JP2003136634A - Fiber-reinforced plastic composite material and method for manufacturing the material - Google Patents

Fiber-reinforced plastic composite material and method for manufacturing the material

Info

Publication number
JP2003136634A
JP2003136634A JP2001335447A JP2001335447A JP2003136634A JP 2003136634 A JP2003136634 A JP 2003136634A JP 2001335447 A JP2001335447 A JP 2001335447A JP 2001335447 A JP2001335447 A JP 2001335447A JP 2003136634 A JP2003136634 A JP 2003136634A
Authority
JP
Japan
Prior art keywords
fiber
reinforced plastic
composite material
plastic composite
ceramic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001335447A
Other languages
Japanese (ja)
Other versions
JP3877996B2 (en
Inventor
Toshio Tanimoto
敏夫 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakura Rubber Co Ltd
Original Assignee
Sakura Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakura Rubber Co Ltd filed Critical Sakura Rubber Co Ltd
Priority to JP2001335447A priority Critical patent/JP3877996B2/en
Publication of JP2003136634A publication Critical patent/JP2003136634A/en
Application granted granted Critical
Publication of JP3877996B2 publication Critical patent/JP3877996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced plastic composite material which prevents the thermal deterioration of a lamination interface due to the internal heat generation from occurring, when a tensile force and a compressive force are repeatedly applied and thereby, upgrades a fatigue resistance. SOLUTION: This fiber-reinforced plastic composite material is characterized in that a plurality of fiber-reinforced plastic layers are laminated and highly heat conductive ceramic particles are interposed at a lamination interface between the plastic layers as a single layer where the particles are dispersed within the interface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、繊維強化プラスチ
ック複合材料およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to a fiber-reinforced plastic composite material and a method for producing the same.

【0002】[0002]

【従来の技術】この種の繊維強化プラスチック複合材料
は、例えば炭素繊維強化エポキシ樹脂のような繊維強化
プラスチックからなるプリプレグを複数重ね合わせて積
層した構造を有し、例えば航空機の翼のような各種構造
材に利用されている。前記繊維強化プラスチック複合材
料は、引張り力および圧縮力が繰り返し加わると、複数
の繊維強化プラスチック層の界面での層間剥離に起因し
て疲労することから、層間剥離を防ぐための改良が望ま
れている。
2. Description of the Related Art A fiber-reinforced plastic composite material of this type has a structure in which a plurality of prepregs made of a fiber-reinforced plastic such as a carbon fiber-reinforced epoxy resin are superposed on each other and laminated. It is used as a structural material. Since the fiber-reinforced plastic composite material is fatigued due to delamination at the interface of a plurality of fiber-reinforced plastic layers when tensile force and compression force are repeatedly applied, improvement for preventing delamination is desired. There is.

【0003】このようなことから、従来の繊維強化プラ
スチック複合材料は、繊維強化プラスチックのマトリッ
クス樹脂にゴムや樹脂のような他の成分を添加したプリ
プレグを複数重ね、加熱加圧して積層する方法、繊維強
化プラスチックからなるプリプレグをそれらの間に接着
剤層を介在して重ね合わせ、加熱加圧して積層する方法
により製造されている。しかしながら、これらの方法で
製造された繊維強化プラスチック複合材料においても、
複数の繊維強化プラスチック層の界面での層間剥離を効
果的に防止することが困難であった。
In view of the above, the conventional fiber-reinforced plastic composite material is a method of stacking a plurality of prepregs obtained by adding other components such as rubber and resin to the matrix resin of the fiber-reinforced plastic, and heating and pressurizing them. It is manufactured by a method in which prepregs made of fiber reinforced plastic are superposed with an adhesive layer interposed therebetween, and heated and pressed to be laminated. However, even in fiber-reinforced plastic composite materials produced by these methods,
It has been difficult to effectively prevent delamination at the interface of a plurality of fiber reinforced plastic layers.

【0004】一方、"IMPROVING THE FATIGUE RESISTANC
E OF CARBON/EPOXY LAMINATES WITHDISPERSED-PARTICLE
INTERLAYERS" Act mater. Vol. 46, No. 7, pp. 2455-
2460, 1998には、複数のカーボン繊維強化エポキシ樹脂
層の積層界面に例えば変性アモルファスポリアミドのよ
うなポリマーの粒子を多数分散させたカーボン繊維強化
エポキシ樹脂複合材料が開示されている。なお、前記論
文に関連した発明は、特開平7−41577号公報にも
開示されている。
On the other hand, "IMPROVING THE FATIGUE RESISTANC
E OF CARBON / EPOXY LAMINATES WITH DISPERSED-PARTICLE
INTERLAYERS "Act mater. Vol. 46, No. 7, pp. 2455-
2460, 1998 discloses a carbon fiber reinforced epoxy resin composite material in which a large number of particles of a polymer such as modified amorphous polyamide are dispersed at the laminated interface of a plurality of carbon fiber reinforced epoxy resin layers. The invention related to the above paper is also disclosed in JP-A-7-41577.

【0005】[0005]

【発明が解決しようとする課題】このようなカーボン繊
維強化エポキシ樹脂複合材料は、カーボン繊維強化エポ
キシ樹脂層の積層界面に多数のポリマー粒子を分散させ
ることにより、ポリマー粒子のアンカー作用によりカー
ボン繊維強化エポキシ樹脂層の接着力および剪断力の向
上が認められるものの、引張り力および圧縮力が繰り返
し加わった時の内部発熱に伴う積層界面の熱劣化に起因
する疲労を改善することが困難であった。
Such a carbon fiber reinforced epoxy resin composite material is a carbon fiber reinforced epoxy resin composite material in which a large number of polymer particles are dispersed at the laminated interface of the carbon fiber reinforced epoxy resin layer, and the carbon fiber reinforced by the anchoring action of the polymer particles. Although the adhesive strength and the shear strength of the epoxy resin layer were improved, it was difficult to improve the fatigue caused by the thermal deterioration of the laminated interface due to the internal heat generation when the tensile force and the compressive force were repeatedly applied.

【0006】本発明は、引張り力および圧縮力が繰り返
し加わった時の内部発熱に伴う積層界面の熱劣化を防止
して、耐疲労性を向上した繊維強化プラスチック複合材
料およびその製造方法を提供しようとするものである。
The present invention aims to provide a fiber reinforced plastic composite material having improved fatigue resistance by preventing thermal deterioration of a laminate interface due to internal heat generation when tensile force and compression force are repeatedly applied, and a method for producing the same. It is what

【0007】[0007]

【課題を解決するための手段】本発明に係る繊維強化プ
ラスチック複合材料は、複数の繊維強化プラスチック層
を積層するとともに、それらの積層界面に高熱伝導性の
セラミック粒子を面内において単一粒子分散させた層と
して介在したことを特徴とするものである。
A fiber-reinforced plastic composite material according to the present invention comprises a plurality of fiber-reinforced plastic layers which are laminated together and ceramic particles having high thermal conductivity which are dispersed in a single particle at the interface between the layers. It is characterized in that it is interposed as a layer.

【0008】本発明に係る繊維強化プラスチック複合材
料の製造方法は、繊維強化プラスチックからなるプリプ
レグの表面に高熱伝導性のセラミック粒子を厚さ方向に
重なることなく散布することにより前記セラミック粒子
を面内において単一粒子分散させた層を形成する工程
と、前記単一粒子分散層を有するプリプレグを複数用意
し、これらを積層した後、加熱加圧する工程とを含むこ
とを特徴とするものである。
In the method for producing a fiber-reinforced plastic composite material according to the present invention, the ceramic particles having a high thermal conductivity are sprayed on the surface of the prepreg made of the fiber-reinforced plastic without overlapping in the thickness direction. In step 1, a step of forming a layer in which single particles are dispersed and a step of preparing a plurality of prepregs having the single particle dispersed layer, laminating these, and then heating and pressing are prepared.

【0009】[0009]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0010】本発明の繊維強化プラスチック複合材料
は、複数の繊維強化プラスチック層を積層するととも
に、それらの層の積層界面に高熱伝導性のセラミック粒
子を面内において単一粒子分散させた層として介在した
構造を有する。
In the fiber-reinforced plastic composite material of the present invention, a plurality of fiber-reinforced plastic layers are laminated, and at the laminating interface between these layers, ceramic particles having high thermal conductivity are intercalated as a single-particle-dispersed layer. It has a structure.

【0011】具体的には、図1に示すように例えば8つ
の繊維強化プラスチック層1を積層し、これら繊維強化
プラスチック層1の積層界面に高熱伝導性のセラミック
粒子2をその面内において単一粒子分散させた層(単一
粒子分散層)3として介在することにより繊維強化プラ
スチック複合材料を構成している。
Specifically, as shown in FIG. 1, for example, eight fiber-reinforced plastic layers 1 are laminated, and highly heat-conductive ceramic particles 2 are formed in a single plane on the laminated interface of these fiber-reinforced plastic layers 1. A fiber-reinforced plastic composite material is constituted by interposing it as a layer 3 in which particles are dispersed (single particle dispersion layer) 3.

【0012】ここで、『単一粒子分散層』とは多数の高
熱伝導性のセラミック粒子が繊維強化プラスチック層の
積層界面にその面方向に単一状態で分散されて層を形成
していることを意味する。別の言い方をすれば、『単一
粒子分散層』とは多数の高熱伝導性のセラミック粒子が
前記積層界面に積層方向に重なり合うことなく、面方向
に個々の状態で分散されて層を形成していることを意味
する。
The term "single particle dispersion layer" as used herein means that a large number of highly heat conductive ceramic particles are dispersed in a single state in the plane direction at the lamination interface of the fiber reinforced plastic layers to form a layer. Means In other words, a “single particle dispersion layer” means that a large number of highly heat-conductive ceramic particles are dispersed in individual directions in the plane direction without overlapping in the stacking interface in the stacking direction to form a layer. It means that

【0013】前記単一粒子分散層を構成する前記セラミ
ック粒子は、前記繊維強化プラスチック層の積層界面で
全てが個々独立して存在せず、少なくとも一部がその積
層界面の中央部から外周縁に向けて互いに面方向に接触
した状態で存在し、熱伝達の経路を形成することが必要
である。このような形態の単一粒子分散層は、例えば平
均粒径3μmの六方晶窒化ホウ素(h−BN)粒子を高
熱伝導性のセラミック粒子として用いた場合、これらの
h−BN粒子を前記積層界面に1cm2当たり、0.0
9mg以上、より好ましくは0.184mg以上存在さ
せることにより実現することが可能になる。
The ceramic particles forming the single particle dispersion layer do not exist independently at the laminating interface of the fiber reinforced plastic layer, and at least a part of the ceramic particle is located from the central portion of the laminating interface to the outer peripheral edge. It is necessary to form a heat transfer path which exists in the state of being in contact with each other in the surface direction. The single-particle dispersed layer having such a form has, for example, when hexagonal boron nitride (h-BN) particles having an average particle diameter of 3 μm are used as the ceramic particles having high thermal conductivity, these h-BN particles are used for the above-mentioned lamination interface. Per 1 cm 2 per 0.0
It can be realized by making 9 mg or more, more preferably 0.184 mg or more present.

【0014】前記繊維強化プラスチックとしては、熱硬
化性樹脂または熱可塑性樹脂をガラス繊維、炭素繊維、
アラミッド繊維および炭化ケイ素繊維から選ばれる少な
くとも1つの強化繊維で強化されたものをあげることが
できる。ここに用いる熱硬化性樹脂としては、例えばエ
ポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂
等を挙げることができる。前記熱可塑性樹脂としては、
例えばナイロン、ポリエーテルエーテルケトン、ポリフ
ェニレンサルファイド等を挙げることができる。前記強
化繊維としては、クロスの形態、一方向に配列された形
態のものを用いることができる。
Examples of the fiber reinforced plastic include thermosetting resin or thermoplastic resin such as glass fiber, carbon fiber,
The one reinforced with at least one reinforcing fiber selected from aramid fiber and silicon carbide fiber can be mentioned. Examples of the thermosetting resin used here include epoxy resin, phenol resin, unsaturated polyester resin and the like. As the thermoplastic resin,
For example, nylon, polyether ether ketone, polyphenylene sulfide, etc. can be mentioned. The reinforcing fibers may be in the form of a cloth or a form arranged in one direction.

【0015】特に、前記繊維強化プラスチックとしては
前記強化繊維が一方向に配列されたものを用い、積層方
向に隣接する繊維強化プラスチック層間においてそれら
繊維強化プラスチック層中の強化繊維の配列方向を異な
らせることが好ましい。配列方向を異ならせて積層する
形態としては、例えば直交積層、斜交積層、擬似等方性
を挙げることができる。
Particularly, as the fiber reinforced plastic, one in which the reinforced fibers are arranged in one direction is used, and the arrangement direction of the reinforced fibers in the fiber reinforced plastic layers adjacent to each other in the laminating direction is made different. It is preferable. Examples of the form of stacking in different arrangement directions include orthogonal stacking, oblique stacking, and pseudo isotropic.

【0016】前記繊維強化プラスチックは、前述した構
造を有するとともに、さらに高熱伝導性のセラミック粒
子を分散して含有することを許容する。
The fiber-reinforced plastic has the above-mentioned structure, and further allows the ceramic particles having high thermal conductivity to be dispersed and contained therein.

【0017】前記高熱伝導性のセラミックは、常温で
0.01cal/cm・s・℃以上、より好ましくは常
温で0.03cal/cm・s・℃以上、さらに好まし
くは常温で0.07cal/cm・s・℃以上の熱伝導
率を有することが望ましい。このようなセラミックとし
ては、例えば窒化アルミニウム[AlN](常温での熱
伝導率;0.07cal/cm・s・℃)、六方晶窒化
ホウ素[h−BN](常温での熱伝導率;0.08ca
l/cm・s・℃)、立法晶窒化ホウ素[cBN](常
温での熱伝導率;3.1cal/cm・s・℃)等を挙
げることができる。
The high thermal conductivity ceramic is 0.01 cal / cm · s · ° C. or more at room temperature, more preferably 0.03 cal / cm · s · ° C. or more at room temperature, further preferably 0.07 cal / cm at room temperature.・ It is desirable to have a thermal conductivity of s · ° C or higher. Examples of such ceramics include aluminum nitride [AlN] (thermal conductivity at room temperature; 0.07 cal / cm · s · ° C.), hexagonal boron nitride [h-BN] (thermal conductivity at room temperature; 0). .08ca
1 / cm · s · ° C.), cubic boron nitride [cBN] (thermal conductivity at room temperature; 3.1 cal / cm · s · ° C.), and the like.

【0018】前記セラミック粒子は、3〜6μmの平均
粒径を有することが好ましい。また、前記セラミック粒
子は粒径が単一粒子分散層内または単一粒子分散層間で
揃っていても、不揃いであってもよい。
The ceramic particles preferably have an average particle size of 3 to 6 μm. In addition, the ceramic particles may have a uniform particle size within the single particle dispersion layer or a uniform particle size between the single particle dispersion layers.

【0019】前記各単一粒子分散層は、そのセラミック
粒子の密度が前記各積層界面の間で異なる、例えば積層
方向に任意のパターンもしくは積層方向に意図した分布
のパターンになる、ように形成することを許容する。よ
り具体的には、前記各単一粒子分散層は、そのセラミッ
ク粒子の密度が前記各積層界面の間で積層方向に段階的
に変化するように形成することを許容する。
Each of the single particle dispersion layers is formed so that the density of the ceramic particles is different between the respective lamination interfaces, for example, an arbitrary pattern in the lamination direction or an intended distribution pattern in the lamination direction. To allow that. More specifically, each of the single-particle dispersed layers is allowed to be formed so that the density of the ceramic particles gradually changes in the stacking direction between the stacking interfaces.

【0020】次に、本発明に係る繊維強化プラスチック
複合材料の製造方法を説明する。
Next, a method for manufacturing the fiber-reinforced plastic composite material according to the present invention will be described.

【0021】(第1工程)繊維強化プラスチックからな
るプリプレグの表面に高熱伝導性のセラミック粒子を厚
さ方向に重なることなく散布する。このとき、前記プレ
プレグ表面は粘着性を有するため、散布されたセラミッ
ク粒子は前記プレプレグ表面に付着してその面内におい
て単一粒子分散されて層を形成する。つまり、本発明の
繊維強化プラスチック複合材料で説明した単一粒子分散
層がプリプレグ表面に形成される。
(First Step) Ceramic particles having high thermal conductivity are sprinkled on the surface of a prepreg made of fiber reinforced plastic without overlapping in the thickness direction. At this time, since the surface of the prepreg has tackiness, the dispersed ceramic particles adhere to the surface of the prepreg and are dispersed as single particles within the surface to form a layer. That is, the single particle dispersion layer described in the fiber-reinforced plastic composite material of the present invention is formed on the prepreg surface.

【0022】前記繊維強化プラスチックおよび高熱伝導
性のセラミックとしては、本発明の繊維強化プラスチッ
ク複合材料で説明したのと同様なものを用いることがで
きる。
As the fiber reinforced plastic and the ceramic having high thermal conductivity, the same ones as described in the fiber reinforced plastic composite material of the present invention can be used.

【0023】前記プリプレグを構成する前記繊維強化プ
ラスチックは、特に熱硬化性樹脂または熱可塑性樹脂を
一方向に配列されたガラス繊維、炭素繊維、アラミッド
繊維および炭化ケイ素繊維から選ばれる少なくとも1つ
の強化繊維で強化されたものを用いることが好ましい。
The fiber reinforced plastic constituting the prepreg is at least one reinforced fiber selected from glass fiber, carbon fiber, aramid fiber and silicon carbide fiber in which thermosetting resin or thermoplastic resin is unidirectionally arranged. It is preferable to use the one reinforced with.

【0024】前記プリプレグの表面に前記セラミック粒
子を散布する際、全てのセラミック粒子を前記プリプレ
グ表面に個々独立して付着せず、少なくとも一部のセラ
ミック粒子がそのプリプレグ表面の中央部から外周縁に
向けて互いに面方向に接触するように付着させ、後述す
る加熱加圧による積層後において積層界面に熱伝達の経
路が作られるように散布することが必要である。このよ
うな熱伝達の経路を形成するには、例えば平均粒径3μ
mの六方晶窒化ホウ素(h−BN)粒子を高熱伝導性の
セラミック粒子として用いた場合、これらのh−BN粒
子を前記プリプレグ表面に1cm2当たり、0.09m
g以上、より好ましくは0.184mg以上になるよう
に散布することにより実現することが可能になる。
When the ceramic particles are sprayed on the surface of the prepreg, all the ceramic particles are not individually adhered to the surface of the prepreg, but at least some of the ceramic particles are spread from the central portion of the prepreg surface to the outer peripheral edge. It is necessary to adhere them so that they are in contact with each other in the surface direction, and to spray so that a path for heat transfer is created at the lamination interface after lamination by heating and pressing which will be described later. To form such a heat transfer path, for example, an average particle size of 3 μm
When hexagonal boron nitride (h-BN) particles of m are used as the ceramic particles of high thermal conductivity, these h-BN particles are added to the prepreg surface in an amount of 0.09 m per 1 cm 2 .
It can be realized by spraying so as to be g or more, more preferably 0.184 mg or more.

【0025】複数の前記プリプレグの表面に前記セラミ
ック粒子をそれぞれ散布する際、前記プリプレグ間で前
記セラミック粒子が前記プリプレグ表面に異なる密度で
付着させて単一粒子分散層を形成することを許容する。
When the ceramic particles are sprayed on the surfaces of the plurality of prepregs, the ceramic particles are allowed to adhere to the prepreg surfaces at different densities to form a single particle dispersion layer between the prepregs.

【0026】(第2工程)前記単一粒子分散層を有する
プリプレグを複数用意し、これらを積層した後、加熱加
圧することにより複数の繊維強化プラスチック層の積層
界面に前記セラミック粒子を面内において単一粒子分散
させた層、つまり単一粒子分散層として介在した構造を
有する繊維強化プラスチック複合材料を製造する。
(Second Step) A plurality of prepregs having the single particle dispersion layer are prepared, and these are laminated, and then heated and pressed to bring the ceramic particles in-plane at the lamination interface of the plurality of fiber reinforced plastic layers. A fiber-reinforced plastic composite material having a structure in which a single particle dispersed layer, that is, a single particle dispersed layer is interposed is manufactured.

【0027】前記加熱加圧処理は、使用されるプリプレ
グを構成する樹脂および繊維の組み合わせによって決定
することが好ましい。例えば、航空機用部品として用い
る繊維強化プラスチックの場合は、121〜132℃、
0.4MPa程度で加熱加圧すればよい。
The heat and pressure treatment is preferably determined depending on the combination of the resin and the fibers that constitute the prepreg used. For example, in the case of fiber reinforced plastic used as aircraft parts, 121 to 132 ° C,
It is sufficient to heat and pressurize at about 0.4 MPa.

【0028】前記セラミック粒子が異なる密度を有する
単一粒子分散層を持つ複数のプリプレグを積層する際、
前記単一粒子分散層の前記セラミック粒子の密度が例え
ば前記プリプレグの積層方向に任意のパターンもしくは
積層方向に意図した分布のパターンになるように積層す
る、より具体的には積層方向に段階的に変化するように
積層することを許容する。
When laminating a plurality of prepregs having a single particle dispersion layer in which the ceramic particles have different densities,
The ceramic particles of the single particle dispersion layer are laminated so that the density of the ceramic particles is, for example, an arbitrary pattern in the laminating direction of the prepreg or a pattern having an intended distribution in the laminating direction, more specifically, stepwise in the laminating direction. Allowing stacking to vary.

【0029】前記プリプレグを構成する前記繊維強化プ
ラスチックとして、熱硬化性樹脂または熱可塑性樹脂を
一方向に配列されたガラス繊維、炭素繊維、アラミッド
繊維および炭化ケイ素繊維から選ばれる少なくとも1つ
の強化繊維で強化されたものを用いる場合、前記単一粒
子分散層を有する複数の前記プリプレグを積層する際、
隣接する前記プリプレグ間でその繊維強化プラスチック
中の前記強化繊維の配列方向を異ならせることが好まし
い。配列方向を異ならせて積層する形態としては、例え
ば直交積層方法、斜交積層方法、擬似等方性を挙げるこ
とができる。
As the fiber-reinforced plastic constituting the prepreg, at least one reinforcing fiber selected from glass fiber, carbon fiber, aramid fiber and silicon carbide fiber in which a thermosetting resin or a thermoplastic resin is unidirectionally arranged. When using a reinforced one, when laminating a plurality of the prepregs having the single particle dispersion layer,
It is preferable that the arranging directions of the reinforcing fibers in the fiber-reinforced plastic are different between the adjacent prepregs. Examples of the form of stacking in different array directions include a cross stacking method, a cross stacking method, and pseudo isotropicity.

【0030】以上説明したように、本発明によれば複数
の繊維強化プラスチック層を積層するとともに、それら
の層界面に高熱伝導性のセラミック粒子を面内において
単一粒子分散させた層として介在させることによって、
前記単一粒子分散層の各セラミック粒子によるアンカー
効果により前記繊維強化プラスチック層間の接着力を向
上できる。
As described above, according to the present invention, a plurality of fiber reinforced plastic layers are laminated, and at the interface between the layers, ceramic particles having high thermal conductivity are intercalated as a layer in which single particles are dispersed in the plane. By
The adhesion effect between the fiber reinforced plastic layers can be improved by the anchor effect of each ceramic particle of the single particle dispersion layer.

【0031】また、前記セラミック粒子はポリマー粒子
に比べて機械的強度が高いために、前記繊維強化プラス
チック層の積層界面の剪断力を向上することができる。
なお、前記繊維強化プラスチック層の積層界面にセラミ
ック粒子が積層方向に重なって多層粒子分散して層を形
成した場合には、引張り力および圧縮力が繰り返し付与
されるとそれらセラミック粒子間での滑りにより剪断力
がかえって低下する虞がある。
Further, since the ceramic particles have higher mechanical strength than the polymer particles, the shearing force at the laminating interface of the fiber reinforced plastic layer can be improved.
In addition, when ceramic particles are laminated in the laminating direction at the laminating interface of the fiber reinforced plastic layer to form a layer by dispersing multi-layer particles, when tensile force and compressive force are repeatedly applied, slippage between the ceramic particles occurs. As a result, the shearing force may rather decrease.

【0032】このような構造の繊維強化プラスチック複
合材料において、引張り力および圧縮力が繰り返し付与
されても、長期間に亘って複数の繊維強化プラスチック
層の界面での層間剥離を防いで、優れた耐疲労性を発現
できる。
In the fiber-reinforced plastic composite material having such a structure, even if tensile force and compression force are repeatedly applied, delamination at the interface of a plurality of fiber-reinforced plastic layers can be prevented for a long period of time, which is excellent. Fatigue resistance can be expressed.

【0033】さらに、本発明に係る繊維強化プラスチッ
ク複合材料の特徴は、単一粒子分散層を構成するセラミ
ック粒子が高熱伝導性(例えば常温で0.01cal/
cm・s・℃以上の熱伝導率)を有することで、かかる
高熱伝導性のセラミック粒子を用いることによって、引
張り力および圧縮力が繰り返し付与されたときの機械的
な疲労とは別の熱劣化に起因する疲労を防止することが
できる。
Further, the fiber-reinforced plastic composite material according to the present invention is characterized in that the ceramic particles constituting the single particle dispersion layer have high thermal conductivity (for example, 0.01 cal / room temperature at room temperature).
By using such ceramic particles having high thermal conductivity (cm · s · ° C. or more), thermal deterioration different from mechanical fatigue when tensile force and compressive force are repeatedly applied. It is possible to prevent fatigue caused by.

【0034】すなわち、通常、繊維強化プラスチック複
合材料に引張り力および圧縮力が繰り返し付与すると、
内部発熱(特に積層界面での発熱)を生じ、その積層界
面が熱劣化する。積層界面の熱劣化は、剪断力等の低下
要因になる。
That is, normally, when tensile force and compression force are repeatedly applied to the fiber-reinforced plastic composite material,
Internal heat generation (especially heat generation at the stacking interface) occurs, and the stacking interface is thermally deteriorated. The thermal deterioration of the laminated interface becomes a factor for reducing the shearing force.

【0035】これに対し、本発明では前記引張り力およ
び圧縮力が繰り返し付与されたときに内部発熱(特に積
層界面の発熱)を生じた場合、その熱を高熱伝導性(例
えば常温で0.01cal/cm・s・℃以上の熱伝導
率)のセラミック粒子からなる単一粒子分散層を通して
積層界面の外周縁に放散することができるため、前記内
部発熱に伴う積層界面の熱劣化を緩和ないし防止でき、
その積層界面での剪断力の低下を防ぐことができる。そ
の結果、長期間に亘って複数の繊維強化プラスチック層
の界面での層間剥離を防止できる。
On the other hand, in the present invention, when internal heat generation (especially heat generation at the lamination interface) occurs when the tensile force and the compressive force are repeatedly applied, the heat is highly thermally conductive (for example, 0.01 cal at room temperature). / Cm · s · ° C. or more) can be diffused to the outer peripheral edge of the lamination interface through a single particle dispersion layer made of ceramic particles, so that thermal deterioration of the lamination interface due to the internal heat generation is mitigated or prevented. You can
It is possible to prevent a decrease in shearing force at the lamination interface. As a result, it is possible to prevent delamination at the interface between a plurality of fiber reinforced plastic layers for a long period of time.

【0036】したがって、複数の繊維強化プラスチック
層を積層するとともに、それらの層界面に高熱伝導性の
セラミック粒子を面内において単一粒子分散させた層と
して介在させることによって、前記単一粒子分散層によ
る前記各繊維強化プラスチック層の積層界面での接着力
の向上および剪断力の向上と、高熱伝導性のセラミック
粒子からなる単一粒子分散層の熱放散性による熱劣化に
伴う剪断力の低下の防止との相乗作用により層間剥離を
防止できるため、優れた耐疲労性を有する繊維強化プラ
スチック複合材料を実現できる。
Therefore, by laminating a plurality of fiber reinforced plastic layers and interposing ceramic particles having high thermal conductivity at the interface of the layers as a layer in which single particles are dispersed in the plane, the single particle dispersion layer is formed. The improvement of the adhesive force and the shearing force at the laminating interface of each of the fiber reinforced plastic layers by the above, and the reduction of the shearing force due to the heat deterioration due to the heat dissipation of the single particle dispersion layer composed of the ceramic particles of high thermal conductivity, Since delamination can be prevented by synergistic action with prevention, a fiber-reinforced plastic composite material having excellent fatigue resistance can be realized.

【0037】また、複数の繊維強化プラスチック層の積
層界面に単一粒子分散層をセラミック粒子の密度を異な
らせて介在させる、例えば単一粒子分散層をセラミック
粒子の密度が前記各積層界面の間で積層方向に段階的に
変化するように介在させることによって、使用形態、つ
まり引張り力および圧縮力が受ける形態に対応して層間
剥離を効果的に防止して耐疲労性を向上した繊維強化プ
ラスチック複合材料を実現することができる。
Further, a single particle dispersion layer is interposed at a lamination interface of a plurality of fiber reinforced plastic layers with different densities of ceramic particles. For example, the single particle dispersion layer has a ceramic particle density between the lamination interfaces. Fiber reinforced plastics that effectively prevent delamination and improve fatigue resistance in accordance with the use form, that is, the form in which tensile force and compression force are received, by interposing them so as to change in a stepwise manner in the stacking direction. Composite materials can be realized.

【0038】さらに、前記繊維強化プラスチックとして
は前記強化繊維が一方向に配列されたものを用い、積層
方向に隣接する繊維強化プラスチック層間においてそれ
ら繊維強化プラスチック層中の強化繊維の配列方向を異
ならせることによって、積層界面の面方向への引張り
力、圧縮力の繰り返しに対する機械的な強度をさらに向
上させた繊維強化プラスチック複合材料を実現できる。
Further, as the fiber-reinforced plastic, one in which the reinforcing fibers are arranged in one direction is used, and the arrangement direction of the reinforcing fibers in the fiber-reinforced plastic layers adjacent to each other in the laminating direction is made different. As a result, it is possible to realize a fiber-reinforced plastic composite material with further improved mechanical strength against repeated tensile and compressive forces in the plane direction of the laminated interface.

【0039】本発明の方法によれば、繊維強化プラスチ
ックからなるプリプレグの表面に高熱伝導性のセラミッ
ク粒子を厚さ方向に重なることなく散布することにより
前記セラミック粒子を面内において単一粒子分散させた
層を形成し、この単一粒子分散層を有するプリプレグを
複数用意し、これらを積層した後、加熱加圧することに
よって、前述したように単一粒子分散層による各繊維強
化プラスチック層の積層界面での接着力の向上および剪
断力の向上と高熱伝導性のセラミック粒子からなる単一
粒子分散層の熱放散性による熱劣化に伴う剪断力の低下
の防止との相乗作用により層間剥離が防止され、優れた
耐疲労性を有する繊維強化プラスチック複合材料を製造
することができる。
According to the method of the present invention, the ceramic particles having high thermal conductivity are dispersed on the surface of the prepreg made of fiber reinforced plastic without overlapping in the thickness direction to disperse the ceramic particles in the plane. Layer is formed, a plurality of prepregs having this single particle dispersion layer are prepared, and these are laminated, and then heated and pressed, whereby the lamination interface of each fiber reinforced plastic layer by the single particle dispersion layer as described above. Delamination is prevented by the synergistic effect of improving the adhesive force and shearing force at the same time and preventing the decrease in shearing force due to heat deterioration due to the heat dissipation of the single particle dispersion layer made of ceramic particles with high thermal conductivity. A fiber-reinforced plastic composite material having excellent fatigue resistance can be manufactured.

【0040】[0040]

【実施例】以下、本発明の好ましい実施例を図面を参照
して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in detail with reference to the drawings.

【0041】(実施例1)まず、図2の(a)に示すよ
うにマトリックスとしてエポキシ樹脂、強化繊維として
カーボン繊維を組み合わせ、前記カーボン繊維が一方向
(図2(a)中の矢印方向を0°とする)に配列された
厚さ0.11mmのプリプレグ(東レ社製商品名;T8
00H/#2500)11を8枚用意した。つづいて、
これらのプリプレグ11の表面に図示しない平均粒径3
μmの多数の六方晶窒化ホウ素[h−BN](常温での
熱伝導率;0.08cal/cm・s・℃)粒子を前記
プリプレグ11表面の1cm2当たりの重量が0.18
4mgになるようにそれぞれ散布した。このとき、前記
h−BN粒子は前記プリプレグ11表面に個々独立して
付着せず、大部分のh−BN粒子はそれらプリプレグ1
1表面中央部から外周縁に向けて互いに面方向に接触し
た状態で付着し、単一粒子分散層が形成された。
Example 1 First, as shown in FIG. 2A, an epoxy resin was used as a matrix, and carbon fibers were used as reinforcing fibers, and the carbon fibers were unidirectional (the arrow direction in FIG. 2A). 0.11 mm thick prepregs arranged at 0 ° (trade name: T8 manufactured by Toray Industries, Inc.)
Eight pieces of 00H / # 2500) 11 were prepared. Continuing,
The surface of these prepregs 11 has an average particle size of 3
A large number of hexagonal boron nitride [h-BN] (heat conductivity at room temperature; 0.08 cal / cm · s · ° C.) particles having a particle size of 0.18 per 1 cm 2 on the surface of the prepreg 11 were used.
It was sprinkled so that it would be 4 mg. At this time, the h-BN particles do not individually and independently adhere to the surface of the prepreg 11, and most of the h-BN particles do not adhere to the prepreg 1.
1 From the center of the surface toward the outer peripheral edge, they were attached in a state of being in contact with each other in the surface direction, and a single particle dispersed layer was formed.

【0042】次いで、図2の(b)に示すように前記単
一粒子分散層(図示せず)が形成されたプリプレグ11
1〜118をそれらのカーボン繊維の配列方向が0°、+
45°、−45°、90°、90°、−45°、+45
°、0°になるように重ね合わせた。つづいて、この積
層物をオートクレーブ内の加圧装置に設置し、図3に示
すようにオートクレーブ内の温度を2℃/分の昇温速度
で約50分かけて130℃まで上昇させ、途中から前記
加圧装置による前記積層物に対して0.4MPaの圧力
を加え、この温度および圧力を180分維持した後、オ
ートクレーブ内の温度を徐々に冷却して400分後に約
40℃とした。なお、前記積層物への加圧は冷却過程で
も続行して最終のカーボン繊維強化エポキシ樹脂複合材
料の反り発生を防いだ。このような加熱加圧により図2
の(c)および図4に示す厚さ0.9mmのカーボン繊
維強化エポキシ樹脂複合材料12を製造した。
Next, as shown in FIG. 2B, the prepreg 11 on which the single particle dispersion layer (not shown) is formed.
1 to 11 8 with the carbon fiber array direction being 0 °, +
45 °, -45 °, 90 °, 90 °, -45 °, +45
They were superposed so that they became 0 ° and 0 °. Subsequently, this laminate was installed in a pressure device inside the autoclave, and as shown in FIG. 3, the temperature inside the autoclave was raised to 130 ° C. over about 50 minutes at a temperature rising rate of 2 ° C./minute. A pressure of 0.4 MPa was applied to the laminate by the pressure device, the temperature and the pressure were maintained for 180 minutes, and then the temperature inside the autoclave was gradually cooled to 400 ° C. after 400 minutes. The pressure applied to the laminate was continued even during the cooling process to prevent warpage of the final carbon fiber reinforced epoxy resin composite material. With such heating and pressurization, FIG.
A carbon fiber reinforced epoxy resin composite material 12 having a thickness of 0.9 mm shown in FIG.

【0043】得られたカーボン繊維強化エポキシ樹脂複
合材料12は図4に示すように8枚のカーボン繊維強化
エポキシ樹脂層131〜138がそれらのカーボン繊維の
配列方向が0°、+45°、−45°、90°、90
°、−45°、+45°、0°になるように積層し、こ
れらカーボン繊維強化エポキシ樹脂層131〜138の積
層界面にh−BN粒子14がその面内において単一粒子
分散させた層(単一粒子分散層)15として介在した構
造を有していた。
The carbon fiber reinforced epoxy resin composite material 12 thus obtained has eight carbon fiber reinforced epoxy resin layers 13 1 to 13 8 as shown in FIG. -45 °, 90 °, 90
The carbon fiber reinforced epoxy resin layers 13 1 to 13 8 were laminated in such a manner that the h-BN particles 14 were dispersed as single particles within the plane. The layer (single particle dispersion layer) 15 had an intervening structure.

【0044】(比較例1)単一粒子分散層が表面に形成
されていないカーボン繊維強化エポキシ樹脂からなる厚
さ0.11mmのプリプレグ(東レ社製商品名;T80
0H/#2500)を8枚用意し、これらプリプレグを
実施例1と同様に積み重ね、加熱加圧することにより厚
さ0.9mmのカーボン繊維強化エポキシ樹脂複合材料
を製造した。
(Comparative Example 1) A prepreg having a thickness of 0.11 mm and made of a carbon fiber reinforced epoxy resin having no single particle dispersion layer formed on its surface (trade name: T80 manufactured by Toray Industries, Inc.).
8 sheets of OH / # 2500) were prepared, these prepregs were stacked in the same manner as in Example 1, and heated and pressed to produce a carbon fiber-reinforced epoxy resin composite material having a thickness of 0.9 mm.

【0045】(比較例2)カーボン繊維強化エポキシ樹
脂からなる厚さ0.11mmのプリプレグ(東レ社製商
品名;T800H/#2500)の表面に平均粒径3μ
mのPZT(PbZrO3−PbTiO3[常温での熱伝
導率;0.003cal/cm・s・℃])粒子を散布
して実施例1と同様な形態の単一粒子分散層を形成した
後、この単一粒子分散層が形成されたプリプレグを8枚
用意し、これらプリプレグを実施例1と同様に積み重
ね、加熱加圧することにより厚さ0.9mmのカーボン
繊維強化エポキシ樹脂複合材料を製造した。
Comparative Example 2 A 0.11 mm-thick prepreg (trade name: T800H / # 2500, manufactured by Toray Industries, Inc.) made of a carbon fiber reinforced epoxy resin has an average particle diameter of 3 μm.
m PZT (PbZrO 3 -PbTiO 3 [thermal conductivity at room temperature; 0.003 cal / cm · s · ° C.]) particles were dispersed to form a single particle dispersion layer having the same form as in Example 1. Eight prepregs each having this single particle dispersion layer formed were prepared, and these prepregs were stacked in the same manner as in Example 1 and heated and pressed to produce a carbon fiber reinforced epoxy resin composite material having a thickness of 0.9 mm. .

【0046】得られた実施例1および比較例1,2のカ
ーボン繊維強化エポキシ樹脂複合材料について、次のよ
うな引張り疲労試験を行った。
The carbon fiber reinforced epoxy resin composite materials of Example 1 and Comparative Examples 1 and 2 thus obtained were subjected to the following tensile fatigue test.

【0047】前記各カーボン繊維強化エポキシ樹脂複合
材料を裁断加工して図5の(a),(b)に示す長さ1
30mm,幅10mm,厚さ0.9mmの短冊片31と
し、この短冊片31の両面にガラス繊維強化エポキシ樹
脂からなる保護板32をその短冊片31の長さ40mm
の中央付近が表裏で露出するように貼り付けることによ
り試験片33を作製した。
Each carbon fiber reinforced epoxy resin composite material was cut and processed to have a length 1 shown in FIGS. 5 (a) and 5 (b).
A strip piece 31 having a width of 30 mm, a width of 10 mm and a thickness of 0.9 mm is provided, and a protective plate 32 made of glass fiber reinforced epoxy resin is provided on both sides of the strip piece 31 with a length of 40 mm.
A test piece 33 was produced by pasting the sheet so that the vicinity of the center thereof was exposed on the front and back sides.

【0048】電気油圧サーボ式疲労試験機(森エンジニ
アリング社製商品名;L7−2.50−S)を用い、そ
の一対の把持部材で前記試験片33両端の保護板32を
挟持し、最小応力と最大応力の比、すなわち応力比が
0.1と一定で、荷重が一定の引張疲労試験条件にて、
疲労試験を実施した。繰返し速度(周波数)は、10H
zで、正弦波で実施した。この試験により疲労繰り返し
数(疲労寿命)と最大繰り返し応力の関係を求めた。こ
の結果を図6に示す。
Using an electro-hydraulic servo type fatigue tester (trade name: L7-2.50-S manufactured by Mori Engineering Co., Ltd.), the protective plates 32 at both ends of the test piece 33 are clamped by a pair of gripping members, and the minimum stress is applied. And the maximum stress ratio, that is, the stress ratio is constant at 0.1, and the load is constant under tensile fatigue test conditions,
A fatigue test was conducted. Repetition speed (frequency) is 10H
Performed with a sine wave at z. By this test, the relationship between the fatigue repetition number (fatigue life) and the maximum repetition stress was obtained. The result is shown in FIG.

【0049】図6から明らかなように図4に示すカーボ
ン繊維強化エポキシ樹脂層131〜138の積層界面にh
−BN粒子14がその面内において単一粒子分散させた
層(単一粒子分散層)15として介在した構造を有する
実施例1のカーボン繊維強化エポキシ樹脂複合材料は、
単にカーボン繊維強化エポキシ樹脂層を積層した構造を
有する比較例1のカーボン繊維強化エポキシ樹脂複合材
料に比べて疲労繰り返し数(疲労寿命)の増加に伴う最
大繰り返し応力の低下度合いが低く、優れた耐疲労性を
有することがわかる。
As is apparent from FIG. 6, h is formed at the laminated interface of the carbon fiber reinforced epoxy resin layers 13 1 to 13 8 shown in FIG.
The carbon fiber reinforced epoxy resin composite material of Example 1 having a structure in which the BN particles 14 are interposed as a single particle-dispersed layer (single particle dispersed layer) 15 in the plane thereof,
Compared to the carbon fiber reinforced epoxy resin composite material of Comparative Example 1 having a structure in which a carbon fiber reinforced epoxy resin layer is simply laminated, the degree of decrease in the maximum cyclic stress with the increase in the fatigue repetition number (fatigue life) is low, and excellent resistance It can be seen that it has fatigue.

【0050】一方、カーボン繊維強化エポキシ樹脂層の
積層界面にセラミックの一種であるPZT粒子が実施例
1と同様な形態の単一粒子分散層として介在した構造を
有する比較例2のカーボン繊維強化エポキシ樹脂複合材
料は、単にカーボン繊維強化エポキシ樹脂層を積層した
構造を有する比較例1のカーボン繊維強化エポキシ樹脂
複合材料に比べて耐疲労性が低下することがわかる。こ
のことから、単一粒子分散層を構成する材料はセラミッ
ク粒子であれば全て高い耐疲労性を示すわけではなく、
高熱伝導性を有する特定のセラミック粒子により単一粒
子分散層を形成することにより初めて優れた耐疲労性を
発現できることがわかる。
On the other hand, the carbon fiber reinforced epoxy of Comparative Example 2 having a structure in which PZT particles, which is a kind of ceramic, are present as a single particle dispersion layer of the same form as in Example 1 at the laminated interface of the carbon fiber reinforced epoxy resin layer. It can be seen that the resin composite material has lower fatigue resistance than the carbon fiber-reinforced epoxy resin composite material of Comparative Example 1 having a structure in which carbon fiber-reinforced epoxy resin layers are simply laminated. From this, if the material forming the single particle dispersion layer is not all ceramic particles exhibit high fatigue resistance,
It can be seen that excellent fatigue resistance can be exhibited only by forming the single particle dispersion layer with the specific ceramic particles having high thermal conductivity.

【0051】また、前記実施例1および比較例1の試験
片について前記電気油圧サーボ式疲労試験機(森エンジ
ニアリング社製商品名;L7−2.50−S)を用い引
張り疲労試験を行っている間に、赤外線温度検出装置
(NEC三栄株式会社製商品名;サーモトレーサーTH
1104)を用いて図5に示す試験片33の短冊片31
外表面の温度推移を測定した。その結果を図7に示す。
A tensile fatigue test was conducted on the test pieces of Example 1 and Comparative Example 1 using the electrohydraulic servo type fatigue tester (trade name: L7-2.50-S manufactured by Mori Engineering Co., Ltd.). In the meantime, infrared temperature detection device (NEC Sanei Co., Ltd. product name; Thermo Tracer TH
1104) and the strip 31 of the test piece 33 shown in FIG.
The temperature transition on the outer surface was measured. The result is shown in FIG. 7.

【0052】図7から明らかなように実施例1の試験片
は、比較例1の試験片に比べて外表面の温度が10℃前
後高くなることがわかる。このことは、実施例1のカー
ボン繊維強化エポキシ樹脂複合材料は図4に示すカーボ
ン繊維強化エポキシ樹脂層131〜138の積層界面に高
熱伝導性のh−BN粒子14がその面内において単一粒
子分散させた層(単一粒子分散層)15として介在させ
ているため、引張り疲労試験時における試験片の内部発
熱を前記単一粒子分散層15により外部に良好に放散し
たことを証明するもので、結果として複合材料の内部を
冷却する効果を発現できる。
As is apparent from FIG. 7, the temperature of the outer surface of the test piece of Example 1 is higher by about 10 ° C. than that of the test piece of Comparative Example 1. This means that in the carbon fiber reinforced epoxy resin composite material of Example 1, the h-BN particles 14 having high thermal conductivity are formed on the surface of the carbon fiber reinforced epoxy resin layers 13 1 to 13 8 shown in FIG. Since it is interposed as a layer in which one particle is dispersed (single particle dispersed layer) 15, it is proved that the internal heat generation of the test piece during the tensile fatigue test was well dissipated to the outside by the single particle dispersed layer 15. As a result, the effect of cooling the inside of the composite material can be exhibited.

【0053】なお、前記実施例1では繊維強化プラスチ
ック樹脂としてカーボン繊維強化エポキシ樹脂、高熱伝
導性のセラミック粒子としてh−BN粒子を例にして説
明したが、カーボン繊維強化フェノール樹脂のような他
の繊維強化プラスチック樹脂、AlN、cBNの粒子の
ような他の高熱伝導性のセラミック粒子を用いても実施
例1と同等またはそれ以上の優れた耐疲労性を有する繊
維強化プラスチック複合材料を得ることができる。
In the first embodiment, carbon fiber reinforced epoxy resin is used as the fiber reinforced plastic resin and h-BN particles are used as the ceramic particles having high thermal conductivity. It is possible to obtain a fiber-reinforced plastic composite material having excellent fatigue resistance equivalent to or higher than that of Example 1 even when using other ceramic particles having high thermal conductivity such as fiber-reinforced plastic resin, AlN, and cBN particles. it can.

【0054】[0054]

【発明の効果】以上詳述したように本発明によれば、引
張り力および圧縮力が繰り返し加わった時の内部発熱に
伴う積層界面の熱劣化を防ぎ、層間剥離を効果的に防止
して耐疲労性を向上した航空機の翼のような各種構造材
に有用な繊維強化プラスチック複合材料およびその製造
方法を提供することができる。
As described in detail above, according to the present invention, thermal deterioration of the laminate interface due to internal heat generation when tensile force and compression force are repeatedly applied is prevented, and delamination is effectively prevented. It is possible to provide a fiber-reinforced plastic composite material useful for various structural materials such as aircraft wings having improved fatigue resistance and a method for producing the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る繊維強化プラスチック複合材料を
示す部分切欠斜視図。
FIG. 1 is a partially cutaway perspective view showing a fiber-reinforced plastic composite material according to the present invention.

【図2】本発明の実施例1におけるカーボン繊維強化エ
ポキシ樹脂複合材料を製造する工程を示す図。
FIG. 2 is a diagram showing a process of producing a carbon fiber-reinforced epoxy resin composite material in Example 1 of the present invention.

【図3】本発明の実施例1におけるカーボン繊維強化エ
ポキシ樹脂複合材料を製造する際のオートクレーブでの
加熱加圧条件を示すグラフ。
FIG. 3 is a graph showing heating and pressurizing conditions in an autoclave when producing a carbon fiber-reinforced epoxy resin composite material in Example 1 of the present invention.

【図4】本発明の実施例1により製造されたカーボン繊
維強化エポキシ樹脂複合材料を示す部分切欠斜視図。
FIG. 4 is a partially cutaway perspective view showing a carbon fiber reinforced epoxy resin composite material manufactured according to Example 1 of the present invention.

【図5】本発明の実施例1および比較例1,2を評価す
るための試験片を示す図。
FIG. 5 is a diagram showing test pieces for evaluating Example 1 of the present invention and Comparative Examples 1 and 2.

【図6】本発明の実施例1および比較例1,2の試験片
を用いて引張り疲労試験を行った結果を示すグラフ。
FIG. 6 is a graph showing the results of a tensile fatigue test using the test pieces of Example 1 of the present invention and Comparative Examples 1 and 2.

【図7】本発明の実施例1および比較例1の試験片を用
いて引張り疲労試験を行った時のそれら試験片外表面の
温度変化を示すグラフ。
FIG. 7 is a graph showing the temperature change of the outer surface of a test piece of Example 1 and Comparative Example 1 when a tensile fatigue test was performed using the test piece.

【符号の説明】[Explanation of symbols]

1…繊維強化プラスチック層、 2…セラミック粒子、 3,15…単一粒子分散層、 11,111〜118…プリプレグ、 12…カーボン繊維強化エポキシ樹脂複合材料、 131〜138…カーボン繊維強化エポキシ樹脂層、 14…h−BN粒子、 31…短冊片、 33…試験片。1 ... fiber-reinforced plastic layer, 2 ... ceramic particles, 3,15 ... single-particle dispersed layer, 11, 11 1 to 11 8 ... prepreg, 12 ... carbon fiber reinforced epoxy resin composites, 131-134 8 ... Carbon fiber Reinforced epoxy resin layer, 14 ... h-BN particles, 31 ... Strip, 33 ... Test piece.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B29K 105:08 B29K 105:08 B29L 9:00 B29L 9:00 Fターム(参考) 4F100 AA14A AA14B AA14C AA16A AA16C AD00A AD00B AD00C AD04A AD04B AD04C AD06A AD06B AD06C AD08A AD08C AD11A AD11C AG00A AG00C AK01A AK01B AK47A AK47C AK53 BA03 BA04 BA05 BA06 BA08 BA10A BA10C BA22 DE01A DE01B DE01C DG01A DG01C DH01A DH01C EH762 EJ172 EJ422 GB31 JA13A JA13B JA13C JB13A JB13B JB16A JB16B JJ01A JJ01B JJ01C JJ03 JK01 YY00A YY00B YY00C 4F204 AA36 AA39 AD04 AD05 AD07 AD16 AD35 AG03 AH31 FA01 FB01 FF05 FG03 FN11 FN15─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // B29K 105: 08 B29K 105: 08 B29L 9:00 B29L 9:00 F term (reference) 4F100 AA14A AA14B AA14C AA16A AA16C AD00A AD00B AD00C AD04A AD04B AD04C AD06A AD06B AD06C AD08A AD08C AD11A AD11C AG00A AG00C AK01A AK01B AK47A AK47C AK53 BA03 BA04 BA05 BA06 BA08 BA10A BA10C BA22 DE01A DE01B DE01C DG01A DG01C DH01A DH01C EH762 EJ172 EJ422 GB31 JA13A JA13B JA13C JB13A JB13B JB16A JB16B JJ01A JJ01B JJ01C JJ03 JK01 YY00A YY00B YY00C 4F204 AA36 AA39 AD04 AD05 AD07 AD16 AD35 AG03 AH31 FA01 FB01 FF05 FG03 FN11 FN15

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 複数の繊維強化プラスチック層を積層す
るとともに、それらの積層界面に高熱伝導性のセラミッ
ク粒子を面内において単一粒子分散させた層として介在
したことを特徴とする繊維強化プラスチック複合材料。
1. A fiber-reinforced plastic composite characterized in that a plurality of fiber-reinforced plastic layers are laminated, and ceramic particles having high thermal conductivity are intercalated as a layer in which single particles are dispersed in-plane at the laminated interface. material.
【請求項2】 前記繊維強化プラスチックは、熱硬化性
樹脂または熱可塑性樹脂をガラス繊維、炭素繊維、アラ
ミッド繊維および炭化ケイ素繊維から選ばれる少なくと
も1つの強化繊維で強化したものであることを特徴とす
る請求項1記載の繊維強化プラスチック複合材料。
2. The fiber reinforced plastic is a thermosetting resin or a thermoplastic resin reinforced with at least one reinforcing fiber selected from glass fiber, carbon fiber, aramid fiber and silicon carbide fiber. The fiber-reinforced plastic composite material according to claim 1.
【請求項3】 前記繊維強化プラスチックは、熱硬化性
樹脂または熱可塑性樹脂を一方向に配列されたガラス繊
維、炭素繊維、アラミッド繊維および炭化ケイ素繊維か
ら選ばれる少なくとも1つの強化繊維で強化したもので
あることを特徴とする請求項1記載の繊維強化プラスチ
ック複合材料。
3. The fiber reinforced plastic is a thermosetting resin or a thermoplastic resin reinforced with at least one reinforcing fiber selected from unidirectionally arranged glass fibers, carbon fibers, aramid fibers and silicon carbide fibers. The fiber-reinforced plastic composite material according to claim 1, wherein
【請求項4】 前記繊維強化プラスチックは、熱硬化性
樹脂または熱可塑性樹脂をガラス繊維、炭素繊維、アラ
ミッド繊維および炭化ケイ素繊維から選ばれる少なくと
も1つの強化繊維で強化され、さらに高熱伝導性のセラ
ミック粒子が分散して含有するものであることを特徴と
する請求項1記載の繊維強化プラスチック複合材料。
4. The fiber reinforced plastic is obtained by reinforcing a thermosetting resin or a thermoplastic resin with at least one reinforcing fiber selected from a glass fiber, a carbon fiber, an aramid fiber and a silicon carbide fiber, and further has a high thermal conductivity ceramic. The fiber-reinforced plastic composite material according to claim 1, wherein the particles are contained in a dispersed state.
【請求項5】 前記高熱伝導性のセラミックは、常温で
0.01cal/cm・s・℃以上の熱伝導率を有する
ことを特徴とする請求項1記載の繊維強化プラスチック
複合材料。
5. The fiber-reinforced plastic composite material according to claim 1, wherein the high thermal conductivity ceramic has a thermal conductivity of 0.01 cal / cm · s · ° C. or higher at room temperature.
【請求項6】 前記高熱伝導性のセラミックは、窒化ホ
ウ素であることを特徴とする請求項5記載の繊維強化プ
ラスチック複合材料。
6. The fiber-reinforced plastic composite material according to claim 5, wherein the ceramic having high thermal conductivity is boron nitride.
【請求項7】 前記高熱伝導性のセラミックは、窒化ア
ルミニウムであることを特徴とする請求項5記載の繊維
強化プラスチック複合材料。
7. The fiber-reinforced plastic composite material according to claim 5, wherein the ceramic having high thermal conductivity is aluminum nitride.
【請求項8】 前記各単一粒子分散層は、前記セラミッ
ク粒子の密度が前記積層界面間で異なるように形成され
ていることを特徴とする請求項1ないし7いずれか記載
の繊維強化プラスチック複合材料。
8. The fiber-reinforced plastic composite according to claim 1, wherein each of the single particle dispersion layers is formed so that the ceramic particles have different densities between the laminated interfaces. material.
【請求項9】 前記各単一粒子分散層は、前記セラミッ
ク粒子の密度が前記繊維強化プラスチックの積層方向に
段階的に変化するように形成されていることを特徴とす
る請求項1ないし7いずれか記載の繊維強化プラスチッ
ク複合材料。
9. The single particle dispersion layer is formed so that the density of the ceramic particles changes stepwise in the laminating direction of the fiber reinforced plastic. Or the fiber-reinforced plastic composite material described above.
【請求項10】 繊維強化プラスチックからなるプリプ
レグの表面に高熱伝導性のセラミック粒子を厚さ方向に
重なることなく散布することにより前記セラミック粒子
を面内において単一粒子分散させた層を形成する工程
と、 前記単一粒子分散層を有するプリプレグを複数用意し、
これらを積層した後、加熱加圧する工程とを含むことを
特徴とする繊維強化プラスチック複合材料の製造方法。
10. A step of forming a layer in which ceramic particles having a high thermal conductivity are dispersed in the surface of the prepreg made of fiber reinforced plastic without overlapping in the thickness direction so as to disperse the ceramic particles in a single particle. And preparing a plurality of prepregs having the single particle dispersion layer,
A method for producing a fiber-reinforced plastic composite material, which comprises a step of heating and pressing after laminating these.
【請求項11】 前記プリプレグの表面に前記セラミッ
ク粒子を散布する際、複数のプリプレグ間で前記セラミ
ック粒子が異なる密度で単一粒子分散された層を形成す
ることを特徴とする請求項10記載の繊維強化プラスチ
ック複合材料の製造方法。
11. The method according to claim 10, wherein when the ceramic particles are dispersed on the surface of the prepreg, a layer in which the ceramic particles are dispersed in a single particle with different densities is formed among a plurality of prepregs. Manufacturing method of fiber-reinforced plastic composite material.
【請求項12】 前記セラミック粒子が異なる密度の単
一粒子分散層を有する複数のプリプレグを積層する際、
前記単一粒子分散層のセラミック粒子の密度が前記プリ
プレグの積層方向に段階的に変化するように積層するこ
とを特徴とする請求項11記載の繊維強化プラスチック
複合材料の製造方法。
12. When laminating a plurality of prepregs having a single particle dispersion layer in which the ceramic particles have different densities,
The method for producing a fiber-reinforced plastic composite material according to claim 11, wherein the ceramic particles of the single particle dispersion layer are laminated so that the density of the ceramic particles changes stepwise in the laminating direction of the prepreg.
【請求項13】 前記プリプレグを構成する前記繊維強
化プラスチックとして、熱硬化性樹脂または熱可塑性樹
脂を一方向に配列されたガラス繊維、炭素繊維、アラミ
ッド繊維および炭化ケイ素繊維から選ばれる少なくとも
1つの強化繊維で強化されたものを用い、前記単一粒子
分散層を有する複数の前記プリプレグを積層する際、隣
接する前記プリプレグ間でその繊維強化プラスチック中
の前記強化繊維の配列方向を異ならせることを特徴とす
る請求項10ないし12いずれか記載の繊維強化プラス
チック複合材料の製造方法。
13. As the fiber reinforced plastic constituting the prepreg, at least one reinforcing material selected from glass fiber, carbon fiber, aramid fiber and silicon carbide fiber in which a thermosetting resin or a thermoplastic resin is unidirectionally arranged. When a plurality of prepregs having the single particle dispersion layer are laminated using a fiber-reinforced one, the arrangement direction of the reinforcing fibers in the fiber-reinforced plastic is different between adjacent prepregs. The method for producing a fiber-reinforced plastic composite material according to any one of claims 10 to 12.
JP2001335447A 2001-10-31 2001-10-31 Fiber-reinforced plastic composite material and method for producing the same Expired - Lifetime JP3877996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001335447A JP3877996B2 (en) 2001-10-31 2001-10-31 Fiber-reinforced plastic composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001335447A JP3877996B2 (en) 2001-10-31 2001-10-31 Fiber-reinforced plastic composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003136634A true JP2003136634A (en) 2003-05-14
JP3877996B2 JP3877996B2 (en) 2007-02-07

Family

ID=19150435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001335447A Expired - Lifetime JP3877996B2 (en) 2001-10-31 2001-10-31 Fiber-reinforced plastic composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3877996B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305692A (en) * 2004-04-19 2005-11-04 Tama Tlo Kk Fiber reinforced plastic preform, fiber reinforced plastic material and roll
JP2008151117A (en) * 2006-11-28 2008-07-03 General Electric Co <Ge> Cmc article having small complex feature
GB2445458B (en) * 2007-01-04 2010-02-24 Goodrich Corp Electrothermal heater comprising thermally conducting film comprising polymer material and hexagonal boron nitride
JP2010076443A (en) * 2008-09-25 2010-04-08 Hon Hai Precision Industry Co Ltd Method for molding of textiles
JP2012224086A (en) * 2011-04-21 2012-11-15 Evonik Degussa Gmbh Adhesive-free composite made of polyarylene ether ketone foil and metal foil
US8561934B2 (en) 2009-08-28 2013-10-22 Teresa M. Kruckenberg Lightning strike protection
JP2014024337A (en) * 2007-09-26 2014-02-06 Fiberforge Corp System and method for rapid, automated manufacture of advanced composite tailored blanks
JP2014529536A (en) * 2011-08-29 2014-11-13 サイテク・テクノロジー・コーポレーシヨン Interlaminar reinforcement of thermoplastic resin
US8962130B2 (en) 2006-03-10 2015-02-24 Rohr, Inc. Low density lightning strike protection for use in airplanes
JP2016216648A (en) * 2015-05-22 2016-12-22 国立研究開発法人物質・材料研究機構 Fiber-reinforced plastic and manufacturing method therefor
US9597842B2 (en) 2012-03-30 2017-03-21 Dieffenbacher GmbH Maschinen- und Anlangenbau Methods and systems for manufacturing advanced composite components
CN108186251A (en) * 2018-01-16 2018-06-22 北京氧与芳香医药研究院 Fragrant oxygen therapy health preserving cabin and system
WO2020149662A1 (en) * 2019-01-17 2020-07-23 한국기계연구원 Composite and method for preparing composite

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672280B2 (en) * 2004-04-19 2011-04-20 敏夫 谷本 roll
JP2005305692A (en) * 2004-04-19 2005-11-04 Tama Tlo Kk Fiber reinforced plastic preform, fiber reinforced plastic material and roll
US8962130B2 (en) 2006-03-10 2015-02-24 Rohr, Inc. Low density lightning strike protection for use in airplanes
JP2008151117A (en) * 2006-11-28 2008-07-03 General Electric Co <Ge> Cmc article having small complex feature
US9005382B2 (en) 2006-11-28 2015-04-14 General Electric Company Method of manufacturing CMC articles having small complex features
GB2445458B (en) * 2007-01-04 2010-02-24 Goodrich Corp Electrothermal heater comprising thermally conducting film comprising polymer material and hexagonal boron nitride
US8752279B2 (en) 2007-01-04 2014-06-17 Goodrich Corporation Methods of protecting an aircraft component from ice formation
US8992715B2 (en) 2007-09-26 2015-03-31 Dieffenbacher GmbH Maschinen-und Anlagenbau System and method for the rapid, automated creation of advanced composite tailored blanks
JP2014024337A (en) * 2007-09-26 2014-02-06 Fiberforge Corp System and method for rapid, automated manufacture of advanced composite tailored blanks
JP2010076443A (en) * 2008-09-25 2010-04-08 Hon Hai Precision Industry Co Ltd Method for molding of textiles
US8561934B2 (en) 2009-08-28 2013-10-22 Teresa M. Kruckenberg Lightning strike protection
JP2012224086A (en) * 2011-04-21 2012-11-15 Evonik Degussa Gmbh Adhesive-free composite made of polyarylene ether ketone foil and metal foil
JP2014529536A (en) * 2011-08-29 2014-11-13 サイテク・テクノロジー・コーポレーシヨン Interlaminar reinforcement of thermoplastic resin
US9597842B2 (en) 2012-03-30 2017-03-21 Dieffenbacher GmbH Maschinen- und Anlangenbau Methods and systems for manufacturing advanced composite components
US9802368B2 (en) 2012-03-30 2017-10-31 Dieffenbacher GmbH Maschinen-und Anlagenbau Methods and systems for manufacturing advanced composite components
JP2016216648A (en) * 2015-05-22 2016-12-22 国立研究開発法人物質・材料研究機構 Fiber-reinforced plastic and manufacturing method therefor
CN108186251A (en) * 2018-01-16 2018-06-22 北京氧与芳香医药研究院 Fragrant oxygen therapy health preserving cabin and system
WO2020149662A1 (en) * 2019-01-17 2020-07-23 한국기계연구원 Composite and method for preparing composite
KR20200089796A (en) * 2019-01-17 2020-07-28 한국기계연구원 Composite and method for manufacturing composite
KR102173036B1 (en) * 2019-01-17 2020-11-03 한국기계연구원 Composite and method for manufacturing composite

Also Published As

Publication number Publication date
JP3877996B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
KR102443005B1 (en) Laminated Graphene-Based Thermally Conductive Films and Methods for Manufacturing Films
JP2003136634A (en) Fiber-reinforced plastic composite material and method for manufacturing the material
US6027798A (en) Pin-reinforced sandwich structure
US9254622B2 (en) Bond ply for adhesive bonding of composites and associated systems and methods
EP2208595B1 (en) Carbon fiber reinforced preform and composite material comprising the same
JP5320742B2 (en) Method for producing composite prepreg substrate, laminated substrate and fiber reinforced plastic
US6483087B2 (en) Thermoplastic laminate fabric heater and methods for making same
JP5300197B2 (en) Aluminum-fiber laminate
JP5029601B2 (en) Laminate manufacturing apparatus and method
JP3477188B2 (en) Lamination damping base material and vibration damping structure obtained by laminating the same
JP2003080607A (en) Preform, frp comprising the same and method for manufacturing them
JP2006501085A (en) Manufacturing method of composite material
US20090155532A1 (en) Toughened resin fiber laminates with titanium particles
JP3127947B2 (en) Composite molding
JPH0583072B2 (en)
WO2022054388A1 (en) Method for manufacturing sandwich panel and sandwich panel
JP2004035604A (en) Semi-impregnated prepreg
JP2005213469A (en) Reinforced fiber base material, preform and composite material and method of manufacturing the base material
JP4576895B2 (en) Reinforced fiber base material for fiber reinforced composite material and fiber reinforced composite material
JP2004058609A (en) Method for manufacturing laminated sheet
JP2006289646A (en) Honeycomb composite and its molding method
JP2004059872A (en) Film for semi-impregnated prepreg, semi-impregnated prepreg, and method for preparing molded article
JP2705319B2 (en) Method for producing carbon fiber reinforced composite material
JPH04251714A (en) Manufacture of carbon fiber reinforced composite material
JPH04267139A (en) Carbon fiber reinforced composite material prepreg sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061101

R150 Certificate of patent or registration of utility model

Ref document number: 3877996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term