JP2003089699A - Silane compound - Google Patents

Silane compound

Info

Publication number
JP2003089699A
JP2003089699A JP2001285400A JP2001285400A JP2003089699A JP 2003089699 A JP2003089699 A JP 2003089699A JP 2001285400 A JP2001285400 A JP 2001285400A JP 2001285400 A JP2001285400 A JP 2001285400A JP 2003089699 A JP2003089699 A JP 2003089699A
Authority
JP
Japan
Prior art keywords
silane compound
group
carbon number
mode
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001285400A
Other languages
Japanese (ja)
Other versions
JP4633307B2 (en
Inventor
Koji Ito
康志 伊藤
Tomoe Takano
友恵 鷹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2001285400A priority Critical patent/JP4633307B2/en
Publication of JP2003089699A publication Critical patent/JP2003089699A/en
Application granted granted Critical
Publication of JP4633307B2 publication Critical patent/JP4633307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Cosmetics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a silane compound which has an excellent oil-solidifying ability and has a low melting point and whose production method is easy, to provide a method for producing the same, to obtain a solidifying agent comprising the same, and a composition containing the same. SOLUTION: The silane compound (I): R2 SiX2 (two R are each independently an alkyl most frequently having 22 to 100 carbon atoms; two X are each independently a 1 to 10C alkyl, H, OH or a 1 to 10C alkoxy), the method for producing the same, the oil-solidifying agent comprising the silane compound (I), and the composition comprising the silane compound (I) and an oil are respectively provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は化粧料原料等として
有用な2つの長鎖アルキル基を有するシラン化合物、そ
の製造法、それからなる固化剤及びそれを含有する組成
物に関する。
TECHNICAL FIELD The present invention relates to a silane compound having two long-chain alkyl groups useful as a raw material for cosmetics, a method for producing the same, a solidifying agent comprising the same, and a composition containing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】パラフ
ィンなど通常の温度で固体である炭化水素化合物や、
酸、エステル、アルコール、天然ワックス、樹脂等と、
液体油を加熱混合し、冷却することで、口紅やファンデ
ーション等の化粧料やクレヨン等の文具といった油性固
形物が作製されている。
BACKGROUND OF THE INVENTION Hydrocarbon compounds that are solid at normal temperatures, such as paraffin,
Acid, ester, alcohol, natural wax, resin, etc.,
By heating and mixing liquid oil and cooling, oily solids such as cosmetics such as lipsticks and foundations and stationery such as crayons are produced.

【0003】しかし、パラフィン等では、油剤の固化性
能が不十分であるため、特開2001−39986号公
報には、ジシロキサンを油剤の固化剤として使用するこ
とが開示されている。しかし、ジシロキサンは、製造法
が複雑であることから、より簡単に製造でき、且つより
低融点を有する油剤の固化剤が求められている。
However, since the solidifying performance of the oil agent is insufficient with paraffin and the like, JP-A-2001-39986 discloses the use of disiloxane as a solidifying agent for the oil agent. However, since the manufacturing method of disiloxane is complicated, there is a demand for a solidifying agent for an oil agent which can be manufactured more easily and has a lower melting point.

【0004】本発明の課題は、油剤の固化能に優れ、ま
た製造法が容易であり、且つより低融点を有するシラン
化合物、その製造法、それからなる固化剤及びそれを含
有する組成物を提供することである。
An object of the present invention is to provide a silane compound having an excellent solidifying ability of an oil agent, an easy production method and a lower melting point, a production method thereof, a solidification agent comprising the same and a composition containing the same. It is to be.

【0005】[0005]

【課題を解決するための手段】本発明は、一般式(I)
で表されるシラン化合物(以下シラン化合物(I)とい
う)、その製造法、シラン化合物(I)からなる油剤の
固化剤、及びシラン化合物(I)と油剤を含有する組成
物を提供する。
The present invention has the general formula (I)
A silane compound represented by (hereinafter referred to as silane compound (I)), its production method, a solidifying agent for an oil agent comprising the silane compound (I), and a composition containing the silane compound (I) and an oil agent.

【0006】R2SiX2 (I) 〔式中、 R:2個のRは、それぞれ独立して、炭素数の最頻値が
22〜100のアルキル基を示す。 X:2個のXは、それぞれ独立して、炭素数1〜10の炭
化水素基、水素原子、水酸基又は炭素数1〜10のアルコ
キシ基を示す。〕
R 2 SiX 2 (I) [wherein R: two R's each independently have a mode of carbon number
22 to 100 alkyl groups are shown. X: Two X's each independently represent a hydrocarbon group having 1 to 10 carbon atoms, a hydrogen atom, a hydroxyl group or an alkoxy group having 1 to 10 carbon atoms. ]

【0007】[0007]

【発明の実施の形態】[シラン化合物(I)]シラン化
合物(I)において、2個のRの炭素数は、それぞれ独
立していてもよいが、後述する測定法で求められた炭素
数の最頻値が、22〜100のアルキル基であり、好ましく
は26〜100、更に好ましくは32〜70のアルキル基であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION [Silane Compound (I)] In the silane compound (I), the carbon numbers of two R's may be independent of each other. The mode value is an alkyl group of 22 to 100, preferably 26 to 100, more preferably 32 to 70.

【0008】本発明において、炭素数の最頻値とは、最
も含有量の多いアルキル基の炭素数をいい、シラン化合
物(I)を油剤の固化剤として用いた時の保形性は、当
該炭素数の最頻値が重要な因子となる。すなわち、炭素
数の最頻値が、22以上であると、オイル状とならず、ま
た室温付近の温度で融解しないため、油剤等の固化剤と
して好適に用いることができ、100以下であると、融点
が高くなり過ぎず、製品への配合が良好となる。
In the present invention, the mode of the number of carbon atoms means the number of carbon atoms of the alkyl group having the largest content, and the shape retention when the silane compound (I) is used as a solidifying agent for the oil agent is The mode of carbon number is an important factor. That is, when the mode of carbon number is 22 or more, it does not become oily and does not melt at a temperature near room temperature, so it can be suitably used as a solidifying agent such as an oil agent, and is 100 or less. , The melting point does not become too high, and the compounding into the product becomes good.

【0009】シラン化合物(I)のRの炭素数の最頻値
は、次の方法によって測定することができる。
The mode of the carbon number of R of the silane compound (I) can be measured by the following method.

【0010】融点測定器(例えばYANACO製)にて
測定した融点(例えば昇温速度:1℃/min)が、同様
に測定したn−アルカン標準品の融点と後述の範囲内で
一致するとき、そのn−アルカン標準品の炭素数として
求められる。即ち、本発明のシラン化合物(I)の溶け
始めの温度をA℃、溶け終わりの温度をB℃とし、n−
アルカン標準品の溶け始めの温度をE℃、溶け終わりの
温度をF℃としたとき、下記式で表される条件を満足す
る場合、シラン化合物(I)のRの炭素数の最頻値は、
そのn−アルカン標準品の炭素数と一致するものとす
る。また、シラン化合物(I)の固化剤としての能力の
観点より、溶け終わりの温度と溶け始めの温度との差
(B−A)は6℃以下、特に4℃以下が好ましい。
When the melting point (for example, temperature rising rate: 1 ° C./min) measured by a melting point measuring device (for example, manufactured by YANACO) coincides with the melting point of the similarly measured n-alkane standard product within the range described below, It is obtained as the carbon number of the n-alkane standard product. That is, the melting temperature of the silane compound (I) of the present invention is A ° C., the melting temperature is B ° C., and n−
When the melting start temperature of the alkane standard product is E ° C. and the melting end temperature is F ° C., when the conditions represented by the following formulas are satisfied, the mode of the carbon number of R of the silane compound (I) is ,
It shall be the same as the carbon number of the standard n-alkane. From the viewpoint of the ability of the silane compound (I) as a solidifying agent, the difference (BA) between the temperature at the end of melting and the temperature at the beginning of melting is preferably 6 ° C or less, and particularly preferably 4 ° C or less.

【0011】[0011]

【数1】 [Equation 1]

【0012】また、シラン化合物(I)において、2個
のXは、同一でも異なっていてもよく、炭素数1〜10の
炭化水素基、水素原子、水酸基又は炭素数1〜10のアル
コキシ基を示し、炭化水素基としてはアルキル基、特に
メチル基が好ましく、アルコキシ基としてはメトキシ
基、エトキシ基が特に好ましい。
In the silane compound (I), the two X's may be the same or different and each represents a hydrocarbon group having 1 to 10 carbon atoms, a hydrogen atom, a hydroxyl group or an alkoxy group having 1 to 10 carbon atoms. The hydrocarbon group is preferably an alkyl group, particularly a methyl group, and the alkoxy group is particularly preferably a methoxy group or an ethoxy group.

【0013】[製造方法]本発明のシラン化合物(I)
の製造法としては、水素−ケイ素結合を有するシラン化
合物に白金触媒等の存在下、長鎖1-オレフィン(例えば
三菱化学製ダイアレンシリーズ)を付加させる有機変性
シラン化合物の一般的な合成法を用いることが出来る。
[Production Method] The silane compound (I) of the present invention
As a method for producing, a general synthetic method of an organically modified silane compound in which a long-chain 1-olefin (for example, Mitsubishi Chemical's dialene series) is added to a silane compound having a hydrogen-silicon bond in the presence of a platinum catalyst or the like. Can be used.

【0014】しかし、この製法では、用いる原料のシラ
ン化合物がガスとなるため、取扱いが平易でなく、また
オレフィンの鎖長分布が広くなり易いため、得られたシ
ラン化合物は、十分な油剤の固化性能を有さない。
In this production method, however, the raw material silane compound used is a gas, which is not easy to handle, and the chain length distribution of olefins tends to be broad, so that the obtained silane compound is sufficient to solidify the oil agent. It has no performance.

【0015】シラン化合物(I)の好ましい製造法は、
例えば2個以上、好ましくは2又は3個、更に好ましく
は2個の脱離基を有するシラン化合物1当量に対して、
アルキルリチウムを含有する開始剤を用いてエチレンを
重合させて得られる炭素数の最頻値にして22〜100のポ
リエチレンを、好ましくは1.5〜2.5当量、更に好
ましくは2当量反応させる方法である。
A preferred method for producing the silane compound (I) is
For example, with respect to 1 equivalent of a silane compound having 2 or more, preferably 2 or 3, more preferably 2 leaving groups,
A polyethylene having a mode of carbon number obtained by polymerizing ethylene using an initiator containing alkyl lithium is reacted with 22 to 100 polyethylene, preferably 1.5 to 2.5 equivalents, more preferably 2 equivalents. Is the way.

【0016】この製造法において、ポリエチレンを得る
工程は、例えば特許03032420号公報第3頁、第5欄第31行
〜第6欄第19行記載の方法により実施することができ
る。
In this production method, the step of obtaining polyethylene can be carried out, for example, by the method described in JP 03032420, page 3, column 5, line 31 to column 6, line 19.

【0017】具体的には、例えばアルキルリチウム及び
3級ジアミンを含む溶液にエチレンを導入することで、
エチレンのリビング重合を行う。エチレンの導入圧力に
は特に制限はないが、0.098〜9.8MPaが適当で
ある。重合温度には特に制限はないが、0℃〜100℃
が適当であり、好ましくは20℃〜80℃である。重合
時間は、重合温度、3級ジアミン濃度、エチレン導入圧
力等によって異なるが、一般に0.1時間から24時間
程度である。ただし、重合熱を除去できる限りなるべく
短時間であることがリビング末端の失活を防ぐ点で好ま
しい。これら重合条件を変化させること、特にアルキル
リチウムとエチレンの比率を調節することで、生成する
リビング末端を有するポリエチレンの炭素数の最頻値を
正確に制御することができる。リビング末端を有するポ
リエチレンの炭素数は、好ましくは最頻値にして22〜10
0、更に好ましくは26〜100、特に好ましくは32〜70であ
る。
Specifically, for example, by introducing ethylene into a solution containing alkyllithium and a tertiary diamine,
Living polymerization of ethylene is performed. The introduction pressure of ethylene is not particularly limited, but 0.098 to 9.8 MPa is suitable. The polymerization temperature is not particularly limited, but is 0 ° C to 100 ° C.
Is suitable, and preferably 20 ° C to 80 ° C. The polymerization time varies depending on the polymerization temperature, the concentration of the tertiary diamine, the ethylene introduction pressure, etc., but is generally about 0.1 to 24 hours. However, it is preferable to be as short as possible to remove the heat of polymerization in order to prevent deactivation of the living end. By changing these polymerization conditions, especially by adjusting the ratio of alkyllithium and ethylene, the mode of the carbon number of the resulting polyethylene having a living end can be accurately controlled. The carbon number of the polyethylene having a living end is preferably 22 to 10 as the mode.
It is 0, more preferably 26 to 100, particularly preferably 32 to 70.

【0018】ここで得られたリビング末端を有するポリ
エチレンの炭素数の最頻値は、高温測定可能な液体クロ
マトグラフィー、特にゲル浸透クロマトグラフィー(例
えば、Waters社製GPC150C)や、ガスクロマトグラフィ
ー、超臨界流体クロマトグラフィー等で測定した標準品
(Aldrich社等から試薬として発売されているノルマル
アルカン)のピークと比較することで測定できる。ま
た、簡便には融点を標準品と比較することでも測定でき
る。
The mode of the carbon number of the living-terminated polyethylene obtained here is determined by liquid chromatography capable of measuring high temperature, particularly gel permeation chromatography (for example, GPC150C manufactured by Waters), gas chromatography, ultra It can be measured by comparison with the peak of a standard product (normal alkane sold as a reagent from Aldrich, etc.) measured by critical fluid chromatography or the like. It can also be measured simply by comparing the melting point with a standard product.

【0019】次いでこのようにして得られた、リビング
末端を有するポリエチレンに、2個以上の脱離基を有す
るシラン化合物を、上記のような割合で反応させる。こ
こで脱離基としては、水素原子、水酸基、アルコキシ
基、ハロゲン原子等が挙げられる。脱離基を有するシラ
ン化合物としては、温和な条件で反応が進行し、かつ反
応後、副生成物の除去が容易である点から、好ましくは
メチル基を1又は2個有し、塩素原子、臭素原子、メト
キシ基及びエトキシ基からなる群から選ばれる脱離基
を、好ましくは2又は3個、更に好ましくは2個有する
シラン化合物が好適である。
Then, the thus obtained polyethylene having a living end is reacted with a silane compound having two or more leaving groups in the above proportion. Here, the leaving group may, for example, be a hydrogen atom, a hydroxyl group, an alkoxy group or a halogen atom. The silane compound having a leaving group preferably has 1 or 2 methyl groups and a chlorine atom, since the reaction proceeds under mild conditions and the by-products can be easily removed after the reaction. A silane compound having preferably 2 or 3, and more preferably 2 leaving groups selected from the group consisting of a bromine atom, a methoxy group and an ethoxy group is suitable.

【0020】2個以上の脱離基を有するシラン化合物
と、リビング末端を有するポリエチレンとの反応は、そ
の反応条件に特に制限はなく、シラン化合物の反応性に
よって、適当な条件を採用すればよいが、反応温度は−
78〜200℃、反応時間は1分〜100時間が好まし
い。脱離基として塩素原子、臭素原子、メトキシ基又は
エトキシ基を有するシラン化合物を用いた場合は、その
添加量、割合、脱離基の数によって異なるが、エチレン
のリビング重合終了後、−78〜70℃に冷却した溶液
中にシラン化合物を滴下し、全量添加したところで、徐
々に昇温し、80〜100℃で1〜24時間反応するこ
とが好ましい。
The reaction conditions of the reaction between the silane compound having two or more leaving groups and the polyethylene having a living end are not particularly limited, and appropriate conditions may be adopted depending on the reactivity of the silane compound. However, the reaction temperature is −
The reaction time is preferably 78 to 200 ° C. and the reaction time is preferably 1 minute to 100 hours. When a silane compound having a chlorine atom, a bromine atom, a methoxy group or an ethoxy group as a leaving group is used, it varies depending on the amount added, the ratio, and the number of leaving groups, but after the completion of living polymerization of ethylene, -78 to It is preferable that the silane compound is added dropwise to the solution cooled to 70 ° C., and when the total amount has been added, the temperature is gradually raised and the reaction is performed at 80 to 100 ° C. for 1 to 24 hours.

【0021】このようにして得られた反応終了品から、
必要ならば副生成物等を除去し、シラン化合物(I)を
得る。具体的には、水洗浄で塩等を除去する方法、吸着
剤により、塩等を吸着除去する方法等が挙げられる。最
も好ましくは、均一に溶解した反応混合物をシラン化合
物(I)が不溶かつ不純物が溶解する溶剤、例えばメタ
ノールに滴下し、沈殿部分を回収することにより、純度
が高いシラン化合物(I)が得られる。
From the reaction-finished product thus obtained,
If necessary, by-products are removed to obtain the silane compound (I). Specific examples include a method of removing salts and the like by washing with water, a method of adsorbing and removing salts and the like with an adsorbent, and the like. Most preferably, the reaction mixture in which the silane compound (I) is uniformly dissolved is dropped into a solvent in which the silane compound (I) is insoluble and impurities are dissolved, for example, methanol, and the precipitated portion is recovered to obtain a silane compound (I) having a high purity. .

【0022】[油剤の固化剤]シラン化合物(I)は油
剤の固化剤として有用である。シラン化合物(I)によ
り固化される油剤に特に制限はなく、室温(25℃)で
流動性を保った非水液体で、シラン化合物(I)が、溶
解または分散可能なものであれば何でもよい。
[Solidifying Agent for Oil Agent] The silane compound (I) is useful as a solidifying agent for an oil agent. The oil agent solidified by the silane compound (I) is not particularly limited, and may be any non-aqueous liquid that maintains fluidity at room temperature (25 ° C.) and can dissolve or disperse the silane compound (I). .

【0023】例えば、(イ)トルエン、キシレン、流動
パラフィン、スクワラン、石油エーテル等の炭化水素
類、(ロ)エタノール、グリセリン、クレゾール等のア
ルコール類、(ハ)アニソール、ジオキサン、1,2−
ジメトキシエタン、アセトン、メチルエチルケトン、シ
クロヘキサノン等のエーテル又はケトン類、(二)酢酸
エチル、パルミチン酸イソプロピル、γ−ブチロラクト
ン、プロピレングリコールメチルエーテルアセテート、
乳酸エステル、炭酸エチレン等のエステル類、(ホ)ク
ロロホルム、トリクロロエタン、二硫化炭素、ジメチル
スルホキシド、アセトニトリル、ピリジン、ニトロベン
ゼン等の含ハロゲン/硫黄/窒素溶剤類、(ヘ)パーム
油、オリーブ油等の油脂並びにその誘導体、(ホ)シリ
コーン類等が挙げられる。これら油剤の2種以上を混合
して用いてもよい。
For example, (a) hydrocarbons such as toluene, xylene, liquid paraffin, squalane, and petroleum ether; (b) alcohols such as ethanol, glycerin and cresol; (c) anisole, dioxane, 1,2-
Ethers or ketones such as dimethoxyethane, acetone, methyl ethyl ketone, cyclohexanone, (di) ethyl acetate, isopropyl palmitate, γ-butyrolactone, propylene glycol methyl ether acetate,
Lactic acid esters, esters of ethylene carbonate, etc., (e) Chloroform, trichloroethane, carbon disulfide, halogen-containing / sulfur / nitrogen solvents such as dimethyl sulfoxide, acetonitrile, pyridine, nitrobenzene, etc. (f) Palm oil, oils such as olive oil And derivatives thereof, (e) silicones and the like. You may mix and use 2 or more types of these oil agents.

【0024】[組成物]本発明の組成物中のシラン化合
物(I)と油剤との配合割合は、油剤100重量部に対
し、シラン化合物(I)0.1〜100重量部が好まし
いが、0.5〜30重量部が更に好ましく、1〜20重
量部が特に好ましい。ここで、シラン化合物(I)は単
独で用いてもよいし、2種以上を併用してもよい。
[Composition] The mixing ratio of the silane compound (I) and the oil agent in the composition of the present invention is preferably 0.1 to 100 parts by weight of the silane compound (I) per 100 parts by weight of the oil agent. 0.5 to 30 parts by weight is more preferable, and 1 to 20 parts by weight is particularly preferable. Here, the silane compound (I) may be used alone or in combination of two or more kinds.

【0025】本発明の組成物は、シラン化合物(I)を
適度に加温し、流動性を有した状態で、油剤と混合する
ことにより、得られる。
The composition of the present invention is obtained by appropriately heating the silane compound (I) and mixing the silane compound (I) with an oil agent in a fluid state.

【0026】本発明の組成物は、口紅やファンデーショ
ン等の化粧料や、クレヨン等の文具といった油性固形物
に好適に用いることができる。
The composition of the present invention can be suitably used for cosmetics such as lipsticks and foundations, and oily solids such as stationery such as crayons.

【0027】[0027]

【実施例】実施例1(式(I)においてR=炭素数の最頻
値が46のアルキル基、X=CH3であるシラン化合物の合
成) 窒素置換した1Lのガラス製耐圧反応容器にシクロヘキ
サン400mL、ジピペリジノエタン 4mL、15% n-ブチルリ
チウムヘキサン溶液(1.6mol/L)12.50mL(0.02モル)
を仕込み、反応系の温度を43〜56℃、エチレンガス導入
圧力を0.098〜0.37MPaに保ちながら、エチレンガスを1
0.9L(標準状態換算)導入して重合を行った。ついで、
ジクロロジメチルシラン 1.29mL(0.01モル)を重合混
合物中に滴下し、90℃で2時間反応させた。反応混合物
を2Lの冷メタノールに投入し、沈殿物を濾取して白色
粉末を得た。収量は14gであった。
EXAMPLES Example 1 (Synthesis of a silane compound in which R = 46 in the formula (I) is an alkyl group having a mode number of carbon atoms of 46 and X = CH 3 ) Cyclohexane was placed in a 1 L glass pressure-resistant reaction vessel substituted with nitrogen. 400mL, dipiperidinoethane 4mL, 15% n-butyllithium hexane solution (1.6mol / L) 12.50mL (0.02mol)
While maintaining the temperature of the reaction system at 43 to 56 ° C and the ethylene gas introduction pressure at 0.098 to 0.37 MPa.
Polymerization was carried out by introducing 0.9 L (converted to standard state). Then,
Dichlorodimethylsilane (1.29 mL, 0.01 mol) was added dropwise to the polymerization mixture, and the mixture was reacted at 90 ° C for 2 hours. The reaction mixture was poured into 2 L of cold methanol, and the precipitate was collected by filtration to obtain a white powder. The yield was 14g.

【0028】この化合物の1H−NMR分析を重クロロ
ホルム中で行った結果、0.0ppm にケイ素原子に結合し
ているメチル基、0.4ppmにアルキル基の末端のメチル
基、0.8ppmにケイ素原子に結合しているメチレン基、1.
2ppmにアルキル基のメチレン基シグナルが観察された。
この1H−NMRスペクトルを図1に示す。
As a result of 1 H-NMR analysis of this compound in deuterated chloroform, a methyl group bonded to a silicon atom at 0.0 ppm, a methyl group at the end of an alkyl group at 0.4 ppm, and a silicon atom at 0.8 ppm. A methylene group attached, 1.
A methylene group signal of an alkyl group was observed at 2 ppm.
The 1 H-NMR spectrum is shown in FIG.

【0029】微量融点測定器にて融点を測定したとこ
ろ、87〜90℃であり、テトラテトラコンタン(炭素数4
4、融点87〜88℃)、ペンタコンタン(炭素数50、融点9
2〜96℃)(Aldrich試薬)を同測定器で測定した値から
炭素数の最頻値は46であると確認された。
When the melting point was measured by a trace melting point measuring device, it was found to be 87 to 90 ° C., and tetratetracontane (carbon number 4
4, melting point 87-88 ℃, pentacontane (carbon number 50, melting point 9
It was confirmed that the mode of carbon number was 46 from the value measured by the same measuring device (2-96 ° C) (Aldrich reagent).

【0030】実施例2(式(I)においてR=炭素数の最
頻値が34のアルキル基、X=CH3であるシラン化合物の合
成) 実施例1と同様の反応容器を用い、n-ヘプタン450mL、
N,N,N’,N’-テトラメチルエチレンジアミン 2mL、15%
n-ブチルリチウムヘキサン溶液(1.6mol/L) 60mL(0.0
96モル)を仕込み、反応系の温度を28〜82℃、エチレン
ガス導入圧力を0.098〜0.39MPaに保ちながら、エチレン
ガスを39L(標準状態換算)導入して重合を行った。つ
いで、ジエトキシジメチルシラン6.3mL(0.048モル)を
重合混合物中に滴下し、90℃で2時間反応させた。反応
混合物にキョーワード700(協和化学工業製)29g、活性
炭 4.5gを添加攪拌し、脱アルカリ、脱色を行った。混
合液を95℃で濾過し、濾液の溶媒を減圧留去し、白色固
体を得た。収量は45gであった。
Example 2 (Synthesis of a silane compound in which R = the number of carbon atoms in the formula (I) is 34 and X = CH 3 ) In the same reaction vessel as in Example 1, n- 450 mL heptane,
N, N, N ', N'-Tetramethylethylenediamine 2mL, 15%
n-Butyllithium hexane solution (1.6mol / L) 60mL (0.0
(96 mol) was charged, and while maintaining the temperature of the reaction system at 28 to 82 ° C and the ethylene gas introduction pressure at 0.098 to 0.39 MPa, 39 L of ethylene gas (converted to the standard state) was introduced to carry out polymerization. Then, 6.3 mL (0.048 mol) of diethoxydimethylsilane was added dropwise to the polymerization mixture, and the mixture was reacted at 90 ° C for 2 hours. To the reaction mixture, 29 g of Kyoward 700 (manufactured by Kyowa Chemical Industry Co., Ltd.) and 4.5 g of activated carbon were added and stirred to carry out dealkalization and decolorization. The mixed liquid was filtered at 95 ° C., and the solvent of the filtrate was distilled off under reduced pressure to obtain a white solid. The yield was 45g.

【0031】この化合物の1H−NMR分析を重クロロ
ホルム中で行った結果、0.0ppm にケイ素原子に結合し
ているメチル基、0.4ppmにアルキル基の末端のメチル
基、0.8ppmにケイ素原子に結合しているメチレン基、1.
2ppmにアルキル基のメチレン基シグナルが観察された。
この1H−NMRスペクトルを図2に示す。
As a result of 1 H-NMR analysis of this compound in deuterated chloroform, a methyl group bonded to a silicon atom at 0.0 ppm, a terminal methyl group of an alkyl group at 0.4 ppm, and a silicon atom at 0.8 ppm. A methylene group attached, 1.
A methylene group signal of an alkyl group was observed at 2 ppm.
The 1 H-NMR spectrum is shown in FIG.

【0032】微量融点測定器にて融点を測定したとこ
ろ、71〜75℃であり、テトラトリアコンタン(炭素数3
4、Aldrich試薬)を同測定器で測定した値と一致した。
When the melting point was measured with a trace melting point measuring device, it was 71 to 75 ° C., and tetratriacontane (carbon number 3
(4, Aldrich reagent) was in agreement with the value measured by the same measuring device.

【0033】実施例3(式(I)においてR=炭素数の最
頻値が34のアルキル基、X=CH3及びOCH2CH3であるシラン
化合物の合成) 実施例1と同様の反応容器を用い、n-ヘプタン150mL、
N,N,N’,N’-テトラメチルエチレンジアミン 1.5mL、15
% n-ブチルリチウムヘキサン溶液(1.6mol/L)50mL(0.
08モル)を仕込み、反応系の温度を24〜80℃、エチレン
ガス導入圧力を0.059〜0.34MPaに保ちながら、エチレン
ガスを32L(標準状態換算)導入して重合を行った。つ
いで、トリエトキシメチルシラン7.1mL(0.04モル)を
重合混合物中に滴下し、90℃で2時間反応させた。反応
混合物にキョーワード700 12.5gを添加攪拌し、脱アル
カリを行った。混合液にイソプロピルアルコールを加
え、濾液を透明にした後、70℃で濾過し、濾液の溶媒を
減圧留去し、白色固体を得た。収量は36gであった。
Example 3 (Synthesis of Silane Compound where R = Alkyl Group with Carbon Number of 34 in Formula (I), X = CH 3 and OCH 2 CH 3 ) The same reaction vessel as in Example 1 , N-heptane 150 mL,
N, N, N ', N'-Tetramethylethylenediamine 1.5mL, 15
% n-Butyllithium hexane solution (1.6mol / L) 50mL (0.
(08 mol) was charged, and while maintaining the temperature of the reaction system at 24 to 80 ° C. and the ethylene gas introduction pressure at 0.059 to 0.34 MPa, ethylene gas was introduced at 32 L (standard state conversion) to carry out polymerization. Then, 7.1 mL (0.04 mol) of triethoxymethylsilane was dropped into the polymerization mixture, and the mixture was reacted at 90 ° C. for 2 hours. 12.5 g of KYOWARD 700 was added to the reaction mixture and stirred to carry out dealkalization. Isopropyl alcohol was added to the mixed solution to make the filtrate transparent and then filtered at 70 ° C., and the solvent of the filtrate was distilled off under reduced pressure to obtain a white solid. The yield was 36g.

【0034】この化合物の1H−NMR分析を重クロロ
ホルム中で行った結果、0.0ppm にケイ素原子に結合し
ているメチル基、0.4ppmにアルキル基の末端のメチル
基、0.8ppmにケイ素原子に結合しているメチレン基、1.
2ppmにアルキル基のメチレン基とエトキシ基のメチル基
が重なったシグナル、3.6ppmにエトキシ基のメチレン基
シグナルが観察された。この1H−NMRスペクトルを
図3に示す。
As a result of 1 H-NMR analysis of this compound in deuterated chloroform, a methyl group bonded to a silicon atom at 0.0 ppm, a methyl group at the end of an alkyl group at 0.4 ppm, and a silicon atom at 0.8 ppm. A methylene group attached, 1.
A signal in which a methylene group of an alkyl group and a methyl group of an ethoxy group overlapped at 2 ppm, and a methylene group signal of an ethoxy group was observed at 3.6 ppm. This 1 H-NMR spectrum is shown in FIG.

【0035】微量融点測定器にて融点を測定したとこ
ろ、71〜75℃であり、テトラトリアコンタン(炭素数3
4、Aldrich試薬)を同測定器で測定した値と一致した。
When the melting point was measured with a trace melting point measuring device, it was found to be 71 to 75 ° C., and tetratriacontane (carbon number 3
(4, Aldrich reagent) was in agreement with the value measured by the same measuring device.

【0036】試験例 実施例1〜3で合成したシラン化合物、ジシロキサン
(特開2001−39986号公報実施例3)、その他
表1に示す市販品を、エステル油(ジカプリン酸ネオペ
ンチルグリコール)の固化剤として用いて、組成物を調
製し、その保形性を、下記方法で評価した。結果を表1
に示す。
Test Example Silane compounds synthesized in Examples 1 to 3, disiloxane (Example 3 in JP 2001-39986 A), and other commercial products shown in Table 1 were used as ester oils (neopentyl glycol dicaprate). A composition was prepared by using it as a solidifying agent, and its shape retention property was evaluated by the following method. The results are shown in Table 1.
Shown in.

【0037】<保形性の評価法>直径3cmのガラス製シ
ャーレ内で固化剤(1.05g、15重量%)、油剤(5.95g、
85重量%)を加熱溶解させ、室温(22℃)にて一晩放冷
して試料を調製した。ハンディ圧縮試験機(カトーテッ
ク(株)製、KES-G5)を用い、直径3mmの円柱を0.01cm/
secの速度で2mmほど押し込むときの応力変化を3回測定
し、応力の極大値の平均値を求め、下記基準で保形性を
評価した。
<Evaluation Method of Shape Retention> A solidifying agent (1.05 g, 15% by weight) and an oil agent (5.95 g, in a glass dish having a diameter of 3 cm)
(85% by weight) was melted by heating and allowed to cool overnight at room temperature (22 ° C.) to prepare a sample. Using a handy compression tester (KES-G5 manufactured by Kato Tech Co., Ltd.), a cylinder with a diameter of 3 mm is 0.01 cm /
The change in stress when pressed about 2 mm at a speed of sec was measured three times, the average of the maximum values of stress was obtained, and the shape retention was evaluated according to the following criteria.

【0038】◎;応力の極大値が500gf以上 ○;応力の極大値が300gf以上500gf未満 △;応力の極大値が300gf未満 ×;油剤を固化しない◎: The maximum value of stress is 500 gf or more ○: The maximum value of stress is 300 gf or more and less than 500 gf △: Maximum stress is less than 300 gf X: Does not solidify the oil

【0039】[0039]

【表1】 [Table 1]

【0040】*1 ジシロキサン:特開2001−399
86号公報実施例3のジシロキサン *2 ポリワックス850:高融点ポリエチレンワックス(東
洋ペトロライト社) *3 HNP-9:高融点パラフィン(日本精蝋社) *4 TSL8185:オクタデシルトリメトキシシラン(GE東芝
シリコーン社)
* 1 Disiloxane: JP 2001-399A
No. 86 gazette Example 3 disiloxane * 2 Polywax 850: High melting point polyethylene wax (Toyo Petrolite) * 3 HNP-9: High melting point paraffin (Nippon Seiwa Co., Ltd.) * 4 TSL8185: Octadecyltrimethoxysilane (GE) (Toshiba Silicone)

【0041】[0041]

【発明の効果】化粧料で用いられる香料、薬効剤等は、
温度に影響を受けるため、出来るだけ温度を上げずに配
合することが望まれている。本発明のシラン化合物
(I)は、他の固化剤と比較して、より低融点で、より
高い保形性を有するので、固形油性化粧料等の固化剤と
して特に有用である。
[Effects of the Invention] The perfumes and medicinal agents used in cosmetics are
Since it is affected by the temperature, it is desired to mix it without raising the temperature as much as possible. The silane compound (I) of the present invention has a lower melting point and higher shape retention property than other solidifying agents, and thus is particularly useful as a solidifying agent for solid oily cosmetics and the like.

【0042】また、本発明のシラン化合物(I)は、カ
ップリング工程を必要としないので、ジシロキサンと比
較して、より低コストで製造することが出来、産業上利
用価値が高い。
Further, since the silane compound (I) of the present invention does not require a coupling step, it can be produced at a lower cost as compared with disiloxane and has a high industrial utility value.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1で得られたシラン化合物の1H−N
MRスペクトルである。
FIG. 1 1 H—N of silane compound obtained in Example 1
It is an MR spectrum.

【図2】 実施例2で得られたシラン化合物の1H−N
MRスペクトルである。
FIG. 2 1 H—N of silane compound obtained in Example 2
It is an MR spectrum.

【図3】 実施例3で得られたシラン化合物の1H−N
MRスペクトルである。
FIG. 3 1 H—N of silane compound obtained in Example 3
It is an MR spectrum.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // A61K 7/00 A61K 7/00 E Fターム(参考) 4C083 AC911 BB11 CC01 FF01 4H049 VN01 VP01 VQ02 VR24 VS12 VU25 VW02 VW32 4J002 AE051 BB202 4J100 AA02 DA01 HA55 HA61 HC78 HC79 JA15 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // A61K 7/00 A61K 7/00 EF term (reference) 4C083 AC911 BB11 CC01 FF01 4H049 VN01 VP01 VQ02 VR24 VS12 VU25 VW02 VW32 4J002 AE051 BB202 4J100 AA02 DA01 HA55 HA61 HC78 HC79 JA15

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一般式(I)で表されるシラン化合物。 R2SiX2 (I) 〔式中、 R:2個のRは、それぞれ独立して、炭素数の最頻値が
22〜100のアルキル基を示す。 X:2個のXは、それぞれ独立して、炭素数1〜10の炭
化水素基、水素原子、水酸基又は炭素数1〜10のアルコ
キシ基を示す。〕
1. A silane compound represented by the general formula (I). R 2 SiX 2 (I) [In the formula, R: two R's each independently have a mode of carbon number;
22 to 100 alkyl groups are shown. X: Two X's each independently represent a hydrocarbon group having 1 to 10 carbon atoms, a hydrogen atom, a hydroxyl group or an alkoxy group having 1 to 10 carbon atoms. ]
【請求項2】 Rの炭素数の最頻値が、32〜70である請
求項1記載のシラン化合物。
2. The silane compound according to claim 1, wherein the mode of the carbon number of R is 32 to 70.
【請求項3】 2個以上の脱離基を有するシラン化合物
と、アルキルリチウムを含有する開始剤を用いてエチレ
ンを重合させて得られる炭素数の最頻値にして22〜100
のポリエチレンとを反応させる、請求項1又は2記載の
シラン化合物の製造法。
3. The mode of the carbon number obtained by polymerizing ethylene using a silane compound having two or more leaving groups and an initiator containing alkyllithium is 22 to 100.
The method for producing a silane compound according to claim 1 or 2, wherein the polyethylene is reacted with the polyethylene.
【請求項4】 請求項1又は2記載のシラン化合物から
なる油剤の固化剤。
4. An oil agent solidifying agent comprising the silane compound according to claim 1.
【請求項5】 請求項1又は2記載のシラン化合物と油
剤を含有する組成物。
5. A composition containing the silane compound according to claim 1 or 2 and an oil agent.
JP2001285400A 2001-09-19 2001-09-19 Silane compounds Expired - Fee Related JP4633307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001285400A JP4633307B2 (en) 2001-09-19 2001-09-19 Silane compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001285400A JP4633307B2 (en) 2001-09-19 2001-09-19 Silane compounds

Publications (2)

Publication Number Publication Date
JP2003089699A true JP2003089699A (en) 2003-03-28
JP4633307B2 JP4633307B2 (en) 2011-02-16

Family

ID=19108553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001285400A Expired - Fee Related JP4633307B2 (en) 2001-09-19 2001-09-19 Silane compounds

Country Status (1)

Country Link
JP (1) JP4633307B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118121A (en) * 1993-10-21 1995-05-09 Kao Corp Oily solid material
JPH07179718A (en) * 1993-12-22 1995-07-18 Kao Corp Polyethylene wax, its production and oily solid material and cosmetic containing the same
JP2001039986A (en) * 1999-07-28 2001-02-13 Kao Corp Disiloxane
JP2001048723A (en) * 1999-08-06 2001-02-20 Kao Corp Oily solid cosmetic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118121A (en) * 1993-10-21 1995-05-09 Kao Corp Oily solid material
JPH07179718A (en) * 1993-12-22 1995-07-18 Kao Corp Polyethylene wax, its production and oily solid material and cosmetic containing the same
JP2001039986A (en) * 1999-07-28 2001-02-13 Kao Corp Disiloxane
JP2001048723A (en) * 1999-08-06 2001-02-20 Kao Corp Oily solid cosmetic

Also Published As

Publication number Publication date
JP4633307B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP2000507289A (en) Star polymers with well-defined siloxane cores and polyisobutylene arms and methods of synthesis
EP3153518B1 (en) Mono-functional branched organosiloxane compound and method for producing the same
US6303729B1 (en) Process for preparing partially added cyclic organohydrogensiloxane
JPS6316416B2 (en)
JP3466238B2 (en) Organopolysiloxane and method for producing the same
JP4633307B2 (en) Silane compounds
JP2000515910A (en) Multi-arm star polymers with well-defined cores and methods for their synthesis
EP0526887A1 (en) Method for the preparation of phenylpolysilsesquioxanes
CN1043892C (en) Polyester compounds and organic gelling agents comprising same
JP3620878B2 (en) Gelling or solidifying agent for organic liquid
KR20200032199A (en) Method for producing polyamide 4 particles
JP3192545B2 (en) Modified polysiloxane and method for producing the same
JP2799305B2 (en) Fluorinated compound, method for producing the same and non-aqueous medium containing the same
Ropponen et al. Thermal and X‐ray powder diffraction studies of aliphatic polyester dendrimers
JP3492947B2 (en) Oily solid cosmetic for lips
JP2826160B2 (en) New organic gelling agent
Kawabata et al. Assembly of functionalized calixarenes
JPH07118122A (en) Oily solid material
JP2001039986A (en) Disiloxane
JPH07179718A (en) Polyethylene wax, its production and oily solid material and cosmetic containing the same
JP3624179B2 (en) Cosmetics containing silicone oil solidifying agent
JPH07118121A (en) Oily solid material
WO1993016115A1 (en) Terminally modified polyolefin
JPS63273648A (en) Production of side-chain-type polymer liquid crystal
JPS5896085A (en) Preparation of mono- or dietynylthiophene

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees