JP2003133932A - Driving circuit for semiconductor switch element and semiconductor relay using the same - Google Patents

Driving circuit for semiconductor switch element and semiconductor relay using the same

Info

Publication number
JP2003133932A
JP2003133932A JP2001328462A JP2001328462A JP2003133932A JP 2003133932 A JP2003133932 A JP 2003133932A JP 2001328462 A JP2001328462 A JP 2001328462A JP 2001328462 A JP2001328462 A JP 2001328462A JP 2003133932 A JP2003133932 A JP 2003133932A
Authority
JP
Japan
Prior art keywords
circuit
transformer
photovoltaic
side circuit
switch element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001328462A
Other languages
Japanese (ja)
Other versions
JP3937800B2 (en
Inventor
Yoshiki Hayazaki
嘉城 早崎
Takeshi Yoshida
岳司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2001328462A priority Critical patent/JP3937800B2/en
Publication of JP2003133932A publication Critical patent/JP2003133932A/en
Application granted granted Critical
Publication of JP3937800B2 publication Critical patent/JP3937800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the switching time. SOLUTION: A driving circuit is provided with a primary side circuit 10 composed of a primary winding N1 of transformer T, a light emitting element 11, a resistor R1, and a series circuit of a driving power 12, and a secondary side circuit 20 composed of a series circuit of a secondary winding N2 of the transformer T and a photovoltaic element 21, and a control circuit 30. The capacitor between terminals of the photovoltaic element 21 and the capacity of input of a semiconductor switch element 22 are charged together with not only the photovoltaic generated at the photovoltaic element 21 but also an induced electromotive force generated at the secondary winding N2 of the transformer T. Therefor a switching time necessary for turning on the semiconductor switch element 22 are shortened as compared with the conventional example by only the photovoltaic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体スイッチ素
子の駆動回路並びにそれを用いた半導体リレーに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive circuit for a semiconductor switch element and a semiconductor relay using the drive circuit.

【0002】[0002]

【従来の技術】近年、高周波のアナログ信号を高精度に
伝達でき、高速にオンオフできるスイッチ要素として半
導体スイッチのニーズが高まっている。このような半導
体スイッチとしては、発光ダイオードのような発光素子
と、フォトダイオードのような光起電力素子と、逆直列
に接続された一対のMOSFETからなり光起電力素子
の出力によりオンオフされる半導体スイッチ素子とを備
えた半導体リレーが知られている。
2. Description of the Related Art In recent years, there is an increasing need for semiconductor switches as switching elements that can transmit high-frequency analog signals with high accuracy and can be turned on and off at high speed. Such a semiconductor switch is composed of a light emitting element such as a light emitting diode, a photovoltaic element such as a photodiode, and a pair of MOSFETs connected in anti-series, and is turned on and off by the output of the photovoltaic element. A semiconductor relay provided with a switch element is known.

【0003】この種の半導体リレーの回路図を図10に
示す(特開昭63−153916号公報参照)。図10
に示す半導体リレーは、発光ダイオードよりなる発光素
子11を含む1次側回路10と、発光素子11に光結合
され光起電力を発生する光起電力素子21を含む2次側
回路20と、ゲート端子(以下、ゲートと略称する)同
士およびソース端子(以下、ソースと略称する)同士が
それぞれ共通接続された2個のnチャネルMOSFET
22a,22bからなる半導体スイッチ素子22とを備
え、1次側回路10から2次側回路へ光結合により直流
電力を伝達し、2次側回路20に含まれる光起電力素子
21の起電力に応答して半導体スイッチ素子22をオン
オフさせるように構成されている。なお、半導体スイッ
チ素子22は、各nチャネルMOSFET22a,22
bのドレイン端子(以下、ドレインと略称する)がそれ
ぞれ出力端子(図示せず)に接続されている。
A circuit diagram of this type of semiconductor relay is shown in FIG. 10 (see Japanese Patent Laid-Open No. 63-153916). Figure 10
The semiconductor relay shown in FIG. 1 includes a primary side circuit 10 including a light emitting element 11 formed of a light emitting diode, a secondary side circuit 20 including a photovoltaic element 21 that is optically coupled to the light emitting element 11 to generate a photoelectromotive force, and a gate. Two n-channel MOSFETs in which terminals (hereinafter abbreviated as gates) and source terminals (hereinafter abbreviated as sources) are commonly connected to each other
And a semiconductor switching element 22 composed of 22a and 22b, which transmits direct-current power from the primary side circuit 10 to the secondary side circuit by optical coupling to generate electromotive force of the photovoltaic element 21 included in the secondary side circuit 20. In response, the semiconductor switch element 22 is configured to be turned on / off. The semiconductor switch element 22 includes n-channel MOSFETs 22a, 22
The drain terminals of b (hereinafter abbreviated as drains) are respectively connected to output terminals (not shown).

【0004】ここにおいて、発光素子11の両端間には
抵抗R1を介して駆動電源12が接続されている。駆動
電源12はパルス電圧を出力するパルス電源により構成
されている。また、上述の半導体スイッチ素子22にお
けるゲート同士の接続点とソース同士の接続点との間に
は、ゲート−ソース間にバイアス抵抗R2が接続された
ノーマリオン型(デプレッション型)のnチャネルMO
SFET23が接続されている。このノーマリオン型の
nチャネルMOSFET23は、半導体スイッチ素子2
2の各MOSFET22a,22bのゲート電荷を引く
抜くために設けられている。さらに、ノーマリオン型の
nチャネルMOSFET23のゲート−ソース間には、
ゲート−ドレイン間が短絡されたnチャネルMOSFE
T24のソース−ドレイン間が接続されている。
Here, a drive power source 12 is connected between both ends of the light emitting element 11 via a resistor R1. The drive power supply 12 is composed of a pulse power supply that outputs a pulse voltage. Further, between the connection point between the gates and the connection point between the sources in the semiconductor switch element 22 described above, a normally-on type (depletion type) n-channel MO having a bias resistor R2 connected between the gate and the source.
The SFET 23 is connected. This normally-on type n-channel MOSFET 23 is a semiconductor switching device 2
It is provided to pull out the gate charge of each of the second MOSFETs 22a and 22b. Further, between the gate and source of the normally-on type n-channel MOSFET 23,
N-channel MOSFE with shorted gate-drain
The source and drain of T24 are connected.

【0005】以上説明した半導体リレーでは、駆動電源
12、抵抗R1、発光素子11、光起電力素子21、ノ
ーマリオン型のnチャネルMOSFET23、バイアス
抵抗R2、およびnチャネルMOSFET24により半
導体スイッチ素子22の駆動回路を構成しており、半導
体スイッチ素子22は交流電力を導通、遮断できるよう
になっている。
In the semiconductor relay described above, the driving power source 12, the resistor R1, the light emitting element 11, the photovoltaic element 21, the normally-on type n-channel MOSFET 23, the bias resistor R2, and the n-channel MOSFET 24 drive the semiconductor switch element 22. The semiconductor switch element 22 constitutes a circuit and can conduct and block AC power.

【0006】以下、上述の駆動回路の動作について説明
する。
The operation of the above drive circuit will be described below.

【0007】まず、半導体スイッチ素子22をオフ状態
からオン状態へ移行させるときの動作について説明す
る。
First, the operation when the semiconductor switch element 22 is shifted from the off state to the on state will be described.

【0008】駆動電源12から抵抗R1を介して発光素
子11に順方向電流が流れると、発光素子11が発光
し、光起電力素子21が光起電力を発生する。この光起
電力による電流は最初、光起電力素子21の正極−ノー
マリオン型のnチャネルMOSFET23のドレイン−
ノーマリオン型のnチャネルMOSFET23のソース
−バイアス抵抗R2−光起電力素子21の負極の経路で
流れる。この電流によってバイアス抵抗R2の両端には
nチャネルMOSFET23のゲート−ソース間を逆バ
イアスする向きに電圧降下が発生し、バイアス抵抗R2
の両端電圧がnチャネルMOSFET23の閾値電圧を
超えるとnチャネルMOSFET23が高インピーダン
ス化する。この後、光起電力素子21の光起電力による
電流はそのほとんどが光起電力素子21の正極−nチャ
ネルMOSFET22a,22bの各ゲート−nチャネ
ルMOSFET22a,22bの各ソース−バイアス抵
抗R2−光起電力素子21の負極の経路で流れて各nチ
ャネルMOSFET22a,22bのゲート−ソース間
を順バイアスする方向に充電する。そして、この充電電
圧が各nチャネルMOSFET22a,22bの閾値電
圧を超えると各nチャネルMOSFET22a,22b
はターンオンする。さらに、各nチャネルMOSFET
22a,22bのゲート−ソース間が完全に充電された
後は、光起電力による電流は高インピーダンス化したノ
ーマリオン型のnチャネルMOSFET23を通して、
光起電力素子21の正極−ノーマリオン型のnチャネル
MOSFET23のドレイン−ノーマリオン型のnチャ
ネルMOSFET23のソース−バイアス抵抗R2−光
起電力素子21の負極の経路で流れ続ける。これは、ノ
ーマリオン型のnチャネルMOSFET23は自らを通
して流れる電流がバイアス抵抗R2での電圧降下によっ
て高インピーダンス状態を保持しているためにある一定
のインピーダンスで平衡状態に達するからである。この
状態において、バイアス抵抗R2を流れていた電流の多
くは並列接続されている中程度のインピーダンスに調整
されたnチャネルMOSFET24を流れるようにな
り、バイアス抵抗R2の電圧降下によってnチャネルM
OSFET22a,22bのゲート−ソース間のバイア
ス電圧が低下してnチャネルMOSFET22a,22
bのオン抵抗が上昇しないようにしている。
When a forward current flows from the driving power source 12 to the light emitting element 11 through the resistor R1, the light emitting element 11 emits light and the photovoltaic element 21 generates photovoltaic power. The current due to this photovoltaic power is initially the positive electrode of the photovoltaic device 21-the drain of the normally-on type n-channel MOSFET 23-
It flows in the path of the source of the normally-on type n-channel MOSFET 23-the bias resistor R2-the negative electrode of the photovoltaic element 21. This current causes a voltage drop across the bias resistor R2 between the gate and the source of the n-channel MOSFET 23 in the direction of reverse bias, and the bias resistor R2.
When the voltage across both ends exceeds the threshold voltage of the n-channel MOSFET 23, the n-channel MOSFET 23 has a high impedance. After this, most of the current due to the photovoltaic power of the photovoltaic element 21 is the positive electrode of the photovoltaic element 21-the gate of the n-channel MOSFETs 22a and 22b-the source of the n-channel MOSFETs 22a and 22b-the bias resistor R2-the photovoltaic. It flows in the path of the negative electrode of the power element 21 to charge the gates and sources of the n-channel MOSFETs 22a and 22b in the direction of forward bias. When this charging voltage exceeds the threshold voltage of each n-channel MOSFET 22a, 22b, each n-channel MOSFET 22a, 22b
Turns on. Furthermore, each n-channel MOSFET
After the gate-sources of 22a and 22b are completely charged, the current due to the photovoltaic power is passed through the normally-on type n-channel MOSFET 23 having high impedance,
The current continues to flow in the path of the positive electrode of the photovoltaic element 21, the drain of the normally-on type n-channel MOSFET 23, the source of the normally-on type n-channel MOSFET 23, and the bias resistance R2-the negative electrode of the photovoltaic element 21. This is because the normally-on type n-channel MOSFET 23 reaches the equilibrium state with a certain impedance because the current flowing therethrough maintains the high impedance state due to the voltage drop in the bias resistor R2. In this state, most of the current flowing through the bias resistor R2 comes to flow through the n-channel MOSFET 24 that is connected in parallel and adjusted to a medium impedance, and the voltage drop of the bias resistor R2 causes the n-channel M to flow.
The bias voltage between the gate and the source of the OSFETs 22a and 22b is lowered to decrease the n-channel MOSFETs 22a and 22b.
The on-resistance of b is prevented from increasing.

【0009】次に、半導体スイッチ素子22をオン状態
からオフ状態へ移行させるときの動作について説明す
る。
Next, the operation of shifting the semiconductor switch element 22 from the on state to the off state will be described.

【0010】駆動電源12の出力電圧が0Vになり、発
光素子11が消灯すると、光起電力素子21の出力電流
が減少する。このため、バイアス抵抗R2の電圧降下が
低下してノーマリオン型のnチャネルMOSFET23
が低インピーダンス状態となる。すると、nチャネルM
OSFET22a,22bのゲート−ソース間に蓄積さ
れていた電荷および光起電力素子21の正極と負極との
間に蓄積されていた電荷がnチャネルMOSFET23
を通して放電され、nチャネルMOSFET22a,2
2bのゲート−ソース間電圧が閾値電圧を下回ったとき
に各nチャネルMOSFET22a,22bがターンオ
フする。
When the output voltage of the driving power source 12 becomes 0V and the light emitting element 11 is turned off, the output current of the photovoltaic element 21 decreases. Therefore, the voltage drop of the bias resistor R2 is reduced, and the normally-on type n-channel MOSFET 23 is
Becomes a low impedance state. Then, n channel M
The charge accumulated between the gate and the source of the OSFETs 22a and 22b and the charge accumulated between the positive electrode and the negative electrode of the photovoltaic element 21 are the n-channel MOSFET 23.
Through the n-channel MOSFETs 22a, 2
When the gate-source voltage of 2b falls below the threshold voltage, each n-channel MOSFET 22a, 22b is turned off.

【0011】上述のように構成された半導体リレーは、
半導体スイッチ素子22の各nチャネルMOSFET2
2a,22bのターンオン時にはnチャネルMSOFE
T22a,22bのゲート−ソース間を比較的短い時間
で充電して高速にターンオンするように動作し、充電が
完了した後も光起電力素子21の出力電圧のほとんどが
nチャネルMOSFET22a,22bのゲート−ソー
ス間に印加されてnチャネルMOSFET22a,22
bが低オン抵抗に保持されるように動作する。一方、タ
ーンオフ時においても、nチャネルMOSFET22
a,22bのゲート・ソース間に蓄積されている電荷を
比較的短い時間で放電して高速にターンオフするように
動作する。
The semiconductor relay configured as described above is
Each n-channel MOSFET 2 of the semiconductor switch element 22
N-channel MSOFT when 2a and 22b are turned on
The gate-sources of T22a and 22b operate so as to be charged in a relatively short time and turned on at high speed, and most of the output voltage of the photovoltaic element 21 even after charging is completed is the gate of the n-channel MOSFETs 22a and 22b. The n-channel MOSFETs 22a, 22 applied between the sources
It operates so that b is kept at a low on-resistance. On the other hand, even when turned off, the n-channel MOSFET 22
The charge accumulated between the gate and the source of a and 22b is discharged in a relatively short time and turned off at a high speed.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、現状で
は発光素子11と光起電力素子21との間の光結合によ
る電力伝達効率が1%未満と非常に低いため、半導体ス
イッチ素子22をターンオン並びにターンオフさせるの
に要する時間(スイッチング時間)をこれ以上短縮する
ことは困難である。
However, at present, since the power transfer efficiency due to the optical coupling between the light emitting element 11 and the photovoltaic element 21 is very low, less than 1%, the semiconductor switching element 22 is turned on and off. It is difficult to further reduce the time required for switching (switching time).

【0013】本発明は上記事由に鑑みて為されたもので
あり、その目的は、スイッチング時間を短縮させること
が可能な半導体スイッチ素子の駆動回路並びにそれを用
いた半導体リレーを提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a drive circuit for a semiconductor switch element capable of shortening a switching time and a semiconductor relay using the drive circuit. .

【0014】[0014]

【課題を解決するための手段】請求項1の発明は、上記
目的を達成するために、互いに光結合された1次側回路
及び2次側回路を備え、駆動電源より1次側回路を介し
光を媒体として2次側回路に電力を伝達し、伝達された
電力を用いて2次側回路により半導体スイッチ素子をス
イッチングさせる駆動回路において、光を媒体とした上
記電力伝達とは別に1次側回路への入力電力を2次側回
路に供給する電力供給手段を備えたことを特徴とし、光
結合による電力伝達を電力供給手段により補うことで半
導体スイッチ素子のスイッチング時間を短縮させること
が可能な駆動回路が実現できる。
In order to achieve the above object, the invention of claim 1 comprises a primary side circuit and a secondary side circuit which are optically coupled to each other, and the primary side circuit is connected to the drive power source through the primary side circuit. In a drive circuit for transmitting electric power to a secondary side circuit using light as a medium and switching the semiconductor switch element by the secondary side circuit using the transmitted electric power, in addition to the electric power transmission using the light medium as a primary side It is characterized in that it is provided with a power supply means for supplying the input power to the circuit to the secondary side circuit, and by supplementing the power transfer by the optical coupling with the power supply means, it is possible to shorten the switching time of the semiconductor switch element. A drive circuit can be realized.

【0015】請求項2の発明は、請求項1の発明におい
て、電力供給手段は、駆動電源から1次側回路に印加さ
れる駆動電圧の変化に応じて2次側回路に電力を供給す
るように1次側回路と2次側回路を電磁結合する電磁結
合手段からなることを特徴とし、光結合による電力伝達
を電磁結合手段により補うことで半導体スイッチ素子の
スイッチング時間を短縮させることが可能な駆動回路が
実現できる。
According to a second aspect of the invention, in the first aspect of the invention, the power supply means supplies power to the secondary side circuit in response to a change in the drive voltage applied from the drive power source to the primary side circuit. Is characterized by comprising electromagnetic coupling means for electromagnetically coupling the primary side circuit and the secondary side circuit, and by supplementing the power transmission by optical coupling with the electromagnetic coupling means, it is possible to shorten the switching time of the semiconductor switch element. A drive circuit can be realized.

【0016】請求項3の発明は、請求項2の発明におい
て、電磁結合手段がトランスからなることを特徴とし、
請求項2の発明と同様の作用を奏する。
According to a third aspect of the invention, in the second aspect of the invention, the electromagnetic coupling means is a transformer.
The same operation as the invention of claim 2 is achieved.

【0017】請求項4の発明は、請求項3の発明におい
て、1次側回路がトランスの1次巻線と駆動電圧の印加
により発光する発光素子との直列回路で構成され、2次
側回路がトランスの2次巻線と発光素子に光結合した光
起電力素子との直列回路で構成され、駆動電源からの電
力供給時に光起電力素子に生じる光起電力とトランスの
2次巻線に誘起される誘導起電力との極性を一致させて
なることを特徴とし、請求項3の発明の作用に加えて、
光結合による電力伝達と磁気結合による電力伝達のタイ
ミングが自ずと一致して制御が容易になる。
According to a fourth aspect of the present invention, in the third aspect of the invention, the primary side circuit comprises a series circuit of a primary winding of a transformer and a light emitting element that emits light when a drive voltage is applied, and the secondary side circuit. Is composed of a series circuit of a secondary winding of a transformer and a photovoltaic element optically coupled to a light emitting element, and the photovoltaic generated in the photovoltaic element when power is supplied from a driving power source and the secondary winding of the transformer In addition to the action of the invention of claim 3, the polarity of the induced electromotive force is the same as that of the induced electromotive force.
The timing of power transmission by optical coupling and the timing of power transmission by magnetic coupling naturally coincide with each other, which facilitates control.

【0018】請求項5の発明は、請求項3の発明におい
て、1次側回路が駆動電圧の印加により発光する発光素
子とトランスの1次巻線を互いに並列接続して構成さ
れ、2次側回路がトランスの2次巻線と発光素子に光結
合した光起電力素子との直列回路で構成され、駆動電源
からの電力供給時に光起電力素子に生じる光起電力とト
ランスの2次巻線に誘起される誘導起電力との極性を一
致させてなることを特徴とし、請求項3の発明の作用に
加えて、発光素子に流れる電流とトランスの1次巻線に
流れる電流を個別に調整することができる。その結果、
光結合による電力伝達と電磁結合による電力伝達を独立
して個別に設計することが可能となる。
According to a fifth aspect of the present invention, in the third aspect of the invention, the primary side circuit is configured by connecting a light emitting element that emits light by application of a driving voltage and a primary winding of a transformer in parallel to each other, and a secondary side. The circuit is composed of a series circuit of a secondary winding of a transformer and a photovoltaic element optically coupled to a light emitting element, and the photovoltaic generated in the photovoltaic element when power is supplied from a drive power source and the secondary winding of the transformer In addition to the action of the invention of claim 3, the current flowing through the light emitting element and the current flowing through the primary winding of the transformer are individually adjusted. can do. as a result,
It is possible to design power transmission by optical coupling and power transmission by electromagnetic coupling independently and individually.

【0019】請求項6の発明は、請求項3の発明におい
て、1次側回路がトランスの1次巻線と駆動電圧の印加
により発光する発光素子との直列回路で構成され、2次
側回路がトランスの2次巻線と発光素子に光結合した光
起電力素子との並列回路で構成され、駆動電源からの電
力供給時に光起電力素子に生じる光起電力とトランスの
2次巻線に誘起される誘導起電力との極性を一致させて
なることを特徴とし、請求項3の発明と同様の作用を奏
する。
According to a sixth aspect of the invention, in the third aspect of the invention, the primary side circuit is composed of a series circuit of a primary winding of a transformer and a light emitting element that emits light when a drive voltage is applied, and the secondary side circuit. Is composed of a parallel circuit of a secondary winding of a transformer and a photovoltaic element optically coupled to a light emitting element. The photovoltaic generated in the photovoltaic element when power is supplied from a driving power source and the secondary winding of the transformer It has the same polarity as the induced electromotive force to be induced, and has the same effect as the invention of claim 3.

【0020】請求項7の発明は、請求項3の発明におい
て、1次側回路がトランスの1次巻線と駆動電圧の印加
により発光する発光素子との並列回路で構成され、2次
側回路がトランスの2次巻線と発光素子に光結合した光
起電力素子との並列回路で構成され、駆動電源からの電
力供給時に光起電力素子に生じる光起電力とトランスの
2次巻線に誘起される誘導起電力との極性を一致させて
なることを特徴とし、請求項3の発明の作用に加えて、
発光素子に流れる電流とトランスの1次巻線に流れる電
流を個別に調整することができる。その結果、光結合に
よる電力伝達と電磁結合による電力伝達を独立して個別
に設計することが可能となる。
According to a seventh aspect of the present invention, in the third aspect of the invention, the primary side circuit is composed of a parallel circuit of a primary winding of a transformer and a light emitting element that emits light when a drive voltage is applied. Is composed of a parallel circuit of a secondary winding of a transformer and a photovoltaic element optically coupled to a light emitting element. The photovoltaic generated in the photovoltaic element when power is supplied from a driving power source and the secondary winding of the transformer In addition to the action of the invention of claim 3, the polarity of the induced electromotive force is the same as that of the induced electromotive force.
The current flowing through the light emitting element and the current flowing through the primary winding of the transformer can be individually adjusted. As a result, it is possible to design the power transfer by optical coupling and the power transfer by electromagnetic coupling independently and individually.

【0021】請求項8の発明は、請求項4又は6の発明
において、1次側回路が発光素子と逆並列に接続される
整流素子を具備することを特徴とし、請求項4又は6の
発明の作用に加えて、半導体スイッチ素子をターンオフ
する際に整流素子を介してトランスの1次巻線に逆向き
の電流を流すことでトランスの2次巻線にはターンオン
時と逆向きの誘導起電力が誘起され、半導体スイッチ素
子のターンオフ時のスイッチング時間が短縮できる。
The invention of claim 8 is characterized in that, in the invention of claim 4 or 6, the primary side circuit comprises a rectifying element connected in antiparallel with the light emitting element. In addition to the above action, when the semiconductor switch element is turned off, a reverse current is applied to the primary winding of the transformer through the rectifying element, so that the secondary winding of the transformer induces an induction in the direction opposite to that at turn-on. Electric power is induced, and the switching time when the semiconductor switch element is turned off can be shortened.

【0022】請求項9の発明は、請求項4又は6又は8
の発明において、1次側回路が発光素子と並列に接続さ
れる容量素子を具備することを特徴とし、駆動電圧の立
ち上がり時にはインピーダンスの低い容量素子を介して
大きな電流がトランスの1次巻線に流れてトランスの2
次巻線に大きな誘導起電力を誘起させることができ、ス
イッチング時間をさらに短縮できる。また、駆動電圧が
立ち上がって安定した後は容量素子に殆ど電流が流れな
くなり、1次側回路における電力消費が低減できる。
The invention of claim 9 is the invention of claim 4 or 6 or 8.
In the invention of claim 1, the primary side circuit is provided with a capacitive element connected in parallel with the light emitting element, and when the drive voltage rises, a large current flows to the primary winding of the transformer through the capacitive element having a low impedance. Flowing transformer 2
A large induced electromotive force can be induced in the secondary winding, and the switching time can be further shortened. Further, after the driving voltage rises and becomes stable, almost no current flows through the capacitive element, and the power consumption in the primary side circuit can be reduced.

【0023】請求項10の発明は、請求項5又は7の発
明において、トランスの2次巻線に誘導起電力が誘起さ
れるタイミングが光起電力素子に光起電力が生じるタイ
ミングより早くならないように制御する制御手段を備え
たことを特徴とし、トランスの2次巻線に誘起される誘
導起電力のために光起電力素子の充電電荷が放電してし
まうことが無く、スイッチング時間をさらに短縮でき
る。
According to a tenth aspect of the present invention, in the fifth or seventh aspect of the present invention, the timing at which the induced electromotive force is induced in the secondary winding of the transformer is not earlier than the timing at which the photovoltaic element is generated in the photovoltaic element. The control means for controlling the switching element is provided to prevent the charged electric charge of the photovoltaic element from being discharged due to the induced electromotive force induced in the secondary winding of the transformer, further shortening the switching time. it can.

【0024】請求項11の発明は、請求項10の発明に
おいて、トランスの2次巻線に誘導起電力が誘起される
時間を光起電力素子に光起電力が生じる時間よりも短く
する手段を備えたことを特徴とし、請求項10の発明の
作用に加えて、1次側回路における電力消費が低減でき
る。
According to a tenth aspect of the present invention, in the tenth aspect of the present invention, there is provided means for shortening the time for which the induced electromotive force is induced in the secondary winding of the transformer to be shorter than the time for the photovoltaic element to generate the photoelectromotive force. In addition to the operation of the invention of claim 10, the power consumption in the primary side circuit can be reduced.

【0025】請求項12の発明は、請求項11の発明に
おいて、駆動電源からトランスの1次巻線に印加される
駆動電圧の立ち上がりを急峻とし且つ立ち下がりを比較
的緩やかとする手段を備えたことを特徴とし、請求項1
1の発明の作用に加えて、トランスの1次巻線に印加さ
れる駆動電圧の立ち下がり時に2次巻線に誘起される光
起電力と逆極性の誘導起電力を抑制することができ、定
常時における2次側回路の電圧変動を抑えることができ
る。
According to a twelfth aspect of the present invention, in the eleventh aspect of the present invention, there is provided means for making the rising edge of the drive voltage applied from the driving power source to the primary winding of the transformer steep and relatively gradual. Claim 1 characterized in that
In addition to the effect of the first aspect of the invention, it is possible to suppress the induced electromotive force having a polarity opposite to that of the photoelectromotive force induced in the secondary winding when the drive voltage applied to the primary winding of the transformer falls. It is possible to suppress the voltage fluctuation of the secondary side circuit during the constant time.

【0026】請求項13の発明は、請求項12の発明に
おいて、駆動電源からの電力供給停止時にトランスの2
次巻線に誘起される誘導起電力を、駆動電源からの電力
供給時に光起電力素子に生じる光起電力と逆極性とした
ことを特徴とし、請求項12の発明の作用に加えて、半
導体スイッチ素子のゲート電極の蓄積電荷並びに光起電
力素子の蓄積電荷の放電を促進して半導体スイッチ素子
のターンオフ時のスイッチング時間が短縮できる。
According to a thirteenth aspect of the present invention, in the invention of the twelfth aspect, when the power supply from the driving power source is stopped
The induced electromotive force induced in the secondary winding has a polarity opposite to that of the photovoltaic force generated in the photovoltaic element when power is supplied from the driving power source, and in addition to the action of the invention of claim 12, a semiconductor The discharge time of the charge accumulated in the gate electrode of the switch element and the charge accumulated in the photovoltaic element can be promoted to shorten the switching time when the semiconductor switch element is turned off.

【0027】請求項14の発明は、請求項10〜13の
何れかの発明において、1次側回路がトランスの1次巻
線と直列に接続される容量素子を具備することを特徴と
し、請求項10〜13の発明と同様の作用を奏する。
According to a fourteenth aspect of the present invention, in the invention according to any one of the tenth to thirteenth aspects, the primary side circuit includes a capacitive element connected in series with the primary winding of the transformer. The same operation as that of the inventions of items 10 to 13 is achieved.

【0028】請求項15の発明は、請求項6又は7並び
に請求項10〜14の何れかの発明において、2次側回
路がトランスの2次巻線と直列に接続される整流素子を
具備し、整流素子は、光起電力素子に光起電力が生じる
ときにトランスの2次巻線に誘起される誘導起電力によ
る電流が光起電力素子に流れ込む向きに接続されてなる
ことを特徴とし、トランスの2次巻線に誘導起電力が誘
起されなくなった後に光起電力による電流が2次巻線に
流れることを阻止でき、2次側回路の電力を長時間維持
する必要がある場合にも対応できる。
According to a fifteenth aspect of the present invention, in the invention according to any one of the sixth or seventh aspects and the tenth to fourteenth aspects, the secondary side circuit includes a rectifying element connected in series with the secondary winding of the transformer. The rectifying element is characterized in that the rectifying element is connected in a direction in which a current due to an induced electromotive force induced in a secondary winding of the transformer flows into the photovoltaic element when the photovoltaic element generates the electromotive force. Even when the induced electromotive force is no longer induced in the secondary winding of the transformer, it is possible to prevent the current due to the photovoltaic power from flowing in the secondary winding. Can handle.

【0029】請求項16の発明は、請求項15の発明に
おいて、1次側回路の発光素子の点灯時にオフとなり且
つ発光素子の消灯時にオンとなるスイッチ素子を整流素
子と並列に接続したことを特徴とし、請求項15の発明
の作用に加えて、発光素子の消灯時にはスイッチ素子が
オンして整流素子の両端を短絡するため、光起電力素子
の蓄積電荷の放電を促進して半導体スイッチ素子のター
ンオフ時のスイッチング時間が短縮できる。
According to a sixteenth aspect of the present invention, in the fifteenth aspect of the invention, a switching element that is turned off when the light emitting element of the primary side circuit is turned on and is turned on when the light emitting element is turned off is connected in parallel with the rectifying element. In addition to the action of the invention of claim 15, the switch element is turned on to short-circuit both ends of the rectifying element when the light emitting element is turned off, thereby facilitating discharge of the accumulated charge of the photovoltaic element and the semiconductor switch element. The switching time at turn-off can be shortened.

【0030】請求項17の発明は、請求項16の発明に
おいて、スイッチ素子をMOSFETで構成するととも
に整流素子をMOSFETの寄生ダイオードで代用し、
スイッチ素子のゲート電極を2次巻線の一端に接続して
なることを特徴とし、請求項16の発明と同様の作用を
奏する。
According to a seventeenth aspect of the present invention, in the sixteenth aspect of the present invention, the switch element is constituted by a MOSFET and the rectifying element is replaced by a parasitic diode of the MOSFET.
The gate electrode of the switching element is connected to one end of the secondary winding, and the same operation as the invention of claim 16 is achieved.

【0031】請求項18の発明は、請求項15の発明に
おいて、1次側回路の発光素子の点灯時にオフとなり且
つ発光素子の消灯時にオンとなるスイッチ素子を光起電
力素子と並列に接続したことを特徴とし、請求項15の
発明の作用に加えて、発光素子の消灯時にスイッチ素子
を介して光起電力素子の蓄積電荷を放電することで半導
体スイッチ素子のターンオフ時のスイッチング時間が短
縮できる。
According to an eighteenth aspect of the invention, in the fifteenth aspect of the invention, a switching element which is turned off when the light emitting element of the primary side circuit is turned on and is turned on when the light emitting element is turned off is connected in parallel with the photovoltaic element. In addition to the action of the invention of claim 15, the switching time at turn-off of the semiconductor switch element can be shortened by discharging the accumulated charge of the photovoltaic element through the switch element when the light emitting element is turned off. .

【0032】請求項19の発明は、請求項18の発明に
おいて、MOSFETからなるスイッチ素子のドレイン
電極及びソース電極を光起電力素子の両極に接続すると
ともに、トランスの2次側に設けた補助巻線にスイッチ
素子のゲート電極を接続し、トランスの2次巻線に光起
電力と逆極性の誘導起電力が誘起されたときにスイッチ
素子をオンさせてなることを特徴とし、請求項18の発
明と同様の作用を奏する。
According to a nineteenth aspect of the present invention, in the eighteenth aspect of the present invention, the drain electrode and the source electrode of the switch element formed of the MOSFET are connected to both electrodes of the photovoltaic element, and the auxiliary winding is provided on the secondary side of the transformer. The gate electrode of the switch element is connected to the wire, and the switch element is turned on when an induced electromotive force having a polarity opposite to that of the photoelectromotive force is induced in the secondary winding of the transformer. The same operation as the invention is achieved.

【0033】請求項20の発明は、請求項1の発明にお
いて、電力供給手段は、駆動電源から1次側回路に印加
される駆動電圧の変化に応じて2次側回路に電力を供給
するように1次側回路と2次側回路を静電結合する静電
結合手段からなることを特徴とし、光結合による電力伝
達を静電結合手段により補うことで半導体スイッチ素子
のスイッチング時間を短縮させることが可能な駆動回路
が実現できる。
According to a twentieth aspect of the invention, in the first aspect of the invention, the power supply means supplies power to the secondary side circuit in response to a change in the drive voltage applied from the drive power source to the primary side circuit. In addition, it is characterized by comprising electrostatic coupling means for electrostatically coupling the primary side circuit and the secondary side circuit, and shortening the switching time of the semiconductor switch element by supplementing the power transfer by optical coupling by the electrostatic coupling means. It is possible to realize a drive circuit capable of

【0034】請求項21の発明は、請求項20の発明に
おいて、1次側回路が駆動電圧の印加により発光する発
光素子と抵抗の直列回路で構成され、2次側回路が発光
素子に光結合した光起電力素子で構成され、駆動電源か
らの電力供給時に光起電力素子に生じる光起電力と同じ
極性の電圧を2次側回路に印加する向きに、コンデンサ
からなる静電結合手段を介して1次側回路と2次側回路
が接続されてなることを特徴とし、請求項20の発明と
同様の作用を奏する。
According to a twenty-first aspect of the invention, in the twentieth aspect of the invention, the primary side circuit is composed of a series circuit of a light emitting element and a resistor which emit light by application of a drive voltage, and the secondary side circuit is optically coupled to the light emitting element. And a voltage having the same polarity as the photovoltaic generated in the photovoltaic element when power is supplied from the driving power source, is applied to the secondary side circuit via an electrostatic coupling means including a capacitor. The primary side circuit and the secondary side circuit are connected to each other, and the same operation as the invention of claim 20 is achieved.

【0035】請求項22の発明は、上記目的を達成する
ために、2つの電界効果トランジスタの制御端子同士お
よび各一対の主端子のうちの一方の主端子同士をそれぞ
れ共通接続して構成された半導体スイッチ素子と、共通
接続された制御端子と一方の主端子との間に制御入力を
与える請求項1〜21の何れかに記載の駆動回路とを備
えたことを特徴とし、光結合による電力伝達を電力供給
手段により補うことでスイッチング時間を短縮させるこ
とが可能な半導体リレーが実現できる。
In order to achieve the above-mentioned object, the invention of claim 22 is constituted by connecting the control terminals of two field effect transistors and one main terminal of each pair of main terminals in common. A semiconductor switch element, and the drive circuit according to any one of claims 1 to 21 for providing a control input between a commonly connected control terminal and one of the main terminals. A semiconductor relay capable of shortening the switching time can be realized by supplementing the transmission with the power supply means.

【0036】[0036]

【発明の実施の形態】以下の実施形態では、本発明に係
る駆動回路で駆動する半導体スイッチ素子としてnチャ
ネルMOFFETを例示するが、これに限らずpチャネ
ルMOSFETやIGBT(絶縁ゲート型バイポーラト
ランジスタ)などを含む半導体スイッチ素子全般の駆動
回路に対して本発明の技術思想が適用可能である。ま
た、各実施形態では、電力供給手段として磁気結合手段
又は静電結合手段を例示しているが、これらに限定する
趣旨ではなく、熱結合手段や圧電結合手段等の高速で電
力伝達が可能な手段であれば、本発明における電力供給
手段に適用可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following embodiments, an n-channel MOFFET is exemplified as a semiconductor switch element driven by the drive circuit according to the present invention, but not limited to this, a p-channel MOSFET or an IGBT (insulated gate bipolar transistor). The technical idea of the present invention can be applied to a drive circuit for all semiconductor switch elements including the above. In each embodiment, the magnetic coupling means or the electrostatic coupling means is illustrated as the power supply means, but the invention is not limited to these, and high-speed power transmission such as thermal coupling means or piezoelectric coupling means is possible. Any means can be applied to the power supply means in the present invention.

【0037】(実施形態1)本実施形態では、図1に示
すように、1個のnチャネルMOSFETからなる半導
体スイッチ素子22の駆動回路を例示する。なお、本実
施形態では、nチャネルMOSFETのゲート端子(以
下、ゲートと略称する)が制御端子、ソース端子(以
下、ソースと略称する)が一方の主端子、ドレイン端子
(以下、ドレインと略称する)が他方の主端子をそれぞ
れ構成しており、ゲート−ソース間に与えられるゲート
電圧(ゲート−ソース間電圧)が制御入力となる。
(Embodiment 1) In this embodiment, as shown in FIG. 1, a drive circuit for a semiconductor switch element 22 composed of one n-channel MOSFET is illustrated. In this embodiment, the gate terminal (hereinafter abbreviated as gate) of the n-channel MOSFET is a control terminal, the source terminal (hereinafter abbreviated as source) is one main terminal, and the drain terminal (hereinafter abbreviated as drain). ) Respectively configure the other main terminals, and the gate voltage (gate-source voltage) applied between the gate and the source serves as the control input.

【0038】本実施形態の駆動回路は、トランスTの1
次巻線N1、発光素子11、抵抗R1並びに駆動電源1
2の直列回路からなる1次側回路10と、トランスTの
2次巻線N2と光起電力素子21の直列回路並びに制御
回路30からなる2次側回路20とを備えている。ここ
で、制御回路30は、図10に示した従来例におけるノ
ーマリオン型のnチャネルMOSFET23、バイアス
抵抗R2、およびnチャネルMOSFET24からなる
回路と同一のものである。
The drive circuit of the present embodiment is a transformer T 1
Next winding N1, light emitting element 11, resistor R1 and driving power supply 1
The primary side circuit 10 is composed of two series circuits, and the secondary side circuit 20 is composed of a secondary circuit N2 of the transformer T and a series circuit of the photovoltaic element 21 and a control circuit 30. Here, the control circuit 30 is the same as the circuit including the normally-on type n-channel MOSFET 23, the bias resistor R2, and the n-channel MOSFET 24 in the conventional example shown in FIG.

【0039】1次側回路10では、駆動電源12の両端
間に抵抗R1を介してトランスTの1次巻線N1及び発
光素子11の直列回路が接続されている。なお、駆動電
源12は半導体スイッチ素子22のゲート駆動に適した
パルス電圧を出力する単極性のパルス電源により構成さ
れており、その出力電圧が半導体スイッチ素子(nチャ
ネルMOSFET)22のオン電圧と0Vとの2値をと
れるようになっている。
In the primary side circuit 10, a series circuit of the primary winding N1 of the transformer T and the light emitting element 11 is connected between both ends of the driving power source 12 via a resistor R1. The drive power source 12 is composed of a unipolar pulse power source that outputs a pulse voltage suitable for driving the gate of the semiconductor switch element 22, and its output voltage is equal to the ON voltage of the semiconductor switch element (n-channel MOSFET) 22 and 0V. It is possible to take two values.

【0040】また、2次側回路20では、半導体スイッ
チ素子22のゲート−ソース間にトランスTの2次巻線
N2及び光起電力素子21の直列回路が接続されてい
る。ここで、駆動電源12からの電力供給時(出力電圧
がオン電圧の時)に光起電力素子21に生じる光起電力
とトランスTの2次巻線N2に誘起される誘導起電力と
の極性を一致させるように、トランスTの極性が設定し
てある。
Further, in the secondary side circuit 20, a series circuit of the secondary winding N2 of the transformer T and the photovoltaic element 21 is connected between the gate and the source of the semiconductor switching element 22. Here, the polarities of the photovoltaic power generated in the photovoltaic element 21 and the induced electromotive force induced in the secondary winding N2 of the transformer T when power is supplied from the driving power supply 12 (when the output voltage is an on-voltage). The polarity of the transformer T is set so that

【0041】次に、本実施形態の駆動回路の動作を説明
する。
Next, the operation of the drive circuit of this embodiment will be described.

【0042】まず、半導体スイッチ素子22をオフ状態
からオン状態へターンオンさせるときの動作について説
明する。
First, the operation of turning on the semiconductor switch element 22 from the off state to the on state will be described.

【0043】駆動電源12からパルス電圧が出力されて
出力電圧が0Vからオン電圧に立ち上がると、抵抗R1
並びにトランスTの1次巻線N1を介して発光素子11
に電流が流れて発光素子11が発光し、発光素子11と
光結合されている光起電力素子21に光起電力が生じ
る。一方、駆動電源12の出力電圧の立ち上がり時には
トランスTの1次巻線N1に急激に電流が流れることで
2次巻線N2に誘導起電力が生じる。そして、2次巻線
N2に生じる誘導起電力の極性が光起電力素子21に生
じる光起電力の極性と一致させてあるから、これら2種
類の起電力(光起電力と誘導起電力)によって2次側回
路20に流れる電流で光起電力素子21の正極と負極と
の間の容量(以下、端子間容量という)と半導体スイッ
チ素子22のゲート−ソース間容量(入力容量)が充電
される。そして、この充電電圧が閾値電圧を超えると半
導体スイッチ素子22がターンオンする。
When a pulse voltage is output from the driving power source 12 and the output voltage rises from 0V to the ON voltage, the resistor R1
And the light emitting element 11 via the primary winding N1 of the transformer T.
A current flows through the light emitting element 11 to emit light, and a photoelectromotive force is generated in the photovoltaic element 21 optically coupled to the light emitting element 11. On the other hand, when the output voltage of the driving power supply 12 rises, a current rapidly flows in the primary winding N1 of the transformer T, so that an induced electromotive force is generated in the secondary winding N2. Since the polarity of the induced electromotive force generated in the secondary winding N2 is matched with the polarity of the photovoltaic generated in the photovoltaic element 21, these two types of electromotive force (photoelectromotive force and induced electromotive force) The current flowing in the secondary side circuit 20 charges the capacity between the positive electrode and the negative electrode of the photovoltaic element 21 (hereinafter referred to as inter-terminal capacity) and the gate-source capacity (input capacity) of the semiconductor switching element 22. . When the charging voltage exceeds the threshold voltage, the semiconductor switch element 22 turns on.

【0044】すなわち、光起電力素子21に生じる光起
電力だけでなくトランスTの2次巻線N2に生じる誘導
起電力と合わせて光起電力素子21の端子間容量並びに
半導体スイッチ素子22の入力容量が充電されるため、
光起電力のみによる従来例に比較して、半導体スイッチ
素子22をターンオンさせるのに要する時間(スイッチ
ング時間)を短縮させることが可能である。
That is, not only the photovoltaic force generated in the photovoltaic element 21, but also the induced electromotive force generated in the secondary winding N2 of the transformer T is combined with the inter-terminal capacitance of the photovoltaic element 21 and the input of the semiconductor switch element 22. Because the capacity is charged,
It is possible to shorten the time required to turn on the semiconductor switch element 22 (switching time), as compared with the conventional example using only photovoltaic power.

【0045】次に、半導体スイッチ素子22をオン状態
からオフ状態へターンオフさせるときの動作を説明す
る。
Next, the operation when the semiconductor switch element 22 is turned off from the on state to the off state will be described.

【0046】駆動電源12の出力電圧が0Vになり、発
光素子11が消灯すると、光起電力素子21の出力電流
が減少し、制御回路30によって半導体スイッチ素子2
2のゲート−ソース間に蓄積されていた電荷および光起
電力素子21の正極と負極との間に蓄積されていた電荷
が放電され、半導体スイッチ素子22のゲート−ソース
間電圧が閾値電圧を下回ったときに半導体スイッチ素子
22がターンオフする。ここで、駆動電源12の出力電
圧がオン電圧から0Vに立ち下がる時にトランスTの1
次巻線N1に流れる電流が急激に減少すると、2次巻線
N2には半導体スイッチ素子22のゲート−ソース間を
逆バイアスする向きに誘導起電力が生じ、制御回路30
による電荷の放電が促進される。
When the output voltage of the driving power source 12 becomes 0V and the light emitting element 11 is turned off, the output current of the photovoltaic element 21 decreases, and the control circuit 30 causes the semiconductor switching element 2 to operate.
2 the electric charge accumulated between the gate and the source and the electric charge accumulated between the positive electrode and the negative electrode of the photovoltaic element 21 are discharged, and the gate-source voltage of the semiconductor switching element 22 falls below the threshold voltage. When this happens, the semiconductor switch element 22 is turned off. Here, when the output voltage of the driving power supply 12 falls from the on-voltage to 0 V, the voltage of the transformer T becomes 1
When the current flowing through the secondary winding N1 suddenly decreases, an induced electromotive force is generated in the secondary winding N2 in the direction of reverse biasing between the gate and the source of the semiconductor switch element 22, and the control circuit 30
The discharge of the electric charge by is promoted.

【0047】而して、ターンオフ時においては、トラン
スTの2次巻線N2に生じる誘導起電力で半導体スイッ
チ素子22のゲート−ソース間を逆バイアスすることに
より、従来例に比較して半導体スイッチ素子22をター
ンオフさせるのに要する時間(スイッチング時間)を短
縮させることが可能である。
At the time of turn-off, the induced electromotive force generated in the secondary winding N2 of the transformer T reversely biases the gate and source of the semiconductor switch element 22 so that the semiconductor switch is different from the conventional example. It is possible to shorten the time required to turn off the element 22 (switching time).

【0048】(実施形態2)本実施形態は、図2に示す
ように1次側回路10の発光素子11と逆並列にダイオ
ード13が接続されるとともに、駆動電源12が正負の
パルス電圧を出力する双極性のパルス電源からなる点に
特徴があり、これ以外の構成並びにターンオン時の動作
については実施形態1と共通である。
(Embodiment 2) In this embodiment, as shown in FIG. 2, a diode 13 is connected in antiparallel with a light emitting element 11 of a primary side circuit 10, and a drive power source 12 outputs positive and negative pulse voltages. It is characterized in that it is composed of a bipolar pulsed power supply, and other configurations and operations at turn-on are the same as in the first embodiment.

【0049】次に、本実施形態の特徴となるターンオフ
時の動作について説明する。
Next, the operation at turn-off, which is a feature of this embodiment, will be described.

【0050】駆動電源12の出力電圧がオン電圧から0
Vを超えてオフ電圧(例えば、オン電圧の極性を反転さ
せた電圧)まで低下すると、発光素子11が消灯して光
起電力素子21の出力電流が減少するとともに、トラン
スTの1次巻線N1に流れる電流が急激に反転して2次
巻線N2に半導体スイッチ素子22のゲート−ソース間
を逆バイアスする向きに誘導起電力が生じる。このとき
の誘導起電力は実施形態1における駆動電源12の出力
電圧立ち下がり時に生じる誘導起電力よりもかなり大き
くなるから、実施形態1に比較して電荷の放電がさらに
促進され、半導体スイッチ素子22をターンオフさせる
のに要する時間が一層短縮されることになる。
The output voltage of the driving power supply 12 is 0 from the on-voltage.
When the voltage exceeds V and decreases to an off voltage (for example, a voltage obtained by reversing the polarity of an on voltage), the light emitting element 11 is turned off, the output current of the photovoltaic element 21 decreases, and the primary winding of the transformer T decreases. The current flowing through N1 is rapidly inverted, and an induced electromotive force is generated in the secondary winding N2 in the direction in which the gate and source of the semiconductor switch element 22 are reversely biased. Since the induced electromotive force at this time is considerably larger than the induced electromotive force generated when the output voltage of the drive power supply 12 falls in the first embodiment, the discharge of electric charges is further promoted as compared with the first embodiment, and the semiconductor switch element 22. This will further reduce the time required to turn off the.

【0051】(実施形態3)本実施形態は、図3に示す
ように1次側回路10が発光素子11及び抵抗R3の直
列回路とトランスTの1次巻線N1及び抵抗R1の直列
回路を互いに並列接続して構成される点に特徴があり、
これ以外の構成並びに動作については実施形態2と基本
的に共通である。
(Embodiment 3) In this embodiment, as shown in FIG. 3, the primary side circuit 10 includes a series circuit of a light emitting element 11 and a resistor R3 and a series circuit of a primary winding N1 and a resistor R1 of a transformer T. It is characterized by being connected in parallel with each other,
Other configurations and operations are basically the same as those of the second embodiment.

【0052】本実施形態では、駆動電源12の出力電圧
がオン電圧に立ち上がると抵抗R3を介して発光素子1
1に電流が流れるととともに抵抗R1を介してトランス
Tの1次巻線N1にも電流が流れて半導体スイッチ素子
22をターンオンし、駆動電源12の出力電圧がオン電
圧からオフ電圧まで立ち下がると抵抗R1を介してトラ
ンスTの1次巻線N1のみに逆向きに電流が流れて半導
体スイッチ素子22をターンオフする。
In the present embodiment, when the output voltage of the driving power supply 12 rises to the on-voltage, the light emitting element 1 passes through the resistor R3.
When a current flows through the resistor 1, the current also flows through the primary winding N1 of the transformer T via the resistor R1 to turn on the semiconductor switch element 22, and the output voltage of the driving power supply 12 falls from the on voltage to the off voltage. A current flows in the reverse direction only through the primary winding N1 of the transformer T via the resistor R1 to turn off the semiconductor switch element 22.

【0053】而して、本実施形態では、発光素子11に
直列接続された抵抗R3で発光素子11に流れる電流を
調整し、1次巻線N1に直列接続された抵抗R1で1次
巻線N1に流れる電流を調整することによって、光結合
による電力伝達と電磁結合による電力伝達を個別に設計
可能になるという利点がある。
Thus, in this embodiment, the current flowing through the light emitting element 11 is adjusted by the resistor R3 connected in series with the light emitting element 11, and the primary winding is adjusted by the resistor R1 connected in series with the primary winding N1. By adjusting the current flowing through N1, there is an advantage that power transfer by optical coupling and power transfer by electromagnetic coupling can be individually designed.

【0054】(実施形態4)本実施形態の回路図を図4
に示す。但し、基本的な構成は実施形態2と共通である
から、共通する構成要素には同一の符号を付して説明を
省略する。
(Embodiment 4) FIG. 4 is a circuit diagram of this embodiment.
Shown in. However, since the basic configuration is the same as that of the second embodiment, the common components are designated by the same reference numerals and the description thereof will be omitted.

【0055】1次側回路10では、駆動電源12の両端
間にトランスTの1次巻線N1、発光素子11並びに抵
抗R1の直列回路が接続され、ダイオード13と抵抗R
3の直列回路並びにコンデンサC1が発光素子11と抵
抗R1の直列回路とそれぞれ並列に接続されている。な
お、ダイオード13は発光素子11と逆並列、すなわち
発光素子11のアノードにダイオード13のカソードが
接続され、発光素子11のカソードとダイオード13の
アノードが抵抗R1,R3を介して接続されている。
In the primary side circuit 10, a series circuit of a primary winding N1 of a transformer T, a light emitting element 11 and a resistor R1 is connected between both ends of a driving power source 12, and a diode 13 and a resistor R1 are connected.
The series circuit of 3 and the capacitor C1 are connected in parallel with the series circuit of the light emitting element 11 and the resistor R1. The diode 13 is antiparallel to the light emitting element 11, that is, the cathode of the diode 13 is connected to the anode of the light emitting element 11, and the cathode of the light emitting element 11 and the anode of the diode 13 are connected via resistors R1 and R3.

【0056】また、2次側回路20では、トランスTの
2次巻線N2とダイオード25の直列回路が光起電力素
子21と並列に接続され、ノーマリオフ型のnチャンネ
ルMOSFETからなるスイッチ素子26がダイオード
25と並列に接続されている。なお、ダイオード25は
スイッチ素子26(nチャンネルMOSFET)の寄生
ダイオードで代用される。ここで、ダイオード25は駆
動電源12の出力電圧がオフ電圧からオン電圧に立ち上
がったときにトランスTの2次巻線N2に誘起される誘
導起電力によって導通する向きに接続されている。ま
た、スイッチ素子26のドレイン及びソースがダイオー
ド25のカソード及びアノードにそれぞれ接続されると
ともにゲートが光起電力素子21の負極に接続されてい
る。
In the secondary side circuit 20, the series circuit of the secondary winding N2 of the transformer T and the diode 25 is connected in parallel with the photovoltaic element 21, and the switching element 26 composed of a normally-off type n-channel MOSFET is provided. It is connected in parallel with the diode 25. The diode 25 is replaced by a parasitic diode of the switch element 26 (n-channel MOSFET). Here, the diode 25 is connected in a direction in which it is made conductive by the induced electromotive force induced in the secondary winding N2 of the transformer T when the output voltage of the drive power supply 12 rises from the off voltage to the on voltage. The drain and source of the switch element 26 are connected to the cathode and anode of the diode 25, respectively, and the gate is connected to the negative electrode of the photovoltaic element 21.

【0057】次に、本実施形態の駆動回路の動作を説明
する。
Next, the operation of the drive circuit of this embodiment will be described.

【0058】まず、半導体スイッチ素子22をオフ状態
からオン状態へターンオンさせるときの動作について説
明する。
First, the operation of turning on the semiconductor switch element 22 from the off state to the on state will be described.

【0059】駆動電源12からパルス電圧が出力されて
出力電圧がオン電圧に立ち上がると、トランスTの1次
巻線N1を介して発光素子11に電流が流れて発光素子
11が発光し、発光素子11と光結合されている光起電
力素子21に光起電力が生じる。一方、駆動電源12の
出力電圧の立ち上がり時にはトランスTの1次巻線N1
に急激に電流が流れることで2次巻線N2に誘導起電力
が生じる。そして、2次巻線N2に生じる誘導起電力の
極性が光起電力素子21に生じる光起電力の極性と一致
させてあるから、これら2種類の起電力(光起電力と誘
導起電力)によって2次側回路20に流れる電流で光起
電力素子21の端子間容量と半導体スイッチ素子22の
入力容量が充電される。そして、この充電電圧が閾値電
圧を超えると半導体スイッチ素子22がターンオンす
る。
When a pulse voltage is output from the driving power supply 12 and the output voltage rises to an on-voltage, a current flows through the light emitting element 11 via the primary winding N1 of the transformer T, and the light emitting element 11 emits light, and the light emitting element is emitted. Photovoltaic is generated in the photovoltaic element 21 optically coupled to 11. On the other hand, when the output voltage of the driving power supply 12 rises, the primary winding N1 of the transformer T
The induced electromotive force is generated in the secondary winding N2 due to the rapid current flow in the coil. Since the polarity of the induced electromotive force generated in the secondary winding N2 is matched with the polarity of the photovoltaic generated in the photovoltaic element 21, these two types of electromotive force (photoelectromotive force and induced electromotive force) The inter-terminal capacitance of the photovoltaic element 21 and the input capacitance of the semiconductor switching element 22 are charged by the current flowing in the secondary circuit 20. When the charging voltage exceeds the threshold voltage, the semiconductor switch element 22 turns on.

【0060】ここで、駆動電源12の出力電圧が立ち上
がった初期の時点では、発光素子11と抵抗R1の直列
回路のインピーダンスに比較してコンデンサC1のイン
ピーダンスが低いためにコンデンサC1により多くの電
流が流れ、コンデンサC1のない場合に比較してトラン
スTの1次巻線N1には急激に大きな電流が流れること
になる。よって、2次巻線N2に誘起される誘導起電力
もコンデンサC1がない場合に比べて大きくなり、光起
電力素子21の端子間容量と半導体スイッチ素子22の
入力容量の充電に要する時間、すなわち半導体スイッチ
素子22をターンオンさせる時間をさらに短縮すること
ができる。また、2次巻線N2の誘導起電力が光起電力
素子21の端子間容量と半導体スイッチ素子22の入力
容量を充分に充電し終えるタイミング、つまり、半導体
スイッチ素子22が定常的にオンしている状態でコンデ
ンサC1が充電しきるように設計しておけば、コンデン
サC1が充電しきった後は1次側回路10の電流が全て
発光素子11と抵抗R1を通して流れるから、電流を低
減して定常時における電力消費を抑えることができる。
しかも、発光素子11に流れる電流は、トランスTの1
次巻線N1に上記初期時点で流れる電流と独立して、抵
抗R1の抵抗値に応じて定常時に必要な量だけ流れるよ
うに調整することができ、発光素子11に大電流を流す
必要がないことから、発光素子11の素子寿命を延ばし
たり、発熱を抑えることにより、駆動回路全体の動作を
安定させることができる。
Here, at the initial point in time when the output voltage of the driving power supply 12 rises, the impedance of the capacitor C1 is lower than the impedance of the series circuit of the light emitting element 11 and the resistor R1. As compared with the case where the capacitor C1 is not provided, a large current flows rapidly in the primary winding N1 of the transformer T. Therefore, the induced electromotive force induced in the secondary winding N2 is larger than that in the case where the capacitor C1 is not provided, and the time required to charge the inter-terminal capacitance of the photovoltaic element 21 and the input capacitance of the semiconductor switch element 22, that is, The time for turning on the semiconductor switch element 22 can be further shortened. The timing at which the induced electromotive force of the secondary winding N2 fully charges the inter-terminal capacitance of the photovoltaic element 21 and the input capacitance of the semiconductor switching element 22, that is, the semiconductor switching element 22 is constantly turned on. If the capacitor C1 is designed to be fully charged in a state where the capacitor C1 is fully charged, all the current in the primary side circuit 10 flows through the light emitting element 11 and the resistor R1 after the capacitor C1 is fully charged, so that the current is reduced and the steady state is maintained. It is possible to suppress power consumption in the.
Moreover, the current flowing through the light emitting element 11 is 1
It is possible to adjust the current flowing through the next winding N1 independently of the current flowing at the initial time so that a required amount can flow in a steady state according to the resistance value of the resistor R1, and it is not necessary to flow a large current through the light emitting element 11. Therefore, the operation of the entire drive circuit can be stabilized by extending the element life of the light emitting element 11 or suppressing the heat generation.

【0061】一方、2次側回路20においては、光起電
力素子21の光起電力よりもトランスTの2次巻線N2
の誘導起電力の立ち上がりの方が早くなるから、駆動電
源12の出力電圧の立ち上がりの初期時(過渡時)に
は、主として2次巻線N2の誘導起電力によってダイオ
ード25を介して電流が供給されて光起電力素子21の
端子間容量と半導体スイッチ素子22の入力容量が充電
される。その後の定常状態では、2次巻線N2の誘導起
電力が消滅するが、ダイオード25によって光起電力素
子21の端子間容量と半導体スイッチ素子22の入力容
量の充電電荷が2次巻線N2を介して放電されるのを防
ぎ、光起電力素子21の光起電力が完全に立ち上がった
後は、光起電力素子21の端子間容量と半導体スイッチ
素子22の入力容量の充電電荷が光起電力によって保持
されることになる。
On the other hand, in the secondary side circuit 20, the secondary winding N2 of the transformer T is higher than the photovoltaic power of the photovoltaic element 21.
The rise of the induced electromotive force is faster than that of the drive power source 12. Therefore, at the initial stage (transition time) of the rise of the output voltage of the drive power source 12, a current is mainly supplied through the diode 25 by the induced electromotive force of the secondary winding N2. Then, the inter-terminal capacitance of the photovoltaic element 21 and the input capacitance of the semiconductor switch element 22 are charged. In the subsequent steady state, the induced electromotive force of the secondary winding N2 disappears, but the diode 25 causes the charge between the terminal capacitance of the photovoltaic element 21 and the input capacitance of the semiconductor switch element 22 to pass through the secondary winding N2. After the photoelectromotive force of the photovoltaic element 21 is completely raised, the charge between the inter-terminal capacitance of the photovoltaic element 21 and the input capacitance of the semiconductor switching element 22 is charged by the photoelectromotive force. Will be held by.

【0062】すなわち、本実施形態も実施形態1〜3と
同様に、光起電力のみによる従来例に比較して、半導体
スイッチ素子22をターンオン時のスイッチング時間を
短縮させることが可能である。さらに、本実施形態では
上述のように、半導体スイッチ素子22をターンオンさ
せた後の定常状態における1次側回路10への入力電力
を低減することができ、発光素子11の長寿命化や駆動
回路全体の動作の安定化が図れるという利点がある。
That is, similarly to the first to third embodiments, this embodiment can shorten the switching time when the semiconductor switch element 22 is turned on, as compared with the conventional example using only the photovoltaic power. Further, in the present embodiment, as described above, the input power to the primary side circuit 10 in the steady state after turning on the semiconductor switch element 22 can be reduced, the life of the light emitting element 11 can be extended, and the drive circuit can be reduced. There is an advantage that the whole operation can be stabilized.

【0063】次に、半導体スイッチ素子22をオン状態
からオフ状態へターンオフさせるときの動作を説明す
る。
Next, the operation when the semiconductor switch element 22 is turned off from the on state to the off state will be described.

【0064】駆動電源12の出力電圧が0Vを超えてオ
フ電圧まで低下すると、発光素子11が消灯して光起電
力素子21の出力電流が減少し、トランスTの1次巻線
N1に流れる電流が急激に反転するために2次巻線N2
にはターンオン時の光起電力と逆極性の誘導起電力が誘
起される。この誘導起電力によってスイッチ素子26の
ゲート−ソース間が順バイアスされてスイッチ素子26
がターンオンしてダイオード25のアノード−カソード
間を短絡する。その結果、光起電力素子21の端子間容
量と半導体スイッチ素子22の入力容量の充電電荷がス
イッチ素子26を介して誘導起電力により急速に放電す
る。このとき、トランスTの1次巻線N1に流れる電流
は駆動電源12の出力電圧の立ち下がりの初期時には、
上述のターンオン時(出力電圧の立ち上がり時)と同様
にコンデンサC1を介して急激に流れ、定常状態ではダ
イオード13及び抵抗R3を介して流れることになるか
ら、ターンオン時と同様にターンオフ時のスイッチング
時間が短縮されると同時に定常時の1次側回路10の入
力電力が低減できる。
When the output voltage of the driving power source 12 exceeds 0V and decreases to the off voltage, the light emitting element 11 is turned off, the output current of the photovoltaic element 21 decreases, and the current flowing through the primary winding N1 of the transformer T decreases. Secondary winding N2
An induced electromotive force having a polarity opposite to that of the photoelectromotive force at turn-on is induced in. The induced electromotive force causes forward bias between the gate and the source of the switch element 26, and
Turns on and short-circuits the anode and cathode of the diode 25. As a result, the charge between the inter-terminal capacitance of the photovoltaic element 21 and the input capacitance of the semiconductor switch element 22 is rapidly discharged by the induced electromotive force via the switch element 26. At this time, the current flowing through the primary winding N1 of the transformer T is at the initial stage of the fall of the output voltage of the driving power supply 12,
As in the case of the above-mentioned turn-on (when the output voltage rises), it rapidly flows through the capacitor C1 and flows in the steady state through the diode 13 and the resistor R3. And at the same time, the input power of the primary circuit 10 in the steady state can be reduced.

【0065】(実施形態5)本実施形態の回路図を図5
に示す。但し、基本的な構成は実施形態4と共通である
から、共通する構成要素には同一の符号を付して説明を
省略する。
(Embodiment 5) FIG. 5 is a circuit diagram of this embodiment.
Shown in. However, since the basic configuration is the same as that of the fourth embodiment, the common components are designated by the same reference numerals and the description thereof will be omitted.

【0066】1次側回路10では、遅延部16、トラン
スTの1次巻線N1、コンデンサC1、抵抗R2の直列
回路と、発光素子11並びに抵抗R1の直列回路とが駆
動電源12の両端間に互いに並列接続され、コンデンサ
C1には抵抗R4が並列に接続されている。
In the primary side circuit 10, the delay section 16, the series circuit of the primary winding N1 of the transformer T, the capacitor C1, and the resistor R2 and the series circuit of the light emitting element 11 and the resistor R1 are connected between both ends of the drive power source 12. Are connected in parallel to each other, and the resistor R4 is connected in parallel to the capacitor C1.

【0067】遅延部16は、2つのインバータIV1,
IV2の直列回路からなり、駆動電源12からトランス
Tの1次巻線N1に印加される出力電圧の立ち上がり並
びに立ち下がりを遅延させる。すなわち、本実施形態に
おいては、トランスTの2次巻線N2に誘導起電力が誘
起されるタイミングを光起電力素子21に光起電力が生
じるタイミングより早くならないように制御(遅延)す
る制御手段を遅延部16で構成している。なお、2次側
回路20の構成は実施形態4と同一構成である。
The delay unit 16 includes two inverters IV1 and IV1.
It is composed of a series circuit of IV2 and delays the rise and fall of the output voltage applied from the drive power supply 12 to the primary winding N1 of the transformer T. That is, in the present embodiment, a control unit that controls (delays) the timing at which the induced electromotive force is induced in the secondary winding N2 of the transformer T so as not to be earlier than the timing at which the photovoltaic electromotive force is generated in the photovoltaic element 21. Is constituted by the delay unit 16. The configuration of the secondary circuit 20 is the same as that of the fourth embodiment.

【0068】次に、本実施形態の駆動回路の動作を説明
する。
Next, the operation of the drive circuit of this embodiment will be described.

【0069】まず、半導体スイッチ素子22をオフ状態
からオン状態へターンオンさせるときの動作について説
明する。
First, the operation of turning on the semiconductor switch element 22 from the off state to the on state will be described.

【0070】駆動電源12からパルス電圧が出力されて
出力電圧がオン電圧に立ち上がると、発光素子11に電
流が流れて発光素子11が発光し、発光素子11と光結
合されている光起電力素子21に光起電力が生じるとと
もに、トランスTの1次巻線N1に急激に電流が流れる
ことで2次巻線N2に誘導起電力が生じ、これら2種類
の起電力(光起電力と誘導起電力)によって2次側回路
20に流れる電流で光起電力素子21の端子間容量と半
導体スイッチ素子22の入力容量が充電され、この充電
電圧が閾値電圧を超えると半導体スイッチ素子22がタ
ーンオンする。
When a pulse voltage is output from the driving power supply 12 and the output voltage rises to an ON voltage, a current flows through the light emitting element 11 to cause the light emitting element 11 to emit light, and the photovoltaic element optically coupled to the light emitting element 11. In addition to the generation of a photoelectromotive force in the transformer 21, an abrupt current flow in the primary winding N1 of the transformer T causes an induced electromotive force in the secondary winding N2. These two types of electromotive force (photoelectromotive force and induced electromotive force) are generated. (Electric power) charges the inter-terminal capacitance of the photovoltaic element 21 and the input capacitance of the semiconductor switching element 22 with a current flowing in the secondary circuit 20, and when the charging voltage exceeds a threshold voltage, the semiconductor switching element 22 turns on.

【0071】ところで、発光素子11とトランスTの1
次巻線N1に同じタイミングでオン電圧が印加されたと
すると、光起電力素子21の光起電力を生じるタイミン
グがトランスTの2次巻線N2に誘導起電力が生じるタ
イミングよりも遅れてしまい、誘導起電力によって充電
された光起電力素子21の端子間容量の充電電荷が光起
電力の発生していない光起電力素子21自身を介して放
電してしまうことになる。これに対して本実施形態で
は、トランスTの1次巻線N1に印加される電圧の立ち
上がりを遅延部16によって遅延させ、光起電力素子2
1に光起電力が生じるタイミングをトランスTの2次巻
線N2に誘導起電力が誘起されるタイミングよりも遅く
ならないようにして、上述の光起電力発生の遅延による
電荷の放電を防いでいる。また、コンデンサC1と抵抗
R2の直列回路が微分回路を形成しており、駆動電源1
2からトランスTの1次巻線N1に印加される電圧の立
ち上がりが急峻となり且つ立ち下がりが比較的緩やかと
なるので、トランスTの1次巻線N1に印加される電圧
の立ち下がり時に2次巻線N2に誘起される光起電力と
逆極性の誘導起電力を抑制し、定常時における2次側回
路20の電圧変動を抑えることができる。さらに、コン
デンサC1に並列接続した抵抗R4で1次巻線N1に蓄
積されたエネルギを消費させて1次巻線N1、コンデン
サC1及び抵抗R2による直列共振を早急に収束させる
とともに、定常時における消費電流を抵抗R4で抑制す
るようにしている。なお、2次側回路20の動作は実施
形態4と同一であるから説明を省略する。
By the way, the light emitting element 11 and the transformer T 1
If the ON voltage is applied to the secondary winding N1 at the same timing, the timing of generating the photovoltaic power of the photovoltaic element 21 is delayed from the timing of generating the induced electromotive force in the secondary winding N2 of the transformer T, The charged charges of the inter-terminal capacitance of the photovoltaic element 21 charged by the induced electromotive force will be discharged through the photovoltaic element 21 itself in which no photovoltaic is generated. On the other hand, in this embodiment, the rising of the voltage applied to the primary winding N1 of the transformer T is delayed by the delay unit 16, and the photovoltaic device 2
The timing at which the photoelectromotive force is generated at 1 is not later than the timing at which the induced electromotive force is induced in the secondary winding N2 of the transformer T, thereby preventing the discharge of electric charges due to the above-described delay in the generation of the photoelectromotive force. . Further, the series circuit of the capacitor C1 and the resistor R2 forms a differentiating circuit, and the driving power source 1
Since the voltage applied to the primary winding N1 of the transformer T from 2 becomes steep and the falling thereof becomes relatively gradual, the secondary voltage is applied when the voltage applied to the primary winding N1 of the transformer T falls. It is possible to suppress the induced electromotive force having a polarity opposite to that of the photoelectromotive force induced in the winding N2 and suppress the voltage fluctuation of the secondary side circuit 20 in the steady state. Further, the resistor R4 connected in parallel to the capacitor C1 consumes the energy stored in the primary winding N1 to quickly converge the series resonance by the primary winding N1, the capacitor C1 and the resistor R2, and consumes the power in a steady state. The current is controlled by the resistor R4. Note that the operation of the secondary circuit 20 is the same as that of the fourth embodiment, so a description thereof will be omitted.

【0072】すなわち、本実施形態も実施形態1〜4と
同様に、光起電力のみによる従来例に比較して、半導体
スイッチ素子22のターンオン時のスイッチング時間を
短縮させることが可能である。さらに、本実施形態では
上述のように、光起電力素子21に光起電力が生じるタ
イミングをトランスTの2次巻線N2に誘導起電力が誘
起されるタイミングよりも遅くならないようにしている
から、光起電力発生の遅延による電荷の放電を防いで半
導体スイッチ素子22を確実にターンオンさせることが
でき、しかも、半導体スイッチ素子22をターンオンさ
せた後の定常状態における1次側回路10への入力電力
を低減することができて発光素子11の長寿命化や駆動
回路全体の動作の安定化が図れるという利点がある。
That is, similarly to the first to fourth embodiments, this embodiment can shorten the switching time when the semiconductor switch element 22 is turned on, as compared with the conventional example using only the photovoltaic power. Further, in the present embodiment, as described above, the timing at which the photovoltaic power is generated in the photovoltaic element 21 is not delayed from the timing at which the induced electromotive force is induced in the secondary winding N2 of the transformer T. The semiconductor switch element 22 can be surely turned on by preventing the discharge of charges due to the delay of the generation of photovoltaic power, and the input to the primary side circuit 10 in the steady state after the semiconductor switch element 22 is turned on. There is an advantage that the power can be reduced, the life of the light emitting element 11 can be extended, and the operation of the entire drive circuit can be stabilized.

【0073】次に、半導体スイッチ素子22をオン状態
からオフ状態へターンオフさせるときの動作を説明す
る。
Next, the operation of turning off the semiconductor switch element 22 from the on state to the off state will be described.

【0074】駆動電源12の出力電圧が0Vを超えてオ
フ電圧まで低下すると、発光素子11が消灯して光起電
力素子21の出力電流が減少し、トランスTの1次巻線
N1に流れる電流が急激に反転するために2次巻線N2
にはターンオン時の光起電力と逆極性の誘導起電力が誘
起される。この誘導起電力によってスイッチ素子26の
ゲート−ソース間が順バイアスされてスイッチ素子26
がターンオンしてダイオード25のアノード−カソード
間を短絡し、光起電力素子21の端子間容量と半導体ス
イッチ素子22の入力容量の充電電荷がスイッチ素子2
6を介して誘導起電力により急速に放電する。このと
き、発光素子11が消灯するタイミングとトランスTの
1次巻線N1にオフ電圧が印加されるタイミングが同じ
であると、トランスTの2次巻線N2に生じる誘導起電
力によって光起電力素子21の端子間容量と半導体スイ
ッチ素子22の入力容量の充電電荷の放電が阻害されて
しまうので、本実施形態ではトランスTの1次巻線N1
に印加される電圧の立ち下がりを遅延部16によって遅
延させ、光起電力素子21の光起電力が消滅するタイミ
ングをトランスTの2次巻線N2に誘導起電力が誘起さ
れるタイミングよりも遅くならないようにして、上述の
光起電力消滅の遅延による電荷の放電遅れを防いでい
る。また、トランスTの1次巻線N1に流れる電流は駆
動電源12の出力電圧の立ち下がりの初期時には、上述
のターンオン時(出力電圧の立ち上がり時)と同様にコ
ンデンサC1を介して急激に流れ、定常状態では抵抗R
4を介して流れることになるから、ターンオン時と同様
にターンオフ時のスイッチング時間が短縮されると同時
に定常時の1次側回路10の入力電力が低減できる。
When the output voltage of the driving power source 12 exceeds 0V and decreases to the off voltage, the light emitting element 11 is turned off, the output current of the photovoltaic element 21 decreases, and the current flowing through the primary winding N1 of the transformer T. Secondary winding N2
An induced electromotive force having a polarity opposite to that of the photoelectromotive force at turn-on is induced in. The induced electromotive force causes forward bias between the gate and the source of the switch element 26, and
Is turned on to short-circuit the anode-cathode of the diode 25, and the charge between the inter-terminal capacitance of the photovoltaic element 21 and the input capacitance of the semiconductor switching element 22 becomes the switching element 2.
It is rapidly discharged by the induced electromotive force via 6. At this time, if the timing at which the light emitting element 11 is turned off and the timing at which the off voltage is applied to the primary winding N1 of the transformer T are the same, the induced electromotive force generated in the secondary winding N2 of the transformer T causes the photovoltaic power. Since the discharge of the charging charge of the inter-terminal capacitance of the element 21 and the input capacitance of the semiconductor switching element 22 is hindered, in the present embodiment, the primary winding N1 of the transformer T.
The fall of the voltage applied to the delay element 16 is delayed by the delay unit 16, and the timing at which the photovoltaic power of the photovoltaic element 21 disappears is later than the timing at which the induced electromotive force is induced in the secondary winding N2 of the transformer T. Therefore, the discharge delay of the electric charges due to the above-mentioned delay of the disappearance of the photovoltaic power is prevented. Further, the current flowing through the primary winding N1 of the transformer T rapidly flows through the capacitor C1 at the initial stage of the fall of the output voltage of the driving power supply 12, similarly to the above-mentioned turn-on (at the rise of the output voltage), Resistance R in steady state
As described above, the switching time at turn-off can be shortened as well as at turn-on, and at the same time, the input power of the primary side circuit 10 at the steady state can be reduced.

【0075】すなわち、本実施形態では上述のように、
光起電力素子21の光起電力が消滅するタイミングをト
ランスTの2次巻線N2に逆極性の誘導起電力が誘起さ
れるタイミングよりも遅くならないようにしているか
ら、光起電力消滅の遅延による電荷の放電を防いで半導
体スイッチ素子22を確実にターンオフさせることがで
き、しかも、半導体スイッチ素子22をターンオフさせ
た後の定常状態における1次側回路10への入力電力を
低減することができる。
That is, in the present embodiment, as described above,
Since the timing at which the photovoltaic power of the photovoltaic element 21 is extinguished is not later than the timing at which the induced electromotive force of the opposite polarity is induced in the secondary winding N2 of the transformer T, the delay of the photovoltaic power extinction is delayed. The semiconductor switch element 22 can be surely turned off by preventing the electric charge from being discharged by the electric discharge, and the input power to the primary side circuit 10 in the steady state after the semiconductor switch element 22 is turned off can be reduced. .

【0076】なお、本実施形態の2次側回路20を図6
に示す回路構成としてもよい。すなわち、トランスTの
2次巻線N2の両端をそれぞれスイッチ素子26a,2
6bを介して光起電力素子21の両極に接続するととも
に、各スイッチ素子26a,26bのゲートが、それぞ
れ他方のスイッチ素子26b,26aと接続された2次
巻線N2の一端に接続されている。なお、スイッチ素子
26a,26bには寄生ダイオードからなるダイオード
25a,25bが並列に接続されている。そして、半導
体スイッチ素子22のターンオン時には2次巻線N2に
誘起される誘導起電力でスイッチ素子26aがオンし、
ターンオフ時には2次巻線N2に誘起される逆極性の誘
導起電力でスイッチ素子26bがオンすることにより、
光起電力素子21の端子間容量と半導体スイッチ素子2
2の入力容量への充放電が行われる。
The secondary side circuit 20 of this embodiment is shown in FIG.
The circuit configuration shown in FIG. That is, the two ends of the secondary winding N2 of the transformer T are respectively connected to the switching elements 26a, 2a.
6b is connected to both electrodes of the photovoltaic element 21, and the gates of the switch elements 26a and 26b are connected to one end of the secondary winding N2 connected to the other switch elements 26b and 26a, respectively. . In addition, diodes 25a and 25b, which are parasitic diodes, are connected in parallel to the switch elements 26a and 26b. When the semiconductor switch element 22 is turned on, the switch element 26a is turned on by the induced electromotive force induced in the secondary winding N2,
At the time of turn-off, the switch element 26b is turned on by the induced electromotive force of the opposite polarity induced in the secondary winding N2,
Terminal capacitance of photovoltaic element 21 and semiconductor switching element 2
Charging / discharging to the input capacity of 2 is performed.

【0077】(実施形態6)本実施形態の回路図を図7
に示す。但し、基本的な構成は実施形態5と共通である
から、共通する構成要素には同一の符号を付して説明を
省略する。
(Embodiment 6) FIG. 7 is a circuit diagram of this embodiment.
Shown in. However, since the basic configuration is the same as that of the fifth embodiment, the common components are designated by the same reference numerals and the description thereof will be omitted.

【0078】2次側回路20では、トランスTの2次巻
線N2及びダイオード25の直列回路と、ノーマリオフ
型のnチャンネルMOSFETからなるスイッチ素子2
6とが光起電力素子21と並列に接続され、トランスT
の2次側に設けられた補助巻線N3の両端がスイッチ素
子26のゲートと光起電力素子21の負極にそれぞれ接
続されている。この補助巻線N3は2次巻線N2と同じ
極性に設定されており、2次巻線N2に光起電力と同極
性の誘導起電力が生じるときにスイッチ素子26を逆バ
イアスし、2次巻線N2に光起電力と逆極性の誘導起電
力が生じるときにスイッチ素子26を順バイアスする誘
導起電力が誘起されるようにしてある。なお、1次側回
路10の構成は実施形態5と同一であるから説明は省略
する。
In the secondary side circuit 20, the series circuit of the secondary winding N2 of the transformer T and the diode 25 and the switch element 2 consisting of a normally-off type n-channel MOSFET.
6 is connected in parallel with the photovoltaic element 21, and the transformer T
Both ends of the auxiliary winding N3 provided on the secondary side of are connected to the gate of the switch element 26 and the negative electrode of the photovoltaic element 21, respectively. The auxiliary winding N3 is set to have the same polarity as the secondary winding N2, and when an induced electromotive force having the same polarity as the photoelectromotive force is generated in the secondary winding N2, the switch element 26 is reverse-biased and the secondary An induced electromotive force that forward biases the switch element 26 is induced when an induced electromotive force having a polarity opposite to that of the photovoltaic electromotive force is generated in the winding N2. Since the configuration of the primary side circuit 10 is the same as that of the fifth embodiment, the description is omitted.

【0079】次に、本実施形態の駆動回路の動作を説明
する。但し、半導体スイッチ素子22をオフ状態からオ
ン状態へターンオンさせるときの動作は実施形態5と共
通であるから説明を省略し、半導体スイッチ素子22を
オン状態からオフ状態へターンオフさせるときの動作に
ついてのみ説明する。
Next, the operation of the drive circuit of this embodiment will be described. However, the operation when turning on the semiconductor switch element 22 from the off state to the on state is the same as that of the fifth embodiment, and therefore its explanation is omitted, and only the operation when turning off the semiconductor switch element 22 from the on state to the off state is performed. explain.

【0080】駆動電源12の出力電圧が0Vを超えてオ
フ電圧まで低下すると、発光素子11が消灯して光起電
力素子21の出力電流が減少し、トランスTの1次巻線
N1に流れる電流が急激に反転するために2次巻線N2
及び補助巻線N3にはターンオン時の光起電力と逆極性
の誘導起電力がそれぞれ誘起される。この誘導起電力に
よってスイッチ素子26のゲート−ソース間が順バイア
スされてスイッチ素子26がターンオンし、光起電力素
子21の両極間並びに半導体スイッチ素子22のゲート
−ソース間を短絡して光起電力素子21の端子間容量と
半導体スイッチ素子22の入力容量の充電電荷がスイッ
チ素子26を介して急速に放電され、半導体スイッチ素
子22のゲート−ソース間電圧が閾値電圧を下回ったと
きに半導体スイッチ素子22がターンオフする。
When the output voltage of the driving power source 12 exceeds 0V and decreases to the off voltage, the light emitting element 11 is turned off, the output current of the photovoltaic element 21 decreases, and the current flowing through the primary winding N1 of the transformer T decreases. Secondary winding N2
Further, induced electromotive force having a polarity opposite to that of the photoelectromotive force at turn-on is induced in the auxiliary winding N3. The induced electromotive force forward-biases the gate and source of the switch element 26 to turn on the switch element 26, short-circuit both electrodes of the photovoltaic element 21 and the gate and source of the semiconductor switch element 22, and thereby generate the photovoltaic force. When the charge between the terminal capacitance of the element 21 and the input capacitance of the semiconductor switch element 22 is rapidly discharged through the switch element 26 and the gate-source voltage of the semiconductor switch element 22 falls below the threshold voltage, the semiconductor switch element. 22 turns off.

【0081】而して、ターンオフ時においては、トラン
スTの補助巻線N3に生じる誘導起電力でスイッチ素子
26をオンとし、スイッチ素子26を介して半導体スイ
ッチ素子22のゲート−ソース間を逆バイアスすること
により、従来例に比較して半導体スイッチ素子22をタ
ーンオフさせるのに要する時間(スイッチング時間)を
短縮させることが可能である。
At the time of turn-off, the switch element 26 is turned on by the induced electromotive force generated in the auxiliary winding N3 of the transformer T, and the gate-source of the semiconductor switch element 22 is reverse biased via the switch element 26. By doing so, it is possible to shorten the time (switching time) required to turn off the semiconductor switch element 22 as compared with the conventional example.

【0082】(実施形態7)本実施形態の駆動回路は、
図8に示すように発光素子11、抵抗R1並びに正負の
パルス電圧を出力する双極性のパルス電源からなる駆動
電源12の直列回路からなる1次側回路10と、光起電
力素子21並びに制御回路30からなる2次側回路20
と、駆動電源12から1次側回路10に印加される駆動
電圧の変化に応じて2次側回路20に電力を供給するよ
うに1次側回路10と2次側回路20を静電結合する静
電結合手段とを備えている。ここで、静電結合手段は、
駆動電源12と抵抗R1の接続点と光起電力素子21の
正極との間に接続されるコンデンサ14と、駆動電源1
2と発光素子11の負極と光起電力素子21の負極との
間に接続されるコンデンサ15とからなる。
(Embodiment 7) The drive circuit of this embodiment is
As shown in FIG. 8, a primary side circuit 10 including a series circuit of a light emitting element 11, a resistor R1, and a driving power source 12 including a bipolar pulse power source that outputs positive and negative pulse voltages, a photovoltaic element 21, and a control circuit. Secondary side circuit 20 consisting of 30
And the primary side circuit 10 and the secondary side circuit 20 are electrostatically coupled so as to supply power to the secondary side circuit 20 in accordance with a change in the drive voltage applied from the drive power source 12 to the primary side circuit 10. And electrostatic coupling means. Here, the electrostatic coupling means is
The capacitor 14 connected between the connection point of the driving power source 12 and the resistor R1 and the positive electrode of the photovoltaic element 21, and the driving power source 1
2 and a capacitor 15 connected between the negative electrode of the light emitting element 11 and the negative electrode of the photovoltaic element 21.

【0083】次に、本実施形態の駆動回路の動作を説明
する。
Next, the operation of the drive circuit of this embodiment will be described.

【0084】まず、半導体スイッチ素子22をオフ状態
からオン状態へターンオンさせるときの動作について説
明する。
First, the operation of turning on the semiconductor switch element 22 from the off state to the on state will be described.

【0085】駆動電源12からパルス電圧が出力されて
出力電圧がオフ電圧からオン電圧に立ち上がると、抵抗
R1並びにトランスTの1次巻線N1を介して発光素子
11に電流が流れて発光素子11が発光し、発光素子1
1と光結合されている光起電力素子21に光起電力が生
じて2次側回路20に電流が流れるとともに、駆動電源
12の出力電圧の立ち上がり時にはコンデンサ14,1
5を介して駆動電源12から2次側回路20へ電流が供
給され、光起電力素子21の端子間容量と半導体スイッ
チ素子22の入力容量が充電される。そして、この充電
電圧が閾値電圧を超えると半導体スイッチ素子22がタ
ーンオンする。
When a pulse voltage is output from the driving power supply 12 and the output voltage rises from an off voltage to an on voltage, a current flows through the light emitting element 11 through the resistor R1 and the primary winding N1 of the transformer T, and the light emitting element 11 Emits light, and light-emitting element 1
1 is photo-coupled to the photovoltaic element 21 to cause a current to flow in the secondary side circuit 20, and at the rising of the output voltage of the driving power source 12, the capacitors 14, 1
A current is supplied from the drive power source 12 to the secondary side circuit 20 via 5, and the inter-terminal capacitance of the photovoltaic element 21 and the input capacitance of the semiconductor switching element 22 are charged. When the charging voltage exceeds the threshold voltage, the semiconductor switch element 22 turns on.

【0086】すなわち、光起電力素子21に生じる光起
電力による電流だけでなくコンデンサ14,15を介し
て駆動電源12から供給される電流と合わせて光起電力
素子21の端子間容量並びに半導体スイッチ素子22の
入力容量が充電されるため、光起電力のみによる従来例
に比較して、半導体スイッチ素子22をターンオンさせ
るのに要するスイッチング時間を短縮させることが可能
である。
That is, not only the current due to the photovoltaic power generated in the photovoltaic element 21, but also the current supplied from the driving power source 12 via the capacitors 14 and 15 together with the inter-terminal capacitance of the photovoltaic element 21 and the semiconductor switch. Since the input capacitance of the element 22 is charged, the switching time required to turn on the semiconductor switching element 22 can be shortened as compared with the conventional example using only the photovoltaic power.

【0087】次に、半導体スイッチ素子22をオン状態
からオフ状態へターンオフさせるときの動作を説明す
る。
Next, the operation of turning off the semiconductor switch element 22 from the on state to the off state will be described.

【0088】駆動電源12の出力電圧がオン電圧からオ
フ電圧に立ち下がって発光素子11が消灯すると、光起
電力素子21の出力電流が減少し、制御回路30によっ
て半導体スイッチ素子22のゲート−ソース間に蓄積さ
れていた電荷および光起電力素子21の正極と負極との
間に蓄積されていた電荷が放電され、半導体スイッチ素
子22のゲート−ソース間電圧が閾値電圧を下回ったと
きに半導体スイッチ素子22がターンオフする。ここ
で、駆動電源12の出力電圧がオフ電圧に立ち下がる時
には、コンデンサ14,15を介して駆動電源12から
2次側回路20へ電流が供給されて制御回路30による
電荷の放電が促進されることになる。
When the output voltage of the driving power supply 12 falls from the on-voltage to the off-voltage and the light emitting element 11 is turned off, the output current of the photovoltaic element 21 decreases, and the control circuit 30 causes the gate-source of the semiconductor switching element 22. The semiconductor switch when the charge accumulated between them and the charge accumulated between the positive electrode and the negative electrode of the photovoltaic element 21 are discharged and the gate-source voltage of the semiconductor switching element 22 falls below the threshold voltage. Element 22 turns off. Here, when the output voltage of the drive power supply 12 falls to the off voltage, a current is supplied from the drive power supply 12 to the secondary side circuit 20 via the capacitors 14 and 15 to accelerate the discharge of electric charges by the control circuit 30. It will be.

【0089】而して、ターンオフ時においては、コンデ
ンサ14,15を介して駆動電源12により半導体スイ
ッチ素子22のゲート−ソース間を逆バイアスするた
め、従来例に比較して半導体スイッチ素子22をターン
オフさせるのに要するスイッチング時間を短縮させるこ
とが可能である。
At the time of turn-off, the gate-source of the semiconductor switch element 22 is reversely biased by the driving power supply 12 via the capacitors 14 and 15, so that the semiconductor switch element 22 is turned off as compared with the conventional example. It is possible to shorten the switching time required for this.

【0090】(実施形態8)本実施形態は、図9に示す
ようにゲート同士およびソース同士がそれぞれ共通接続
された2個のnチャネルMOSFET22a,22bか
らなる半導体スイッチ素子22と、実施形態3の駆動回
路とを備えた、いわゆるフォトモスリレーと呼ばれる半
導体リレーを構成している。但し、半導体スイッチ素子
22をターンオン並びにターンオフさせる動作は実施形
態3と同一であるから説明は省略する。
(Embodiment 8) In this embodiment, as shown in FIG. 9, a semiconductor switch element 22 composed of two n-channel MOSFETs 22a and 22b whose gates and sources are commonly connected to each other, and a semiconductor switch element of Embodiment 3 are provided. It constitutes a semiconductor relay called a so-called photo-MOS relay, which is provided with a drive circuit. However, since the operation of turning on and off the semiconductor switch element 22 is the same as that of the third embodiment, the description thereof will be omitted.

【0091】而して、上述のように構成される半導体リ
レーにおいても、従来例の半導体リレーに比較してスイ
ッチング時間を短縮させることができる。なお、半導体
リレーを構成する駆動回路は実施形態3に限定されるも
のではなく、実施形態1,実施形態2あるいは実施形態
4〜7の何れの駆動回路であっても構わない。
Thus, also in the semiconductor relay configured as described above, the switching time can be shortened as compared with the conventional semiconductor relay. The drive circuit forming the semiconductor relay is not limited to that of the third embodiment, and may be any of the drive circuits of the first, second and fourth to seventh embodiments.

【0092】[0092]

【発明の効果】請求項1の発明は、互いに光結合された
1次側回路及び2次側回路を備え、駆動電源より1次側
回路を介し光を媒体として2次側回路に電力を伝達し、
伝達された電力を用いて2次側回路により半導体スイッ
チ素子をスイッチングさせる駆動回路において、光を媒
体とした上記電力伝達とは別に1次側回路への入力電力
を2次側回路に供給する電力供給手段を備えたので、光
結合による電力伝達を電力供給手段により補うことで半
導体スイッチ素子のスイッチング時間を短縮させること
が可能な駆動回路が実現できるという効果がある。
According to the first aspect of the present invention, the primary side circuit and the secondary side circuit optically coupled to each other are provided, and the power is transmitted from the driving power source to the secondary side circuit through the primary side circuit through the light as a medium. Then
In the drive circuit for switching the semiconductor switch element by the secondary side circuit using the transmitted electric power, the electric power for supplying the input electric power to the primary side circuit to the secondary side circuit separately from the electric power transmission using light as a medium. Since the power supply means is provided, there is an effect that a drive circuit capable of shortening the switching time of the semiconductor switch element can be realized by supplementing the power transmission by optical coupling with the power supply means.

【0093】請求項2の発明は、請求項1の発明におい
て、電力供給手段は、駆動電源から1次側回路に印加さ
れる駆動電圧の変化に応じて2次側回路に電力を供給す
るように1次側回路と2次側回路を電磁結合する電磁結
合手段からなるので、光結合による電力伝達を電磁結合
手段により補うことで半導体スイッチ素子のスイッチン
グ時間を短縮させることが可能な駆動回路が実現できる
という効果がある。
According to a second aspect of the present invention, in the first aspect of the invention, the power supply means supplies power to the secondary side circuit in response to a change in the drive voltage applied from the drive power source to the primary side circuit. Since the primary side circuit and the secondary side circuit are electromagnetically coupled to each other by electromagnetic coupling means, a driving circuit capable of shortening the switching time of the semiconductor switch element by supplementing the power transmission by optical coupling by the electromagnetic coupling means is provided. There is an effect that it can be realized.

【0094】請求項3の発明は、請求項2の発明におい
て、電磁結合手段がトランスからなるので、請求項2の
発明と同様の効果を奏する。
According to the invention of claim 3, in the invention of claim 2, since the electromagnetic coupling means comprises a transformer, the same effect as that of the invention of claim 2 can be obtained.

【0095】請求項4の発明は、請求項3の発明におい
て、1次側回路がトランスの1次巻線と駆動電圧の印加
により発光する発光素子との直列回路で構成され、2次
側回路がトランスの2次巻線と発光素子に光結合した光
起電力素子との直列回路で構成され、駆動電源からの電
力供給時に光起電力素子に生じる光起電力とトランスの
2次巻線に誘起される誘導起電力との極性を一致させて
なるので、請求項3の発明の効果に加えて、光結合によ
る電力伝達と磁気結合による電力伝達のタイミングが自
ずと一致して制御が容易になるという効果がある。
According to a fourth aspect of the present invention, in the third aspect of the invention, the primary side circuit is composed of a series circuit of a primary winding of a transformer and a light emitting element which emits light when a drive voltage is applied, and the secondary side circuit. Is composed of a series circuit of a secondary winding of a transformer and a photovoltaic element optically coupled to a light emitting element, and the photovoltaic generated in the photovoltaic element when power is supplied from a driving power source and the secondary winding of the transformer Since the polarity of the induced electromotive force is matched with that of the induced electromotive force, in addition to the effect of the invention of claim 3, the timing of power transfer by optical coupling and the timing of power transfer by magnetic coupling naturally match and control becomes easy. There is an effect.

【0096】請求項5の発明は、請求項3の発明におい
て、1次側回路が駆動電圧の印加により発光する発光素
子とトランスの1次巻線を互いに並列接続して構成さ
れ、2次側回路がトランスの2次巻線と発光素子に光結
合した光起電力素子との直列回路で構成され、駆動電源
からの電力供給時に光起電力素子に生じる光起電力とト
ランスの2次巻線に誘起される誘導起電力との極性を一
致させてなるので、請求項3の発明の効果に加えて、発
光素子に流れる電流とトランスの1次巻線に流れる電流
を個別に調整することができ、光結合による電力伝達と
電磁結合による電力伝達を独立して個別に設計すること
が可能となるという効果がある。
According to a fifth aspect of the present invention, in the third aspect of the invention, the primary side circuit is configured by connecting in parallel the light emitting element that emits light by the application of a drive voltage and the primary winding of the transformer, and the secondary side. The circuit is composed of a series circuit of a secondary winding of a transformer and a photovoltaic element optically coupled to a light emitting element, and the photovoltaic generated in the photovoltaic element when power is supplied from a drive power source and the secondary winding of the transformer Since the polarity of the induced electromotive force induced in the transformer is matched, the current flowing in the light emitting element and the current flowing in the primary winding of the transformer can be individually adjusted in addition to the effect of the invention of claim 3. Therefore, there is an effect that power transmission by optical coupling and power transmission by electromagnetic coupling can be independently designed individually.

【0097】請求項6の発明は、請求項3の発明におい
て、1次側回路がトランスの1次巻線と駆動電圧の印加
により発光する発光素子との直列回路で構成され、2次
側回路がトランスの2次巻線と発光素子に光結合した光
起電力素子との並列回路で構成され、駆動電源からの電
力供給時に光起電力素子に生じる光起電力とトランスの
2次巻線に誘起される誘導起電力との極性を一致させて
なるので、請求項3の発明と同様の効果を奏する。
According to a sixth aspect of the present invention, in the third aspect of the invention, the primary side circuit is composed of a series circuit of a primary winding of a transformer and a light emitting element that emits light when a drive voltage is applied, and the secondary side circuit. Is composed of a parallel circuit of a secondary winding of a transformer and a photovoltaic element optically coupled to a light emitting element. The photovoltaic generated in the photovoltaic element when power is supplied from a driving power source and the secondary winding of the transformer Since the polarity of the induced electromotive force is the same as that of the induced electromotive force, the same effect as that of the invention of claim 3 is obtained.

【0098】請求項7の発明は、請求項3の発明におい
て、1次側回路がトランスの1次巻線と駆動電圧の印加
により発光する発光素子との並列回路で構成され、2次
側回路がトランスの2次巻線と発光素子に光結合した光
起電力素子との並列回路で構成され、駆動電源からの電
力供給時に光起電力素子に生じる光起電力とトランスの
2次巻線に誘起される誘導起電力との極性を一致させて
なるので、請求項3の発明の効果に加えて、発光素子に
流れる電流とトランスの1次巻線に流れる電流を個別に
調整することができ、光結合による電力伝達と電磁結合
による電力伝達を独立して個別に設計することが可能と
なるという効果がある。
According to a seventh aspect of the invention, in the third aspect of the invention, the primary side circuit is composed of a parallel circuit of a primary winding of a transformer and a light emitting element that emits light when a drive voltage is applied, and the secondary side circuit. Is composed of a parallel circuit of a secondary winding of a transformer and a photovoltaic element optically coupled to a light emitting element. The photovoltaic generated in the photovoltaic element when power is supplied from a driving power source and the secondary winding of the transformer Since the polarities of the induced electromotive force and the induced electromotive force are matched, the current flowing through the light emitting element and the current flowing through the primary winding of the transformer can be individually adjusted in addition to the effect of the invention of claim 3. There is an effect that power transmission by optical coupling and power transmission by electromagnetic coupling can be independently designed.

【0099】請求項8の発明は、請求項4又は6の発明
において、1次側回路が発光素子と逆並列に接続される
整流素子を具備するので、請求項4又は6の発明の効果
に加えて、半導体スイッチ素子をターンオフする際に整
流素子を介してトランスの1次巻線に逆向きの電流を流
すことでトランスの2次巻線にはターンオン時と逆向き
の誘導起電力が誘起され、半導体スイッチ素子のターン
オフ時のスイッチング時間が短縮できるという効果があ
る。
According to the invention of claim 8 in the invention of claim 4 or 6, since the primary side circuit includes a rectifying element connected in antiparallel with the light emitting element, the effect of the invention of claim 4 or 6 is achieved. In addition, when the semiconductor switch element is turned off, a reverse current is caused to flow through the primary winding of the transformer via the rectifying element to induce an induced electromotive force in the secondary winding of the transformer in the opposite direction to that at the time of turn-on. Therefore, there is an effect that the switching time when the semiconductor switch element is turned off can be shortened.

【0100】請求項9の発明は、請求項4又は6又は8
の発明において、1次側回路が発光素子と並列に接続さ
れる容量素子を具備するので、駆動電圧の立ち上がり時
にはインピーダンスの低い容量素子を介して大きな電流
がトランスの1次巻線に流れてトランスの2次巻線に大
きな誘導起電力を誘起させることができ、スイッチング
時間をさらに短縮できるという効果がある。また、駆動
電圧が立ち上がって安定した後は容量素子に殆ど電流が
流れなくなり、1次側回路における電力消費が低減でき
るという効果がある。
The invention of claim 9 is the invention of claim 4 or 6 or 8.
In the invention of claim 1, since the primary side circuit includes a capacitive element connected in parallel with the light emitting element, a large current flows through the primary winding of the transformer through the capacitive element having a low impedance at the rise of the drive voltage. It is possible to induce a large induced electromotive force in the secondary winding, and there is an effect that the switching time can be further shortened. Further, after the drive voltage rises and becomes stable, almost no current flows through the capacitive element, which has the effect of reducing power consumption in the primary side circuit.

【0101】請求項10の発明は、請求項5又は7の発
明において、トランスの2次巻線に誘導起電力が誘起さ
れるタイミングが光起電力素子に光起電力が生じるタイ
ミングより早くならないように制御する制御手段を備え
たので、トランスの2次巻線に誘起される誘導起電力の
ために光起電力素子の充電電荷が放電してしまうことが
無く、スイッチング時間をさらに短縮できるという効果
がある。
According to a tenth aspect of the present invention, in the fifth or seventh aspect of the present invention, the timing at which the induced electromotive force is induced in the secondary winding of the transformer is not earlier than the timing at which the photovoltaic element generates the photovoltaic force. Since the control means for controlling is provided, the charging charge of the photovoltaic element is not discharged by the induced electromotive force induced in the secondary winding of the transformer, and the switching time can be further shortened. There is.

【0102】請求項11の発明は、請求項10の発明に
おいて、トランスの2次巻線に誘導起電力が誘起される
時間を光起電力素子に光起電力が生じる時間よりも短く
する手段を備えたので、請求項10の発明の効果に加え
て、1次側回路における電力消費が低減できるという効
果がある。
According to an eleventh aspect of the present invention, in the tenth aspect of the present invention, there is provided means for shortening the time for which the induced electromotive force is induced in the secondary winding of the transformer to be shorter than the time for the photovoltaic element to generate the photoelectromotive force. Since it is provided, in addition to the effect of the invention of claim 10, there is an effect that the power consumption in the primary side circuit can be reduced.

【0103】請求項12の発明は、請求項11の発明に
おいて、駆動電源からトランスの1次巻線に印加される
駆動電圧の立ち上がりを急峻とし且つ立ち下がりを比較
的緩やかとする手段を備えたので、請求項11の発明の
効果に加えて、トランスの1次巻線に印加される駆動電
圧の立ち下がり時に2次巻線に誘起される光起電力と逆
極性の誘導起電力を抑制することができ、定常時におけ
る2次側回路の電圧変動を抑えることができるという効
果がある。
According to a twelfth aspect of the present invention, in the eleventh aspect of the present invention, there is provided means for making the rise of the drive voltage applied to the primary winding of the transformer from the drive power source sharp and the fall relatively gentle. Therefore, in addition to the effect of the invention of claim 11, the induced electromotive force having a polarity opposite to that of the photoelectromotive force induced in the secondary winding when the drive voltage applied to the primary winding of the transformer falls is suppressed. Therefore, there is an effect that the voltage fluctuation of the secondary side circuit in the steady state can be suppressed.

【0104】請求項13の発明は、請求項12の発明に
おいて、駆動電源からの電力供給停止時にトランスの2
次巻線に誘起される誘導起電力を、駆動電源からの電力
供給時に光起電力素子に生じる光起電力と逆極性とした
ので、請求項12の発明の効果に加えて、半導体スイッ
チ素子のゲート電極の蓄積電荷並びに光起電力素子の蓄
積電荷の放電を促進して半導体スイッチ素子のターンオ
フ時のスイッチング時間が短縮できるという効果があ
る。
According to a thirteenth aspect of the present invention, in the twelfth aspect of the invention, the transformer 2 is turned off when the power supply from the drive power source is stopped.
The induced electromotive force induced in the next winding has a polarity opposite to that of the photovoltaic power generated in the photovoltaic element when power is supplied from the driving power source. Therefore, in addition to the effect of the invention of claim 12, There is an effect that the discharge time of the charge accumulated in the gate electrode and the charge accumulated in the photovoltaic element can be promoted to shorten the switching time when the semiconductor switch element is turned off.

【0105】請求項14の発明は、請求項10〜13の
何れかの発明において、1次側回路がトランスの1次巻
線と直列に接続される容量素子を具備するので、請求項
10〜13の発明と同様の効果を奏する。
According to a fourteenth aspect of the present invention, in any one of the tenth to thirteenth aspects, the primary side circuit includes a capacitive element connected in series with the primary winding of the transformer. The same effect as that of the thirteenth invention is achieved.

【0106】請求項15の発明は、請求項6又は7並び
に請求項10〜14の何れかの発明において、2次側回
路がトランスの2次巻線と直列に接続される整流素子を
具備し、整流素子は、光起電力素子に光起電力が生じる
ときにトランスの2次巻線に誘起される誘導起電力によ
る電流が光起電力素子に流れ込む向きに接続されてなる
ので、トランスの2次巻線に誘導起電力が誘起されなく
なった後に光起電力による電流が2次巻線に流れること
を阻止でき、2次側回路の電力を長時間維持する必要が
ある場合にも対応できるという効果がある。
According to a fifteenth aspect of the present invention, in any one of the sixth or seventh aspect and the tenth to fourteenth aspects, the secondary side circuit includes a rectifying element connected in series with the secondary winding of the transformer. , The rectifying element is connected so that the current due to the induced electromotive force induced in the secondary winding of the transformer flows into the photovoltaic element when the photovoltaic element generates the photovoltaic element. It is possible to prevent the current due to the photovoltaic power from flowing to the secondary winding after the induced electromotive force is no longer induced in the secondary winding, and it can be used even when it is necessary to maintain the power of the secondary side circuit for a long time. effective.

【0107】請求項16の発明は、請求項15の発明に
おいて、1次側回路の発光素子の点灯時にオフとなり且
つ発光素子の消灯時にオンとなるスイッチ素子を整流素
子と並列に接続したので、請求項15の発明の効果に加
えて、発光素子の消灯時にはスイッチ素子がオンして整
流素子の両端を短絡するため、光起電力素子の蓄積電荷
の放電を促進して半導体スイッチ素子のターンオフ時の
スイッチング時間が短縮できるという効果がある。
According to the sixteenth aspect of the invention, in the fifteenth aspect of the invention, the switch element which is turned off when the light emitting element of the primary side circuit is turned on and is turned on when the light emitting element is turned off is connected in parallel with the rectifying element. In addition to the effect of the invention as set forth in claim 15, when the light emitting element is turned off, the switch element is turned on and short-circuits both ends of the rectifying element. Therefore, discharge of accumulated charges of the photovoltaic element is promoted to turn off the semiconductor switch element. The switching time can be shortened.

【0108】請求項17の発明は、請求項16の発明に
おいて、スイッチ素子をMOSFETで構成するととも
に整流素子をMOSFETの寄生ダイオードで代用し、
スイッチ素子のゲート電極を2次巻線の一端に接続して
なるので、請求項16の発明と同様の効果を奏する。
According to a seventeenth aspect of the invention, in the sixteenth aspect of the invention, the switch element is constituted by a MOSFET and the rectifying element is replaced by a parasitic diode of the MOSFET.
Since the gate electrode of the switch element is connected to one end of the secondary winding, the same effect as the invention of claim 16 is obtained.

【0109】請求項18の発明は、請求項15の発明に
おいて、1次側回路の発光素子の点灯時にオフとなり且
つ発光素子の消灯時にオンとなるスイッチ素子を光起電
力素子と並列に接続したので、請求項15の発明の効果
に加えて、発光素子の消灯時にスイッチ素子を介して光
起電力素子の蓄積電荷を放電することで半導体スイッチ
素子のターンオフ時のスイッチング時間が短縮できると
いう効果がある。
According to an eighteenth aspect of the invention, in the fifteenth aspect of the invention, a switching element which is turned off when the light emitting element of the primary side circuit is turned on and is turned on when the light emitting element is turned off is connected in parallel with the photovoltaic element. Therefore, in addition to the effect of the fifteenth aspect of the invention, there is an effect that the switching time at turn-off of the semiconductor switch element can be shortened by discharging the accumulated charge of the photovoltaic element through the switch element when the light emitting element is turned off. is there.

【0110】請求項19の発明は、請求項18の発明に
おいて、MOSFETからなるスイッチ素子のドレイン
電極及びソース電極を光起電力素子の両極に接続すると
ともに、トランスの2次側に設けた補助巻線にスイッチ
素子のゲート電極を接続し、トランスの2次巻線に光起
電力と逆極性の誘導起電力が誘起されたときにスイッチ
素子をオンさせてなるので、請求項18の発明と同様の
効果を奏する。
According to a nineteenth aspect of the invention, in the eighteenth aspect of the invention, the drain electrode and the source electrode of the switch element formed of the MOSFET are connected to both electrodes of the photovoltaic element, and an auxiliary winding is provided on the secondary side of the transformer. The gate electrode of the switch element is connected to the wire, and the switch element is turned on when an induced electromotive force having a polarity opposite to that of the photoelectromotive force is induced in the secondary winding of the transformer. Produce the effect of.

【0111】請求項20の発明は、請求項1の発明にお
いて、電力供給手段は、駆動電源から1次側回路に印加
される駆動電圧の変化に応じて2次側回路に電力を供給
するように1次側回路と2次側回路を静電結合する静電
結合手段からなるので、光結合による電力伝達を静電結
合手段により補うことで半導体スイッチ素子のスイッチ
ング時間を短縮させることが可能な駆動回路が実現でき
るという効果がある。
According to a twentieth aspect of the invention, in the first aspect of the invention, the power supply means supplies power to the secondary side circuit in response to a change in the drive voltage applied from the drive power source to the primary side circuit. In addition, since the electrostatic coupling means for electrostatically coupling the primary side circuit and the secondary side circuit is used, the switching time of the semiconductor switch element can be shortened by supplementing the electric power transmission by the optical coupling by the electrostatic coupling means. There is an effect that a drive circuit can be realized.

【0112】請求項21の発明は、請求項20の発明に
おいて、1次側回路が駆動電圧の印加により発光する発
光素子と抵抗の直列回路で構成され、2次側回路が発光
素子に光結合した光起電力素子で構成され、駆動電源か
らの電力供給時に光起電力素子に生じる光起電力と同じ
極性の電圧を2次側回路に印加する向きに、コンデンサ
からなる静電結合手段を介して1次側回路と2次側回路
が接続されてなるので、請求項20の発明と同様の効果
を奏する。
According to a twenty-first aspect of the invention, in the twentieth aspect of the invention, the primary side circuit is composed of a series circuit of a light emitting element and a resistor which emits light when a driving voltage is applied, and the secondary side circuit is optically coupled to the light emitting element. And a voltage having the same polarity as the photovoltaic generated in the photovoltaic element when power is supplied from the driving power source, is applied to the secondary side circuit via an electrostatic coupling means including a capacitor. Since the primary side circuit and the secondary side circuit are connected together, the same effect as the invention of claim 20 is achieved.

【0113】請求項22の発明は、上記目的を達成する
ために、2つの電界効果トランジスタの制御端子同士お
よび各一対の主端子のうちの一方の主端子同士をそれぞ
れ共通接続して構成された半導体スイッチ素子と、共通
接続された制御端子と一方の主端子との間に制御入力を
与える請求項1〜21の何れかに記載の駆動回路とを備
えたので、光結合による電力伝達を電力供給手段により
補うことでスイッチング時間を短縮させることが可能な
半導体リレーが実現できるという効果がある。
In order to achieve the above-mentioned object, the invention of claim 22 is constituted by connecting the control terminals of two field effect transistors and one main terminal of each pair of main terminals in common. The semiconductor switch element and the drive circuit according to any one of claims 1 to 21 for providing a control input between a commonly connected control terminal and one of the main terminals are provided. There is an effect that a semiconductor relay capable of shortening the switching time can be realized by supplementing the supply means.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態1を示す回路図である。FIG. 1 is a circuit diagram showing a first embodiment.

【図2】実施形態2を示す回路図である。FIG. 2 is a circuit diagram showing a second embodiment.

【図3】実施形態3を示す回路図である。FIG. 3 is a circuit diagram showing a third embodiment.

【図4】実施形態4を示す回路図である。FIG. 4 is a circuit diagram showing a fourth embodiment.

【図5】実施形態5を示す回路図である。FIG. 5 is a circuit diagram showing a fifth embodiment.

【図6】同上の他の構成を示す回路図である。FIG. 6 is a circuit diagram showing another configuration of the above.

【図7】実施形態6を示す回路図である。FIG. 7 is a circuit diagram showing a sixth embodiment.

【図8】実施形態7を示す回路図である。FIG. 8 is a circuit diagram showing a seventh embodiment.

【図9】実施形態8を示す回路図である。FIG. 9 is a circuit diagram showing an eighth embodiment.

【図10】従来例を示す回路図である。FIG. 10 is a circuit diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

10 1次側回路 11 発光素子 12 駆動電源 20 2次側回路 21 光起電力素子 22 半導体スイッチ素子 T トランス 10 Primary circuit 11 Light emitting element 12 Drive power supply 20 Secondary circuit 21 Photovoltaic device 22 Semiconductor switch element T transformer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F089 AB03 AC30 CA12 FA10 5H740 AA05 BA12 BC01 BC02 KK04 5J050 AA02 BB18 CC11 DD03 EE02 EE21 FF04 FF10 5J055 AX02 BX00 BX16 BX17 DX12 EX07 EY01 EY07 EY10 EY12 EY14 EY21 EY28 EZ00 GX01   ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 5F089 AB03 AC30 CA12 FA10                 5H740 AA05 BA12 BC01 BC02 KK04                 5J050 AA02 BB18 CC11 DD03 EE02                       EE21 FF04 FF10                 5J055 AX02 BX00 BX16 BX17 DX12                       EX07 EY01 EY07 EY10 EY12                       EY14 EY21 EY28 EZ00 GX01

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】 互いに光結合された1次側回路及び2次
側回路を備え、駆動電源より1次側回路を介し光を媒体
として2次側回路に電力を伝達し、伝達された電力を用
いて2次側回路により半導体スイッチ素子をスイッチン
グさせる駆動回路において、光を媒体とした上記電力伝
達とは別に1次側回路への入力電力を2次側回路に供給
する電力供給手段を備えたことを特徴とする半導体スイ
ッチ素子の駆動回路。
1. A primary side circuit and a secondary side circuit optically coupled to each other, wherein electric power is transmitted from a driving power source to the secondary side circuit through the primary side circuit using light as a medium, and the transmitted electric power is transmitted. In the drive circuit for switching the semiconductor switch element by the secondary side circuit using the above, the power supply means for supplying the input power to the primary side circuit to the secondary side circuit is provided separately from the above-mentioned power transmission using light as a medium. A drive circuit for a semiconductor switch element, which is characterized in that:
【請求項2】 電力供給手段は、駆動電源から1次側回
路に印加される駆動電圧の変化に応じて2次側回路に電
力を供給するように1次側回路と2次側回路を電磁結合
する電磁結合手段からなることを特徴とする請求項1記
載の半導体スイッチ素子の駆動回路。
2. The power supply means electromagnetically connects the primary side circuit and the secondary side circuit to supply power to the secondary side circuit in response to a change in a drive voltage applied from the drive power source to the primary side circuit. 2. The drive circuit for a semiconductor switch element according to claim 1, comprising electromagnetic coupling means for coupling.
【請求項3】 電磁結合手段がトランスからなることを
特徴とする請求項2記載の半導体スイッチ素子の駆動回
路。
3. The drive circuit for a semiconductor switch element according to claim 2, wherein the electromagnetic coupling means comprises a transformer.
【請求項4】 1次側回路がトランスの1次巻線と駆動
電圧の印加により発光する発光素子との直列回路で構成
され、2次側回路がトランスの2次巻線と発光素子に光
結合した光起電力素子との直列回路で構成され、駆動電
源からの電力供給時に光起電力素子に生じる光起電力と
トランスの2次巻線に誘起される誘導起電力との極性を
一致させてなることを特徴とする請求項3記載の半導体
スイッチ素子の駆動回路。
4. The primary side circuit is composed of a series circuit of a primary winding of a transformer and a light emitting element that emits light when a drive voltage is applied, and the secondary side circuit is a light source for the secondary winding of the transformer and the light emitting element. It is composed of a series circuit with a coupled photovoltaic element, and matches the polarity of the photovoltaic power generated in the photovoltaic element when power is supplied from the driving power source with the induced electromotive force induced in the secondary winding of the transformer. The drive circuit for a semiconductor switch element according to claim 3, wherein
【請求項5】 1次側回路が駆動電圧の印加により発光
する発光素子とトランスの1次巻線を互いに並列接続し
て構成され、2次側回路がトランスの2次巻線と発光素
子に光結合した光起電力素子との直列回路で構成され、
駆動電源からの電力供給時に光起電力素子に生じる光起
電力とトランスの2次巻線に誘起される誘導起電力との
極性を一致させてなることを特徴とする請求項3記載の
半導体スイッチ素子の駆動回路。
5. A primary side circuit is constituted by connecting a light emitting element that emits light by application of a drive voltage and a primary winding of a transformer in parallel, and a secondary side circuit is a secondary winding of the transformer and a light emitting element. It consists of a series circuit with photovoltaic elements that are optically coupled,
4. The semiconductor switch according to claim 3, wherein the polarities of the photoelectromotive force generated in the photovoltaic element when the power is supplied from the driving power source and the induced electromotive force induced in the secondary winding of the transformer are matched. Device drive circuit.
【請求項6】 1次側回路がトランスの1次巻線と駆動
電圧の印加により発光する発光素子との直列回路で構成
され、2次側回路がトランスの2次巻線と発光素子に光
結合した光起電力素子との並列回路で構成され、駆動電
源からの電力供給時に光起電力素子に生じる光起電力と
トランスの2次巻線に誘起される誘導起電力との極性を
一致させてなることを特徴とする請求項3記載の半導体
スイッチ素子の駆動回路。
6. The primary side circuit is composed of a series circuit of a primary winding of a transformer and a light emitting element that emits light when a drive voltage is applied, and a secondary side circuit is configured to output light to the secondary winding of the transformer and the light emitting element. It is composed of a parallel circuit with a coupled photovoltaic element, and makes the polarities of the photovoltaic power generated in the photovoltaic element when power is supplied from the drive power source and the induced electromotive force induced in the secondary winding of the transformer match. The drive circuit for a semiconductor switch element according to claim 3, wherein
【請求項7】 1次側回路がトランスの1次巻線と駆動
電圧の印加により発光する発光素子との並列回路で構成
され、2次側回路がトランスの2次巻線と発光素子に光
結合した光起電力素子との並列回路で構成され、駆動電
源からの電力供給時に光起電力素子に生じる光起電力と
トランスの2次巻線に誘起される誘導起電力との極性を
一致させてなることを特徴とする請求項3記載の半導体
スイッチ素子の駆動回路。
7. The primary side circuit is composed of a parallel circuit of a primary winding of a transformer and a light emitting element that emits light when a drive voltage is applied, and the secondary side circuit is an optical circuit for the secondary winding of the transformer and the light emitting element. It is composed of a parallel circuit with a coupled photovoltaic element, and makes the polarities of the photovoltaic power generated in the photovoltaic element when power is supplied from the drive power source and the induced electromotive force induced in the secondary winding of the transformer match. The drive circuit for a semiconductor switch element according to claim 3, wherein
【請求項8】 1次側回路が発光素子と逆並列に接続さ
れる整流素子を具備することを特徴とする請求項4又は
6記載の半導体スイッチ素子の駆動回路。
8. The drive circuit for a semiconductor switch element according to claim 4, wherein the primary side circuit includes a rectifying element connected in antiparallel with the light emitting element.
【請求項9】 1次側回路が発光素子と並列に接続され
る容量素子を具備することを特徴とする請求項4又は6
又は8記載の半導体スイッチ素子の駆動回路。
9. The primary side circuit comprises a capacitive element connected in parallel with the light emitting element.
Or a drive circuit of the semiconductor switch element according to item 8.
【請求項10】 トランスの2次巻線に誘導起電力が誘
起されるタイミングが光起電力素子に光起電力が生じる
タイミングより早くならないように制御する制御手段を
備えたことを特徴とする請求項5又は7記載の半導体ス
イッチ素子の駆動回路。
10. A control means for controlling the timing of inducing the induced electromotive force in the secondary winding of the transformer so as not to be earlier than the timing of generating the electromotive force in the photovoltaic element. Item 5. A drive circuit for a semiconductor switch element according to item 5 or 7.
【請求項11】 トランスの2次巻線に誘導起電力が誘
起される時間を光起電力素子に光起電力が生じる時間よ
りも短くする手段を備えたことを特徴とする請求項10
記載の半導体スイッチ素子の駆動回路。
11. A means for reducing the time for which an induced electromotive force is induced in the secondary winding of the transformer to be shorter than the time for which a photovoltaic element produces a photovoltaic force.
A drive circuit for the semiconductor switch element described.
【請求項12】 駆動電源からトランスの1次巻線に印
加される電圧の立ち上がりを急峻とし且つ立ち下がりを
比較的緩やかとする手段を備えたことを特徴とする請求
項11記載の半導体スイッチ素子の駆動回路。
12. The semiconductor switching device according to claim 11, further comprising means for making a rise of the voltage applied from the drive power source to the primary winding of the transformer steep and making the fall relatively gentle. Drive circuit.
【請求項13】 駆動電源からの電力供給停止時にトラ
ンスの2次巻線に誘起される誘導起電力を、駆動電源か
らの電力供給時に光起電力素子に生じる光起電力と逆極
性としたことを特徴とする請求項12記載の半導体スイ
ッチ素子の駆動回路。
13. The induced electromotive force induced in the secondary winding of the transformer when the power supply from the drive power supply is stopped has a polarity opposite to that of the photovoltaic power generated in the photovoltaic element when the power is supplied from the drive power supply. The drive circuit for a semiconductor switch element according to claim 12.
【請求項14】 1次側回路がトランスの1次巻線と直
列に接続される容量素子を具備することを特徴とする請
求項10〜13の何れかに記載の半導体スイッチ素子の
駆動回路。
14. The drive circuit for a semiconductor switch element according to claim 10, wherein the primary side circuit includes a capacitive element connected in series with the primary winding of the transformer.
【請求項15】 2次側回路がトランスの2次巻線と直
列に接続される整流素子を具備し、整流素子は、光起電
力素子に光起電力が生じるときにトランスの2次巻線に
誘起される誘導起電力による電流が光起電力素子に流れ
込む向きに接続されてなることを特徴とする請求項6又
は7並びに請求項10〜14の何れかに記載の半導体ス
イッチ素子の駆動回路。
15. The secondary side circuit comprises a rectifying element connected in series with the secondary winding of the transformer, wherein the rectifying element is the secondary winding of the transformer when a photovoltaic element produces a photovoltaic force. 15. The drive circuit for a semiconductor switch element according to claim 6, wherein the current is induced by the induced electromotive force induced in the photovoltaic element so as to flow into the photovoltaic element. .
【請求項16】 1次側回路の発光素子の点灯時にオフ
となり且つ発光素子の消灯時にオンとなるスイッチ素子
を整流素子と並列に接続したことを特徴とする請求項1
5記載の半導体スイッチ素子の駆動回路。
16. The rectifying element is connected in parallel with a switch element which is turned off when the light emitting element of the primary side circuit is turned on and is turned on when the light emitting element is turned off.
5. The drive circuit for the semiconductor switch element according to 5.
【請求項17】 スイッチ素子をMOSFETで構成す
るとともに整流素子をMOSFETの寄生ダイオードで
代用し、スイッチ素子のゲート電極を2次巻線の一端に
接続してなることを特徴とする請求項16記載の半導体
スイッチ素子の駆動回路。
17. The switch element is composed of a MOSFET, the rectifying element is replaced by a parasitic diode of the MOSFET, and the gate electrode of the switch element is connected to one end of a secondary winding. Drive circuit of semiconductor switch element of.
【請求項18】 1次側回路の発光素子の点灯時にオフ
となり且つ発光素子の消灯時にオンとなるスイッチ素子
を光起電力素子と並列に接続したことを特徴とする請求
項15記載の半導体スイッチ素子の駆動回路。
18. The semiconductor switch according to claim 15, wherein a switch element which is turned off when the light emitting element of the primary side circuit is turned on and is turned on when the light emitting element is turned off is connected in parallel with the photovoltaic element. Device drive circuit.
【請求項19】 MOSFETからなるスイッチ素子の
ドレイン電極及びソース電極を光起電力素子の両極に接
続するとともに、トランスの2次側に設けた補助巻線に
スイッチ素子のゲート電極を接続し、トランスの2次巻
線に光起電力と逆極性の誘導起電力が誘起されたときに
スイッチ素子をオンさせてなることを特徴とする請求項
18記載の半導体スイッチ素子の駆動回路。
19. A drain electrode and a source electrode of a switch element composed of a MOSFET are connected to both poles of a photovoltaic element, and a gate electrode of the switch element is connected to an auxiliary winding provided on the secondary side of the transformer. 19. The drive circuit for a semiconductor switch element according to claim 18, wherein the switch element is turned on when an induced electromotive force having a polarity opposite to that of the photoelectromotive force is induced in the secondary winding.
【請求項20】 電力供給手段は、駆動電源から1次側
回路に印加される駆動電圧の変化に応じて2次側回路に
電力を供給するように1次側回路と2次側回路を静電結
合する静電結合手段からなることを特徴とする請求項1
記載の半導体スイッチ素子の駆動回路。
20. The power supply means statically operates the primary side circuit and the secondary side circuit so as to supply power to the secondary side circuit in response to a change in the drive voltage applied from the drive power source to the primary side circuit. 2. An electrostatic coupling means for performing electrical coupling.
A drive circuit for the semiconductor switch element described.
【請求項21】 1次側回路が駆動電圧の印加により発
光する発光素子と抵抗の直列回路で構成され、2次側回
路が発光素子に光結合した光起電力素子で構成され、駆
動電源からの電力供給時に光起電力素子に生じる光起電
力と同じ極性の電圧を2次側回路に印加する向きに、コ
ンデンサからなる静電結合手段を介して1次側回路と2
次側回路が接続されてなることを特徴とする請求項20
記載の半導体スイッチ素子の駆動回路。
21. A primary side circuit is composed of a series circuit of a light emitting element and a resistor which emit light when a drive voltage is applied, and a secondary side circuit is composed of a photovoltaic element optically coupled to the light emitting element. In the direction in which a voltage having the same polarity as the photovoltaic power generated in the photovoltaic element at the time of power supply is applied to the secondary side circuit, the secondary side circuit and the secondary side circuit are connected via the electrostatic coupling means including a capacitor.
21. A secondary circuit is connected to the secondary circuit.
A drive circuit for the semiconductor switch element described.
【請求項22】 2つの電界効果トランジスタの制御端
子同士および各一対の主端子のうちの一方の主端子同士
をそれぞれ共通接続して構成された半導体スイッチ素子
と、共通接続された制御端子と一方の主端子との間に制
御入力を与える請求項1〜21の何れかに記載の駆動回
路とを備えたことを特徴とする半導体リレー。
22. A semiconductor switch element configured by connecting control terminals of two field effect transistors and one main terminal of each pair of main terminals in common, and one control terminal connected in common A semiconductor relay comprising: the drive circuit according to any one of claims 1 to 21, which supplies a control input to the main terminal of the semiconductor relay.
JP2001328462A 2001-10-26 2001-10-26 Semiconductor switch element drive circuit and semiconductor relay using the same Expired - Fee Related JP3937800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001328462A JP3937800B2 (en) 2001-10-26 2001-10-26 Semiconductor switch element drive circuit and semiconductor relay using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001328462A JP3937800B2 (en) 2001-10-26 2001-10-26 Semiconductor switch element drive circuit and semiconductor relay using the same

Publications (2)

Publication Number Publication Date
JP2003133932A true JP2003133932A (en) 2003-05-09
JP3937800B2 JP3937800B2 (en) 2007-06-27

Family

ID=19144520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001328462A Expired - Fee Related JP3937800B2 (en) 2001-10-26 2001-10-26 Semiconductor switch element drive circuit and semiconductor relay using the same

Country Status (1)

Country Link
JP (1) JP3937800B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193557A (en) * 2007-02-07 2008-08-21 Fuji Electric Systems Co Ltd Pulse transmission circuit
WO2009066546A1 (en) * 2007-11-20 2009-05-28 Aisin Aw Co., Ltd. Motor control device
JP2012170244A (en) * 2011-02-15 2012-09-06 Denso Corp Circuit for driving semiconductor switching element
CN112147427A (en) * 2019-06-29 2020-12-29 新疆金风科技股份有限公司 Fault detection method and fault detection circuit of power module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193557A (en) * 2007-02-07 2008-08-21 Fuji Electric Systems Co Ltd Pulse transmission circuit
WO2009066546A1 (en) * 2007-11-20 2009-05-28 Aisin Aw Co., Ltd. Motor control device
JP2009130967A (en) * 2007-11-20 2009-06-11 Aisin Aw Co Ltd Motor controller
US8093852B2 (en) 2007-11-20 2012-01-10 Aisin Aw Co., Ltd. Motor control device
KR101177719B1 (en) * 2007-11-20 2012-08-28 아이신에이더블류 가부시키가이샤 Motor control device
JP2012170244A (en) * 2011-02-15 2012-09-06 Denso Corp Circuit for driving semiconductor switching element
CN112147427A (en) * 2019-06-29 2020-12-29 新疆金风科技股份有限公司 Fault detection method and fault detection circuit of power module

Also Published As

Publication number Publication date
JP3937800B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
KR101541632B1 (en) Driver for semiconductor switch element
USRE43015E1 (en) Capacitive high-side switch driver for a power converter
US7750720B2 (en) Circuit arrangement and a method for galvanically separate triggering of a semiconductor switch
US7551004B2 (en) Inverter apparatus with improved gate drive for power MOSFET
US20060145746A1 (en) On chip power supply
US7705638B2 (en) Switching control circuit with reduced dead time
JP5530669B2 (en) Semiconductor circuit
JP4548484B2 (en) Synchronous rectification forward converter
JP2013009216A (en) Gate drive circuit
US8446207B2 (en) Load driving circuit
JP2003133932A (en) Driving circuit for semiconductor switch element and semiconductor relay using the same
JP4093014B2 (en) Semiconductor switching element drive circuit and semiconductor relay using the same
JP2009159696A (en) Switching power supply device
JP2009219017A (en) Load control apparatus, and method of generating input pulse therefor
JP3702631B2 (en) Inductive load drive
JP2020136694A (en) Output circuit
JP7072709B1 (en) Bipolar pulse voltage gate driver
CN107579728B (en) Driving circuit of power field effect transistor adopting charge pump
JP2003115756A (en) Drive circuit for semiconductor switch element and semiconductor relay using it
JP2009060226A (en) Semiconductor device
JP2002325030A (en) Driving circuit for semiconductor switch element
JPH0363312B2 (en)
JP2006333643A (en) Gate circuit of voltage driving transistor
CN114696585A (en) Drive circuit and switching circuit of power tube
CN117081558A (en) Gate driving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees