional coverage of a spatial area
JP2008530594A (en) * 2005-02-08 2008-08-07 ハリス コーポレイションHarris Corporation Method and apparatus for distinguishing buildings from vegetation for terrain modeling
JP2009032063A (en) * 2007-07-27 2009-02-12 Pasuko:Kk Device and program for generating space information database
WO2010024212A1 (en) * 2008-08-29 2010-03-04 三菱電機株式会社 Bird's-eye image forming device, bird's-eye image forming method, and bird's-eye image forming program
JP2010197378A (en) * 2009-01-14 2010-09-09 Mitsubishi Electric Corp Radar image processing device
KR101003412B1 (en) 2010-08-31 2010-12-23 (주)동광지엔티 Apparatus and method for airborne laser surveying using detection dilution critical value of precision
KR101008395B1 (en) 2010-10-12 2011-01-14 (주)동광지엔티 Apparatus for detecting orthometric height correction point
JP2011069757A (en) * 2009-09-28 2011-04-07 Hitachi Solutions Ltd Spectral analysis apparatus
JP2011169845A (en) * 2010-02-22 2011-09-01 Kokusai Kogyo Co Ltd Sorting method of surveying data, sorting device of surveying data and recording medium containing recorded surveying data
KR20120071816A (en) * 2010-12-23 2012-07-03 한국전자통신연구원 Method of monitoring air pollution and system for the same
KR101192825B1 (en) 2011-06-30 2012-10-18 서울시립대학교 산학협력단 Apparatus and method for lidar georeferencing based on integration of gps, ins and image at
US8384914B2 (en) 2009-07-22 2013-02-26 Faro Technologies, Inc. Device for optically scanning and measuring an environment
JP2013072772A (en) * 2011-09-28 2013-04-22 Topcon Corp Image acquisition device
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
US8699036B2 (en) 2010-07-29 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
CN104111071A (en) * 2014-07-10 2014-10-22 上海宇航系统工程研究所 High-precision position posture calculating method based on laser ranging and camera visual fusion
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
WO2014192805A1 (en) * 2013-05-29 2014-12-04 三菱電機株式会社 Laser radar device and method for generating laser image
CN104359458A (en) * 2014-11-17 2015-02-18 芒市海华开发有限公司 Method for performing geologic and topographic measurement by utilizing High One quad-rotor plane
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US9074878B2 (en) 2012-09-06 2015-07-07 Faro Technologies, Inc. Laser scanner
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US9279662B2 (en) 2012-09-14 2016-03-08 Faro Technologies, Inc. Laser scanner
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530594A (en) * 2005-02-08 2008-08-07 ハリス コーポレイションHarris Corporation Method and apparatus for distinguishing buildings from vegetation for terrain modeling
JP4553826B2 (en) * 2005-02-09 2010-09-29 アジア航測株式会社 Feature environment status providing method and program thereof
JP2006252529A (en) * 2005-02-09 2006-09-21 Asia Air Survey Co Ltd Planimetric feature environment condition provision method and program thereof
JP2006284270A (en) * 2005-03-31 2006-10-19 Pasuko:Kk Method and system for laser measurement
JP4709564B2 (en) * 2005-03-31 2011-06-22 株式会社パスコ Laser measurement method and laser measurement system
WO2007026613A1 (en) 2005-08-31 2007-03-08 Pasco Corporation Laser distance measurement device and laser distance measurement method
EP1930689A4 (en) * 2005-08-31 2010-09-29 Pasco Corp Laser distance measurement device and laser distance measurement method
US7633632B2 (en) 2005-08-31 2009-12-15 Pasco Corporation Laser measurement device and laser measurement method
EP1930689A1 (en) * 2005-08-31 2008-06-11 PASCO Corporation Laser distance measurement device and laser distance measurement method
JP2009531674A (en) * 2006-03-31 2009-09-03 ファロ テクノロジーズ インコーポレーテッド Apparatus and method for capturing a region in 3D
WO2007118478A1 (en) 2006-03-31 2007-10-25 Faro Technologies Inc. Apparatus and method for three-dimensional coverage of a spatial area
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
JP2009032063A (en) * 2007-07-27 2009-02-12 Pasuko:Kk Device and program for generating space information database
US8218824B2 (en) 2007-07-27 2012-07-10 Pasco Corporation Spatial information database generating device and spatial information database generating program
KR101269981B1 (en) 2008-08-29 2013-05-31 미쓰비시덴키 가부시키가이샤 Bird's-eye image forming device, bird's-eye image forming method, and recording medium
WO2010024212A1 (en) * 2008-08-29 2010-03-04 三菱電機株式会社 Bird's-eye image forming device, bird's-eye image forming method, and bird's-eye image forming program
JP2013225336A (en) * 2008-08-29 2013-10-31 Mitsubishi Electric Corp Overhead view image generation device, overhead view image generation method and overhead view image generation program
CN102138163A (en) * 2008-08-29 2011-07-27 三菱电机株式会社 Bird's-eye image forming device, bird's-eye image forming method, and bird's-eye image forming program
US8665263B2 (en) 2008-08-29 2014-03-04 Mitsubishi Electric Corporation Aerial image generating apparatus, aerial image generating method, and storage medium having aerial image generating program stored therein
JP2011233165A (en) * 2008-08-29 2011-11-17 Mitsubishi Electric Corp Overhead view generation device, overhead view image generation method and overhead view image generation program of overhead view image generation device
JP4832596B2 (en) * 2008-08-29 2011-12-07 三菱電機株式会社 Overhead image generation device, overhead image generation method, and overhead image generation program
KR101319471B1 (en) 2008-08-29 2013-10-17 미쓰비시덴키 가부시키가이샤 Bird's-eye image forming device, bird's-eye image forming method, and recording medium
JP2010197378A (en) * 2009-01-14 2010-09-09 Mitsubishi Electric Corp Radar image processing device
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8384914B2 (en) 2009-07-22 2013-02-26 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
JP2011069757A (en) * 2009-09-28 2011-04-07 Hitachi Solutions Ltd Spectral analysis apparatus
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
JP2011169845A (en) * 2010-02-22 2011-09-01 Kokusai Kogyo Co Ltd Sorting method of surveying data, sorting device of surveying data and recording medium containing recorded surveying data
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9684078B2 (en) 2010-05-10 2017-06-20 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699036B2 (en) 2010-07-29 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
KR101003412B1 (en) 2010-08-31 2010-12-23 (주)동광지엔티 Apparatus and method for airborne laser surveying using detection dilution critical value of precision
KR101008395B1 (en) 2010-10-12 2011-01-14 (주)동광지엔티 Apparatus for detecting orthometric height correction point
KR102035693B1 (en) * 2010-12-23 2019-10-23 한국전자통신연구원 Method of monitoring air pollution and system for the same
KR20120071816A (en) * 2010-12-23 2012-07-03 한국전자통신연구원 Method of monitoring air pollution and system for the same
KR101192825B1 (en) 2011-06-30 2012-10-18 서울시립대학교 산학협력단 Apparatus and method for lidar georeferencing based on integration of gps, ins and image at
JP2013072772A (en) * 2011-09-28 2013-04-22 Topcon Corp Image acquisition device
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9074878B2 (en) 2012-09-06 2015-07-07 Faro Technologies, Inc. Laser scanner
US10132611B2 (en) 2012-09-14 2018-11-20 Faro Technologies, Inc. Laser scanner
US9279662B2 (en) 2012-09-14 2016-03-08 Faro Technologies, Inc. Laser scanner
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10203413B2 (en) 2012-10-05 2019-02-12 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US9739886B2 (en) 2012-10-05 2017-08-22 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9746559B2 (en) 2012-10-05 2017-08-29 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US9989631B2 (en) 2013-05-29 2018-06-05 Mitsubishi Electric Corporation Laser radar device and radar image generating method
JP5889484B2 (en) * 2013-05-29 2016-03-22 三菱電機株式会社 Laser radar apparatus and radar image generation method
WO2014192805A1 (en) * 2013-05-29 2014-12-04 三菱電機株式会社 Laser radar device and method for generating laser image
CN104111071A (en) * 2014-07-10 2014-10-22 上海宇航系统工程研究所 High-precision position posture calculating method based on laser ranging and camera visual fusion
CN104359458A (en) * 2014-11-17 2015-02-18 芒市海华开发有限公司 Method for performing geologic and topographic measurement by utilizing High One quad-rotor plane
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack

Similar Documents

Publication Publication Date Title
US5625765A (en) Vision systems including devices and methods for combining images for extended magnification schemes
JP6574251B2 (en) How to use a 2D scanner to speed up the alignment of 3D scan data
US5087916A (en) Method of navigation
US6101431A (en) Flight system and system for forming virtual images for aircraft
US7184088B1 (en) Apparatus and method for obtaining 3D images
CN103477185B (en) For the measuring system for the 3D coordinates for determining subject surface
EP1453010A2 (en) Systems and methods for providing enhanced vision imaging with decreased latency
DE69628956T2 (en) Scanning and procedures
ES2286431T3 (en) Air recognition system.
US9201422B2 (en) Measuring system
US20020163582A1 (en) Self-calibrating, digital, large format camera with single or mulitiple detector arrays and single or multiple optical systems
US7206080B2 (en) Surface shape measurement apparatus, surface shape measurement method, surface state graphic apparatus
US8666571B2 (en) Flight control system for flying object
US5530650A (en) Computer imaging system and method for remote in-flight aircraft refueling
JP2006038843A (en) Method for calibrating distance image sensor
Sugiura et al. Remote-sensing technology for vegetation monitoring using an unmanned helicopter
US6748325B1 (en) Navigation system
US4807024A (en) Three-dimensional display methods and apparatus
EP0026637A2 (en) Method and apparatus for acquiring topographical data of a celestial body
US8717361B2 (en) Method for generating orthophoto image
US9336568B2 (en) Unmanned aerial vehicle image processing system and method
US8712144B2 (en) System and method for detecting crop rows in an agricultural field
US7630579B2 (en) System and method for mosaicing digital ortho-images
JP5188507B2 (en) Visual aids with 3D image acquisition
US4984279A (en) Image processing and map production systems

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050412