JP2003093069A - リゾビトキシン生産遺伝子rtxC - Google Patents

リゾビトキシン生産遺伝子rtxC

Info

Publication number
JP2003093069A
JP2003093069A JP2001294434A JP2001294434A JP2003093069A JP 2003093069 A JP2003093069 A JP 2003093069A JP 2001294434 A JP2001294434 A JP 2001294434A JP 2001294434 A JP2001294434 A JP 2001294434A JP 2003093069 A JP2003093069 A JP 2003093069A
Authority
JP
Japan
Prior art keywords
ala
leu
arg
gly
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001294434A
Other languages
English (en)
Inventor
Kiwamu Minamizawa
究 南澤
Takeshi Yasuda
剛 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001294434A priority Critical patent/JP2003093069A/ja
Publication of JP2003093069A publication Critical patent/JP2003093069A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

(57)【要約】 (修正有) 【課題】1.ダイズ根粒菌Bradyrhizobium elkaniiの生
産する天然のエチレン生合成阻害剤リゾビトキシン(R
T)に注目し、その生合成経路を生化学・遺伝学的に解
明すること、 2.そのリゾビトキシン生産遺伝子群の導入によって形
質転換され、リゾビトキシン生合成能を付与した2つの
有用細菌を作出すること。 【解決手段】1.ジヒドロリゾビトキシンからリゾビト
キシンの生合成反応を触媒する酵素ジヒドロリゾビトキ
シンデサチュラーゼをコードするrtxC遺伝子及びそ
の他の新規な遺伝子、特に、以下の(a)又は(b)の
タンパク質をコードする遺伝子:(a)特定の配列で示
されるアミノ酸配列、(b)アミノ酸配列(a)におい
て1若しくは数個のアミノ酸が欠失、置換若しくは付加
されたアミノ酸配列からなり、酵素ジヒドロリゾビトキ
シンデサチュラーゼ活性を有するタンパク質。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、ダイズ根粒菌(Bra
dyrhizobium elkanii)におけるリゾビトキシンの生合成
反応に関与する酵素群をコードする各遺伝子、該遺伝子
を利用して根粒菌等を形質転換することによって、該根
粒菌のリゾビトキシン生産能を付与又は増強する方法、
該根粒菌の宿主植物におけるエチレン生合成阻害能を付
与又は増強する方法、及び該根粒菌の宿主植物への感染
を促進させる方法等に関する。
【0002】
【従来の技術】環境保全型の持続的農業生産体系を確立
するために、現在、具体的・先駆的な技術が求められて
いる。例えば、適応範囲の広い効率的な植物遺伝子導入
系の技術開発や、根粒菌とマメ科植物の共生窒素固定系
の効果的利用があげられる。いずれも植物微生物間相互
作用を利用した技術といえるが、現実的には重大な問題
がある。
【0003】植物遺伝子導入系の技術開発においては多
くの作物品種系統に利用できる効率の良い遺伝子導入系
がいまだに確立されておらず、導入効率向上のための新
しい発想が要求されている。
【0004】根粒菌は大豆などマメ科植物の根に感染し
て根粒を作り、空中の窒素を固定し窒素分栄養素に使う
ため、生育に必要な窒素肥料を軽減する。しかしなが
ら、宿主植物が根粒を一定数しか着生させないというAu
toregulation機構のために、窒素固定量を簡単には増大
させることはできない。
【0005】リゾビトキシン[2−アミノ−4−(2−
アミノ−3−ヒドロプロポキシ)−t−ブテン−3−
酸]は、マメ科共生生物Bradyrhizobium
elkanii(37)および植物病原菌Burkh
olderia andropogonis(21)に
よって合成される。種々の植物の葉萎黄病を誘導するの
で、リゾビトキシンは、植物毒とされていた(18、3
6、57)。生化学的機能の点からみると、リゾビトキ
シンは、メチオニン生合成経路におけるβ−シスタチオ
ナーゼ(39、57)、およびエチレン生合成経路にお
ける1−アミノシクロプロパン−1−カルボキシレート
(ACC)シンターゼ(59)を阻害する。
【0006】最近、Rhizobium−マメ科共生生
物におけるリゾビトキシンの有益性や役割が明らかにさ
れた。リゾビトキシン変異体を使用して、Yuhash
iら(60)は、B.elkaniiによるリゾビトキ
シン産生は、マメ科Macroptilium atr
opurpureum(siratro、クロバナツル
アズキ)における根粒着生および競合を、多分、宿主植
物の内因性エチレン産生の阻害を通じて、増強すること
を見出した。Duodoら(7)は、リゾビトキシン変
異体は、Vigna radiata(緑豆)で、野生
型株よりもより少ない成熟根粒を形成することを報告し
た。さらに、リゾビトキシン変異体に対しエチレン阻害
剤を用いると、根粒着生表現型が部分的に回復した。そ
れゆえ、植物毒素よりも、むしろ、リゾビトキシンは内
部共生により産生される根粒着生エンハンサーである。
【0007】リゾビトキシンの生合成経路は未だ完全に
は解明されていない。Ruanら(43−45)は、
B.elkaniiUSDA61の2つのTn5誘導リ
ゾビトキシンヌル突然変異を得て、培養および植物体内
でリゾビトキシン生合成に関わっているrtxA遺伝子
を単離した。rtxAのアミノ酸配列のN末端領域は、
アミノトランスフェラーゼに相同なモチーフを有する
が、O−アセチルホモセリン「スルフヒドロラーゼ」に
類似したものがC末端部分に見出された(43、4
4)。しかしrtxA遺伝子におけるフレームシフトに
ついてある種の混乱が生じている。リゾビトキシンの前
駆体として提案されたものは、セリノールがB.elk
aniiによって生じる大豆根粒に豊富である(22、
25、28)。rtxA遺伝子のN末端側のTn5挿入
変異は大豆根粒でのセリノール蓄積を欠損しており、こ
のことはN末端部分はセリノール産生におけるアミノト
ランスフェラーゼとして機能していることを示唆してい
る。しかしこの機能はまだ純培養で実証されていない。
【0008】ジヒドロリゾビトキシン[O−(2−アミ
ノ−3−ヒドロキシプロピル)ホモセリン]は、B.e
lkaniiの栽培および根粒に見出され(38)、A
CCシンターゼおよびβ−シスタチオナーゼの阻害剤と
してリゾビトキシンよりも弱い(59)。Mitche
ll and Coddington(22)は、ジヒ
ドロリゾビトキシンが、生物活性を欠損した最終産物で
あることを示唆した。しかし、rtxAのC末端部分
は、スルフヒドリラーゼとの相同性を参照すると、リゾ
ビトキシン生合成における中間体としてジヒドロリゾビ
トキシン生成に関与しているのであろう(44、4
5)。リゾビトキシンのバイオアッセイ系が開発されて
はいるが、ジヒドロリゾビトキシンとセリノールの有効
な同時定量法がないので、リゾビトキシン生合成経路の
解明が遅れていた。
【0009】このように、根粒をたくさん作るには菌感
染を防護するエチレンの作用を制御する必要があった
が、エチレンの合成を阻害する物質であるリゾビトキシ
ンをより多く生産する酵素の遺伝子が分からないという
問題があり実現できなかった。
【0010】
【発明が解決しようとする課題】従って、本研究の目的
は、ダイズ根粒菌Bradyrhizobium elkaniiの生産する
天然のエチレン生合成阻害剤リゾビトキシン(RT)に
注目し、その生合成経路を生化学・遺伝学的に解明する
こと、そのリゾビトキシン生産遺伝子群の導入によっ
て形質転換され、リゾビトキシン生合成能を付与した2
つの有用細菌を作出することにある。リゾビトキシン生
産能を付与されたAgrobacterium及び根粒菌は、それぞ
れ、適応範囲の広い効率的な植物遺伝子導入系、根粒数
増加による共生窒素固定の増大をもたらすことが強く期
待される。
【0011】
【課題を解決するための手段】本発明者は、上記課題を
解決すべく、LC/MS(高速液体クロマトグラフィー質量
分析計)にてリゾビトキシンの生合成中間体を検出する
方法を用いて、従来報告されていたrtxA遺伝子周辺
の遺伝子をリゾビトキシン高生産株にて探索した。その
結果、ジヒドロリゾビトキシンからリゾビトキシンの生
合成反応を触媒する酵素ジヒドロリゾビトキシンデサチ
ュラーゼをコードする遺伝子rtxC及びその他の新規
な遺伝子を発見し、本発明を完成させた。
【0012】即ち、本発明は、以下に示すものである。 1.ジヒドロリゾビトキシンからリゾビトキシンの生合
成反応を触媒する酵素ジヒドロリゾビトキシンデサチュ
ラーゼをコードするrtxC遺伝子。 2.ダイズ根粒菌(Bradyrhizobium elkanii) 由来であ
ることを特徴とする、上記1記載のrtxC遺伝子。 3.ダイズ根粒菌(Bradyrhizobium elkanii) USDA
94株由来であることを特徴とする、上記2記載の遺伝
子rtxC。 4.以下の(a)又は(b)のタンパク質をコードする
遺伝子:(a)配列番号10に示されるアミノ酸配列、
(b)アミノ酸配列(a)において1若しくは数個のア
ミノ酸が欠失、置換若しくは付加されたアミノ酸配列か
らなり、酵素ジヒドロリゾビトキシンデサチュラーゼ活
性を有するタンパク質。 5.以下の(a)又は(b)のDNAを含む遺伝子:
(a)配列番号1に示される塩基配列において第15737
〜16795 番目の塩基対からなるDNA、(b)塩基配列
(a)からなるDNAとストリンジェントな条件下でハ
イブリダイズし、且つ、酵素ジヒドロリゾビトキシンデ
サチュラーゼ活性を有するタンパク質をコードするDN
A。 6.ダイズ根粒菌(Bradyrhizobium elkanii) USDA
94株由来の、ジヒドロキシアセトンホスフェートから
セリノールへの生合成反応を触媒する酵素ジヒドロキシ
アセトン燐酸アミノトランスフェラーゼ、及び/又はセ
リノールとO−アセチルホモセリンとからジヒドロリゾ
ビトキシンへの生合成反応を触媒する酵素ジヒドロリゾ
ビトキシン・シンターゼをコードするrtxA遺伝子。 7.以下の(a)又は(b)のタンパク質をコードする
遺伝子:(a)配列番号9に示されるアミノ酸配列、
(b)アミノ酸配列(a)において1若しくは数個のア
ミノ酸が欠失、置換若しくは付加されたアミノ酸配列か
らなり、酵素ジヒドロキシアセトン燐酸アミノトランフ
ェラーゼ及び/又は酵素ジヒドロリゾビトキシン・シン
ターゼ活性を有するタンパク質。 8.以下の(a)又は(b)のDNAを含む遺伝子:
(a)配列番号1に示される塩基配列において第13294
〜15705 番目の塩基対からなるDNA、(b)塩基配列
(a)からなるDNAとストリンジェントな条件下でハ
イブリダイズし、且つ、酵素ジヒドロキシアセトン燐酸
アミノトランフェラーゼ及び/又は酵素ジヒドロリゾビ
トキシン・シンターゼ活性を有するタンパク質をコード
するDNA。 9.上記1ないし上記5のいずれか一項に記載の遺伝
子、及び上記6ないし上記8のいずれか一項に記載の遺
伝子を含むオペロン。 10.更に、配列番号11ないし配列番号15で示され
るアミノ酸配列からなるタンパク質をコードする遺伝
子、及び、該アミノ酸配列において1若しくは数個のア
ミノ酸が欠失、置換若しくは付加されたアミノ酸配列か
らなり配列番号11ないし配列番号15で示されるアミ
ノ酸配列からなるタンパク質と実質的に同等の活性を有
するタンパク質をコードする遺伝子から成る群から選択
される、少なくとも一つの遺伝子を含む、上記9記載の
オペロン。 11.更に、rtxA遺伝子の0.5kb上流に転写因
子σ70に対する結合ドメインであるプロモーター配列
を含む、上記9又は10記載のオペロン。 12.プロモーター配列が(5’−TTGAAA−cg
cacctaacgtcaagttg−TACGAT−
3’)である、上記11記載のオペロン。 13.上記1ないし8に記載された遺伝子の少なくとも
一つの遺伝子を含有する組換え発現ビークル。 14.コスミドベクターである上記13に記載の組換え
発現ビークル。 15.上記13又は14に記載の発現ビークルによって
形質転換された細菌から成る形質転換体。 16.細菌がダイズ根粒菌(Bradyrhizobium elkanii)で
ある上記15に記載の形質転換体。 17.上記9ないし12のいずれか一項に記載のオペロ
ンを含有する組換え発現ビークル。 18.コスミドベクターである上記17に記載の組換え
発現ビークル。 19.上記17又は18に記載の発現ビークルによって
形質転換された細菌から成る形質転換体。 20.細菌がダイズ根粒菌(Bradyrhizobium elkanii)で
ある上記19に記載の形質転換体。 21.上記15,16,19又は20に記載の形質転換
体を培養することから成る、リゾビトキシンの製造方
法。 22.上記1ないし8に記載された遺伝子の少なくとも
一つで細菌を形質転換することから成る、該細菌のリゾ
ビトキシン生産能を付与又は増強する方法。 23.上記9ないし12のいずれか一項に記載のオペロ
ンで細菌を形質転換することから成る、該細菌のリゾビ
トキシン生産能を付与又は増強する方法。 24.細菌が根粒菌であり、宿主植物がマメ科植物であ
る、上記22又は23記載の方法。 25.上記1ないし8に記載された遺伝子の少なくとも
一つで細菌を形質転換することから成る、該細菌の宿主
植物におけるエチレン生合成阻害能を付与又は増強する
方法。 26.上記9ないし12のいずれか一項に記載のオペロ
ンで細菌を形質転換することから成る、該細菌の宿主植
物におけるエチレン生合成阻害能を付与又は増強する方
法。 27.細菌が根粒菌であり、宿主植物がマメ科植物であ
る、上記25又は26記載の方法。 28.上記1ないし8に記載された遺伝子の少なくとも
一つで細菌を形質転換することから成る、該細菌の宿主
植物への感染を促進させる方法。 29.上記9ないし12のいずれか一項に記載のオペロ
ンで細菌を形質転換することから成る、該細菌の宿主植
物への感染を促進させる方法。 30.細菌が根粒菌であり、宿主植物がマメ科植物であ
る、上記28又は29記載の方法。 31.上記1ないし8に記載された遺伝子の少なくとも
一つで細菌を形質転換することから成る、該細菌の宿主
植物への遺伝子導入効率を増加させる方法。 32.上記9ないし12のいずれか一項に記載のオペロ
ンで細菌を形質転換することから成る、該細菌の宿主植
物への遺伝子導入効率を増加させる方法。 33.細菌がAgrobcterium tumefaciensである、上記3
1又は32記載の方法。
【0013】
【発明の実施の形態】本発明者は、ダイズ根粒菌(Brady
rhizobium elkanii)によって生産される根粒着生エンハ
ンサー、リゾビトキシン(rhizobitoxin
e)の生合成に関する遺伝子クラスターをクローニング
し、配列決定をした。この配列を配列番号1として以下
に示す。
【0014】rtxAを包含するクローニングした2
8.4kbDNAのヌクレオチド配列には、計6つのオ
ープン・リーディング・フレーム(ORF1〜ORF
6)がrtxAの下流に局在していることが示された。
更に、rtxAの上流には、計7つのオープン・リーデ
ィング・フレーム(fixG、fixH、fixI、f
ixS、noeE、nodP及びnodQ)が確認され
た。
【0015】即ち、本発明の第一の態様として、ジヒド
ロリゾビトキシンからリゾビトキシンの生合成反応を触
媒する酵素ジヒドロリゾビトキシンデサチュラーゼをコ
ードするrtxC遺伝子(ORF1)に係る。該遺伝子
は、当業者に公知の任意の根粒菌、特に、ダイズ根粒菌
(Bradyrhizobium elkanii) から取得することが出来
る。具体例として、多量にリゾビトキシンを分泌するダ
イズ根粒菌(Bradyrhizobium elkanii) USDA94株
を挙げることが出来る。USDA94株から取得したr
txC遺伝子がコードするアミノ酸配列は配列番号10
で示され、配列番号1に示される塩基配列において第15
737〜16795 番目の塩基対からなるDNAにコードされ
るものである。
【0016】従って、本発明は、以下の(a)又は
(b)のタンパク質をコードする遺伝子:(a)配列番
号10に示されるアミノ酸配列、(b)アミノ酸配列
(a)において1若しくは数個のアミノ酸が欠失、置換
若しくは付加されたアミノ酸配列からなり、酵素ジヒド
ロリゾビトキシンデサチュラーゼ活性を有するタンパク
質、及び、以下の(a)又は(b)のDNAを含む遺伝
子:(a)配列番号1に示される塩基配列において第15
737〜16795 番目の塩基対からなるDNA、(b)塩基
配列(a)からなるDNAとストリンジェントな条件下
でハイブリダイズし、且つ、酵素ジヒドロリゾビトキシ
ンデサチュラーゼ活性を有するタンパク質をコードする
DNA、に係る。
【0017】本発明の第二の態様として、更に、ダイズ
根粒菌(Bradyrhizobium elkanii)USDA94株から新
たに得られた、ジヒドロキシアセトンホスフェートから
セリノールへの生合成反応を触媒する酵素ジヒドロキシ
アセトン燐酸アミノトランスフェラーゼ、及び/又はセ
リノールとO−アセチルホモセリンとからジヒドロリゾ
ビトキシンへの生合成反応を触媒する酵素ジヒドロリゾ
ビトキシン・シンターゼをコードするrtxA遺伝子に
係る。USDA94株から取得したrtxC遺伝子がコ
ードするアミノ酸配列は配列番号9で示され、配列番号
1に示される塩基配列において第13294〜15705 番目の
塩基対からなるDNAにコードされるものである。
【0018】従って、本発明は、以下の(a)又は
(b)のタンパク質をコードする遺伝子:(a)配列番
号9に示されるアミノ酸配列、(b)アミノ酸配列
(a)において1若しくは数個のアミノ酸が欠失、置換
若しくは付加されたアミノ酸配列からなり、酵素ジヒド
ロキシアセトン燐酸アミノトランフェラーゼ及び/又は
酵素ジヒドロリゾビトキシン・シンターゼ活性を有する
タンパク質、及び以下の(a)又は(b)のDNAを含
む遺伝子:(a)配列番号1に示される塩基配列におい
て第13294〜15705 番目の塩基対からなるDNA、
(b)塩基配列(a)からなるDNAとストリンジェン
トな条件下でハイブリダイズし、且つ、酵素ジヒドロキ
シアセトン燐酸アミノトランフェラーゼ及び/又は酵素
ジヒドロリゾビトキシン・シンターゼ活性を有するタン
パク質をコードするDNA、に係る。
【0019】更に、本発明は別な態様として、本発明の
第一の態様である各種rtxC遺伝子の少なくとも一
つ、及び本発明の第ニの態様である各種rtxA遺伝子
の少なくとも一つを含むオペロンに係る。該オペロン
は、更に、ORF2(配列番号11)、ORF3(配列
番号12)、ORF4(配列番号13)、ORF5(配
列番号14)、及びORF6(配列番号15)で示され
るアミノ酸配列からなるタンパク質をコードする遺伝
子、並びに、該アミノ酸配列において1若しくは数個の
アミノ酸が欠失、置換若しくは付加されたアミノ酸配列
からなり上記各タンパク質と実質的に同等の活性を有す
るタンパク質をコードする遺伝子から成る群から選択さ
れる、少なくとも一つの遺伝子を含むことが出来る。
【0020】本発明のオペロンにおいて、rtxA遺伝
子の0.5kb上流に、原核生物の転写因子σ70に対
する結合ドメインであるプロモーター配列を含むことが
好ましい。該プロモーター配列の一例として、(5’−
TTGAAA−cgcacctaacgtcaagtt
g−TACGAT−3’:大文字は、それぞれ、「−3
5領域」および「−10領域」を表す)を挙げることが
出来る。
【0021】本発明各遺伝子又はDNAは、以下の実施
例に示すように、例えば、USDA94株から調製され
たコスミド・ライブラリーUSDA94株を用いて、当
業者に公知の遺伝子工学における様々な遺伝子組換え手
段・方法により取得することが出来る。
【0022】或いは、本明細書で開示された配列情報に
基づいて、当該技術分野における周知手段を用いた化学
合成等によっても調製することが可能である。当業者で
あれば、特定のアミノ酸配列における1若しくは数個の
アミノ酸を欠失、置換若しくは付加することも、当該技
術分野における周知手段を用いて容易に実施することが
できる。
【0023】本発明において、特定の遺伝子又はDNA
は、当業者に周知の緩衝液中で、適当な温度及び塩濃度
等の諸条件下のストリンジェントな条件でハイブリダイ
ズさせることができる。このようなストリンジェントな
条件下で本発明の遺伝子又はDNAとハイブリダイズ
し、且つ、各タンパク質と実質的に同等の活性を有する
蛋白質をコードするDNAの例として、例えば、それぞ
れの対応する遺伝子と相同性が70%以上、好ましくは
90%以上、より好ましくは95%以上、更に好ましく
は98%以上であるようなDNAを挙げることができ
る。
【0024】更に、本発明は別な態様として、上記の本
発明遺伝子の少なくとも一つの遺伝子を含有する組換え
発現ビークルに係る。組換え発現ビークルには各種ベク
ター等の当業者に公知の任意のものが含まれるが、特
に、コスミドベクターが好適である。
【0025】該組換え発現ビークルには、遺伝子組換え
操作において当業者に公知である様々な配列、例えば、
原核細胞である大腸菌及び枯草菌等が有する転写因子で
ある各種σサブユニットに対する結合ドメインである各
種プロモーター、及びエンハンサーなどの各種転写調節
要素、制限酵素部位、並びにカナマイシン耐性マーカー
等の選択マーカー(マーカー酵素等)遺伝子を任意に含
むことが出来、当業者に公知の方法によって容易に調製
することが出来る。
【0026】本発明は更に、上記発現ビークルによって
形質転換された細菌に係る。このような細菌には特に制
限はないが、一例として、ダイズ根粒菌(Bradyrhizobiu
m elkanii) に代表される、マメ科植物の根に感染して
根粒を形成し、共生窒素固定を行う各種根粒菌、及び土
壌細菌の一種であるAgurobacterium tumefaciens 等に
代表される各種植物病原菌を挙げることが出来る。
【0027】本発明は更に、こうして得られた形質転換
体を培養し、その培養上清からリゾビトキシンを製造す
る方法に係る。培養条件、及び培養上清からの分離・精
製等は本命最初の実施例を参照して、当業者が任意に選
択することが出来る。
【0028】本明細書の実施例に示されているように、
本発明に係る遺伝子の少なくとも一つ又はオペロンで細
菌を形質転換することにより、該細菌のリゾビトキシン
生産能を付与又は増強し、該細菌の宿主植物におけるエ
チレン生合成阻害能を付与又は増強することが可能とな
る。このような方法で好適に使用される細菌としては、
ダイズ根粒菌(Bradyrhizobium elkanii) に代表され
る、マメ科植物の根に感染して根粒を形成し、共生窒素
固定を行う各種根粒菌を挙げることが出来、又、宿主と
しては、特に、マメ科植物を挙げることが出来る。更
に、本発明に係る遺伝子の少なくとも一つ又はオペロン
で細菌を形質転換することにより、該細菌の宿主植物へ
の感染を促進させ、又は、該細菌の宿主植物への遺伝子
導入効率(形質転換効率)を増加させることが可能とな
る。このような各種方法で好適に使用される細菌として
は、土壌細菌の一種であるAgurobacterium tumefaciens
を挙げることが出来る。
【0029】
【実施例】以下、実施例により本発明をより具体的に説
明するが、本発明はこれら実施例により何ら限定される
ものではない。
【0030】[材料と方法]細菌株、プラスミド、および増殖条件 .本研究で使用し
た細菌株およびプラスミドを表1に挙げる。B.elk
anii培養は、0.1%アラビノースおよび0.02
5%酵母エキス(Difco、デトロイト、ミシガン
州)を補充したHM塩培地(5)中、あるいはTris
−YMRT培地(27)中で30℃、通気条件で増殖し
た。Escherichia coliはLuria−
Bertani培地(47)中で30℃で増殖した。抗
生物質は、以下の濃度で培地中に加えた:B.elka
niiには、スペクチノマイシンおよびストレプトマイ
シン250μg/mlおよびカナマイシン150μg/
ml、E.coliには、テトラサイクリン12.5μ
g/ml、アンピシリン100μg/mlおよびカナマ
イシン100μg/ml。
【0031】DNA単離と操作.プラスミドDNAの単
離、制限酵素処理、DNAの連結反応、E.coliの
細菌形質転換、およびサザン・ハイブリダイゼーション
は、Sambrookら(47)により記載されたよう
にして行った。B.elkaniiの総DNAは記載さ
れたようにして調製された(27)。rtxAフランキ
ングDNA領域を単離するため、本発明者は、前以て構
成されたpLAFR1ベクター(12)中のB.elk
aniiUSDA94のコスミド・ライブラリーを使用
した。ライブラリーを含むE.coliHB101細胞
は、テトラサイクリン含有Luria−Bertani
寒天(1.5%)に塗布した。B.elkaniiUS
DA94rtxA遺伝子は、既述のようにしてPCR増
幅し、コロニー・ハイブリダイゼーション・プローブと
して使用した。プローブは、DIG−dUTPランダム
・プライミング法(Boehringer Mannh
eim,マンハイム、ドイツ)を用いて標識し、ハイブ
リダイゼーション・シグナルはDIGNucleic
and Detection Kit(Boehrin
ger Mannheim)を用いて検出した。ハイブ
リダイゼーション・シグナル陽性を示すコロニーからコ
スミド・クローンを単離し、EcoRIで消化し、0.
8%アガロース−TAE(47)電気泳動にかけ、B.
elkaniiUSDA94のrtxAフランキング領
域の制限地図を作成した。
【0032】DNA配列決定.rtxAを含む40−な
いし45−kbDNA領域をカバーする、B.elka
niiUSDA94ゲノム・コスミド・クローンpRT
N2、pRTF1、およびpRTS1を、いくつかの制
限酵素を使用して4−ないし8−kbフラグメントに消
化した。これらのDNAフラグメントを、pBlues
criptSK+(宝酒造、草津、日本)に連結し、
E.coliJM109に形質転換した。クローン化プ
ラスミドDNA群を単離し、超音波処理により0.5−
ないし4−kbフラグメントに消化した。そして、1−
ないし2−kbDNAフラグメントを1%アガロースゲ
ル電気泳動を用いて精製した。次いで、DNAフラグメ
ントをKODポリメラーゼ(東洋紡、東京、日本)を用
いて平滑末端化し、HincII−消化pUC118
(宝酒造、草津、日本)に連結し、E.coliDH5
αに形質転換した。その結果として、rtxAおよびそ
のフランキング領域の部分を含む300プラスミド以上
が単離された。
【0033】配列決定は、ダイプライマー法およびモデ
ル373Aシーケンサー(Perkin−Elmer
Applied Biosystems,Warrin
gton,UK)を用いて行われた。DNA配列のギャ
ップは、そのギャップに位置する配列に基づいて、プラ
イマーを有するPCR生成フラグメントを配列決定する
ことによって閉鎖した。シーケンス・データは、Mal
ign and Mac Vectorソフトウエア
(Oxford Molecular Ltd.,Ox
ford,UK)で、組み立て解析した。BLAST類
似探査は、National Center for
Biotechnology Information
(NCBI)を使用して行った。疎水親水指数(56)
の二次構造解析は、Genetyx−Macソフトウエ
ア(Software Development C
o.,Ltd.,東京、日本)により行った。決定され
たヌクレオチド配列(配列番号1)は、寄託番号AB0
62279でDDBJ/GenBank/EMBLデー
タベースに見られる。
【0034】rtxA大欠損およびフランキング領域を
有するB.elkanii変異体の構築.推定のリゾビ
トキシン遺伝子の大欠失変異体の構築のために、pRT
F1からの13.4−kbApaI−NotI断片をp
BSIIΔSacIにクローニングした。得られたプラ
スミド(pBS13.4)をSacIで消化し、6.4
−kbフラグメントを単離した。この6.4−kbフラ
グメントを平滑末端化し、pHP45Ω(42)からの
2−kbΩカセットに連結した。得られたプラスミド
(pBS13.4::Ω)をApaIおよびNotIを
用いて二重消化し、そして、noeE、Ωカセット、部
分オープンリーディングフレーム(ORF)3、および
ORF4を含有する、5.7−kbApaI−NotI
フラグメントを、pSUP202にクローニングして
(51)、pSUP13.4::Ωを得た。pSUP1
3.4::Ωをヘルパー・プラスミドpRK2013
(9)を用いて接合によりB.elkaniiUSDA
94に導入した。交差変異体をストレプトマイシンおよ
びスペクチノマイシンに対する抵抗性で選択した後、二
重交差変異体をプローブとして、pBS13.4::Ω
からの5.7−kbApaI−NotI断片とともにサ
ザン・ハイブリダイゼーションにより選択した。構築に
使用された二重交差変異体USDA94Δrtx::Ω
1およびプラスミドの関連した性質は、表1に記載す
る。
【0035】
【表1】
【0036】カナマイシンカセット挿入によるpRTF
1誘導体の構築および相補性.リゾビトキシン生合成に
おけるrtxAおよびそのフランキング領域の機能を調
べるため、本発明者は、Genome Priming
System(GPS)−1キット(New Eng
land BioLabs,Inc.,Beverl
y,MA)を、製造者の指示書に従って配列にカナマイ
シン・カセットをランダムに挿入した。0.08μgp
RTF1および0.02μgpGPS1.1の変異およ
び形質転換の後に、カナマイシン耐性コロニーを単離
し、EcoRIで消化し、挿入部位を大まかに特定する
ためおよび多重カセットの変異体を除くために電気泳動
した。正確な挿入部位は、製造者の指示書に記載された
ようにして、カナマイシン・カセットの外部プライマー
を使ってDNAシーケンシングにより決定した。
【0037】これらpRTF1誘導体は、pRK201
3(9)を用いて接合によりB.elkaniiUSD
A94Δrtx::Ω1に導入した。転移接合体(Tr
ansconjugants)は、カナマイシンで選択
し、セリノール、ジヒドロリゾビトキシン、およびリゾ
ビトキシン産生を測定した。
【0038】液体クロマトグラフィおよび質量分析を使
用したセリノール、ジヒドロリゾビトキシン、およびリ
ゾビトキシンの分析.本発明において、液体クロマトグ
ラフィおよび質量分析(LC/MS)を用いて、フェニ
ルチオカルバミル誘導体を定量して、セリノール、ジヒ
ドロリゾビトキシン、およびリゾビトキシンの培地中の
濃度を同時に決めた。Tris−YMRT培地に増殖し
たB.elkaniiの定常期培養物の15ml量を1
0,000×g、10分遠心分離した。得られた上清を
Dowex50カラム(H+型;樹脂サイズ、50−1
00メッシュ;カラム容量、5ml;Muromach
i Chemicals、東京、日本)にかけた。カラ
ムを脱イオン水の10カラム量で洗浄した。セリノー
ル、ジヒドロリゾビトキシン、およびリゾビトキシンを
2MNH4OHの3カラム量で溶出し、そして減圧下蒸
発させた。ペレットを500μl脱イオン水に溶解し、
10nモルのアミノエトキシビニルグリシン(リゾビト
キシンの構造類縁体)を、フェニルチオカルバミル誘導
体化する前に、内部標準として加えた。
【0039】フェニルチオカルバミル誘導体化は、Ya
maya and Matsumotoの方法(58)
により行った。試料溶液50μl一定量を1.5-ml
チューブ中で減圧下蒸発し、ペレットをEtOH−TE
A試薬(エタノール:トリエチルアミン:水、2:1:
2)20μlに溶解した。蒸発後、ペレットを、EtO
H−TEA−PITC試薬(エタノール:トリエチルア
ミン:水:フェニルイソチオシアネート、7:1:1:
1)10μlに溶解し、室温で20分間インキュベート
し、蒸発乾固した。PITC誘導体の各ペレットを脱イ
オン水100μlに溶解し、LC/MS分析のため0.
2-μm硝酸セルロース・フィルターを通過させた。
【0040】電子スプレーイオン化装置(electr
ospray ionization system)
および高速液体クロマトグラフィ(HPLC;HP-1
100,Hewlett Packard,Waldb
ronn,ドイツ)を備えたJMS−LCmate(J
EOL、東京、日本)を、以下の条件下で、PITC−
セリノール、−ジヒドロリゾビトキシン、および、−リ
ゾビトキシンの分析に使用した:カラム、inerts
ilODS−2(1.5mm×150mm;GLSci
ences Inc.、東京、日本);カラム温度、4
0℃;流速、0.1ml/分;移動層、溶媒A中溶媒B
30%から100%溶媒Bへ15分間の直線傾斜溶離
(linear gradient elution)
(溶媒A、0.1%HCOOH;溶媒B、100%Me
CN)。PITC−セリノール、−ジヒドロリゾビトキ
シン、および、−リゾビトキシンの反応時間は、これら
の条件下で、それぞれ、3.8、10.4、10.4、
および12.4分であった。培地中およびバッファー中
のセリノール、ジヒドロリゾビトキシン、およびリゾビ
トキシンの濃度は、各化合物のPITC誘導体(それぞ
れ、m/z=227、463、および461)のピーク
面積とPITC−アミノエトキシビニルグリシン(m/
z=431)のピーク面積の間の比によって計算した。
ジヒドロリゾビトキシンおよびリゾビトキシンの基準品
は、前述のように、B.elkaniiUSDA94の
培養から単離し精製した;セリノールおよびアミノエト
キシビニルグリシンはSigma Chemical
Co.(St.Louis,MO)から購入した。
【0041】セリノールおよび種々の化合物のジヒドロ
リゾビトキシンへの転換.HM培地中のB.elkan
iiUSDA94の定常期培養の500−ml定量を1
0,000×g、10分、20℃で遠心分離した。細胞
を、50mMリン酸カリバッファー(KP;pH6.
8)300mlで2回洗浄し、50mMKP(pH6.
8)10mlに再懸濁し、一定量をエッペンドルフ・チ
ューブ(1.5ml)に入れた。そして、細胞量を60
mg/チューブに調節した。遠心分離の後、細胞を、1
mMホモセリン、O−アセチルホモセリン、システイ
ン、シスタチオニン、ホモシステイン、またはメチオニ
ンを含有した、20mMKP(pH6.8)1mlに再
懸濁した。アセチルホモセリンは、Nagai and
Flavin(33)の方法に従ってL−ホモセリンお
よび無水酢酸から合成した;他の化合物は、和光純薬工
業(大阪、日本)、ナカライテスク(京都、日本)、お
よびSigma Chemical Co.(St.L
ouis,MO)から購入した。細胞懸濁液は、30
℃、1時間、暗所で振とうしてインキュベートした。遠
心分離後、上清を既に記述されたようにしてLC/MS
により分析した。
【0042】[結果]B.elkaniiUSDA94ライブラリーからrt
xAを含むpLAFR1コスミドの選択 .以前の研究に
おいて、リゾビトキシン高産生のB.elkaniiU
SDA94のrtxA遺伝子を、培地中でリゾビトキシ
ン低産生のB.elkaniiUSDA61(60)
の、公表されたrtxA配列を参照して設計した2つの
プライマーを使用してPCR増幅した。プローブとし
て、B.elkaniiUSDA94のrtxAのPC
R由来断片を用いて(図1中のC)、本発明者は、B.
elkaniiUSDA94のpLAFR1コスミド・
ライブラリー(61)に対してコロニー・ハイブリダイ
ゼーションを行った。その結果として、本発明者は、E
coRI制限部位を参照してrtxAを含有する7つの
独立したコスミドを配列することができた(図1)。7
つのコスミド中にrtxAを含有する4.3−kbEc
oRI断片の同一性は、プローブとしてB.elkan
iiUSDA94由来のrtxAのPCR由来断片と、
サザン・ハイブリダイゼーションによって実証した(図
1)。
【0043】rtxA遺伝子周辺のヌクレオチド配列
B.elkaniiUSDA94のrtxA遺伝子を含
むDNAを配列決定し、本発明者は、14オープン・リ
ーディング・フレームを含み、それらの全てが同じ配向
である、28,401−bpの配列(図1)を同定し
た。それらのうち、rtxAの7ORFs上流は、fi
xGHIS、noeE、およびnodPQに相同であ
り、共生機能に関与しているように思われる。他の4O
RF群はrtxAの下流であり、リゾビトキシン生合成
に関与していることを示している。シグマ70に対する
強力なプロモーターはrtxAの0.5−kb上流に存
在し、NodD、FixKおよびシグマ54によって認
識される他の強力なプロモーターは、それらのコンセン
サス配列によってはDNA領域中に見出されなかった
(15)。各遺伝子およびORFの詳細な記載は以下に
述べる。
【0044】B.elkaniiUSDA94中のrt
xAの推定アミノ酸配列.B.elkaniiUSDA
94中のrtxAの推定アミノ酸配列(803アミノ酸
残基:配列番号9)は、リゾビトキシン低産生B.el
kaniiUSDA61のそれに95%類似していた
(44、45)。346N−末端残基は、Methan
obacterium thermoautotrop
hicumのアミノトランスフェラーゼと24%同一で
あり、40%類似であった(52)。rtxAの443
C−末端残基は、Leptospira meyerの
O−アセチルホモセリンスルフヒドリラーゼと41%同
一であり、56%類似であった(2)。O−アセチルホ
モセリンスルフヒドリラーゼは、O−アセチルホモセリ
ンおよびスルフィドから含硫アミノ酸を合成する。一般
に、この酵素は、同様にO−アセチルホモセリンおよび
アルコールからO−アルキルホモセリンシンターゼ活性
を示し(31、32)、その反応機作は、O−アセチル
ホモセリンおよびセリノールからのジヒドロリゾビトキ
シン合成のそれに類似している。B.elkaniiU
SDA94中のrtxAのアミノ酸の相同性は、B.e
lkaniiUSDA61のそれらに類似している、た
だし、配列決定の誤りからB.elkaniiUSDA
61ではrtxAとrtxB遺伝子に形式的に分離され
ていた(44、45)。rtxAの予測されたアミノ酸
配列は、それらの可能性のある酵素機能が、セリノール
生成(1)およびジヒドロリゾビトキシン合成であるこ
とを示唆している。
【0045】ORF1(rtxC)の推測アミノ酸配
.ORF1(352アミノ酸残基:配列番号10)の
推測アミノ酸配列は、Pseudomonas syr
ingaeの脂肪酸デサチュラーゼと19%の同一性お
よび31%の類似性を有していた(62;図2)。OR
F1の予測したアミノ酸配列は、他のデサチュラーゼに
低類似性を示唆していたが、これらの配列の並びは、膜
結合デサチュラーゼの間に保存された、2つの領域:銅
結合部位および8つのヒスチジン残基、の存在を示した
(49、62)。推論された二次構造の解析は、ORF
1産物に2つの可能性のある膜貫通領域を示した(5
6;図2)。リゾビトキシンは、C3とC4の間に不飽
和二重炭素結合を有している(37)。それゆえ、本発
明者は、ORF1産物は、ジヒドロリゾビトキシンに二
重炭素結合の導入を触媒するという仮説を立てた。本発
明者は、その結果ORF1をrtxCと称し、これは、
rtxAの35bp下流に始まり、上流プロモーター様
配列を欠失している。それゆえ、rtxAと(少なくと
も)rtxCは多分オペロンを形成する。
【0046】ORF2、ORF3、およびORF4の推
測アミノ酸配列.ORF2は、rtxCの195bp下
流に始まり、その推測アミノ酸配列(207アミノ酸残
基:配列番号11)は、Pseudomonas ae
ruginosaPA01のアミド・トランスフェラー
ゼ・サブユニットに45%同一性および61%類似性を
有していた(53)。ORF3は、ORF2の555b
p下流に始まり、ORF3の推測アミノ酸配列(588
アミノ酸残基:配列番号12)は、いかなる公知のタン
パク質にも相同性を欠いていた。ORF4は、ORF3
(TG-TG)の終止コドンに始まっていた。ORF
4の推測アミノ酸配列(444アミノ酸残基配列番号1
3)は、Mycobacterium tubercu
losisのグルタミン・シンターゼに34%同一性、
53%類似性を有していた(5)。
【0047】残りのORF群の推測アミノ酸配列.OR
F5の推測アミノ酸配列(配列番号14)は、Rhiz
obium sp.NGR234のトランスポゼース
に、84%類似性を有し(11)、そしてORF6(配
列番号15)は、Rhizobium sp.NGR2
34のATP結合ヘルパー・タンパク質に79%の類似
性を有していた。挿入配列(IS)因子NGRIS5
は、IS21/IS1162ファミリーに属する。OR
F5およびORF6は、多分、B.japonicum
において、IS1631として同定されたIS21/I
S1162ファミリーに属するIS因子を形成する(1
7)。
【0048】rtxAの14kb上流に位置する4つの
ORF群の推測アミノ酸配列(配列番号2〜5)は、
B.japonicumUSDA110のfixGの
3’末端およびfixH、fixI、およびfixSの
完全配列に、それぞれ、81%、70%、82%、およ
び62%類似性を示した(34)。B.japonic
umUSDA110において、FixGHIS複合体
は、共生窒素固定に必要であり、cbb3型ヘム銅オキ
シダーゼの取り込みおよび代謝における役割を演じてい
るのであろう(41)。
【0049】rtxAの上流の残りの3つのORF群の
推測アミノ酸配列(配列番号6〜8)は、Rhizob
ium sp.NGR234の断続されたnoeE、A
zospirillum brasilenseの完全
nodP、およびRhizobium sp.N33の
nodQに、83%、90%、および82%の類似性を
示した(11、55)。多くの報告が、nod、no
l、およびnoe遺伝子産物が変異体Nodファクター
の合成に必要とされることを示している。Rhizob
ium sp.NGR234において、NoeEは、
3’−ホスホアデノシン5’−ホスホ硫酸(PAPS)
からフコシル化リポキチン・オリゴ糖に硫酸を転移する
(16)。Sinorhizobium melilo
tiおよびR.tropiciにおいて、nodPQ遺
伝子は、nodPQ遺伝子は、Nodファクターの硫酸
化に必要であった(10、50)。しかしながら、B.
elkaniiのNodファクターは、それらの硫酸化
の添加によって修飾されなかった(4、48)。また、
コンセンサスnodbox配列(15)は、この領域に
見出されなかった。おそらく、これらの遺伝子は、No
dファクター合成に機能しないものと考えられる。
【0050】リゾビトキシン生合成の相補系の確立
B.elkaniiにおける相同組換えの効率は、B.
japonicumのそれよりも低い(24)。それゆ
え、リゾビトキシン生合成におけるそれらの機能を評価
するため、本発明者は、カナマイシン・カセットの挿入
により変異されたコスミドがリゾビトキシン生合成の推
定DNA領域を欠失したB.elkaniiUSDA9
4変異体を補完する、ショートカット戦略を採用した。
本発明者は、先ず、B.elkaniiUSDA94染
色体の9.8kb領域(nodQP、rtxA、rtx
C、ORF2、および端を切り取ったORF3)を欠損
している大欠失変異体USDA94Δrtx::Ω1を
構築した(図3中のA)。本発明者は、適当な制限部位
がなかったので、完全ORF3配列またはORF4を欠
損することができなかった。
【0051】培養上清中のセリノール、ジヒドロリゾビ
トキシン、およびリゾビトキシン濃度を、LC/MSを
使用してフェニルチオカルバミル誘導体として分析した
(図4)。高濃度のセリノール、ジヒドロリゾビトキシ
ン、およびリゾビトキシン(それぞれ、280、120
および15μM)が、野生型USDA94の培養物中に
検出された。しかしながら、予期されたように、大欠失
変異体USDA94Δrtx::Ω1は、セリノール、
ジヒドロリゾビトキシン、およびリゾビトキシンを産生
しなかった。
【0052】B.elkaniiUSDA94は、テト
ラサイクリンに高度に耐性があるので、テトラサイクリ
ン選択マーカーを有するpLAFR1コスミドは、トラ
ンス・コンジュゲーションで得られなかった。それゆ
え、本発明者は、pRTF1にカナマイシン耐性を付与
した。得られたコスミドpRTF1−F1は、クローニ
ング領域(ORF6の末端から1.7kb下流;図1)
の3’側にカナマイシン・カセットを含有する。セリノ
ール、ジヒドロリゾビトキシン、およびリゾビトキシン
産物が、pRTF1−F1をUSDA94Δrtx::
Ω1に導入したときに回復した(図4)。これらの結果
は、pRTF1およびUSDA94Δrtx::Ω1を
用いた補完システムが成功裡に確立されたことを示して
おり、それによって、本発明者が、リゾビトキシン生合
成における種々の遺伝子およびORF群の機能を検査す
ることが可能になる。
【0053】種々のpRTF1誘導体によって補完され
たUSDA94Δrtx::Ω1中でのリゾビトキシ
ン、ジヒドロリゾビトキシンおよびセリノールの製造
リゾビトキシン生合成におけるrtxAおよびその関連
したORF群の機能をしらべるため、本発明者は、カナ
マイシン・カセットがDNA中に挿入された12の独立
したpRTF1誘導体を構築し、pRTF1誘導体の培
養上清中でのセリノール、ジヒドロリゾビトキシン、お
よびリゾビトキシンを分析した(図3中のB)。pRT
F1に続く略語、C3、C1、D8、D2、D5、D
3、E26、E9、E10、E2、E8、およびF6
(表1)は、図3中のカナマイシン・カセット挿入の位
置を示す。rtxAの1.3および0.6kb上流に位
置するC3およびC1にカセットの挿入は、培地中にセ
リノール(C3、142μM;C1、116μM)、ジ
ヒドロリゾビトキシン(C3、7μM;C1、6μ
M)、およびリゾビトキシン(C3、4μM;C1、5
μM)を連続して産生した。しかしながら、D8挿入
(rtxAの0.2kb上流に位置する)は、ジヒドロ
リゾビトキシンおよびリゾビトキシン産生を停止し、セ
リノール産生(24μM)を減じた。本発明者は、rt
xAの0.5kb上流に推定のプロモーター配列(5’
−TTGAAA−cgcacctaacgtcaagt
tg−TACGAT−3’)を発見したので、これら化
合物を産生する能力の喪失または減少は、rtxA転写
におけるプロモーターの後にD8挿入の極性効果による
ものであろう。
【0054】D2挿入(rtxAのN末端に位置する)
での誘導体は、培地中でセリノール、ジヒドロリゾビト
キシン、およびリゾビトキシンの産生を、完全に消失し
た。D5挿入(rtxAのC末端領域における)は、ま
た、ジヒドロリゾビトキシンおよびリゾビトキシンの産
生能力を消失したが、しかしながら、この誘導体は、セ
リノール産生(40μM)の部分的回復を示した。これ
らの結果は、rtxAのN末端領域が、培養におけるセ
リノール生合成に関与していることを指示しており、こ
れはrtxAのN末端領域のDNA配列がアミノトラン
スフェラーゼに相同であるという事実によって支持され
ている。この機能は、B.elkaniiUSDA61
のTn5rtxA変異体とインキュベートした大豆根瘤
におけるセリノール産生の欠如に一致している(4
3)。
【0055】D3挿入(rtxCにおける)構築は、ジ
ヒドロリゾビトキシン(2μM)およびセリノール(2
02μM)産生の回復をもたらしたが、リゾビトキシン
産生はなかった。挿入の極性効果に基づいて考察する
と、rtxAのC末端領域は、ジヒドロリゾビトキシン
生合成に関与しているのであろう。この考えは、rtx
AのCドメインの、O−アセチルホモセリンとアルコー
ルとの結合を触媒する、O−アセチルホモセリンスルフ
ヒドリラーゼに対するDNA相同性によって支持されて
いる。それゆえ、この発見は、rtxA遺伝子産物がリ
ゾビトキシン生合成における2つの重要なステップに関
与していることを示唆している。
【0056】E26挿入(ORF2における)−含有誘
導体の補完後およびD3挿入のそれと比較した、リゾビ
トキシン産生の回復は、rtxCはジヒドロリゾビトキ
シンからリゾビトキシンへの酵素的変換に関与している
ことを示唆している。更に、rtxCのヌクレオチド配
列は、分子中の二重炭素結合を誘導する、脂肪酸デサチ
ュラーゼに対する類似性を有している。それゆえ、rt
xC産物は、ジヒドロリゾビトキシンのC3位への二重
炭素結合の導入を触媒し、リゾビトキシンを産生する、
ということを仮定する合理性があるように思える。
【0057】セリノール産生(セリノール、200ない
し222μM)は、C3およびF1挿入を含む誘導体と
の補完の後に、元のレベルに達したのであるが、ORF
2内およびORF2とORF3の間に存在する、E2
6、E9、およびE10挿入の誘導体は、ジヒドロリゾ
ビトキシンおよびリゾビトキシンの低濃度(ジヒドロリ
ゾビトキシン、0.8ないし1.1μM;リゾビトキシ
ン、0.4ないし0.5μM)を誘導した。ORF3に
おけるE2挿入は、低レベルのジヒドロリゾビトキシン
およびリゾビトキシン産生(セリノール、240μM;
ジヒドロリゾビトキシン、3.9μM;リゾビトキシ
ン、0.9μM)を保持した。それゆえ、ORF2およ
びORF3産物は、他の中間体の合成またはリゾビトキ
シン生合成の分泌または制御に関与しているらしい。そ
れらの機能は、それらの相同性および公知文献からは特
定化されていない。
【0058】B.elkaniiUSDA94における
ジヒドロリゾビトキシン産生に対するホモセリン様化合
物の効果.rtxA遺伝子のC末端部分は、O−アセチ
ルホモセリンスルフヒドリラーゼに相同であり、本発明
者の破壊実験の結果は、その酵素機能が、ジヒドロリゾ
ビトキシン合成に関与していることを、示唆している。
しかしながら、O−アセチルホモセリンは、メチオニン
生合成経路内に所在している(31、32)。この推定
のジヒドロリゾビトキシン合成に対する基質を示唆する
ため、本発明者は、メチオニン生合成経路中における種
々の化合物の存在下にB.elkaniiUSDA94
細胞懸濁液のジヒドロリゾビトキシン産生を探究した
(図5)。ジヒドロリゾビトキシン産生は、これらの化
合物、特にメチオニンのような含硫化合物、の添加によ
って、劇的に増加した。
【0059】B.elkaniiとB.japonic
umのrtx領域の比較.B.japonicumにお
ける共生に関連した410−kbDNA領域は、Goe
ttfertら(15)により配列決定および解析され
た。興味深いことに、B.japonicumはリゾビ
トキシンを産生しないにもかかわらず、彼らはこの領域
にrtxA様遺伝子を見出した(13、29)。それゆ
え、本発明者は、B.elkaniiUSDA94のr
txAおよびそのフランキング領域をB.japoni
cumUSDA110のそれらと比較した(図6)。r
txAからORF4までの8,641−bpDNA配列
の比較は、B.japonicumUSDA110のこ
の領域がB.elkaniiUSDA94のそれと79
%相同であることを示している。対照的に、Brady
rhizobiumの、それら2つの種の間のrtxA
上流とORF4下流の配列の比較は、全く注目すべき類
似性は示さなかった。更に、rtxA、rtxC、OR
F2、ORF3およびORF4に相当するORF群は、
B.japonicumにおいて見出された、そしてそ
れらの程度は、2つの種の間によく保存されていた。
B.japonicumのrtxC、ORF2、および
ORF4のDNA配列は、B.elkaniiのそれ
に、それぞれ、93%、87%、および89%の類似性
を示した。しかし、rtxAおよびORF3に相当する
ORFsは、B.japonicumにおいては、3つ
のORF群に断片化されていた。特に、rtxA遺伝子
のC−ドメインの断片化は、ジヒドロリゾビトキシン合
成能力を失っているように見えた。
【0060】[考察]本発明によって、rtxA及びr
txC遺伝子が、変異原性実験およびLC/MSを用い
ることによる、培養中におけるリゾビトキシン中間体の
濃度の測定の結果に照らして、自由生活B.elkan
iiでのリゾビトキシン生合成に関与していることを明
らかにした。リゾビトキシンへの生合成経路および種々
の遺伝子の生物活性を、図7に要約する。
【0061】ジヒドロリゾビトキシンがリゾビトキシン
生合成の最終産物(22)か中間体(44)かという問
題は、議論の源であった。本発明では、rtxC遺伝子
がリゾビトキシン生合成の最終ステップでジヒドロリゾ
ビトキシン不飽和化に関与しており、この遺伝子産物
が、C3とC4の間の位置に不飽和二重炭素結合を創り
出すことによってジヒドロリゾビトキシンのリゾビトキ
シンへの変換を触媒することを示唆している。それゆ
え、本発明者はジヒドロリゾビトキシンはリゾビトキシ
ン生合成における鍵となる中間体であることが確認され
た(図7)。
【0062】Ruanら(44、45)は、B.elk
aniiUSDA61からrtxA(以前のrtxAお
よびrtxB)遺伝子を単離し、rtxA変異体は、根
瘤にセリノールを蓄積せず、培地または根瘤中にリゾビ
トキシンを産生しないことを観察した。これらの著者
は、rtxAは、DNA相同性およびその他の研究に照
らして、セリノール生成およびジヒドロリゾビトキシン
合成に関与していることを推測した(44、45)。本
発明では、培養中のセリノールおよびジヒドロリゾビト
キシン濃度の定量は、rtxAのN末端領域がセリノー
ル生成に関与しており、c末端部分がジヒドロリゾビト
キシン生合成に関与している−リゾビトキシン生合成の
重要なステップを明らかにした。しかしながら、90k
Daの予測されたタンパク質は同時に両方の活性を媒介
しているかどうか、未だ不明確である。
【0063】セリノールは、多分、1つのrtxA遺伝
子が2つの機能:セリノール生成およびジヒドロリゾビ
トキシン生合成、を有しているので、ジヒドロリゾビト
キシンの前駆体である。しかしながら、ジヒドロリゾビ
トキシン生合成における、ホモセリン部分の基質は未だ
不明である。メチオニンおよびその中間体(O−アセチ
ルホモセリン、システイン、シスタチオニン、およびホ
モシステインを含む)の付加は、培養におけるジヒドロ
リゾビトキシン産生を劇的に増加させる(図5)。この
結果は、基質特異性が究極的にはrtxA遺伝子由来の
生成酵素を使用することによって決定されなければなら
ないが、含硫中間体がジヒドロリゾビトキシンおよびO
−アセチルホモセリンの前駆体候補であることを示して
いる。もしそうならば、β−シスタチオナーゼは、B.
elkaniiにおけるリゾビトキシンによるフィード
バック阻害を受けやすいのでは、という興味がある(図
7)。
【0064】B.japonicumにおいては、根瘤
着生および共生窒素固定にかかわる遺伝子の大部分は、
8.7−Mb染色体の約400−kb領域内に密集して
いる(15、20)。Mesorhizobium l
otiICMP3153株においては、共生島と称せら
れる共生クラスターが、フェニルアラニン特異的tRN
A遺伝子に集積されるとき他の菌株に転移することがで
きる(54)。さらに、この島構造は、他のM.lot
i株、MAFF303099の類似の染色体によく保存
されている(19)。それゆえ、根瘤菌の共生遺伝子
は、水平遺伝子転移およびその後のゲノム再配列によっ
て進化したことが一般的に受け入れられている。
【0065】B.elkaniiのrtxAおよびrt
xC遺伝子は、根瘤着生および共生窒素固定遺伝子を含
むDNA領域に局在していた(図1)。興味深いこと
に、rtxクラスターおよびクラスターの上流のnoe
E遺伝子は、リゾビトキシンを合成しないB.japo
nicumUSDA110に(26、27、29)ほと
んど完全に保存されていた(図6;15)。可能な説明
は、リゾビトキシンを合成する能力の喪失は、rtxA
遺伝子のC−末端領域のB.japonicumにおけ
る断片化のためであろう(図6)。
【0066】高根瘤着生マメ科変異体を用いた実験(4
5)およびエチレン阻害剤の適用(35)は、宿主マメ
科植物のエチレン認知が根瘤着生の制御に関与している
ことを示唆している。エチレンは、大豆(Glycin
e max;35)を除くいくつかのマメ科植物の根瘤
着生を減じることが報告されている。B.japoni
cumは、多菌株環境において優先的に大豆に根瘤着生
する(30)。それゆえ、多分、bradyrhizo
biaの祖先がリゾビトキシン生合成遺伝子と種々の共
生遺伝子を獲得した後に、B.japonicumは大
豆根瘤着生のエチレン不感受性のせいで選択圧を欠い
て、リゾビトキシンを合成する能力を失った。B.ja
ponicumUSDA110のrtx領域の部分的崩
壊は、この考えを支持している(図6)。
【0067】従来、リゾビトキシンを合成する能力は、
遅増殖性B.elkanii(27、29、37)およ
びBurkholderia andropogoni
s(21)に限定されていた。Bradyrhizob
ium spp.以外の速増殖性根瘤菌が根瘤着生を増
強し得るので、それが宿主植物のエチレン生合成に対す
る他の阻害剤を産生するのかどうかという疑問が生じ
る。この可能性を試験するのに、本発明者は、データベ
ース(http://www.kazusa.or.j
p/en/)にある速増殖性M.lotiの完全ゲノム
からエチレン生合成を減じる強力な酵素および化合物を
探し、候補として、1−アミノシクロプロパン−1−カ
ルボキシレート(ACC)デアミナーゼ遺伝子を同定し
た。ACCデアミナーゼ遺伝子は、7.0−Mb染色体
上の611−kb共生島(nifDK遺伝子の下流)内
に位置していた(19)。植物生育促進Pseudom
onas spp.は、ACCデアミナーゼを有し、A
CCをα−ケト酪酸とアンモニアに分解することによっ
て植物エチレンの量を減少する(14)。それゆえ、根
瘤菌は、宿主植物におけるエチレン阻害によって根瘤着
生増強を実現するために2つの戦略:遅増殖性brad
yrhizobiaにおけるリゾビトキシン生合成およ
び速増殖性根瘤菌におけるACCデアミナーゼ、を持っ
ているという説は、魅力的な仮説である。
【0068】
【発明の効果】本発明により、少なくともrtxA遺伝
子とrtxC遺伝子を異種の細菌に導入することによ
り、リゾビトキシン生産能を付与する等の可能性が明ら
かとなった。マメ科植物は食物や加工食品、有用化学物
質の原材料と広く用いられている穀物であり、本発明
は、かかる有用穀物であるマメ科植物の収量増加につな
がる基礎的知見であり、非常に有用性の高いものであ
る。
【0069】[引用文献] 1.Babczinski,P.ら、1978、「サト
ウキビにおけるセリノール生成の中間体としてのセリノ
ールリン酸(Serinol phosphate a
s an intermediate in seri
nol formation in sugarcan
e)」、 Plant Physiol.61:46−
49。 2.Bourhy,P.ら、1997、「Leptos
pira meyeriメチオニン生合成経路に関与す
るホモセリン−O−アセチルトランスフェラーゼは逆阻
害されない(Homoserine O−acetyl
transferase,involved in t
he Leptospira meyeri meth
ionine biosynthetic pathw
ay),J.Bacteriol.179:4396−
4398。 3.Boyer,H.W.ら、1969、「Esche
richi coliにおけるDNAの制限および修飾
の相補性解析(A complementation
analysis of the restricti
on and modification of DN
A in Escherichia coli)」、
J.Mol.Biol.41:459−472。 4.Carlson,R.W.ら、1993、「Bra
dyrhizobiumjaponicumの型Iおよ
びII菌株により生産されるリポオリゴ糖根粒着生の構
造および生物活性(The structures a
nd biological activities
of the lipo−oligosacchari
de nodulation signals pro
duced by type I and II st
rains of Bradyrhizobium j
aponicum)」、J.Biol.Chem.26
8:18372−18381。 5.Cole,M.A.ら、1973、「Rhizob
ium japonicumにおけるペニシリンG、ネ
オマイシン、およびクロラムフェニコールに対する転移
性耐性(Transmissible resista
nce to penicillin G,neomy
cin,and chloramphenicol i
n Rhzobium japonicum)」、An
timicrob.Agents Chemothe
r.4:248−253。 6.Cole,S.T.ら、1998、「完全ゲノム配
列からMycobacterium tubercul
osisの生物学を解読する(Deciphering
the biology of Mycobacte
rium tuberculosis from th
e complete genome sequenc
e)」、Nature 393:537−544。 7.Duodu,S.ら、1999、「Rhizobi
um−legume共生におけるリゾビトキシンの積極
的役割(A positive role for r
hizobitoxine in Rhizobium
−legumesymbiosis)」、Mol.Pl
ant−Microbe Interact.12:1
082−1089。 8.Fallay,R.ら、1987、「土壌および水
棲細菌のインターポゾン突然変異誘発:グラム陰性細菌
のin vitro挿入変異用に設計されたDNA断片
のファミリー(Interposon mutagen
esis ofsoil and water bac
teria: a family ofDNA fra
gments designed for in vi
troinsertion mutagenesis
of Gram−negative bacteri
a)」、Gene 52:147−154。 9.Figurski,D.H.ら、1979、「トラ
ンス型で提供されたプラスミド機能に依存したプラスミ
ドRK2の起源を含む誘導体の複製(Replicat
ion of and origin−contain
ing derivative of plasmid
RK2 dependent on aplasmi
d function provided in tr
ans)」、Proc.Natl.Acad.Sci.
USA 76:1648−1652。 10.Folch−Mallol,J.L.ら、199
6、「Rhizobium tropici CIAT
899根粒着生因子の特性:硫酸化におけるnodHお
よびnodPQの役割(Characterizati
on of Rhizobium tropici C
IAT899 nodulation factor
s: the role of nodH and N
odPQ genes in their sulfa
tion)」、Mol.Plant−Microbe
Interact. 9:151−163。 11.Freiberg,C.ら、1997、「Rhi
zobiumとマメ科植物の間の共生の分子的原理(M
olecular basis of symbios
is between Rhizobium and
legumes)」、Nature 387:394−
401。 12.Friedman,A.M.ら、1982、「広
範宿主域コスミドクローニングベクターの構築およびR
hizobium変異株の遺伝子解析における使用(C
onstruction of a broad ho
st rangecosmid cloning ve
ctor and its use on the g
enetic analysis of Rhizob
iummutants)」、Gene 18:289−
296。 13.Fuhrmann,J.、1990、「血清学
的、形態学的、リゾビトキシン、およびヒドロゲナーゼ
表現型に関連した固有の大豆bradyrhizobi
aの共生的有効性(Synbiotic effect
iveness of indigenous soy
bean bradyrhizobia as rel
ated to serological, morp
hological, rhizobitoxine,
and hydrogenasephenotype
s)」、Appl.Environ.Microbio
l56:224−229。 14.Glick,B.R.ら、1999、「植物生長
促進細菌により使用される生化学的および遺伝的機構
(Biochemical and genetic
mechanisms used by plant
growth promoting bacteri
a)」、 Imperial CollegePres
s, London。 15.Gottfert,M ら、2001、「Bra
dyrhizobiumjaponicum染色体の4
10−kbDNAの配列決定によってカバーされない潜
在的な共生特異的遺伝子(Potential sym
biosis−specific genes unc
overed by sequencing a 41
0−kilobase DNA region of
theBradyrhizobium japonic
um chromosome)」、J.Bacteri
ol.183:1405−1412。 16.Hanin,M.ら、1997、「Rhizob
ium sp.NGR234の硫酸化はnoeE、新規
宿主特異性遺伝子に依存する(Sulphation
of Rhizobium sp.NGR234 no
d factors is dependent on
noeE, a new host−specifi
city gene)」、Mol.Microbio
l.24:1119−1129。 17.Isawa,T.ら、1999、「反復配列RS
aおよびRSbの高コピー数を有する高度反復配列所有
株Bradyrhizobium japonicum
におけるIS1631の生成(IS1631 occu
rence inBradyrhizobium ja
ponicum highly reiterated
sequence−possessing stra
inswith high copy numbers
of repreatedsequences RS
a and RSb)」、 Appl.Enviro
n.Microbiol.65:3493−3501。 18.Johnson,H.W.ら、1959、「Rh
izobium japonicum大豆根粒を担持し
た選択菌株の抽出物に対する苗木の反応(Respon
ses of seedings to extrac
ts of soybean nodules bea
ring selected strains of
Rhizobium japonicum)」、Nat
ure 183:308−309。 19.Kaneko,T.ら、2000、「窒素固定共
生細菌Mesorhizobium lotiの完全ゲ
ノム構造(Complete genome stru
cture of the nitrogen−fix
ing symbiotic bacterium M
esorhizobium loti)」、DNA R
es.7:331−338。 20.Kundig,C.ら、1993、「Brady
rhizobium japonicum110ゲノム
の関連物理学的および遺伝学的マップ(Correla
ted physical and genetic
map of Bradyrhizobium jap
onicum 110 genome)」、J.Bac
teriol. 175:613−622。 21.Mitchell,R.E.ら、1991、「植
物病原菌Pseudomonas andropogo
nisによるリゾビトキシンおよび1−スレオヒドロキ
シスレオニン産生(Rhizobitoxine an
d 1−threo−hydroxythreonin
e production by theplant
pathogen Pseudomonas andr
opogonis)」、Phytochemistry
25:2711−2715。 22.Mitchell,R.E.ら、1991、「P
seudomonasandropogonisにおけ
るリゾビトキシンに対する生合成経路(Biosynt
hetic pathway to rhizobit
oxine in Pseudomonas andr
opogonis)」、Phytochemistry
30:1809−1814。 23.Minamisawa K.ら、1990、「n
ifDKE配列分岐進化によるBradyrhizob
ium japonicumのリゾビトキシン産生およ
び水素取り込み陽性株の分裂(Division of
rhizobitoxine−producing
and hydrogen−uptakepositi
ve strains of Bradyrhizob
iumjaponicum by nifDKE se
quence divergence)」、Polan
t Cell Physiol. 31:81−89。 24.Minamisawa,K.ら、2000、「大
豆bradyrhizobiaの遺伝生態学(Gene
tic ecology of soybeanbra
dyrhizobia)」、p.349−377、J.
Bollagら、Soil Biochemistr
y、10巻、Marcel DekkerInc.,N
ew York。 25.Minamisawa,K.ら、1986、「大
豆根粒中のセリノール(2−アミノ−1,3−プロパン
ジオール)および3−アミノ−1,2−プロパンジオー
ル(Serinol(2−amino−1,3−pro
panediol) and 3−amino−1,2
−propanediol in soybean n
odules)」、Plant Cell Physi
ol.27:1109−1116。 26.Minamisawa,K.ら、1991、「B
radyrhizobium japonicumによ
るインドール−3−酢酸の産生:遺伝子型群分けとリゾ
ビトキシン産生の関連性(Production of
indole−3−acetic acid by
Bradyrhizobium japonicum:
a correlation with genot
ype grouping and rhizobit
oxine production)」、Plant
Cell Physiol.32:1−9。 27.Minamisawa,K.ら、1990、「自
由生活Bradyrhizobium japonic
umにおけるヒドロゲナーゼ合成のリゾビトキシン阻害
(Rhizobitoxine inhibition
of hydrogenase synthesis
in free−living Bradyrhiz
obium japonicum)」、J.Bacte
riol.172:4505−4509。 28.Minamisawa,K.ら、1987、「ア
ミノ酸分析計による大豆植物中のリゾビトキシンおよび
ジヒドロリゾビトキシンの決定(Determinat
ion of rhizobitoxine and
dihydrorhizobitoxine in s
oybean plants by amino ac
id analyzer)」、Soil Sci.Pl
ant Nutr. 33:645−649。 29.Minamisawa,K.ら、1992、「反
復配列および種々の性質により明らかにされたBrad
yrhizobium japonicum野外分離株
の遺伝的関連性(Genetic relatedne
ss of Bradyrhizobium japo
nicum field isolates as r
evealed by repeated seque
ncesand various other cha
racteristics)」、Appl.Envir
on.Microbiol. 58:2832−283
9。 30.Minamisawa,K.ら、1997、「2
つのBradyrhizobium種japonicu
mおよびelkaniiによるGlycinemax、
Glycine soja、Macroptilium
atropurpureumの選択的根粒着生(Pr
eferential nodulation of
Glycine max, Glycine soj
a, Macroptilium atropurpu
reum by two Bradyrhizobiu
m species japonicum and e
lkanii)」、FEMS Microbiol.E
col. 24:49−56。 31.Murooka,Y.ら、1977、「微生物に
おけるO−アセチルホモセリンスルフヒドリラーゼによ
り触媒されるO−アルキルホモセリン合成(O−alk
ylhomoserine synthesis ca
talyzedby O−acetylhomoser
ine sulfhydrylasein micro
organisms)」、J.Bacteriol.
130:62−73。 32.Murooka,Y.ら、1970、「O−アセ
チルホモセリンおよびアルコールからO−アルキルホモ
セリン合成(O−alkylhomoserine s
ynthesis from O−acetylhom
oserineand alcohol)」、Bioc
hem.Biophys.Res.Commun. 4
1:407−414。 33.Nagai,S.ら、1971、「O−アセチル
ホモセリンの合成(Synthesis of O−a
cetylhomoserine)」、Meth.En
zymol. 17:423−424。 34.Nellen−Anthamatten,D.
ら、1998、「低酸素レベルによって誘導し得る遺伝
子の制御のためのFixLJ依存性制御カスケードにお
ける重要な分配者、Bradyrhizobium j
aponicumFixK2(Bradyrhizob
ium japonicum FixK2,a cru
cial distributor in the F
ixLJ−dependent regulatory
cascade for thecontrol o
f genes inducible by low
oxygen level)」、J.Bacterio
l. 180:5251−5255。 35.Nukui,N.ら、2000、「Lotus
japonicusおよびMacroptilium
atropurpureumにおける根粒着生に対する
エチレン前駆体およびエチレン生合成阻害剤の効果およ
び認識(Effects of ethylene p
recursor and inhibitors f
or ethylene biosynthesis
and perception on nodulat
ion in Lotus japonicus an
d Macroptilium atropurpur
eum)」、Plant Cell Physiol.
41:893−897。 36.Owen,L.D.ら、1965、「大豆におけ
る根粒菌誘導性萎黄病:単離および根粒での産生、およ
びトキシンの品種特異性(Rhizobial−ind
uced chlorosis in soybea
n: Isolation,production i
n nodules,and varietal sp
ecificity of the toxin)」、
PlantPhysiol. 40:927−930。 37.Owen,L.D.ら、1972、「リゾビトキ
シンの構造、Rhizobium japonicum
から代謝拮抗性エノ−ル−エーテルアミノ酸(Stru
cture of rhizobitoxine,an
antimetabolic enol−ether
amino−acid from Rhizobiu
m japonicum)」、J.Chem.Sci.
Chem.Commun. p.714。 38.Owen,L.D.ら、1972、「ジヒドロリ
ゾビトキシン、Rhizobium japonicu
mからの新規エーテルアミノ酸(Dihydrorhi
zobitoxine,a new ether am
ino−acidfrom Rhizobium ja
ponicum)」、 J.Chem.Sci.Che
m.Commun. p.715。 39.Owen,L.D.ら、1968、「Salmo
nella typhimuriumのβ−シスタチオ
ナーゼの阻害剤(An inhibitor of β
−cystathionase in Salmone
lla typhimurium)」、 Bioche
m.Biophys.Acta 158:219−22
5。 40.Penmetsa,R.V.ら、1997、「根
粒共生体により反復再感染したマメ科エチレン不感受性
変異株(A legume ethylene−ins
ensitive mutant hyperinfe
cted byits rhizobial symb
iont)」、Science 275:527−53
0。 41.Preisig,O.ら、1996、「Brad
yrhizobiumjaponicum fixGH
IS遺伝子は高親和性cbb3型チトクロームオキシダ
ーゼの生成に必要である(The Bradyrhiz
obium japonicum fixGHIS g
enes are requiredfor the
formation of the high−aff
inity cbb3−type cytochrom
e oxidase)」、 Arch.Microbi
ol. 165:197−305。 42.Prentki,P.ら、1984、「選択性D
NA断片とのin vitro挿入変異誘発(In v
itro insertional mutagene
sis with a selectable DNA
fragment)」、Gene 29:303−3
13。 43.Ruan,X.ら、1992、「Bradyrh
izobium japonicumのリゾビトキシン
変異株の単離および特徴(Isolationand
characterization of rhizo
bitoxine mutants of Brady
rhizobium japonicum)」、J.B
acteril. 174:3467−3473。 44.Ruan,X.ら、1993、「Bradyrh
izobium japonicumリゾビトキシン遺
伝子および推定酵素機能:発現には翻訳フレームシフト
を要求する(Bradyrhizobium japo
nicum rhizobitoxine genes
and putative enzyme func
tions: expression require
s a translational framesh
ift)」、Proc.Natl.Acad.Sci.
USA 90:2621−2645。 45.Ruan,X.ら、1993、「著者らのコレク
ション(Authorscollection)」、P
roc.Natl.Acad.Sci.USA90:1
2055。 46.Ruan,X.ら、1991、「植物毒素リゾビ
トキシンの迅速・高感度測定(Rapid and s
ensitive assay for thephy
totoxin rhizobitoxine)」、A
ppl.Environ.Microbiol. 5
7:2097−2101。 47.Sambrook,J.ら、1989、「分子ク
ローニング:実験室マニュアル(Molecular
cloning: a laboratorymanu
al)、第2版、Cold spring Harbo
r Laboratory Press, Cold
Spring Harbor, N.Y.。 48.Sanjuan,J.ら、1997、「2−O−
メチルフコース部分がBradyrhizobium
japonicumのリポ多糖類根粒着生シグナルに存
在する(A 2−O−methylfucose mo
iety ispresent in the lip
o−oligosaccharidenodulati
on signal of Bradyrhizobi
umjaponicum)」、Proc.Natl.A
cad.Sci.USA 89:8789−8793。 49.Sato,N.ら、1997、「緑藻Chlam
ydomonas reinhardtiiの葉緑体w
6デサチュラーゼ遺伝子のクローニング(Clonin
g of gene chloroplast w6
desaturease of green alg
a,Chlamydomonas reinhardt
ii)」、J.Biochem. 122:1224−
1232。 50.Schwedock,J.S.ら、1994、
「Rhizobium meliloti NodPお
よびNodQは活性化にGTPを要求する多機能性硫酸
活性複合体を形成する(Rhizobium meli
loti NodPand NodQ form a
multifunctional sulfate−a
ctivating complex requiri
ng GTP for activity)」、J.B
acteriol. 176:7055−7064。 51.Simon,R.ら、1983、「in viv
o遺伝子工学用の広宿主域移動システム:グラム陰性細
菌のトランスポゾン変異誘発(A broadhost
range mobilization syste
m for in vivo genetic eng
ineering: Transposon muta
genesis in Gram−negative
bacteria)」、Bio/Technology
1:789−791。 52.Smith,D.R.ら、1997、「Meth
anobacterium thermoautotr
ophicum deltaHの完全ゲノム配列:機能
解析および比較ゲノミックス(Complete ge
nome sequence of Methanob
acterium thermoautotrophi
cum deltaH: functional an
alysis and comparative ge
nomics)」、J.Bacteriol. 17
9:7135−7155。 53.Stover,C.K.ら、2000、「Pse
udomonas aeruginosa PA01、
日和見病原体の完全ゲノム配列(Complete g
enome sequence of Pseudom
onas aeruginosa PA01, an
opportunistic pathogen)」、
Nature 406:959−964 54.Sullivan,J.T.ら、1998、「p
he−tRNA遺伝子に組込まれた500−kb共生体
島の獲得による根粒菌の進化(Evolution o
f rhizobia by acquisition
of a 500−kb symbiosis is
land that integrates into
a phe−tRNA gene)」、Proc.N
atl.Acad.Sci.USA 95:5145−
5149。 55.Vieille,C.ら、1990、「Rhiz
obium meliloti nodPQに相同な2
つのAzospirillum brasilense
Sp7プラスミド遺伝子の特徴(Character
izationof two Azospirillu
m brasilense Sp7 plasmid
genes homologous to Rhizo
biummeliloti nodPQ)」、Mol.
Plant Microb.Interact. 3:
389−400。 56.Wada,H.ら、1990、「脂肪酸脱飽和の
遺伝子操作によるシアノバクテリアの冷凍耐性の増強
(Enhancement of chilling
tolerance of a cyanobacte
rium by genetic manipulat
ion of fatty acid desatur
ation)」、Nature 347:200−20
3。 57.Xiong,K.ら、1996、「異なったbr
adyrhizobiaおよび大豆ゲノタイプ由来のβ
−シスタチオナーゼのリゾビトキシン誘導阻害の比較
(Comparison of rhizobitox
ine−induced inhibition of
β−cystathionase from dif
ferent bradyrhizobia and
soybean genotypes)」、Plant
Soil 186:53−61。 58.Yamaya,T.ら、1988、「高速液体ク
ロマトグラフィによるピコモルレベルでのフェニルチオ
カルバミルアミノ酸の分析および植物物質への応用(A
nalysis of phenylthiocarb
amyl−amino acids at pico−
mole level by highperform
ance liquid chromatograph
y and application to plan
t materials)」、Soil Sci.Pl
ant Nutr. 34:297−302。 59.Yasuta,T.ら、1999、「1−アミノ
シクロプロパン−1−カルボキシレートシンターゼの阻
害に基づいたリゾビトキシンの新アッセイ(New a
ssay for rhizobitoxine ba
sed on inhibition of 1−am
onocyclopropane−1−carboxy
late synthase)」、 Appl.Env
iron.Microbiol. 65:849−85
2。 60.Yuhashi,K.I.ら、2000、「Br
adyrhizobium elkaniiによるリゾ
ビトキシン産生はMacroptilium atro
purpureumでの根粒着生および競合性を増強す
る(Rhizobitoxine productio
n by Bradyrhizobiumelkani
i enhances nodulation and
competitiveness on Macro
ptilium atropurpureum)」、A
ppl.Environ.Microbiol. 6
6:2658−2663。 61.Yuhashi,K.I.ら、1995、「Br
adyrhizobium elkaniiは大豆の外
根膨潤を誘導する(Bradyrhizobium e
lkanii induces outer root
swelling in soybean)」、 P
lant Cell Physiol.36:1571
−1577。 62.Zhang,Y.X.ら、1997、「phas
eolotoxin遺伝子クラスターのphtE部位は
アミノ酸トランスフェラーゼ、転写因子のAraCファ
ミリー、および脂肪酸デサチュラーゼをコードする遺伝
子に相同なORFsを有する(The phtE lo
cus in the phaseolotoxin
gene cluster has ORFs wit
h homologies to genes enc
oding amino acidtransfera
ses, the AraC family of t
ranscriptional factors, a
nd fatty acid desaturase
s)」、Mol.Plant Microbe Int
eract. 10:947−960。
【0070】
【配列表】 SEQUENCE LISTING <110> Japan Science and Technology Corporation <120> rtxC gene encoding rhizobitoxine <130> PA908107 <160> 15 <170> PatentIn Ver. 2.1 <210> 1 <211> 28401 <212> DNA <213> Bradyrhizobium elkanii <400> 1 ggatcctgac cgctttgaca tatctgctgg ctggctacat gcgcgagcag gtttgcgttt 60 atatgtgccc gtggccgcgc atccaggccg cgctcaccga cgaatgggcc ctcaatgtcg 120 cctacaaata cgaccgcggc gagcagcgct gctcattgaa gaaatcattc gatctgcgcg 180 cacgcggcga aagggtcgga gactgcatcg attgtaatca atgcgcggcg gtctgtccga 240 ccgggatcga tatacgaaat ggcgcccagc tgggctgcat ccagtgcggg ctgtgcatcg 300 atgcctgcga tgccgtcatg aagaagatcg ggcgcaaaag cggcctgatc ggttacgaca 360 acgacatcaa tatccgccgg cggatggacg gcaagccgga gctgttcaag ccggtgcgcc 420 cgcgcacgct cgtttatgcc tttttgatca cgatcatctg cgcggtgatg gtttatgagt 480 tgttgtcgag aacgatgctc gatctcagcg ttctgcatga tcgtaatccc atggctgtca 540 gactcagcga tggatcggtt cgcaacgcct ataccgtgcg tttgctcaac aggcgcgact 600 tcgatcgggt aatcgcgatc gacatcgatg ggccgcccaa gacgtccgtc cacgtcgtcg 660 gcgccgattc ggtgaccgtg gatcggccga tgatcgtcct ggctcgcgat acgacgacag 720 aactgcgtgt gctgttgacg gcgccggttg acggcatggc ggaacgctcg atgccggtga 780 ggtttcgggt caccgatctt ggcctcggcg aggtcgcctc cgcatcggat cattttgttc 840 tcccctgacg atcactgacg ggatgtgacc atgaccgcat caaatcaagt cacgtggccc 900 attaccgggc gcttcgtcct gatcgcgatc cttgcgttct tttcggtcgt gatcggcgcc 960 aatctggtca tgatgcgctt tgccatcgtt acgctgccgg ggacggaggt tgacagcgcc 1020 tatcgtgcga gcctcgccta tcagcgcgag atcatcgcgg cacggcagca gaacgagcga 1080 aactggcagg tgcaggtata catccaccgg cagtcggatg gtgaagctga gcttgcgatc 1140 gaggcgcgcg accgcctagg tgcgcctctc gccggaatga atttcgtggc ccgcctcgag 1200 cgcccggtcg accgccgggc cgatcgggcg attgatgtct cgcaggccaa tgctgggatc 1260 taccgcggca gcgcctcggg cgtcgctgtc ggacagtggg atctcgtgat cgagggcgac 1320 gatgacgacc gccgcatgtt tctgtcgaag aaccgcatcg tcctgaattg agagcgtgtg 1380 cacatgcagt ccgacatcga cttttctcac tttctgaaga ggacaggcgc gggccgtctc 1440 cagcttgacc ttgcggtgga ggggatcagt tgcgtgggct gcatgggcaa gatcgagcgc 1500 aatctgtcga gcattccgga tgtgacctcg gcacgcgtga acctcaccga taatcggctg 1560 gcgctcgaat ggaaggccgg agccctcgat ccagctctat ttgtcaagcg gctcgccgaa 1620 ttaggctata gggcatatcc gttccagcgg gacaatgcgg agacgctgga ggcggagaga 1680 gcgcaggaat tgctgcggcg gctgggcgtc gccgcctttg ccgcgatgaa cgtgatgatg 1740 ctgtcgatcc cggtatggtc cggaaatgtc tcggatatgc tgccggaaca gcgcgacttc 1800 tttcattggc tctccgcgct gatcgtcctg ccggccgcgg cttattgtgc gcaaccattc 1860 ttctcttccg cttttgccgt gctgcgggcg cgcggaacca atatggacgt tccgatcagc 1920 atcggcattc tgctcgccct ggcgacatcg ctgatcgaga ccatcgctca tgccgagcac 1980 gcctatttcg atgcggcgat catgttgatc gcctttctgc tcgcaggtcg ctatcttgac 2040 cagaacatga ggcgacgcac ccgcgccttc gccagcaacc ttgcagcact caaggcggag 2100 actgcggcga agttcattag cccgaccgag atcagaaccg ttccggtggc ggcgatcaag 2160 ccgggggaca tcgtgctggt gcgccccggc gaatgctgta cagtcgacgg caacgtgatc 2220 gagggaagct ccgagatcga tcaaagcctt attaccggcg agactttgcc ggcgatcgcg 2280 acgcccggca gcgcggtgtt cgccggcaca ttggtacggt ccggcaccct gcgcgtccgt 2340 gcagcggcga cctcggacgg cacactgctt gctgagattt ccaggctgct cgatcatgcc 2400 ctgcaagcgc gctcgcgcta tctgcgcctc gccgaacgcg cgtcgcgact ctatgcgccg 2460 atcgttcaca tcacggcctt cctgaccatg ctgggttggc ttgcctctgg cgccaccttt 2520 cataattcgg tggtcacggc gatcgcagtc ttgatcatca cctgcccctg cgcgctgggt 2580 ctggctatcc ccgcggtgca gacggtggcc gccggcgcac tgttccgttc cggcgtgctg 2640 ctcaatgccg gggatgcaat cgagcgtatc gccgaggtgg atcgggtgat cttcgacaaa 2700 accgggacgc tgacgctgcc tgaactcgat gtcgccaatc tcgctggcat tcccgaggat 2760 gtcgtcaaat tggcgggccg gctggcgctg tcgagccgcc atccggtcgc cgccgccctg 2820 gcgcgtgctg ccggcgcaaa cgagccgttg gccgatatcg aagaggagcc gggacggggc 2880 gtccgcggtt actatgaggg cgcgccgatc cggctgggcc gccccttgtt ctgcggcgct 2940 gacagcctcg ctgacgagat cctgtgccat gatcccgagg cctccgtcgt cgcgttcagc 3000 cacggcgagg cgaggcatgt ctttgccatc aggcaaagga tgcggccgga cgcggtcgag 3060 gtcgtcacaa gcctcgcacg ccttggcatc atggtggaga tcgtttccgg ggatcgcgag 3120 ccggctgttc ggcgggcggc cgagacgctt ggcattcaca agtggcgggc caacgtctcg 3180 ccgacggaca aggtcgcccg ggtcgaagat ctgacgagca ggggatacaa ggtgttgatg 3240 gtcggcgatg gcttgaacga cgcgcccgcg ctcgcagcag cccatgcctc gatgtcgcct 3300 gtcaccgcta cccatatgag ccaggcggtc gctgatgcga tcttcctcgg tgcgcatctt 3360 gggcccgtga taaaggcggt cattgcctcg cgcggggcgc tgcggctgat gcggcagaat 3420 ctctgtcttg ctgtcgtcta caacgtcctg gctgtgcccg ttgcgatcgc cggcttggtg 3480 acgccgctga ttgccgccgc ggcaatgtca tgctcgtcgg tgctggtcat gcttaacgcg 3540 ctgcgggcgc gaagaggcga ggccctctga tggaagtgct gatctatctg gttccgctcg 3600 ccctttcact cggcttcctc ggtctgcttg gctttctgtg gtcgctgaag agcggccaat 3660 atgacgatct cgacggcgcg gcctggcgcg ccatcgccga tgaggagccc gatcagcctc 3720 cagtgccggt ccaaatagtg ccaacggacc agcgcatttg tggaagcggg cgtcgacgcg 3780 agtactaact cgcccgtcca ggcggtccac cgccgcaact gtgggacagg cgaaggtcgg 3840 acggttagca gcctgttgat ggcggcaggg cgccgtgatc agcagcggct gctcagtggc 3900 ccactcgcta tcgatgacca tagtatgaga gcgcgatggt gtctgccgga ttcaatgcct 3960 gatcccctct gagctggata caaatctcga ccctacctga agttctctgg ctaatcgcaa 4020 ttccctttct catggtgttt caaagacttg taacaacctg ctaggttcca acaacgatgt 4080 gtcaattagg agactggata cgccaattca tggccaaatt tctcgatacg aaaacctcca 4140 cgaaactaac aactgggaag gcgctgtagc tattgcttct ggacacatga cagagccttg 4200 cacctttgcg cgaggtctat gcttgcctcc tttttacggt cgtcgctgtg aaaaaactat 4260 gttagaagcc gctcctctca aaaggagcat tcattgtgaa aaaagcaacc aagaaacgcg 4320 ttaagcggcg cgagtggact aaggcagata tcaaagaact caaggtccat tcaaaggctc 4380 ggaccccggt cacgaaaata tcaaaaatga ccaaacgctc tgtcggtgcg ctacgccaga 4440 aggccttaca tctcggaatc ggactgggac atcagcggta gctaattggg ctgcgctgtt 4500 gattgctaca gtagggcggc tcccgggccg cccttattgg ctgttggatt gtgtcgcaac 4560 agctggttcc gcccaaccgt tgatcaacca gcttcgagcc cgggtaattt cctatcgatt 4620 tcagcgccgc gattgttgct gctgtccgag aacgtagcat tgtcggagct ttataaagtg 4680 aggtgatcga atccagcgaa ctcagtgagt acagtctgca ttcctgctac gacgaacgtc 4740 tggtctgctt ctcggcgtgt acctgccaga ggactggccg cttggttctg cagccgatca 4800 gctttgacga ggtcccggag tcctcagctg gctgatgaga ggagagcttc tcacctacga 4860 cgttaggggc ggttacctca acaaggagct tctccaacac agggcagggc gtgtgtgtcc 4920 acgatcggcg gcgcgtcaaa gatcttcgtg gcttcgaccg acgatcgatt tgcagatgaa 4980 gatgggcttt tcacaccacg tgctgggcgg agcctggcga tggcggagcg gcctcgagcg 5040 tccggcatct tcgatgagat ttttggaaag cgctttgtgg caatatctcg gcaaaaagct 5100 ggtgacacgc taagtcacat gagcccgcag atctaagcca gctctgcgcg atttgcttaa 5160 gcgcgagatt cagctcccgc cacatcgagg tctgtacaga cgacgcgccc gaaaccgctc 5220 aagaatgttc agctttcatc aggggtcggc tcgtagctac ctcgttgtta ctgcgacggt 5280 cccctttggc tgaccacagt tgagaaggtc gtcgttatgg cctaagagtg gattctgcaa 5340 aaattgggac gcggcgcagt catgggccca cgggttagcc gatagaaaca accttgcgag 5400 tggggcgttc ctcgaagatc atttgggcgc aagagtgccc cgcccagcct gctggtgagc 5460 tcgagcttcg gaacgatacg gcgcgctcag cagcaataaa aacagcgctc ggttggcttg 5520 atatctggcg gccgagcggc tgcgccctga gcccgtcatc atctgcttgc cctcgtcggt 5580 atgcacggac cacaaccacc ttcgtcggcg ctgcttcaag gaaaactcga agactggaag 5640 cgttgacatg gctacgtggc atcatttctg acggacgtgc gtttggtctt cggaaggcca 5700 gaaccgctct cgcggtagac cttctccaga cgacgcctga ctgcagccag cttggcaatg 5760 aactcgcttg atccgttaac cccgaattca tcagaagcga gctcatccag tgcttcctgc 5820 cctgccaaag atgccagacg tttacgagtt ttggctgtca gcgtcatctg cacgacccga 5880 gcgtcgcttg cgcagtgctt gcgccgcagg aatccatttt tctcgagcag ctttgaatgg 5940 gtcgtgacga aggaaggatc gacgtgcatc aactttgaaa ccatgttgac ggggacacca 6000 ttctctttcc ccaaataggc cacggccatc aggatcatcc actgtggccc ggtgatgcca 6060 aggacatcgg ctcgggatct cgcaagctct tcgagccacg cactgatcga tctgatctcc 6120 cacatgaacg gccggatcgt ctccagttcg tcagtagagg tactgccaag cgcgtttgct 6180 gggccaggca aatccggcgg catcgaagct ctggttccat cttttaccag cttgccttag 6240 cgcgaatgag aagtggcgac aacgccgtaa gagcaggcaa atcaaatgct tggtacggta 6300 cggacgaaag gggagtgtgc caatcatgaa ctggccggag cagttgcggc aacagagcgc 6360 tcattgtctt gacgaaccgg cggcatccac ttgtcgggtc gatcccacac gccggtaaga 6420 ttgatgcccc taccaacgag acgtccatgg tctgcttcat tggttactcg ccggcttgct 6480 cactcctttg ccggatcatc gagcggtcaa agtctcgagc gaggaacgtt agaacatctg 6540 cgccgcgtgt cgcgaaatct cgacgcgcca tctttccctc tgattaaagg atacgacttg 6600 ctcttcccac gcggtcggac tgcaatgtcc agcaccgcga gccgttgggc gcagaccatc 6660 agcctcgatg agatcgggcc gattatgcag aaagcgatcg ataagcgaca aggcaagttc 6720 aacgacgagg tccgccggtg ggctatcatc gaagccaatg caaattgctt ccgaagccga 6780 gacgatacgt cttgacgctc ggttgcctgg ggctagtgtc gtcgcttcac gccttcgcca 6840 acagtgttgt gtggtggttg cccgataaac cgcagtatag tcttctcatc cgattccata 6900 tcggcggctt gccttcgtat agttgagcgg gcttttggtc acaactagcc ttgcgagtag 6960 gcggcaggct gccgattgca attgccaaaa acgcttgcgc gattcatcaa ttcgacggat 7020 tcagaccatg aattgcaggc gcctccctcc tcgtatggca aagtgtcgcg agcgatcggc 7080 cgatgggaaa ttgcgcggcc gccgtcgtcc tcgagcgaac aagtgtgtgg tccggggggc 7140 gctttcctcg agcgcatcag gagcggtatt ttgagccagg atgcaaaccg cggggccacg 7200 gtctgctttc tgctcggcct tccacggtcc ggaacgacgc tgttggcgca tttgctccaa 7260 cagcatccgg aaattacagc tccaccagag ccttggctca tgctggctct tgaggcgttt 7320 ggcagggtgg accatcgtca cccggccgga acatctctga tcgaaacggc aacttccgag 7380 ttcttgggca ggatcgatcg cgctgccgtc agccgtgcct ttgcggatgc ggcgtacggt 7440 gcgtatctgt cctcggcggg caagcgcatc atcgtggaca agacaccacg ctactggatg 7500 gtgctcgact atttggatct tctttatcct gaggcgccgc atattcttct gatgcgcaat 7560 ccctacgcca ttgccgcatc cctgaagtcg acttggggag tcccccttca ggcgaaaagc 7620 tcccgttcgg tcagcttgtc ctcgcttgct gatctcatgc tccgcctgcc tgacgttatt 7680 gcctcttcgc ttgctgatct ggttctcggc ctgcccaaac tcgctgcgca ccgcgatcgc 7740 cggcagacga tggtggtgca gtacgaacgc ctggcggcgt gtccggagga ggaaatccag 7800 cgtctcatcg ctggccttgg ctgtgatcca aaagacaccg cagctacgtc gacggctcgg 7860 gccgattatc ttcactccag cagctttgga gatcggaaaa tccttgaaag aaggaccgtc 7920 gatgagaagt ctgtcgacgc gtggcaggtc caattgagcg tcgaagagat gcaaacgata 7980 accgatctga tcggcgtcga gctgatgata cagctcggat atgaagcgga attgcggcac 8040 gcacaacaag ccggagtggt tgataaaggg cgcgaggtca ccgagctata tcgtcagata 8100 tttcgaatgt ggtgggatct gcgcctcagc aaggaacggg catggtcgag catttcagcc 8160 aaccccctgg cattcggcgg ccaatcgaga actcatgctc cacaccaaat gcgtccacag 8220 ggcacgatgc gcagcatcta tccggaaccg acttcgacca aaatcaggag ctgacgagtt 8280 cgatggaggc gcagttgcgc atggcactct tggcttcgga atcggatcga ggtgcactgc 8340 aagaggccgt tcggcatcgc gacgccgtta tcgaggcgct gcggggcgag attgtgcggc 8400 tcaaggaggg gagcaacaat cacgagcgat gatcctccca ggactatggt caaaatgtgc 8460 tgcctgcctt atcgagctcg ttgtctagct ggcaagcgga agtaagtccg ccggctcgcg 8520 tgtccagccg cgcttcgatt ggttgctggc agacgccgaa cgaaggatgg acgctatccg 8580 ctgtttgacc cggtggacgc cgatgcgcta tggcaggcag ccgatcgctg caacgcctat 8640 cgggcctatc gcaaggcaaa cgcggtactg aacgaactaa agatcccgca tcgtagaaga 8700 cacatgctgc cgaaacatct gcgccgtctc gaagctgaat cgatcgaaat catgcgtgac 8760 gtggtcgccg agttcaaaaa gccggtcatg ctctactcga tcggaaaaga ctcgagcgtg 8820 atgctgcata ttgcgatcaa ggccttctat cccgcaaagc tcccgtttcc cctgcttcac 8880 gtcgacacga cctggaagtt tcgtgagatg atcagcttcc gggacgcgac agccaagcgc 8940 ctcggcctcg acctgatcgt ccatgtaaac gaggagggca tcgcgcgcgg gatcaatccg 9000 atcgactccg gctccgcgct tcatacccgg gtgatgaaga ccgacgccct gaagcaggcg 9060 ctcgacctcc acgaattcga tgccgccttt ggcggcgccc ggcgtgatga ggagaagagc 9120 cgcgcaaaag aacggatact ctccttccgt tcgtccgggc acgtctggga cccccgcaat 9180 cagcggccgg agctctggaa cctgttcaat acgcggattc gccagggcga aaccatgcgc 9240 gtttttgcga tgtcaaactg gactgagctc gacgtgtggg aatacattat gtgcgagaag 9300 atcccggtcg tcccgctcta cttcgccaag caaagaccga tcgtgcgtcg aaatggcgcg 9360 acgatcatga tcgacgacaa gcgattgccg cttcggtctg gcgagacgcc acaaatgcgg 9420 atgatccgtt tccgcacgct gggctgctat ccgttgagcg gggctattga atccgacgcg 9480 acgacgatcg aagacatcgt cgcagagatg cagactgcga cggtgtcgga gcgccagggg 9540 cgcttgattg atgccgatga agccgcttcg atggagaaaa agaagcggga aggctacttt 9600 tgatgcttgt caaggcgata acggagtctg tccaggccaa gccaaaggat cagctgcgat 9660 tcatcacgtg cggttcggtg gatgacggga agtcgacact gatcggccgg ctgctgcacg 9720 acagcaagat gatctaccat gatcagatga cggcgctgga acgggacagc gccaagcacg 9780 gcacgaccgg ccgtgagatc gatttcgcgc tgctcgtcga cgggcttgaa gccgagcgag 9840 agcaaggcat cacgatcgat gtggcttatc gtttctttgc gacggaacgg cgctctttta 9900 tggtggcaga tacgcccggc cacgagcagt atactcgcaa catggcaacg ggcgcctcaa 9960 acgcccagct cgctatcatc ctcatcgatg cccgcaaggg cgtgctggtt caaaccaagc 10020 gccactcgtt catctgttcg ctccttggta tccgccatct cgtcctggca gtgaacaaga 10080 tcgacctcgt ccactacagc aaagagagct ttgatcggat cgtcgccgac tatgtggcct 10140 ttgccagcga tcttggcttc gaatcgatcg ttccgatccc gatctctgcc aggtacggcg 10200 acaatgtcgt cgaccgctcc ggcaacactc actggtacga tggtccctgc ctgctcggcc 10260 agttggagag tattgatatc cggtgcgaca gctccgggca ggccttccgc tttccagtac 10320 agtgggtgaa ccggccggac ctggatttcc gcggctacgc cgggtccgtg gcttcgggaa 10380 gcatctcggt gggcgacgac atcgtcgtcg cagcgtctgg acggaccacg cgcgtcaggc 10440 ggattgtgac gcagggcggc ggtctgtcct gcgccgaggc cggcgatgca atcacgatca 10500 ccattgaaga cgaaatcgat atcggccgtg gcgatctcct ggcacgtccg accgagcggc 10560 cggagctcgc cgaccaattc gccgctcatc tgatctggat ggatgaggac cagctcgttg 10620 tcgggcgcaa ttacattctg cgcattggat cgcagaccat agccggcagc attaccgcga 10680 tcaatcatcg gatcgacgtc aatacacggg agcacctgtc agccgggacg cttggcctta 10740 acgagatcgg cttttgcaat atatcaacca cccggcctgc ggcgttcgat ccttacgagg 10800 ccaatcgcaa gaccggatca tttatcgtca tcgaccggta tacaaaccgt acggtcgcgg 10860 ccgggatgat cgcatgtcca ctgcggcggg cgaccaacgt cgcttggcaa cccgttgcag 10920 tgggacggaa ggagcgggcc gacctcaaga accagaagcc ctgcatcatt tggttcaccg 10980 gcctgtccgg cgcaggaaaa tcgacgattg ccaacatcgt cgatcaaaag ctgttcgcaa 11040 tgtcccggca tgccatgctg ctggatgggg acaacctgcg gcacggatta aatgcggacc 11100 tcggcttctc cgaggtcgac cgcatggaaa acattcggcg cgccggggag gctgccaagc 11160 tgatggcgga cagtggcttg atcgtaattt gttcgttcat ctcgccccac aggagcgaac 11220 gagacatggt gcgcagtctg gtcagcaagg aggagtttgt cgaagtcttt gtcgatacgc 11280 cgatcgaaga atgcgcgcgt cgcgatccca aaggtcttta ttcaaaggcg aagtccggta 11340 agatcaagaa cttcaccggc atcgatgcgt cctatgaagc gccgataaga cccgaaattc 11400 atctcaggac catggagcag acacctgagc aaatggccca ggccgtgatc gatgtgttga 11460 tggctcgcgc aattcttggc cgttagtgtt cgtcaaacct gtcacctcgc atcgcaccat 11520 cgatagcagg agatgccccc cactaacctg ctggcccggc cacggcgact caggttaagc 11580 aaaggcatca atcagactca ggctccaaag gaacaaaatg gttgcgtcca cacgtcgatt 11640 gcccgcttct ggttatgtgc tcgaaatcga cggtcaattg aaaaccgaat tcgcaaccag 11700 ggatggggcc ttcgcaggag cccaggagct caagaagcgc cgtcccatgc tccaggtcag 11760 aatctatgac gccaggacaa aggccagaga ggaagtccga cttccagtag cttgaagttt 11820 cgcttgatgc cgtttcccgc gcgtccgact agcgtcatgc ctaggctctc gtaaccgagc 11880 tgccggcgtc tcggacatcc agcttcgatc tctcgcgcac gatgaagaag ggcaactcgt 11940 tcctccgggt ctagccgcat ccggcgcaat tgtttgccag tacattgact tgggaagcag 12000 gagcagcctg tcccgacgct cgggcgctag gcctaccctc cggcgcgctg tcttcagttt 12060 gggccgtatc cctcacctgc gcgcgagctt caaagggccg tctgcggggc tggctgtgaa 12120 catgtctgca cgaggcgggc cggcagggga caatgcgaaa gccgcgggac aggctcgcga 12180 cgcgggtcgc cccccacact caattcatgc cggaccgctc acctcctcaa tgagcctgca 12240 gcttgctggc gtcagttctc gtggggaaaa actcgaccca aggccgctaa cggccccagc 12300 gagggggtag acgctaaggg cgaggctatc gctggctcga tttccggcat tttcgacgct 12360 ctgtcttgag cttgagcgac accggcctcg agccggacgc cggatcgaga gtgcgctcga 12420 catttggcag atctagcaga ggagccaacc gagcagaacg gctcgaagga gctagccgtc 12480 gaggtcaaac gcctcatgac tgcgggcagg ctcatcggtc cgcaagccgt tgagctgctc 12540 cgcgatcgag ttgagcattc gagctccacg acggcgcact ccccgcggcg acactctgga 12600 tcagccgtca accacgacac gcccaccgcc gtgatgatgg actgcgggac gatcctgacg 12660 tcgaactatg aaaactccga gctcgcttgc cgcaaatcac atcgttcagc cgctcgagtt 12720 ggcttatcgc tccttttgga ggtgcacgtc agaaaaaatt cacacgagaa gagttcggga 12780 gagggttgaa acgcacctaa cgtcaagttg tacgatctga aaatggacgg caaaggtcgt 12840 caacgtcccg aattctccaa cgagtgacag tatgcgaatg tcccaagtct caggctcacg 12900 caggatcagg ctcatcagca acggaacgca tcatgtccgt caggcgcgga tcgatatccg 12960 cacgcgatgg acccgatgtg cacgttcgtc cgaacctcaa cgttcgcctg aatgcacggt 13020 ttggcgtaaa ccgatcgacg cctagctagc aatgcgatgg cgctcaaatc cttgcatgca 13080 tgatgtggtg ggctgctggc gatgcttgcc cgcgcctatg gtgtttctcc cagcagcaga 13140 tgaatcgaga aagcctgcgc ccaagggggt gaggtcgcat catcgcgctt cagatccatc 13200 gacgaatacg gtttaagggg aattggtgtg actagacaac gctctctgct gacgcctggt 13260 ccattgtcgc tgtcgctggc ggtcaggagc cagatgctgc tcgacctcgc atcgcgcgat 13320 ggtgagttca aggaagtgac cgcccgcatg aggcggctga tgctcaatct gctgggaggt 13380 gccaaggact attcggtggt ccccattcag gggggcgggt cctttgcaat ggaagccgcg 13440 ctctcttcat tcgtgtccag gaacgacaag ccgctcgttt gcataaacgg catctatggc 13500 gagcgcattt tcaagattct gcggctgtgg ggcgtcgaag cgctgaagct tgtcaagcga 13560 gcgaccgagc ccctggagcc ccaggaagtt gccgagcagc tgagccgaaa tcccggcgtt 13620 actcacctat gtcttgtgca ttgcgagaca acaaccggaa tcgtcaatcc ggttgacgcg 13680 atcatagagg aggcgaggcg gcgtggtgtg aagacgatcg tcgacggcat gagctctttt 13740 ggcgcgattg acatcgacct aagccgtggt ggaccggatg tcctggtcac atcgagcaat 13800 aagtgcatcg aagggccgcc aggagtagct tttgtcatcg cgtctcgcga gctgctggaa 13860 aaagcggttc aagaaccaag gtcatttgtg ctcgacgtga gagaccaatg gctctcgctc 13920 gagcgtaccg gagagtggcg atcgacccca cccacccaca tcgttcaggc aacaacgaag 13980 gctttggaga ttctggaggg ggagggcatt gatgccaggc gccgcaggta tgagaaggtc 14040 agagacgatc tcgtccaaga actcgaaggg gtagtgtctc cgctgctatc cgccgaattg 14100 cagtctccgg tctgcgtcgc gttcagggcg ccgtccggaa tcgcggatca ggcaggcttc 14160 gatgggctat atcgtcactt ggcggcccac aatctttata tctactcgaa gctgcatctt 14220 gcgacgcgga gttttcgggt cggctgcatt ggcgagatcc agcccagttg gatcgagcag 14280 ttggggtgcg cctttcgtac atattttcgg tccggcccgg cttcatccat ggggacgccg 14340 tcaacccgcc aggcctgcga gcgtggggtc gagatgtcat cgtccttcgc aaaggactcg 14400 cagctgccgt tctctgccga aactgctgtt ctgcacgccg gctaccgacg cgatccggtg 14460 acgaaagctg tcgcagtgcc gatctatcag aacacggctt acgaacttga tggcgatctg 14520 aatcacattg cggacgtcta taacgtcaag gctgatggat tcacctatac gaggatcatc 14580 aacccgacga cccgcgcgct ggaaaaaagg tatgccgcgg tcgacatggg aagcgactcg 14640 ctcgccgtcg catcaggtca agcggcaacc ttccttgcca tcgtcaacct gtcaagcggc 14700 gaggtggggg acaatatcgt cgcctcaccg tatctctatg gcaacacgtg gaatctgctc 14760 cataacacgc tgaagcgtct tggtatcagc gtcagaacgg cagacccccg aaggcccgag 14820 accttcgaac gtgccatcga tgatcgcacg atctgcctgt tcggagaggt gatttcaaat 14880 ccttgcctga ttccgcttcc ggtcaaacag ctggctgaga tcggccgaaa gcacggcgtt 14940 ccgttggtgg tggataatac gacgaccccg ctggtatgtc ggccgtcaga tctcggtgct 15000 gcgattacga cctactccgc tacgaaatac atatgcggcc atggcacaac gctgggcggt 15060 ctgatcgttg acaacggcaa gttcagctac cgcggcgcct ctcgctttcc cttgttcaac 15120 agtcctgacg aggcgcatgg cgggatcatc tggcgcaacg cgctgcaaga tgtcgacgat 15180 ctcggaaaaa gcgaggttct cttgaaggct cgcatgacct ggttgcgcga tactggcgcg 15240 gccattgccc cctttgcgag ctttcagctg atccaaggcc ttgaaacgct gccccttcgc 15300 atgaagcagc actgcgcaaa cgccaggatc gtggccgacg ttcttaagga gcatccaaaa 15360 gtgcgccgcg tcttctaccc ggggctgttc gagggagccg atcgggaaac tgtcgaccag 15420 acactcaatc ccgcatacgg acacggcgcg atggtcatgt tcgaagttga ggacgagcag 15480 gccgggcgga aattcatcca gaatgtcgac ctgatgtatc acgtctcgaa tgtcggggac 15540 gcccgtacgc tcgtaacgca tcctgtttcg accacccaca ccactgttcc gcgggagaag 15600 cgcgaagccg ccggcatatt tggcggctcg atccgacttt gcgtgggcat cgaagatgtc 15660 gacgacatcg tgcgcgatct ggacagggcg ctttccgcaa tctgacaact tgtaaggcga 15720 tcaggaggag gttctcatga atcaggcaga cgcttggaaa ctgaggtcgt ctcgttatga 15780 ggctgttcag ttcagccggg agatcaataa gcaattgtcc gagctgaggc cggacaatgt 15840 gatgggagcg atctacatcg ccaaggatta cgctgtaatt gccgcttgca cgctcgcgac 15900 gctctgcgtc tcctggtggc tgtacccgct cgccgttctt ctgatcggtg cctaccagcg 15960 cggcctgacg acgatcgctc atgatgcggc tcaccgtacg ctcgcgaaga acacgacctg 16020 gaactacgtc ctcggcattc tgttcgcggc ctatcccctg ttccagcgcc actgggccta 16080 ccggatctcg cacgtctatc tgcatcatcc gtatctcggc gacccggaga aggatcccga 16140 cctgaagttc ttcatggcca atggtgttta cgacgtccag cctcccaagc ggtacgcctt 16200 caatatcatc tggaagccga tatttggtgg cgcgacactg gcctacctga agtatctctg 16260 gaccaaccgg ttttcgatca cagattccga ggaccagagc cggtcaagca tacttgtcga 16320 caagtatggc ttttacctct tctggatcgg catcctggcc ggatcatacg ctcttgggct 16380 gctccacatc gtgatcctgt tttggatcgt cccctatctc acaacgtttc aggttcttgg 16440 ctggtttgtc gagctcgccg agcactcgcc gatgtgcgag agcgaaacga agaacgtcta 16500 tctaaccagg aatcggaaag gcaatttcct ggagcgggcg atccttggac aaaacctgga 16560 cgagtatcac ctcgagcatc acctctcgcc gggtatccca ttctggctgt tgcacaaggc 16620 ccagaagatc cggatgcagg atccgggtta cgcaaaggtt gccgcgagct ggggagggct 16680 cttcgtcaag gggccgcaag gtcaacccag tgtcataact cagttgaagg agcgaaatcg 16740 acgcttgtat gagcaatcgc ttgctgatgc ccatgcgaag gggcacgtgg cgtgacattg 16800 caacgctcag acaacgctcg cgccgtggtc ggcgtcacct cgaaccgtct tttggtcgat 16860 ggtgtgcatc gcgactggct acggcaaaaa tacctcaagg ccctccttca tcatgcgggc 16920 gtggcatgcg tcatattgcc gacgatcgac gcggaagatg tgaggctaga ggtcggcctg 16980 gcgatcatgg gcgcgctcga cggtctggtt ttgacagggg atgaatcgaa tattgaccct 17040 gccgtcttga aggcacctgc atcacttccg ccggctgacc aacaggacgt tgatggtgga 17100 attcgtgacc gcccgcggga taggctctct gcggtagcca ttgggagcgc catcgcgctc 17160 ggaatgccga tcttgggcat ctgccgcggg cttcaggagc tcaacgtcta ttttggcggc 17220 actctccatc catcgcttgc tgagtggaga ctgggaagtg gcctgatgca tgccgagaaa 17280 ccagatcgtc caagagaccg tcagtacgat gccgcgcaca gcgtgaggat atctcctgat 17340 ggtgcgctct ttccgatcgt gcgcgccatc gaagcgcaag tgaactccct gcataatcaa 17400 ggcatcgagc tgcttgccgc cgcactgagg cgcgaggcat gggcgcctga cggactggtc 17460 gaagcggctt cggtcatcgg cgcgccgacg ttgcaaatcg gtgtgcaatg gcaccccgaa 17520 tggcacgcct caactgatct cctgagccag cgactgttca cggcttttgg agaggcgtgt 17580 gttgcgtact accaaacaaa gaaacattag aggcggattg tgacgtttca aaccaagcgc 17640 ggtccgccca ggtcgaaagg tgagtcttcc ggaactggtg gacaagcgtg gtccgggggg 17700 cgggccgcgc cgccccgccc gcagaggacg ggtgggcgat tgacaagacg cttcgctctg 17760 ggagttctct ttgtagcgct ctatgtcgtc ctgagcgcgg caggcgaagt ttatgcggca 17820 tcgtattttc agcgggcgga tgcgttcgtc gctctcctcg tgtcctttgc cgcggtctgt 17880 ctgacattta atctgctggc aggtcacgag agagaaacgg cacgggttgc gaagtcggcg 17940 ctcctggtgt tcgtgtcgct caatgtcgtg accgcgatca gttggatcgg gttgtttatc 18000 ggcctgaaat acaccgaacc ggcgatcgtc gtcgcgttca tggtggcgct aggacccgct 18060 gcgacggtgt ggttaaacgc gctgatcagg cgccagggcg ttcctccagc atccgatatc 18120 gtcgtgagcg tgacgatcgc ggcagttgga agttacatga tatggatctc ggcaaccggc 18180 aacgctggcg tggagtgggg agctcgatcg tccttcggca tcgtcttggc aatcgtggcc 18240 ggcctatcgc tcgctcttac aaatatactc gtcaagctgc tattcgaccg cggattttcg 18300 ggtcgacagg tgttggcgca tcgtttttac ggaacgatcc ttttgctgct gggactggtc 18360 gaccattcct ccatcgtgct cgagatctcg caacattggc ttgcgatcgc aacgattggg 18420 ctatccacga tcatcgttcc attgctcttg ttccaggagg gtattcgccg cgtcgagccc 18480 ttcacggtca acatggtcct gtccaccgct cctgtcatca cgtttctgtt ccagtacttc 18540 gattctcgta tcgtgccttc gccgcatacg ttcgttggaa atgttctcat cacggctgtt 18600 gccgtcggca acgtctgttt gcagtaccgg aggtccgcat gaacgagcga aactgtgtaa 18660 tcgtcgacgc atattcgacc ggccgcttct tgccggaaga gttcaagcgg tatggaattt 18720 caacagtgca tgtgatgtcg gctgcacaga ttccgtcgat ctttcaatcg catttcaatg 18780 ctaatctgta tgatgaagtc attcgcccgc ccgagcgcat ggggtacgac gagatcgttg 18840 aatatcatct tcgggctctc cagggcaggg agctggagtt cgtcatagcg gggtgcgaga 18900 caggagttga gctggccgat tcgatctcgg agcggctggg cttgccttca aatggcaccg 18960 ccctttcggc cgcccgacgg gacaaatcgc gcctgtctga agcgttggcc tcagcaggcg 19020 tgcgatcgat cagacaagtg gtgtccgaca atgctgaagt gatcgcaaga tggaagcgtc 19080 aagagacctt cgatgagctt gtgatcaagc cgctgaacag cacaggcacg gaggacgtgt 19140 tcttttgctc gacggatgcc gatattcagc gcgctgtaac cgcgatcgtc ggtaagacga 19200 accgtgtcgg aacgctcaat caattggcgc ttggacagga gaaaatcaac ggccagcaat 19260 ataccgtaaa tgccgtctcg atcgacggcg agaccttcgt cacggaggcc tggacctatg 19320 acactgttcc tattgagggc gcgtcttcgg tctgctcact cgagcggtta ttgggaggta 19380 aggagccaat cgttcttgaa ctatccgact accttgaacg tgcgctgcgg gcgcttcgga 19440 tcaccgacgg acctgctcat gccgagatca tcgtcgatga tcggggaccg gttctggtcg 19500 acttcggagc gaggctgcaa ggaaccatgt cggcaaaagc caggacgatg gcgttgggcc 19560 ataaccattt gacgctcacc gcgtggcgtt acgcagatcc caaaggcttt gctgggtata 19620 tgaggcgacg cggggtttac aagcggcagg ctcatgcact gtgcgtctcg ctgatctccg 19680 acatgggcgg tgttgttgcc ggctatcccg gactcgatgc gatcggcaag ctgccgagct 19740 tcgcggatgc cattgcgttc gttccgatag ggcaaaacct ggttccgacg atcgacttgg 19800 cgtcgacgcc aggcattgtg tatctcgtga acaacgacct gatacagctt gaggaagatt 19860 atcgccaact gcgtgcgatg cggatggacc aggtgttcga tttggtgccg caggaagcga 19920 accaatgacc ggcatctgcg acagttgcac gaattcagcc gctgcggcga tgatcggtgt 19980 gagcgacttc gatggcatcc ttcgaggcaa acacgtcctg ggtgaagatc tttccgtcgg 20040 gaataaggtc atcaagttct ctgaagcggt gctcgcgtgg gattgttcgg accgcgtcat 20100 tccggcgggc ttcacgcaag agccgcagtc agtatttggg gacgccgatc tgcgcgttct 20160 gtccggcacc ggccgttcgg tgtcttatgc cggcgatcaa tatctctatc tggctgagtt 20220 tgcgggcgca catgagagcg tctgcccgcg cggtattctg cgtaaagtcc tgcaaagggt 20280 tgccgaccgc ggatacagct gcagcgccgg gttcgagttt gagtttatgc tgttcaagga 20340 gaacgccgac ataattgaag acaagccgtt cggccaatgg gctcctttga cgcggggccc 20400 attcggctac tcgattgcgc ggtctgtcgc gcacagggag ctgttcggtg agatcctggc 20460 gctttgtgag aagtccagaa tccctctcag cgggctgcac tttgaaacgg gaccaggcgt 20520 gattgaagcg tcacttcgtc attgtgatgc cctggaagcc gccgatcgag caatcatatt 20580 caagtcgatg ataaaggcct gggcgcagac gcgcggcatg atggctacat tcatggccaa 20640 ggtttcagag aattggccgg gccagtccgg ccatattcac gtctcgatgt ccgcagatgg 20700 tcagaatgtg ttttacgata gtgaggcgtt tcgcaacgtc tcgaagctca tgaggcaatt 20760 catcggcgga caattgaaat acatgaatga tttctgtgtg ctcgctgtgc cgaatttcaa 20820 tagctacaag agattggtac ctggttgttg ggcaccaatc tatccgagct ggggaatcga 20880 caaccgatcc tgcgcggtac gcgtcattcc gggagacccg tctgcacatc gtctcgaata 20940 caggctgccc ggtgcagacc tgaacccata tcttgccctc gcatgtgcca tcggttccgg 21000 catattgggt atcgagacaa acgcggcgct cccggcttcg atcgtcggtg atgcaagcgc 21060 ggaggcctgc cttccgtctg ggaggctgcc tcaaagcttg gcagaggcaa catatcggtt 21120 tgcacagtct ccggcagcca atgatgtctt cggtgaaagg tttgttgaag cgttttcttg 21180 ctcccgccgt tgggaatggg aggccgttca acatcgggtc acagactttg aacgccggcg 21240 gtatttcgag atcatttagc cagcttgagc tgtacagacc ggcgccttcc aagcatcaac 21300 tgatcggccg gtttcaataa gtcatccatg ctctcattta gcagcaggcg gacgagcgct 21360 ccaattggtg agttgctcct cctccttgga gggaaggctc ccgcgtcttg cggccgatga 21420 aggcgtccgg cctggcactc taagtaattc cgcagcccgc gagatcagct cacaaacgcg 21480 ccctacgtaa tcttggaaag cctcatggtg cacgcgcgaa gcgcgatcgg tgtcggccat 21540 ggccgcgctt attgcttcgg cagcgggcgc gcgctcggtc tcccagccga cagcgtgacg 21600 cagacaatgc gccgatgcat cctatgttgt taagggaact aaggctttgt tgctcttatc 21660 gtccgctcga cctcatcggt cagtgtccga tgatgagctg ccagcttggc gaatagctct 21720 ttcttagtcg gactggtcgc cagcttgctg attagctcac actcttccgc ctcgatccga 21780 agtttttcca agcgcgcctg catgttcttc atggaaggcc tccccgcaag aggcggggat 21840 catctcatgg ggaacctgac gggaacaagc tatgacaaca gacggcgacc gatggaaaag 21900 atgggctgag cacatcccgt tcgtctaatc cgaactagga cacgccaaga atcaaatcag 21960 gacacggggc ctggatacgg atagcgctct actcgtgctc gttgtggcaa ggacacgccc 22020 tgcgacagat tagagcccgg tgaaaaaccg gacagacagg ctagccaata tctgcgatcc 22080 tctccgacat ttcaggacgg aacaattttg gggagtttcc aatgcccgcg tggtccgcag 22140 cggacgaaca gcgactactg caattggttc gagaaacagg cctcacgcag cgcgagatcg 22200 ctcagaagct cgggcggact gaggcagcgg tgagcgggcg attgatcctt attaggaagc 22260 gcgccgcgga gagggcggat taaccccaag tgcggagcca atttttgtaa ggattcaacg 22320 caacgccgcc cgcttaaaat acatgcgagc ggcgcttgct ctagccccag gaaggttgtt 22380 ggcaaaatcc tgatacgtac actttggcac aaaatgcaaa tcgcgcgcat acctaagaat 22440 ggttaacgcg tccgtaagaa tacgggaaaa agtggcaaag ctcggttccc ttgctcggcc 22500 cgcctcttgt gcgccaatta gcatacgctc acagagagcc agctcatcct gcgaacacgg 22560 tcaggctcga ccatatcgac caggtggcgt gaggctttct cagcttcgct gcaaatcgtt 22620 cgtcgttccc cgtcgtcggc cttcttctca tccaataagg cgatcctttg gcttaacgtc 22680 gactcggcct cggcgggtaa tccccttgct gggtacgccg caggctcgtg gatcatttgc 22740 cgcgcggcga acaggatgga agtggagcgt cgaccatgat gagaggnnnn nccgggctcg 22800 tgacgcaggg agggcgtagc ccgaccggag ttacgagccc ggcgtcggcg cgatccacag 22860 cggaccgcgc cnnctggtga tcgcggccgg ctggttatgc aagtggttct tccgccaaga 22920 ggaatcactc gcgtgccagg ccgacacatt accgatcacc aaatgaggct ctacatgaag 22980 taccgtcaga ccgatagccc gcccgtggcc gccgccaagg cgtcgttcag cacctcgacc 23040 gcttaccgga tcgagcagga tcgacgcctt ccgtcgcaga agaaggctcc tcgcggccgt 23100 cgccggccag atcccttggc ccgcgtattt gagacagaga tcgtgccgat gctgaaggcc 23160 gcccccggtg tgcggccggt cacgatcttc gaggagttgc tccgacgcca tcctgagctc 23220 ggcgccggca tccgtcgcac gctggagcgc cggatccggg cctggcgggc gatccacggc 23280 gaggagcagg aggtcatctt ccggcagacc cacgaacccg gtcagcgcgg cctgtccgac 23340 ttcaccgaca tgggcgaatt gggtgtcacg atcgcgggcg tgccgctcga ccatcgtctc 23400 tatcacttcc ggctggccta ttccgggttt gagcacgccc atgtcgtgct cggcggtgag 23460 agcttcatcg ctctggccga aggcctgcag aatgccttgt ggtcactcgg tggagcgcca 23520 cgggagcatc gcaccgacag cctgtcggcc gccttttgca atctcgaccg cgacgccaaa 23580 gacgatctga cgcggcgata cgaagacctc tgtgcccatt acggcatgcg cccctcccgc 23640 aacaatcgtg gcatcgccca cgagaacggg gcgatcgaga gttcgcatgg ccatctcaag 23700 cgggcggtcg gcgacgcgct gttgctgcgt ggcaccgccg acttcgacga tctcgctgcc 23760 tatcgtggct tcatcgatga gatcgtcagc cgccgcaatg cccgcaacgc caagcggatc 23820 gacagcgaac gtaccgcact tcaggatctg ccggaccgcc gcacgtcgga ctatgaagag 23880 gtgatcgtcc acgtgacatc gtccggcggc ttcaccttgc gcaaggtgtt ctacacggtg 23940 ccgtcgcgct tgatcggcca tcggctgcgg gtgcgcctgt atgacgatca cctcgacgtg 24000 tttgtcggcg gcacgcatct cctcaccttg ccgcgcgggc ggccgcatcc caatggcaag 24060 cacgatcagg tcgtcgatta tcggcacgtg atccattcct tgcggcgcaa gccgatggcg 24120 ctcctcaacc tggtctaccg cgaccagctg ttcccccggg aagcttaccg ccgagccttc 24180 gacgtcttgc gcaaacgctt accggacaag aaggcctgcc ggatcatggt cgatctcctc 24240 gcactcgccc atgagcgcgg ttgcgaggcc gaactcgccg atcagctcac ggccgacctg 24300 aacgacggcc ggctgcccga cctcaaccgg ctacgtactc acttcgcccc ggatcccgcc 24360 cagatgccga acgtcgtggt gcgcctcgca ccgctcgcca cctatgaatg cctcatcggt 24420 actgccgaga tcggaggtgc cgcatgagca caaccaacgt agtcgacacc gcgcgcctca 24480 atctgttgct caacgagctg cggctgcccg ccatcaaggt gctgtggccg caatttgccg 24540 agcagtccga taaggaaggc tggccggcgg cgcgcttcct cgccaccatt gcagagcacg 24600 agatcgctga acgcagccgt cgccgcatcg agcgccatct cgtcgaggcg cggctgccca 24660 ccggaaagac ctttgacagc ttcgacttcg aagccgtacc gatgatctcc aaggcgcaaa 24720 tgaccgcgct cgccgccggc gacggctggt tgaacaaggg cgccaatctg ctgctgtttg 24780 gtccgcccgg tggcggcaag agtcacttgg cagcagcaat cggcttggct ctcatcgaga 24840 acggatggcg cgtcctcttc acccgcacca ccgatctcgt gcagaagctc caggtggcgc 24900 gccgcgaact caacctcgag ggtgccatca accgcctcga tcgcttcgat ctcgttatcc 24960 ttgacgatct tgcctatgtc accaaggacc aggccgagac cagtgtgctg ttcgagctca 25020 tcagcgcacg ctacgagcga cgctctttgc tgatcaccgc caatcagccc tttggagaat 25080 ggaacaaggt ctttccggac ccagctatga ccctcgcggc gatcgatcgc cttgttcacc 25140 acgccaccat cgtcgagatg aacgtcgaga gctatcgcag gcggactgcc ctcgagcgaa 25200 agcgtggtcc agggcggcca ccggagcacg cgacacaaaa aacgctcgct tgattgacgc 25260 tccgcgacaa tcaaagcaaa caaaactctt gcgcgcgaca atcatcgcgg cgatcatcat 25320 cgcgccgcga cactgactcg ccatcctgat cgccgcgctc ttccgaccca gatcgtcgcg 25380 ctataatcat tcccgttgcg agcgcgtgag cagcttgggg ttttccttgt aacccgacga 25440 actccaggtt ttcgatgccg aagtcggtga acgcctgaac gccatcttcg ccgacgccat 25500 agacccagat caagccgtcc tcgatctgca tttcgatggc aatgtcgcta acccagtctt 25560 cgtcttcacc aagaggcctt cgccggtgag atatacttcg tcaaacgata ggcagcttca 25620 ccggcaccca caatacagtt tcacacccat tcgtgaggac cggcacacgg ctcatcaagc 25680 tgcttgaggc caaaagaaga ggccgtcaag cggcctgcgt tggttctaca tgaatagggc 25740 aatagccatg attgcgatgg ggctcagccc gagcgccacg atgagcgcac taaaaggtat 25800 atcactgccc atgacacaac cctcgcgatt aaggttgaaa tcctatgccc ggatgctggg 25860 tggccgctag tgcaatttgt gccacggcaa tttcaagaca cgaagcttct ccggagcgat 25920 aagtgctcga tgcagccgtg aggcgccgga actaagtcga agtctcgact tgcgtcagcg 25980 ccgaaccccc tggagagcgg ccagccttta ccttcgatat cgggattgag cgaaatccct 26040 cgccgggatc aaaacgcccg tcagtgcccc aaggatcgct cggcggatag cagttgccga 26100 tccgccttgg ctagatccct tgctccgatt ggcgaaaacg aacgcaaaag ggcggtaccg 26160 gtcggaagca gattgagcgt cggctcggag cagcaatgaa gaggtcgcta ggaatgatgc 26220 tcgcgcgttg agcgttggtc gtcgctcata agaagagcgg catcggcgga tgaacgtgcc 26280 ccggctcttg ctcccaaaag ggctggggcg cattctggct cgttgacaag cgcttttcca 26340 ttacgtgggc tagagcgccc tgttgatcta tcgaaagatg ggttaaaggg tttgtgaagc 26400 tttcgtcctc gatgctgcgg gcgtttttcg ggctactatg ggttcactag ccaaggtgat 26460 gacgaggcaa aaaggcgggc taatatctga atgtccacga gttcatcgag cgttggactg 26520 accatcggcc agtcgttcgt atgaaacgcg ggtccgagtg agctagccag ccggaggcct 26580 gattggactg gccttccgtc cttggcgacg gcaatcccat ttcctgagtt cactttcatg 26640 cgtagccgtt cgctcgaact cgtgcgcgcg ctggatactc ggcaaccatt ttcatcggat 26700 ggctccgcaa acaccaagtc cagcgggtgc tgtctcttac ctgtcgccct ggctctgcaa 26760 gatttgcttc atgaactcag cgcgctcctt tgtaagtttc tcagctcgat caccattctg 26820 tagcagtgct ggacccttgc gttctcgatc gtagaccatc cagcccgtcc ttcccattcg 26880 aacaaggaat ctggattgcg tagggtgttc ggcgtaattc actggcgccc ccaataggca 26940 ggtgcaatcc cacaattggg ctttccgcca gctaagcggt cattgaacta tgtgaatttt 27000 ggcaatcgac tttagacgaa taggtttacc aggcacattt ccattaggac cgttgctgtg 27060 gacgggaaga gcagcaattt ttccgccaag gttagactga gaaacttggc tccgagccgt 27120 accgcggctt cgctgcggtt catctcagcg gcacggtcga cagcgtagcg gccgatgatc 27180 ttttgcagag cgccgtagcc ctcgacaaga atggcccacg caaagccagc ccaaagtaca 27240 aatgccgttt gcgctagccc taaaccgaca cggaatctag gcggcttcga acgctggcgc 27300 gagggtatct cgctcaacct atcaccctac aacggctgca acaacaccgc gagctgctgg 27360 ttcgtggcga gcggctctcc tcgaacggcc cgctcacatt gggcttctcc acgccttggt 27420 caatatcgtc ggaacggttg cacacctcgt tgctgcacta cactgcaagt cgcgcgggtc 27480 tcgtcagatg cgaatggttt tcacggagcc agcccagccg ccgcagaacg gacaattgga 27540 gttgatcatg ccgcaagcag acgcttgtag cggcgataag cgtcgatcgc attgttcgca 27600 agcatgagct gccgatgctc tccagcccgc accatgtcat cgatatttct gagaagaaag 27660 cggctcacat cgccaggatc tgtgatctcg ccggagcgtt cgagcaagtc ccaggcgatc 27720 tggatcgacc tctccacgag gactggcaac gattcactca tacgagacaa aacagacgtc 27780 gatatcgatg gttcctgttg taaatgccgg cggatcgcgg ctccagccgg acaacatagc 27840 ttaccgtcgg gcaagacgcc gcgaggggcg cctcaggact attggcccgc cgatgtctgg 27900 actgcctatt cccgcctctg ctgaacgtgc aatattggat catgaaagca cgaaatcgaa 27960 gtctgctcat ctttcttgtt gccgtcgtgg gtattggttg gctaattggc gcaaccaact 28020 tgcctggtgc atggtatgcc gcactgcaga agccgacatt caatcctccg aattgggtgt 28080 tcgcgccaac ttggacaatt ctgtatgtga tgatcgcaat cgcgggctgg cgcacctacc 28140 tgcaggaggt caatggcctg gccttgcagg tttggctcgg acagatggcg cttaattttc 28200 tttggtctcc tattgttttc cgcttgcaca acttggccat ggggctctcg gtcatcattc 28260 tgctgctggg cctgattctg ttatttatag gcctgcaatg gcgggccaat cggcttgctg 28320 cgctcttatt tatcccgtat gcgggctggg tagcgtttgc atcgctttta aactttgctt 28380 tgtaccgcct taattgaatt c 28401 <210> 2 <211> 281 <212> PRT <213> Bradyrhizobium elkanii <400> 2 Ile Leu Thr Ala Leu Thr Tyr Leu Leu Ala Gly Tyr Met Arg Glu Gln 1 5 10 15 Val Cys Val Tyr Met Cys Pro Trp Pro Arg Ile Gln Ala Ala Leu Thr 20 25 30 Asp Glu Trp Ala Leu Asn Val Ala Tyr Lys Tyr Asp Arg Gly Glu Gln 35 40 45 Arg Cys Ser Leu Lys Lys Ser Phe Asp Leu Arg Ala Arg Gly Glu Arg 50 55 60 Val Gly Asp Cys Ile Asp Cys Asn Gln Cys Ala Ala Val Cys Pro Thr 65 70 75 80 Gly Ile Asp Ile Arg Asn Gly Ala Gln Leu Gly Cys Ile Gln Cys Gly 85 90 95 Leu Cys Ile Asp Ala Cys Asp Ala Val Met Lys Lys Ile Gly Arg Lys 100 105 110 Ser Gly Leu Ile Gly Tyr Asp Asn Asp Ile Asn Ile Arg Arg Arg Met 115 120 125 Asp Gly Lys Pro Glu Leu Phe Lys Pro Val Arg Pro Arg Thr Leu Val 130 135 140 Tyr Ala Phe Leu Ile Thr Ile Ile Cys Ala Val Met Val Tyr Glu Leu 145 150 155 160 Leu Ser Arg Thr Met Leu Asp Leu Ser Val Leu His Asp Arg Asn Pro 165 170 175 Met Ala Val Arg Leu Ser Asp Gly Ser Val Arg Asn Ala Tyr Thr Val 180 185 190 Arg Leu Leu Asn Arg Arg Asp Phe Asp Arg Val Ile Ala Ile Asp Ile 195 200 205 Asp Gly Pro Pro Lys Thr Ser Val His Val Val Gly Ala Asp Ser Val 210 215 220 Thr Val Asp Arg Pro Met Ile Val Leu Ala Arg Asp Thr Thr Thr Glu 225 230 235 240 Leu Arg Val Leu Leu Thr Ala Pro Val Asp Gly Met Ala Glu Arg Ser 245 250 255 Met Pro Val Arg Phe Arg Val Thr Asp Leu Gly Leu Gly Glu Val Ala 260 265 270 Ser Ala Ser Asp His Phe Val Leu Pro 275 280 <210> 3 <211> 166 <212> PRT <213> Bradyrhizobium elkanii <400> 3 Met Thr Ala Ser Asn Gln Val Thr Trp Pro Ile Thr Gly Arg Phe Val 1 5 10 15 Leu Ile Ala Ile Leu Ala Phe Phe Ser Val Val Ile Gly Ala Asn Leu 20 25 30 Val Met Met Arg Phe Ala Ile Val Thr Leu Pro Gly Thr Glu Val Asp 35 40 45 Ser Ala Tyr Arg Ala Ser Leu Ala Tyr Gln Arg Glu Ile Ile Ala Ala 50 55 60 Arg Gln Gln Asn Glu Arg Asn Trp Gln Val Gln Val Tyr Ile His Arg 65 70 75 80 Gln Ser Asp Gly Glu Ala Glu Leu Ala Ile Glu Ala Arg Asp Arg Leu 85 90 95 Gly Ala Pro Leu Ala Gly Met Asn Phe Val Ala Arg Leu Glu Arg Pro 100 105 110 Val Asp Arg Arg Ala Asp Arg Ala Ile Asp Val Ser Gln Ala Asn Ala 115 120 125 Gly Ile Tyr Arg Gly Ser Ala Ser Gly Val Ala Val Gly Gln Trp Asp 130 135 140 Leu Val Ile Glu Gly Asp Asp Asp Asp Arg Arg Met Phe Leu Ser Lys 145 150 155 160 Asn Arg Ile Val Leu Asn 165 <210> 4 <211> 728 <212> PRT <213> Bradyrhizobium elkanii <400> 4 Met Gln Ser Asp Ile Asp Phe Ser His Phe Leu Lys Arg Thr Gly Ala 1 5 10 15 Gly Arg Leu Gln Leu Asp Leu Ala Val Glu Gly Ile Ser Cys Val Gly 20 25 30 Cys Met Gly Lys Ile Glu Arg Asn Leu Ser Ser Ile Pro Asp Val Thr 35 40 45 Ser Ala Arg Val Asn Leu Thr Asp Asn Arg Leu Ala Leu Glu Trp Lys 50 55 60 Ala Gly Ala Leu Asp Pro Ala Leu Phe Val Lys Arg Leu Ala Glu Leu 65 70 75 80 Gly Tyr Arg Ala Tyr Pro Phe Gln Arg Asp Asn Ala Glu Thr Leu Glu 85 90 95 Ala Glu Arg Ala Gln Glu Leu Leu Arg Arg Leu Gly Val Ala Ala Phe 100 105 110 Ala Ala Met Asn Val Met Met Leu Ser Ile Pro Val Trp Ser Gly Asn 115 120 125 Val Ser Asp Met Leu Pro Glu Gln Arg Asp Phe Phe His Trp Leu Ser 130 135 140 Ala Leu Ile Val Leu Pro Ala Ala Ala Tyr Cys Ala Gln Pro Phe Phe 145 150 155 160 Ser Ser Ala Phe Ala Val Leu Arg Ala Arg Gly Thr Asn Met Asp Val 165 170 175 Pro Ile Ser Ile Gly Ile Leu Leu Ala Leu Ala Thr Ser Leu Ile Glu 180 185 190 Thr Ile Ala His Ala Glu His Ala Tyr Phe Asp Ala Ala Ile Met Leu 195 200 205 Ile Ala Phe Leu Leu Ala Gly Arg Tyr Leu Asp Gln Asn Met Arg Arg 210 215 220 Arg Thr Arg Ala Phe Ala Ser Asn Leu Ala Ala Leu Lys Ala Glu Thr 225 230 235 240 Ala Ala Lys Phe Ile Ser Pro Thr Glu Ile Arg Thr Val Pro Val Ala 245 250 255 Ala Ile Lys Pro Gly Asp Ile Val Leu Val Arg Pro Gly Glu Cys Cys 260 265 270 Thr Val Asp Gly Asn Val Ile Glu Gly Ser Ser Glu Ile Asp Gln Ser 275 280 285 Leu Ile Thr Gly Glu Thr Leu Pro Ala Ile Ala Thr Pro Gly Ser Ala 290 295 300 Val Phe Ala Gly Thr Leu Val Arg Ser Gly Thr Leu Arg Val Arg Ala 305 310 315 320 Ala Ala Thr Ser Asp Gly Thr Leu Leu Ala Glu Ile Ser Arg Leu Leu 325 330 335 Asp His Ala Leu Gln Ala Arg Ser Arg Tyr Leu Arg Leu Ala Glu Arg 340 345 350 Ala Ser Arg Leu Tyr Ala Pro Ile Val His Ile Thr Ala Phe Leu Thr 355 360 365 Met Leu Gly Trp Leu Ala Ser Gly Ala Thr Phe His Asn Ser Val Val 370 375 380 Thr Ala Ile Ala Val Leu Ile Ile Thr Cys Pro Cys Ala Leu Gly Leu 385 390 395 400 Ala Ile Pro Ala Val Gln Thr Val Ala Ala Gly Ala Leu Phe Arg Ser 405 410 415 Gly Val Leu Leu Asn Ala Gly Asp Ala Ile Glu Arg Ile Ala Glu Val 420 425 430 Asp Arg Val Ile Phe Asp Lys Thr Gly Thr Leu Thr Leu Pro Glu Leu 435 440 445 Asp Val Ala Asn Leu Ala Gly Ile Pro Glu Asp Val Val Lys Leu Ala 450 455 460 Gly Arg Leu Ala Leu Ser Ser Arg His Pro Val Ala Ala Ala Leu Ala 465 470 475 480 Arg Ala Ala Gly Ala Asn Glu Pro Leu Ala Asp Ile Glu Glu Glu Pro 485 490 495 Gly Arg Gly Val Arg Gly Tyr Tyr Glu Gly Ala Pro Ile Arg Leu Gly 500 505 510 Arg Pro Leu Phe Cys Gly Ala Asp Ser Leu Ala Asp Glu Ile Leu Cys 515 520 525 His Asp Pro Glu Ala Ser Val Val Ala Phe Ser His Gly Glu Ala Arg 530 535 540 His Val Phe Ala Ile Arg Gln Arg Met Arg Pro Asp Ala Val Glu Val 545 550 555 560 Val Thr Ser Leu Ala Arg Leu Gly Ile Met Val Glu Ile Val Ser Gly 565 570 575 Asp Arg Glu Pro Ala Val Arg Arg Ala Ala Glu Thr Leu Gly Ile His 580 585 590 Lys Trp Arg Ala Asn Val Ser Pro Thr Asp Lys Val Ala Arg Val Glu 595 600 605 Asp Leu Thr Ser Arg Gly Tyr Lys Val Leu Met Val Gly Asp Gly Leu 610 615 620 Asn Asp Ala Pro Ala Leu Ala Ala Ala His Ala Ser Met Ser Pro Val 625 630 635 640 Thr Ala Thr His Met Ser Gln Ala Val Ala Asp Ala Ile Phe Leu Gly 645 650 655 Ala His Leu Gly Pro Val Ile Lys Ala Val Ile Ala Ser Arg Gly Ala 660 665 670 Leu Arg Leu Met Arg Gln Asn Leu Cys Leu Ala Val Val Tyr Asn Val 675 680 685 Leu Ala Val Pro Val Ala Ile Ala Gly Leu Val Thr Pro Leu Ile Ala 690 695 700 Ala Ala Ala Met Ser Cys Ser Ser Val Leu Val Met Leu Asn Ala Leu 705 710 715 720 Arg Ala Arg Arg Gly Glu Ala Leu 725 <210> 5 <211> 72 <212> PRT <213> Bradyrhizobium elkanii <400> 5 Met Glu Val Leu Ile Tyr Leu Val Pro Leu Ala Leu Ser Leu Gly Phe 1 5 10 15 Leu Gly Leu Leu Gly Phe Leu Trp Ser Leu Lys Ser Gly Gln Tyr Asp 20 25 30 Asp Leu Asp Gly Ala Ala Trp Arg Ala Ile Ala Asp Glu Glu Pro Asp 35 40 45 Gln Pro Pro Val Pro Val Gln Ile Val Pro Thr Asp Gln Arg Ile Cys 50 55 60 Gly Ser Gly Arg Arg Arg Glu Tyr 65 70 <210> 6 <211> 324 <212> PRT <213> Bradyrhizobium elkanii <400> 6 Met Leu Ala Leu Glu Ala Phe Gly Arg Val Asp His Arg His Pro Ala 1 5 10 15 Gly Thr Ser Leu Ile Glu Thr Ala Thr Ser Glu Phe Leu Gly Arg Ile 20 25 30 Asp Arg Ala Ala Val Ser Arg Ala Phe Ala Asp Ala Ala Tyr Gly Ala 35 40 45 Tyr Leu Ser Ser Ala Gly Lys Arg Ile Ile Val Asp Lys Thr Pro Arg 50 55 60 Tyr Trp Met Val Leu Asp Tyr Leu Asp Leu Leu Tyr Pro Glu Ala Pro 65 70 75 80 His Ile Leu Leu Met Arg Asn Pro Tyr Ala Ile Ala Ala Ser Leu Lys 85 90 95 Ser Thr Trp Gly Val Pro Leu Gln Ala Lys Ser Ser Arg Ser Val Ser 100 105 110 Leu Ser Ser Leu Ala Asp Leu Met Leu Arg Leu Pro Asp Val Ile Ala 115 120 125 Ser Ser Leu Ala Asp Leu Val Leu Gly Leu Pro Lys Leu Ala Ala His 130 135 140 Arg Asp Arg Arg Gln Thr Met Val Val Gln Tyr Glu Arg Leu Ala Ala 145 150 155 160 Cys Pro Glu Glu Glu Ile Gln Arg Leu Ile Ala Gly Leu Gly Cys Asp 165 170 175 Pro Lys Asp Thr Ala Ala Thr Ser Thr Ala Arg Ala Asp Tyr Leu His 180 185 190 Ser Ser Ser Phe Gly Asp Arg Lys Ile Leu Glu Arg Arg Thr Val Asp 195 200 205 Glu Lys Ser Val Asp Ala Trp Gln Val Gln Leu Ser Val Glu Glu Met 210 215 220 Gln Thr Ile Thr Asp Leu Ile Gly Val Glu Leu Met Ile Gln Leu Gly 225 230 235 240 Tyr Glu Ala Glu Leu Arg His Ala Gln Gln Ala Gly Val Val Asp Lys 245 250 255 Gly Arg Glu Val Thr Glu Leu Tyr Arg Gln Ile Phe Arg Met Trp Trp 260 265 270 Asp Leu Arg Leu Ser Lys Glu Arg Ala Trp Ser Ser Ile Ser Ala Asn 275 280 285 Pro Leu Ala Phe Gly Gly Gln Ser Arg Thr His Ala Pro His Gln Met 290 295 300 Arg Pro Gln Gly Thr Met Arg Ser Ile Tyr Pro Glu Pro Thr Ser Thr 305 310 315 320 Lys Ile Arg Ser <210> 7 <211> 299 <212> PRT <213> Bradyrhizobium elkanii <400> 7 Met Leu Pro Lys His Leu Arg Arg Leu Glu Ala Glu Ser Ile Glu Ile 1 5 10 15 Met Arg Asp Val Val Ala Glu Phe Lys Lys Pro Val Met Leu Tyr Ser 20 25 30 Ile Gly Lys Asp Ser Ser Val Met Leu His Ile Ala Ile Lys Ala Phe 35 40 45 Tyr Pro Ala Lys Leu Pro Phe Pro Leu Leu His Val Asp Thr Thr Trp 50 55 60 Lys Phe Arg Glu Met Ile Ser Phe Arg Asp Ala Thr Ala Lys Arg Leu 65 70 75 80 Gly Leu Asp Leu Ile Val His Val Asn Glu Glu Gly Ile Ala Arg Gly 85 90 95 Ile Asn Pro Ile Asp Ser Gly Ser Ala Leu His Thr Arg Val Met Lys 100 105 110 Thr Asp Ala Leu Lys Gln Ala Leu Asp Leu His Glu Phe Asp Ala Ala 115 120 125 Phe Gly Gly Ala Arg Arg Asp Glu Glu Lys Ser Arg Ala Lys Glu Arg 130 135 140 Ile Leu Ser Phe Arg Ser Ser Gly His Val Trp Asp Pro Arg Asn Gln 145 150 155 160 Arg Pro Glu Leu Trp Asn Leu Phe Asn Thr Arg Ile Arg Gln Gly Glu 165 170 175 Thr Met Arg Val Phe Ala Met Ser Asn Trp Thr Glu Leu Asp Val Trp 180 185 190 Glu Tyr Ile Met Cys Glu Lys Ile Pro Val Val Pro Leu Tyr Phe Ala 195 200 205 Lys Gln Arg Pro Ile Val Arg Arg Asn Gly Ala Thr Ile Met Ile Asp 210 215 220 Asp Lys Arg Leu Pro Leu Arg Ser Gly Glu Thr Pro Gln Met Arg Met 225 230 235 240 Ile Arg Phe Arg Thr Leu Gly Cys Tyr Pro Leu Ser Gly Ala Ile Glu 245 250 255 Ser Asp Ala Thr Thr Ile Glu Asp Ile Val Ala Glu Met Gln Thr Ala 260 265 270 Thr Val Ser Glu Arg Gln Gly Arg Leu Ile Asp Ala Asp Glu Ala Ala 275 280 285 Ser Met Glu Lys Lys Lys Arg Glu Gly Tyr Phe 290 295 <210> 8 <211> 627 <212> PRT <213> Bradyrhizobium elkanii <400> 8 Met Leu Val Lys Ala Ile Thr Glu Ser Val Gln Ala Lys Pro Lys Asp 1 5 10 15 Gln Leu Arg Phe Ile Thr Cys Gly Ser Val Asp Asp Gly Lys Ser Thr 20 25 30 Leu Ile Gly Arg Leu Leu His Asp Ser Lys Met Ile Tyr His Asp Gln 35 40 45 Met Thr Ala Leu Glu Arg Asp Ser Ala Lys His Gly Thr Thr Gly Arg 50 55 60 Glu Ile Asp Phe Ala Leu Leu Val Asp Gly Leu Glu Ala Glu Arg Glu 65 70 75 80 Gln Gly Ile Thr Ile Asp Val Ala Tyr Arg Phe Phe Ala Thr Glu Arg 85 90 95 Arg Ser Phe Met Val Ala Asp Thr Pro Gly His Glu Gln Tyr Thr Arg 100 105 110 Asn Met Ala Thr Gly Ala Ser Asn Ala Gln Leu Ala Ile Ile Leu Ile 115 120 125 Asp Ala Arg Lys Gly Val Leu Val Gln Thr Lys Arg His Ser Phe Ile 130 135 140 Cys Ser Leu Leu Gly Ile Arg His Leu Val Leu Ala Val Asn Lys Ile 145 150 155 160 Asp Leu Val His Tyr Ser Lys Glu Ser Phe Asp Arg Ile Val Ala Asp 165 170 175 Tyr Val Ala Phe Ala Ser Asp Leu Gly Phe Glu Ser Ile Val Pro Ile 180 185 190 Pro Ile Ser Ala Arg Tyr Gly Asp Asn Val Val Asp Arg Ser Gly Asn 195 200 205 Thr His Trp Tyr Asp Gly Pro Cys Leu Leu Gly Gln Leu Glu Ser Ile 210 215 220 Asp Ile Arg Cys Asp Ser Ser Gly Gln Ala Phe Arg Phe Pro Val Gln 225 230 235 240 Trp Val Asn Arg Pro Asp Leu Asp Phe Arg Gly Tyr Ala Gly Ser Val 245 250 255 Ala Ser Gly Ser Ile Ser Val Gly Asp Asp Ile Val Val Ala Ala Ser 260 265 270 Gly Arg Thr Thr Arg Val Arg Arg Ile Val Thr Gln Gly Gly Gly Leu 275 280 285 Ser Cys Ala Glu Ala Gly Asp Ala Ile Thr Ile Thr Ile Glu Asp Glu 290 295 300 Ile Asp Ile Gly Arg Gly Asp Leu Leu Ala Arg Pro Thr Glu Arg Pro 305 310 315 320 Glu Leu Ala Asp Gln Phe Ala Ala His Leu Ile Trp Met Asp Glu Asp 325 330 335 Gln Leu Val Val Gly Arg Asn Tyr Ile Leu Arg Ile Gly Ser Gln Thr 340 345 350 Ile Ala Gly Ser Ile Thr Ala Ile Asn His Arg Ile Asp Val Asn Thr 355 360 365 Arg Glu His Leu Ser Ala Gly Thr Leu Gly Leu Asn Glu Ile Gly Phe 370 375 380 Cys Asn Ile Ser Thr Thr Arg Pro Ala Ala Phe Asp Pro Tyr Glu Ala 385 390 395 400 Asn Arg Lys Thr Gly Ser Phe Ile Val Ile Asp Arg Tyr Thr Asn Arg 405 410 415 Thr Val Ala Ala Gly Met Ile Ala Cys Pro Leu Arg Arg Ala Thr Asn 420 425 430 Val Ala Trp Gln Pro Val Ala Val Gly Arg Lys Glu Arg Ala Asp Leu 435 440 445 Lys Asn Gln Lys Pro Cys Ile Ile Trp Phe Thr Gly Leu Ser Gly Ala 450 455 460 Gly Lys Ser Thr Ile Ala Asn Ile Val Asp Gln Lys Leu Phe Ala Met 465 470 475 480 Ser Arg His Ala Met Leu Leu Asp Gly Asp Asn Leu Arg His Gly Leu 485 490 495 Asn Ala Asp Leu Gly Phe Ser Glu Val Asp Arg Met Glu Asn Ile Arg 500 505 510 Arg Ala Gly Glu Ala Ala Lys Leu Met Ala Asp Ser Gly Leu Ile Val 515 520 525 Ile Cys Ser Phe Ile Ser Pro His Arg Ser Glu Arg Asp Met Val Arg 530 535 540 Ser Leu Val Ser Lys Glu Glu Phe Val Glu Val Phe Val Asp Thr Pro 545 550 555 560 Ile Glu Glu Cys Ala Arg Arg Asp Pro Lys Gly Leu Tyr Ser Lys Ala 565 570 575 Lys Ser Gly Lys Ile Lys Asn Phe Thr Gly Ile Asp Ala Ser Tyr Glu 580 585 590 Ala Pro Ile Arg Pro Glu Ile His Leu Arg Thr Met Glu Gln Thr Pro 595 600 605 Glu Gln Met Ala Gln Ala Val Ile Asp Val Leu Met Ala Arg Ala Ile 610 615 620 Leu Gly Arg 625 <210> 9 <211> 803 <212> PRT <213> Bradyrhizobium elkanii <400> 9 Met Leu Leu Asp Leu Ala Ser Arg Asp Gly Glu Phe Lys Glu Val Thr 1 5 10 15 Ala Arg Met Arg Arg Leu Met Leu Asn Leu Leu Gly Gly Ala Lys Asp 20 25 30 Tyr Ser Val Val Pro Ile Gln Gly Gly Gly Ser Phe Ala Met Glu Ala 35 40 45 Ala Leu Ser Ser Phe Val Ser Arg Asn Asp Lys Pro Leu Val Cys Ile 50 55 60 Asn Gly Ile Tyr Gly Glu Arg Ile Phe Lys Ile Leu Arg Leu Trp Gly 65 70 75 80 Val Glu Ala Leu Lys Leu Val Lys Arg Ala Thr Glu Pro Leu Glu Pro 85 90 95 Gln Glu Val Ala Glu Gln Leu Ser Arg Asn Pro Gly Val Thr His Leu 100 105 110 Cys Leu Val His Cys Glu Thr Thr Thr Gly Ile Val Asn Pro Val Asp 115 120 125 Ala Ile Ile Glu Glu Ala Arg Arg Arg Gly Val Lys Thr Ile Val Asp 130 135 140 Gly Met Ser Ser Phe Gly Ala Ile Asp Ile Asp Leu Ser Arg Gly Gly 145 150 155 160 Pro Asp Val Leu Val Thr Ser Ser Asn Lys Cys Ile Glu Gly Pro Pro 165 170 175 Gly Val Ala Phe Val Ile Ala Ser Arg Glu Leu Leu Glu Lys Ala Val 180 185 190 Gln Glu Pro Arg Ser Phe Val Leu Asp Val Arg Asp Gln Trp Leu Ser 195 200 205 Leu Glu Arg Thr Gly Glu Trp Arg Ser Thr Pro Pro Thr His Ile Val 210 215 220 Gln Ala Thr Thr Lys Ala Leu Glu Ile Leu Glu Gly Glu Gly Ile Asp 225 230 235 240 Ala Arg Arg Arg Arg Tyr Glu Lys Val Arg Asp Asp Leu Val Gln Glu 245 250 255 Leu Glu Gly Val Val Ser Pro Leu Leu Ser Ala Glu Leu Gln Ser Pro 260 265 270 Val Cys Val Ala Phe Arg Ala Pro Ser Gly Ile Ala Asp Gln Ala Gly 275 280 285 Phe Asp Gly Leu Tyr Arg His Leu Ala Ala His Asn Leu Tyr Ile Tyr 290 295 300 Ser Lys Leu His Leu Ala Thr Arg Ser Phe Arg Val Gly Cys Ile Gly 305 310 315 320 Glu Ile Gln Pro Ser Trp Ile Glu Gln Leu Gly Cys Ala Phe Arg Thr 325 330 335 Tyr Phe Arg Ser Gly Pro Ala Ser Ser Met Gly Thr Pro Ser Thr Arg 340 345 350 Gln Ala Cys Glu Arg Gly Val Glu Met Ser Ser Ser Phe Ala Lys Asp 355 360 365 Ser Gln Leu Pro Phe Ser Ala Glu Thr Ala Val Leu His Ala Gly Tyr 370 375 380 Arg Arg Asp Pro Val Thr Lys Ala Val Ala Val Pro Ile Tyr Gln Asn 385 390 395 400 Thr Ala Tyr Glu Leu Asp Gly Asp Leu Asn His Ile Ala Asp Val Tyr 405 410 415 Asn Val Lys Ala Asp Gly Phe Thr Tyr Thr Arg Ile Ile Asn Pro Thr 420 425 430 Thr Arg Ala Leu Glu Lys Arg Tyr Ala Ala Val Asp Met Gly Ser Asp 435 440 445 Ser Leu Ala Val Ala Ser Gly Gln Ala Ala Thr Phe Leu Ala Ile Val 450 455 460 Asn Leu Ser Ser Gly Glu Val Gly Asp Asn Ile Val Ala Ser Pro Tyr 465 470 475 480 Leu Tyr Gly Asn Thr Trp Asn Leu Leu His Asn Thr Leu Lys Arg Leu 485 490 495 Gly Ile Ser Val Arg Thr Ala Asp Pro Arg Arg Pro Glu Thr Phe Glu 500 505 510 Arg Ala Ile Asp Asp Arg Thr Ile Cys Leu Phe Gly Glu Val Ile Ser 515 520 525 Asn Pro Cys Leu Ile Pro Leu Pro Val Lys Gln Leu Ala Glu Ile Gly 530 535 540 Arg Lys His Gly Val Pro Leu Val Val Asp Asn Thr Thr Thr Pro Leu 545 550 555 560 Val Cys Arg Pro Ser Asp Leu Gly Ala Ala Ile Thr Thr Tyr Ser Ala 565 570 575 Thr Lys Tyr Ile Cys Gly His Gly Thr Thr Leu Gly Gly Leu Ile Val 580 585 590 Asp Asn Gly Lys Phe Ser Tyr Arg Gly Ala Ser Arg Phe Pro Leu Phe 595 600 605 Asn Ser Pro Asp Glu Ala His Gly Gly Ile Ile Trp Arg Asn Ala Leu 610 615 620 Gln Asp Val Asp Asp Leu Gly Lys Ser Glu Val Leu Leu Lys Ala Arg 625 630 635 640 Met Thr Trp Leu Arg Asp Thr Gly Ala Ala Ile Ala Pro Phe Ala Ser 645 650 655 Phe Gln Leu Ile Gln Gly Leu Glu Thr Leu Pro Leu Arg Met Lys Gln 660 665 670 His Cys Ala Asn Ala Arg Ile Val Ala Asp Val Leu Lys Glu His Pro 675 680 685 Lys Val Arg Arg Val Phe Tyr Pro Gly Leu Phe Glu Gly Ala Asp Arg 690 695 700 Glu Thr Val Asp Gln Thr Leu Asn Pro Ala Tyr Gly His Gly Ala Met 705 710 715 720 Val Met Phe Glu Val Glu Asp Glu Gln Ala Gly Arg Lys Phe Ile Gln 725 730 735 Asn Val Asp Leu Met Tyr His Val Ser Asn Val Gly Asp Ala Arg Thr 740 745 750 Leu Val Thr His Pro Val Ser Thr Thr His Thr Thr Val Pro Arg Glu 755 760 765 Lys Arg Glu Ala Ala Gly Ile Phe Gly Gly Ser Ile Arg Leu Cys Val 770 775 780 Gly Ile Glu Asp Val Asp Asp Ile Val Arg Asp Leu Asp Arg Ala Leu 785 790 795 800 Ser Ala Ile <210> 10 <211> 352 <212> PRT <213> Bradyrhizobium elkanii <400> 10 Met Asn Gln Ala Asp Ala Trp Lys Leu Arg Ser Ser Arg Tyr Glu Ala 1 5 10 15 Val Gln Phe Ser Arg Glu Ile Asn Lys Gln Leu Ser Glu Leu Arg Pro 20 25 30 Asp Asn Val Met Gly Ala Ile Tyr Ile Ala Lys Asp Tyr Ala Val Ile 35 40 45 Ala Ala Cys Thr Leu Ala Thr Leu Cys Val Ser Trp Trp Leu Tyr Pro 50 55 60 Leu Ala Val Leu Leu Ile Gly Ala Tyr Gln Arg Gly Leu Thr Thr Ile 65 70 75 80 Ala His Asp Ala Ala His Arg Thr Leu Ala Lys Asn Thr Thr Trp Asn 85 90 95 Tyr Val Leu Gly Ile Leu Phe Ala Ala Tyr Pro Leu Phe Gln Arg His 100 105 110 Trp Ala Tyr Arg Ile Ser His Val Tyr Leu His His Pro Tyr Leu Gly 115 120 125 Asp Pro Glu Lys Asp Pro Asp Leu Lys Phe Phe Met Ala Asn Gly Val 130 135 140 Tyr Asp Val Gln Pro Pro Lys Arg Tyr Ala Phe Asn Ile Ile Trp Lys 145 150 155 160 Pro Ile Phe Gly Gly Ala Thr Leu Ala Tyr Leu Lys Tyr Leu Trp Thr 165 170 175 Asn Arg Phe Ser Ile Thr Asp Ser Glu Asp Gln Ser Arg Ser Ser Ile 180 185 190 Leu Val Asp Lys Tyr Gly Phe Tyr Leu Phe Trp Ile Gly Ile Leu Ala 195 200 205 Gly Ser Tyr Ala Leu Gly Leu Leu His Ile Val Ile Leu Phe Trp Ile 210 215 220 Val Pro Tyr Leu Thr Thr Phe Gln Val Leu Gly Trp Phe Val Glu Leu 225 230 235 240 Ala Glu His Ser Pro Met Cys Glu Ser Glu Thr Lys Asn Val Tyr Leu 245 250 255 Thr Arg Asn Arg Lys Gly Asn Phe Leu Glu Arg Ala Ile Leu Gly Gln 260 265 270 Asn Leu Asp Glu Tyr His Leu Glu His His Leu Ser Pro Gly Ile Pro 275 280 285 Phe Trp Leu Leu His Lys Ala Gln Lys Ile Arg Met Gln Asp Pro Gly 290 295 300 Tyr Ala Lys Val Ala Ala Ser Trp Gly Gly Leu Phe Val Lys Gly Pro 305 310 315 320 Gln Gly Gln Pro Ser Val Ile Thr Gln Leu Lys Glu Arg Asn Arg Arg 325 330 335 Leu Tyr Glu Gln Ser Leu Ala Asp Ala His Ala Lys Gly His Val Ala 340 345 350 <210> 11 <211> 207 <212> PRT <213> Bradyrhizobium elkanii <400> 11 Met Gly Ala Leu Asp Gly Leu Val Leu Thr Gly Asp Glu Ser Asn Ile 1 5 10 15 Asp Pro Ala Val Leu Lys Ala Pro Ala Ser Leu Pro Pro Ala Asp Gln 20 25 30 Gln Asp Val Asp Gly Gly Ile Arg Asp Arg Pro Arg Asp Arg Leu Ser 35 40 45 Ala Val Ala Ile Gly Ser Ala Ile Ala Leu Gly Met Pro Ile Leu Gly 50 55 60 Ile Cys Arg Gly Leu Gln Glu Leu Asn Val Tyr Phe Gly Gly Thr Leu 65 70 75 80 His Pro Ser Leu Ala Glu Trp Arg Leu Gly Ser Gly Leu Met His Ala 85 90 95 Glu Lys Pro Asp Arg Pro Arg Asp Arg Gln Tyr Asp Ala Ala His Ser 100 105 110 Val Arg Ile Ser Pro Asp Gly Ala Leu Phe Pro Ile Val Arg Ala Ile 115 120 125 Glu Ala Gln Val Asn Ser Leu His Asn Gln Gly Ile Glu Leu Leu Ala 130 135 140 Ala Ala Leu Arg Arg Glu Ala Trp Ala Pro Asp Gly Leu Val Glu Ala 145 150 155 160 Ala Ser Val Ile Gly Ala Pro Thr Leu Gln Ile Gly Val Gln Trp His 165 170 175 Pro Glu Trp His Ala Ser Thr Asp Leu Leu Ser Gln Arg Leu Phe Thr 180 185 190 Ala Phe Gly Glu Ala Cys Val Ala Tyr Tyr Gln Thr Lys Lys His 195 200 205 <210> 12 <211> 588 <212> PRT <213> Bradyrhizobium elkanii <400> 12 Met Asp Leu Gly Asn Arg Gln Arg Trp Arg Gly Val Gly Ser Ser Ile 1 5 10 15 Val Leu Arg His Arg Leu Gly Asn Arg Gly Arg Pro Ile Ala Arg Ser 20 25 30 Tyr Lys Tyr Thr Arg Gln Ala Ala Ile Arg Pro Arg Ile Phe Gly Ser 35 40 45 Thr Gly Val Gly Ala Ser Phe Leu Arg Asn Asp Pro Phe Ala Ala Gly 50 55 60 Thr Gly Arg Pro Phe Leu His Arg Ala Arg Asp Leu Ala Thr Leu Ala 65 70 75 80 Cys Asp Arg Asn Asp Trp Ala Ile His Asp His Arg Ser Ile Ala Leu 85 90 95 Val Pro Gly Gly Tyr Ser Pro Arg Arg Ala Leu His Gly Gln His Gly 100 105 110 Pro Val His Arg Ser Cys His His Val Ser Val Pro Val Leu Arg Phe 115 120 125 Ser Tyr Arg Ala Phe Ala Ala Tyr Val Arg Trp Lys Cys Ser His His 130 135 140 Gly Cys Cys Arg Arg Gln Arg Leu Phe Ala Val Pro Glu Val Arg Met 145 150 155 160 Asn Glu Arg Asn Cys Val Ile Val Asp Ala Tyr Ser Thr Gly Arg Phe 165 170 175 Leu Pro Glu Glu Phe Lys Arg Tyr Gly Ile Ser Thr Val His Val Met 180 185 190 Ser Ala Ala Gln Ile Pro Ser Ile Phe Gln Ser His Phe Asn Ala Asn 195 200 205 Leu Tyr Asp Glu Val Ile Arg Pro Pro Glu Arg Met Gly Tyr Asp Glu 210 215 220 Ile Val Glu Tyr His Leu Arg Ala Leu Gln Gly Arg Glu Leu Glu Phe 225 230 235 240 Val Ile Ala Gly Cys Glu Thr Gly Val Glu Leu Ala Asp Ser Ile Ser 245 250 255 Glu Arg Leu Gly Leu Pro Ser Asn Gly Thr Ala Leu Ser Ala Ala Arg 260 265 270 Arg Asp Lys Ser Arg Leu Ser Glu Ala Leu Ala Ser Ala Gly Val Arg 275 280 285 Ser Ile Arg Gln Val Val Ser Asp Asn Ala Glu Val Ile Ala Arg Trp 290 295 300 Lys Arg Gln Glu Thr Phe Asp Glu Leu Val Ile Lys Pro Leu Asn Ser 305 310 315 320 Thr Gly Thr Glu Asp Val Phe Phe Cys Ser Thr Asp Ala Asp Ile Gln 325 330 335 Arg Ala Val Thr Ala Ile Val Gly Lys Thr Asn Arg Val Gly Thr Leu 340 345 350 Asn Gln Leu Ala Leu Gly Gln Glu Lys Ile Asn Gly Gln Gln Tyr Thr 355 360 365 Val Asn Ala Val Ser Ile Asp Gly Glu Thr Phe Val Thr Glu Ala Trp 370 375 380 Thr Tyr Asp Thr Val Pro Ile Glu Gly Ala Ser Ser Val Cys Ser Leu 385 390 395 400 Glu Arg Leu Leu Gly Gly Lys Glu Pro Ile Val Leu Glu Leu Ser Asp 405 410 415 Tyr Leu Glu Arg Ala Leu Arg Ala Leu Arg Ile Thr Asp Gly Pro Ala 420 425 430 His Ala Glu Ile Ile Val Asp Asp Arg Gly Pro Val Leu Val Asp Phe 435 440 445 Gly Ala Arg Leu Gln Gly Thr Met Ser Ala Lys Ala Arg Thr Met Ala 450 455 460 Leu Gly His Asn His Leu Thr Leu Thr Ala Trp Arg Tyr Ala Asp Pro 465 470 475 480 Lys Gly Phe Ala Gly Tyr Met Arg Arg Arg Gly Val Tyr Lys Arg Gln 485 490 495 Ala His Ala Leu Cys Val Ser Leu Ile Ser Asp Met Gly Gly Val Val 500 505 510 Ala Gly Tyr Pro Gly Leu Asp Ala Ile Gly Lys Leu Pro Ser Phe Ala 515 520 525 Asp Ala Ile Ala Phe Val Pro Ile Gly Gln Asn Leu Val Pro Thr Ile 530 535 540 Asp Leu Ala Ser Thr Pro Gly Ile Val Tyr Leu Val Asn Asn Asp Leu 545 550 555 560 Ile Gln Leu Glu Glu Asp Tyr Arg Gln Leu Arg Ala Met Arg Met Asp 565 570 575 Gln Val Phe Asp Leu Val Pro Gln Glu Ala Asn Gln 580 585 <210> 13 <211> 444 <212> PRT <213> Bradyrhizobium elkanii <400> 13 Met Thr Gly Ile Cys Asp Ser Cys Thr Asn Ser Ala Ala Ala Ala Met 1 5 10 15 Ile Gly Val Ser Asp Phe Asp Gly Ile Leu Arg Gly Lys His Val Leu 20 25 30 Gly Glu Asp Leu Ser Val Gly Asn Lys Val Ile Lys Phe Ser Glu Ala 35 40 45 Val Leu Ala Trp Asp Cys Ser Asp Arg Val Ile Pro Ala Gly Phe Thr 50 55 60 Gln Glu Pro Gln Ser Val Phe Gly Asp Ala Asp Leu Arg Val Leu Ser 65 70 75 80 Gly Thr Gly Arg Ser Val Ser Tyr Ala Gly Asp Gln Tyr Leu Tyr Leu 85 90 95 Ala Glu Phe Ala Gly Ala His Glu Ser Val Cys Pro Arg Gly Ile Leu 100 105 110 Arg Lys Val Leu Gln Arg Val Ala Asp Arg Gly Tyr Ser Cys Ser Ala 115 120 125 Gly Phe Glu Phe Glu Phe Met Leu Phe Lys Glu Asn Ala Asp Ile Ile 130 135 140 Glu Asp Lys Pro Phe Gly Gln Trp Ala Pro Leu Thr Arg Gly Pro Phe 145 150 155 160 Gly Tyr Ser Ile Ala Arg Ser Val Ala His Arg Glu Leu Phe Gly Glu 165 170 175 Ile Leu Ala Leu Cys Glu Lys Ser Arg Ile Pro Leu Ser Gly Leu His 180 185 190 Phe Glu Thr Gly Pro Gly Val Ile Glu Ala Ser Leu Arg His Cys Asp 195 200 205 Ala Leu Glu Ala Ala Asp Arg Ala Ile Ile Phe Lys Ser Met Ile Lys 210 215 220 Ala Trp Ala Gln Thr Arg Gly Met Met Ala Thr Phe Met Ala Lys Val 225 230 235 240 Ser Glu Asn Trp Pro Gly Gln Ser Gly His Ile His Val Ser Met Ser 245 250 255 Ala Asp Gly Gln Asn Val Phe Tyr Asp Ser Glu Ala Phe Arg Asn Val 260 265 270 Ser Lys Leu Met Arg Gln Phe Ile Gly Gly Gln Leu Lys Tyr Met Asn 275 280 285 Asp Phe Cys Val Leu Ala Val Pro Asn Phe Asn Ser Tyr Lys Arg Leu 290 295 300 Val Pro Gly Cys Trp Ala Pro Ile Tyr Pro Ser Trp Gly Ile Asp Asn 305 310 315 320 Arg Ser Cys Ala Val Arg Val Ile Pro Gly Asp Pro Ser Ala His Arg 325 330 335 Leu Glu Tyr Arg Leu Pro Gly Ala Asp Leu Asn Pro Tyr Leu Ala Leu 340 345 350 Ala Cys Ala Ile Gly Ser Gly Ile Leu Gly Ile Glu Thr Asn Ala Ala 355 360 365 Leu Pro Ala Ser Ile Val Gly Asp Ala Ser Ala Glu Ala Cys Leu Pro 370 375 380 Ser Gly Arg Leu Pro Gln Ser Leu Ala Glu Ala Thr Tyr Arg Phe Ala 385 390 395 400 Gln Ser Pro Ala Ala Asn Asp Val Phe Gly Glu Arg Phe Val Glu Ala 405 410 415 Phe Ser Cys Ser Arg Arg Trp Glu Trp Glu Ala Val Gln His Arg Val 420 425 430 Thr Asp Phe Glu Arg Arg Arg Tyr Phe Glu Ile Ile 435 440 <210> 14 <211> 516 <212> PRT <213> Bradyrhizobium elkanii <400> 14 Met Gln Val Val Leu Pro Pro Arg Gly Ile Thr Arg Val Pro Gly Arg 1 5 10 15 His Ile Thr Asp His Gln Met Arg Leu Tyr Met Lys Tyr Arg Gln Thr 20 25 30 Asp Ser Pro Pro Val Ala Ala Ala Lys Ala Ser Phe Ser Thr Ser Thr 35 40 45 Ala Tyr Arg Ile Glu Gln Asp Arg Arg Leu Pro Ser Gln Lys Lys Ala 50 55 60 Pro Arg Gly Arg Arg Arg Pro Asp Pro Leu Ala Arg Val Phe Glu Thr 65 70 75 80 Glu Ile Val Pro Met Leu Lys Ala Ala Pro Gly Val Arg Pro Val Thr 85 90 95 Ile Phe Glu Glu Leu Leu Arg Arg His Pro Glu Leu Gly Ala Gly Ile 100 105 110 Arg Arg Thr Leu Glu Arg Arg Ile Arg Ala Trp Arg Ala Ile His Gly 115 120 125 Glu Glu Gln Glu Val Ile Phe Arg Gln Thr His Glu Pro Gly Gln Arg 130 135 140 Gly Leu Ser Asp Phe Thr Asp Met Gly Glu Leu Gly Val Thr Ile Ala 145 150 155 160 Gly Val Pro Leu Asp His Arg Leu Tyr His Phe Arg Leu Ala Tyr Ser 165 170 175 Gly Phe Glu His Ala His Val Val Leu Gly Gly Glu Ser Phe Ile Ala 180 185 190 Leu Ala Glu Gly Leu Gln Asn Ala Leu Trp Ser Leu Gly Gly Ala Pro 195 200 205 Arg Glu His Arg Thr Asp Ser Leu Ser Ala Ala Phe Cys Asn Leu Asp 210 215 220 Arg Asp Ala Lys Asp Asp Leu Thr Arg Arg Tyr Glu Asp Leu Cys Ala 225 230 235 240 His Tyr Gly Met Arg Pro Ser Arg Asn Asn Arg Gly Ile Ala His Glu 245 250 255 Asn Gly Ala Ile Glu Ser Ser His Gly His Leu Lys Arg Ala Val Gly 260 265 270 Asp Ala Leu Leu Leu Arg Gly Thr Ala Asp Phe Asp Asp Leu Ala Ala 275 280 285 Tyr Arg Gly Phe Ile Asp Glu Ile Val Ser Arg Arg Asn Ala Arg Asn 290 295 300 Ala Lys Arg Ile Asp Ser Glu Arg Thr Ala Leu Gln Asp Leu Pro Asp 305 310 315 320 Arg Arg Thr Ser Asp Tyr Glu Glu Val Ile Val His Val Thr Ser Ser 325 330 335 Gly Gly Phe Thr Leu Arg Lys Val Phe Tyr Thr Val Pro Ser Arg Leu 340 345 350 Ile Gly His Arg Leu Arg Val Arg Leu Tyr Asp Asp His Leu Asp Val 355 360 365 Phe Val Gly Gly Thr His Leu Leu Thr Leu Pro Arg Gly Arg Pro His 370 375 380 Pro Asn Gly Lys His Asp Gln Val Val Asp Tyr Arg His Val Ile His 385 390 395 400 Ser Leu Arg Arg Lys Pro Met Ala Leu Leu Asn Leu Val Tyr Arg Asp 405 410 415 Gln Leu Phe Pro Arg Glu Ala Tyr Arg Arg Ala Phe Asp Val Leu Arg 420 425 430 Lys Arg Leu Pro Asp Lys Lys Ala Cys Arg Ile Met Val Asp Leu Leu 435 440 445 Ala Leu Ala His Glu Arg Gly Cys Glu Ala Glu Leu Ala Asp Gln Leu 450 455 460 Thr Ala Asp Leu Asn Asp Gly Arg Leu Pro Asp Leu Asn Arg Leu Arg 465 470 475 480 Thr His Phe Ala Pro Asp Pro Ala Gln Met Pro Asn Val Val Val Arg 485 490 495 Leu Ala Pro Leu Ala Thr Tyr Glu Cys Leu Ile Gly Thr Ala Glu Ile 500 505 510 Gly Gly Ala Ala 515 <210> 15 <211> 281 <212> PRT <213> Bradyrhizobium elkanii <400> 15 Met Pro His Arg Tyr Cys Arg Asp Arg Arg Cys Arg Met Ser Thr Thr 1 5 10 15 Asn Val Val Asp Thr Ala Arg Leu Asn Leu Leu Leu Asn Glu Leu Arg 20 25 30 Leu Pro Ala Ile Lys Val Leu Trp Pro Gln Phe Ala Glu Gln Ser Asp 35 40 45 Lys Glu Gly Trp Pro Ala Ala Arg Phe Leu Ala Thr Ile Ala Glu His 50 55 60 Glu Ile Ala Glu Arg Ser Arg Arg Arg Ile Glu Arg His Leu Val Glu 65 70 75 80 Ala Arg Leu Pro Thr Gly Lys Thr Phe Asp Ser Phe Asp Phe Glu Ala 85 90 95 Val Pro Met Ile Ser Lys Ala Gln Met Thr Ala Leu Ala Ala Gly Asp 100 105 110 Gly Trp Leu Asn Lys Gly Ala Asn Leu Leu Leu Phe Gly Pro Pro Gly 115 120 125 Gly Gly Lys Ser His Leu Ala Ala Ala Ile Gly Leu Ala Leu Ile Glu 130 135 140 Asn Gly Trp Arg Val Leu Phe Thr Arg Thr Thr Asp Leu Val Gln Lys 145 150 155 160 Leu Gln Val Ala Arg Arg Glu Leu Asn Leu Glu Gly Ala Ile Asn Arg 165 170 175 Leu Asp Arg Phe Asp Leu Val Ile Leu Asp Asp Leu Ala Tyr Val Thr 180 185 190 Lys Asp Gln Ala Glu Thr Ser Val Leu Phe Glu Leu Ile Ser Ala Arg 195 200 205 Tyr Glu Arg Arg Ser Leu Leu Ile Thr Ala Asn Gln Pro Phe Gly Glu 210 215 220 Trp Asn Lys Val Phe Pro Asp Pro Ala Met Thr Leu Ala Ala Ile Asp 225 230 235 240 Arg Leu Val His His Ala Thr Ile Val Glu Met Asn Val Glu Ser Tyr 245 250 255 Arg Arg Arg Thr Ala Leu Glu Arg Lys Arg Gly Pro Gly Arg Pro Pro 260 265 270 Glu His Ala Thr Gln Lys Thr Leu Ala 275 280
【図面の簡単な説明】
【図1】rtxAのフランキング領域の物理的地図。
A:B.elkaniiUSDA94のゲノム・ライブ
ラリーからのrtxA遺伝子を含む7つの独立したオー
バーラップしたpLAFR1コスミド。B:得られた配
列の28,401bpにおいて、fixGHIS、no
eE、nodPQ、rtxA、および6つのオープン・
リーディング・フレーム(ORF群)が見出された。制
限部位は以下で示される;A、ApaI;B、BamH
I;E、EcoRI;H、HindIII;P、Pst
I。C:コロニーおよびサザン・ハイブリダイゼーショ
ンに使用したプローブ。
【図2】rtxCのアミノ酸配列および種々のデサチュ
ラーゼのアミノ酸配列の整理。PsDES、Pseud
omonas syringaeデサチュラーゼ(U2
7310);AtDES、Arabidopsis t
halianaデサチュラーゼ(A1022198);
EgDES、Euglena gracilisΔ−8
脂肪酸デサチュラーゼ(AF139720);CrDE
S、Chlamydomonas reinhardt
iiデサチュラーゼ(AB007640)。膜結合デサ
チュラーゼに保存されているものの間で、rtxCの銅
結合印(●)および8つのヒスチジン残基(★)は、い
くつかの起源からの脂肪酸デサチュラーゼのそれらと高
度に相同性があった。推定の膜をつなぐ領域は、ヒドロ
パシー分析により推定し、星印(*)で示した。
【図3】カナマイシンカセットの挿入により創製したp
RTF1コスミド誘導体と補完したBradyrhiz
obium elkaniiUSDA94Δrtx::
Ω1の、セリノール、ジヒドロリゾビトキシンおよびリ
ゾビトキシン産生。A:B.elkaniiUSDA9
4の9.8−kb領域(nodQP、rtxA、rtx
C、ORF2、および端を切り取ったORF3)を欠失
する大欠損変異株USDA94Δrtx::Ω1。Δ
は、USDA94Δrtx::Ω1の9.8−kb欠失
SacII断片を示す。B:カナマイシン・カセットの
挿入点をpRTF1上の矢じりで示す。rtxA遺伝子
のN−ドメインおよびC−ドメインは、推定アミノ酸配
列が、それぞれアミノ・トランスフェラーゼおよびO−
アセチルホモセリンスルフヒドリラーゼに相同である領
域を示す(テキスト参照)。Pは推定プロモーター(配
列による)である。セリノール、ジヒドロリゾビトキシ
ンおよびリゾビトキシン産生濃度は以下のように表す:
ND、検出されず。セリノールについては、+、++、お
よび+++は、それぞれ、0から50、50から100、
および>10μM、を示す。ジヒドロリゾビトキシンにつ
いては、+、++、+++、および++++は、それぞれ、0から
2、2から5、5から10、および>10μM、を示す。
リゾビトキシンについては、+、++、+++、および++++
は、それぞれ、0から0.5、0.5から1.0、1.
0から10、および>10μM、を示す。
【図4】B.elkaniiUSDA94(野生型)、
USDA94Δrtx::Ω1、およびUSDA94Δ
rtx::Ω1(pRTF1−F1)の培養物の液体ク
ロマトグラフィ/質量分析(GC/MS)クロマトグラ
ム。A:セリノールのフェニルイソチオシアネート(P
ITC)誘導体は、m/z=227に検出され、保持時
間3.8分で溶出された。B:PITC−ジヒドロリゾ
ビトキシンは、m/z=463に検出され、保持時間1
0.4分で溶出された。C:PITC−リゾビトキシン
は、m/z=461に検出され、保持時間10.4分で
溶出された。大欠損変異株USDA94Δrtx::Ω
1は、セリノール、ジヒドロリゾビトキシン、およびリ
ゾビトキシン産生を停止した。しかし、これらの化合物
は、pRTF1−F1を変異体に導入後、再び産生され
た。
【図5】Bradyrhizobium elkani
iUSDA94におけるジヒドロリゾビトキシン産生に
対するホモセリン、O−アセチルホモセリンおよび含硫
アミノ酸の効果。B.elkanii細胞を、ホモセリ
ン、O−アセチルホモセリンおよび含硫アミノ酸を含有
する20mMリン酸カリバッファー(pH6.8)で、
30℃、1時間、暗所にてインキュベートした。値は、
2回の実験の平均で示す。
【図6】B.elkaniiUSDA94およびB.j
aponicumUSDA110のrtx遺伝子領域の
比較。Bradyrhizobium japonic
umUSDA110(8,641bp)のrtx遺伝子
領域のヌクレオチド配列は、B.elkaniiUSD
A94のそれと79%相同である。B.japonic
umUSDA110のrtxC、ORF2、およびOR
F4のアミノ酸配列は、B.elkaniiUSDA9
4のそれらと、それぞれ、96%、87%、および89
%同一性を示す。B.japonicumUSDA11
0のrtxAおよびORF3領域は、B.elkani
iUSDA94のそれらと比較して、中断され、断片化
されている。数字は、遺伝子および遺伝子間領域の長さ
(bp)を示す。
【図7】提案された、リゾビトキシンの生合成経路、お
よび関連する代謝。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12N 9/16 C12P 13/04 C12P 13/04 C12R 1:01 //(C12N 1/21 C12N 15/00 ZNAA C12R 1:01) (C12N 9/02 C12R 1:01) (C12N 9/10 C12R 1:01) (C12N 9/16 C12R 1:01) (C12P 13/04 C12R 1:01) Fターム(参考) 2B030 AA02 AB03 AD08 CA06 CA17 CA19 CB03 4B024 AA08 BA08 BA10 BA11 CA04 DA05 EA06 FA02 GA11 4B050 CC03 DD02 LL05 LL10 4B064 AE03 CA02 CA19 CC24 DA11 4B065 AA01Y AA11X AB01 BA02 CA17 CA28 CA29 CA31 CA47 CA53

Claims (33)

    【特許請求の範囲】
  1. 【請求項1】 ジヒドロリゾビトキシンからリゾビトキ
    シンの生合成反応を触媒する酵素ジヒドロリゾビトキシ
    ンデサチュラーゼをコードするrtxC遺伝子。
  2. 【請求項2】 ダイズ根粒菌(Bradyrhizobium elkanii)
    由来であることを特徴とする、請求項1記載のrtx
    C遺伝子。
  3. 【請求項3】 ダイズ根粒菌(Bradyrhizobium elkanii)
    USDA94株由来であることを特徴とする、請求項
    2記載の遺伝子rtxC。
  4. 【請求項4】 以下の(a)又は(b)のタンパク質を
    コードする遺伝子:(a)配列番号10に示されるアミ
    ノ酸配列、(b)アミノ酸配列(a)において1若しく
    は数個のアミノ酸が欠失、置換若しくは付加されたアミ
    ノ酸配列からなり、酵素ジヒドロリゾビトキシンデサチ
    ュラーゼ活性を有するタンパク質。
  5. 【請求項5】 以下の(a)又は(b)のDNAを含む
    遺伝子:(a)配列番号1に示される塩基配列において
    第15737〜16795番目の塩基対からなるDNA、(b)塩
    基配列(a)からなるDNAとストリンジェントな条件
    下でハイブリダイズし、且つ、酵素ジヒドロリゾビトキ
    シンデサチュラーゼ活性を有するタンパク質をコードす
    るDNA。
  6. 【請求項6】 ダイズ根粒菌(Bradyrhizobium elkanii)
    USDA94株由来の、ジヒドロキシアセトンホスフ
    ェートからセリノールへの生合成反応を触媒する酵素ジ
    ヒドロキシアセトン燐酸アミノトランスフェラーゼ、及
    び/又はセリノールとO−アセチルホモセリンとからジ
    ヒドロリゾビトキシンへの生合成反応を触媒する酵素ジ
    ヒドロリゾビトキシン・シンターゼをコードするrtx
    A遺伝子。
  7. 【請求項7】 以下の(a)又は(b)のタンパク質を
    コードする遺伝子:(a)配列番号9に示されるアミノ
    酸配列、(b)アミノ酸配列(a)において1若しくは
    数個のアミノ酸が欠失、置換若しくは付加されたアミノ
    酸配列からなり、酵素ジヒドロキシアセトン燐酸アミノ
    トランフェラーゼ及び/又は酵素ジヒドロリゾビトキシ
    ン・シンターゼ活性を有するタンパク質。
  8. 【請求項8】 以下の(a)又は(b)のDNAを含む
    遺伝子:(a)配列番号1に示される塩基配列において
    第13294〜15705 番目の塩基対からなるDNA、(b)
    塩基配列(a)からなるDNAとストリンジェントな条
    件下でハイブリダイズし、且つ、酵素ジヒドロキシアセ
    トン燐酸アミノトランフェラーゼ及び/又は酵素ジヒド
    ロリゾビトキシン・シンターゼ活性を有するタンパク質
    をコードするDNA。
  9. 【請求項9】 請求項1ないし請求項5のいずれか一項
    に記載の遺伝子、及び請求項6ないし請求項8のいずれ
    か一項に記載の遺伝子を含むオペロン。
  10. 【請求項10】 更に、配列番号11ないし配列番号1
    5で示されるアミノ酸配列からなるタンパク質をコード
    する遺伝子、及び、該アミノ酸配列において1若しくは
    数個のアミノ酸が欠失、置換若しくは付加されたアミノ
    酸配列からなり配列番号11ないし配列番号15で示さ
    れるアミノ酸配列からなるタンパク質と実質的に同等の
    活性を有するタンパク質をコードする遺伝子から成る群
    から選択される、少なくとも一つの遺伝子を含む、請求
    項9記載のオペロン。
  11. 【請求項11】 更に、rtxA遺伝子の0.5kb上
    流に転写因子σ70に対する結合ドメインであるプロモ
    ーター配列を含む、請求項9又は10記載のオペロン。
  12. 【請求項12】 プロモーター配列が(5’−TTGA
    AA−cgcacctaacgtcaagttg−TA
    CGAT−3’)である、請求項11記載のオペロン。
  13. 【請求項13】 請求項1ないし8に記載された遺伝子
    の少なくとも一つの遺伝子を含有する組換え発現ビーク
    ル。
  14. 【請求項14】 コスミドベクターである請求項13に
    記載の組換え発現ビークル。
  15. 【請求項15】 請求項13又は14に記載の発現ビー
    クルによって形質転換された細菌から成る形質転換体。
  16. 【請求項16】 細菌がダイズ根粒菌(Bradyrhizobium
    elkanii)である請求項15に記載の形質転換体。
  17. 【請求項17】 請求項9ないし12のいずれか一項に
    記載のオペロンを含有する組換え発現ビークル。
  18. 【請求項18】 コスミドベクターである請求項17に
    記載の組換え発現ビークル。
  19. 【請求項19】 請求項17又は18に記載の発現ビー
    クルによって形質転換された細菌から成る形質転換体。
  20. 【請求項20】 細菌がダイズ根粒菌(Bradyrhizobium
    elkanii)である請求項19に記載の形質転換体。
  21. 【請求項21】 請求項15,16,19又は20に記
    載の形質転換体を培養することから成る、リゾビトキシ
    ンの製造方法。
  22. 【請求項22】 請求項1ないし8に記載された遺伝子
    の少なくとも一つで細菌を形質転換することから成る、
    該細菌のリゾビトキシン生産能を付与又は増強する方
    法。
  23. 【請求項23】 請求項9ないし12のいずれか一項に
    記載のオペロンで細菌を形質転換することから成る、該
    細菌のリゾビトキシン生産能を付与又は増強する方法。
  24. 【請求項24】細菌が根粒菌であり、宿主植物がマメ科
    植物である、請求項22又は23記載の方法。
  25. 【請求項25】 請求項1ないし8に記載された遺伝子
    の少なくとも一つで細菌を形質転換することから成る、
    該細菌の宿主植物におけるエチレン生合成阻害能を付与
    又は増強する方法。
  26. 【請求項26】 請求項9ないし12のいずれか一項に
    記載のオペロンで細菌を形質転換することから成る、該
    細菌の宿主植物におけるエチレン生合成阻害能を付与又
    は増強する方法。
  27. 【請求項27】細菌が根粒菌であり、宿主植物がマメ科
    植物である、請求項25又は26記載の方法。
  28. 【請求項28】 請求項1ないし8に記載された遺伝子
    の少なくとも一つで細菌を形質転換することから成る、
    該細菌の宿主植物への感染を促進させる方法。
  29. 【請求項29】 請求項9ないし12のいずれか一項に
    記載のオペロンで細菌を形質転換することから成る、該
    細菌の宿主植物への感染を促進させる方法。
  30. 【請求項30】細菌が根粒菌であり、宿主植物がマメ科
    植物である、請求項28又は29記載の方法。
  31. 【請求項31】 請求項1ないし8に記載された遺伝子
    の少なくとも一つで細菌を形質転換することから成る、
    該細菌の宿主植物への遺伝子導入効率を増加させる方
    法。
  32. 【請求項32】 請求項9ないし12のいずれか一項に
    記載のオペロンで細菌を形質転換することから成る、該
    細菌の宿主植物への遺伝子導入効率を増加させる方法。
  33. 【請求項33】細菌がAgrobcterium tumefaciensであ
    る、請求項31又は32記載の方法。
JP2001294434A 2001-09-26 2001-09-26 リゾビトキシン生産遺伝子rtxC Pending JP2003093069A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001294434A JP2003093069A (ja) 2001-09-26 2001-09-26 リゾビトキシン生産遺伝子rtxC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001294434A JP2003093069A (ja) 2001-09-26 2001-09-26 リゾビトキシン生産遺伝子rtxC

Publications (1)

Publication Number Publication Date
JP2003093069A true JP2003093069A (ja) 2003-04-02

Family

ID=19116043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001294434A Pending JP2003093069A (ja) 2001-09-26 2001-09-26 リゾビトキシン生産遺伝子rtxC

Country Status (1)

Country Link
JP (1) JP2003093069A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015533080A (ja) * 2012-09-14 2015-11-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se グリセロール代謝欠失大腸菌株におけるセリノール生産
KR101729123B1 (ko) 2011-03-31 2017-05-02 노보자임스 바이오로지컬스 인코포레이티드 경쟁적이고 효과적인 브라디리조븀 자포니쿰 균주
CN110734999A (zh) * 2019-11-12 2020-01-31 北京市农林科学院 大白菜抗根肿病新基因CRw紧密连锁的SNP分子标记及应用
CN114478728A (zh) * 2020-11-13 2022-05-13 中国科学院微生物研究所 nKCBP蛋白在调控豆科植物固氮能力中的应用
CN114806999A (zh) * 2022-06-30 2022-07-29 华熙生物科技股份有限公司 一种基因工程菌及其在制备二氢大豆苷元中的应用

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101729123B1 (ko) 2011-03-31 2017-05-02 노보자임스 바이오로지컬스 인코포레이티드 경쟁적이고 효과적인 브라디리조븀 자포니쿰 균주
KR20170048600A (ko) * 2011-03-31 2017-05-08 노보자임스 바이오로지컬스 인코포레이티드 경쟁적이고 효과적인 브라디리조븀 자포니쿰 균주
KR101869299B1 (ko) * 2011-03-31 2018-07-20 노보자임스 바이오로지컬스 인코포레이티드 경쟁적이고 효과적인 브라디리조븀 자포니쿰 균주
JP2015533080A (ja) * 2012-09-14 2015-11-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se グリセロール代謝欠失大腸菌株におけるセリノール生産
CN110734999A (zh) * 2019-11-12 2020-01-31 北京市农林科学院 大白菜抗根肿病新基因CRw紧密连锁的SNP分子标记及应用
CN110734999B (zh) * 2019-11-12 2020-06-16 北京市农林科学院 大白菜抗根肿病新基因CRw紧密连锁的SNP分子标记及应用
CN114478728A (zh) * 2020-11-13 2022-05-13 中国科学院微生物研究所 nKCBP蛋白在调控豆科植物固氮能力中的应用
CN114806999A (zh) * 2022-06-30 2022-07-29 华熙生物科技股份有限公司 一种基因工程菌及其在制备二氢大豆苷元中的应用

Similar Documents

Publication Publication Date Title
Wäspi et al. Syringolin, a novel peptide elicitor from Pseudomonas syringae pv. syringae that induces resistance to Pyricularia oryzae in rice
Frühling et al. The Vicia faba leghemoglobin gene VfLb29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum
CN101528918A (zh) 生产3-羟基丙酸的β-丙氨酸/α-酮戊二酸氨基转移酶
US5866778A (en) Newly characterized oxalate and uses therefor
WO2000029607A1 (en) Novel enhancers of plant growth
Yasuta et al. DNA sequence and mutational analysis of rhizobitoxine biosynthesis genes in Bradyrhizobium elkanii
IL180694A (en) A toxin-removing substance that has the sub-activity of aflatoxin and its genetic coding
AU2012294956B2 (en) Methods for increasing CO2 assimilation and oil production in photosynthetic organisms
Cheng et al. A nonribosomal peptide synthase containing a stand-alone condensation domain is essential for phytotoxin zeamine biosynthesis
Liu et al. The key gluconeogenic gene PCK1 is crucial for virulence of Botrytis cinerea via initiating its conidial germination and host penetration
Arrebola et al. Characterisation of the mgo operon in Pseudomonas syringae pv. syringae UMAF0158 that is required for mangotoxin production
US20120278951A1 (en) Modified oil encapsulating proteins and uses thereof
López-Lara et al. The nodulation protein NodG shows the enzymatic activity of an 3-oxoacyl-acyl carrier protein reductase
JP2023514687A (ja) グリコシルトランスフェラーゼ、これらをコードするポリヌクレオチドおよび使用方法
JP2003093069A (ja) リゾビトキシン生産遺伝子rtxC
US7419812B2 (en) Sequences encoding PhzO and methods
US7022524B1 (en) Increasing plant growth with luminol
WO2014197457A1 (en) Production of dirhamnose-lipid in recombinant nonpathogenic bacterium pseudomonas chlororaphis
Doré et al. A fungal conserved gene from the basidiomycete Hebeloma cylindrosporum is essential for efficient ectomycorrhiza formation
JP6637904B2 (ja) コリスチンシンセターゼ及び対応する遺伝子のクラスター
JP2011103864A (ja) デオキシニバレノール及びニバレノールの分解活性を有するタンパク質をコードする遺伝子
US11530415B2 (en) Genetically engineered Streptomyces capable of thaxtomin production in the absence of thaxtomin-inducing conditions and methods of producing thaxtomin
EP1543026B1 (en) Transcriptional activator gene for genes involved in cobalamin biosynthesis
JPWO2005054474A1 (ja) ホルムアルデヒドに対する耐性を植物に付与する方法、環境中のホルムアルデヒドを植物に吸収させる方法
WO2019216248A1 (ja) ペプチド類の大環状化酵素

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071113