JP2003083884A - Automatic regulator of optical measuring member in analytical apparatus - Google Patents

Automatic regulator of optical measuring member in analytical apparatus

Info

Publication number
JP2003083884A
JP2003083884A JP2001274456A JP2001274456A JP2003083884A JP 2003083884 A JP2003083884 A JP 2003083884A JP 2001274456 A JP2001274456 A JP 2001274456A JP 2001274456 A JP2001274456 A JP 2001274456A JP 2003083884 A JP2003083884 A JP 2003083884A
Authority
JP
Japan
Prior art keywords
light
amount
irradiated
filter
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001274456A
Other languages
Japanese (ja)
Inventor
Muneyasu Kimura
統安 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2001274456A priority Critical patent/JP2003083884A/en
Publication of JP2003083884A publication Critical patent/JP2003083884A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To automatically regulate a center position of beam for measurement in the optical measuring member of the analytical apparatus and a center position of an object to be irradiated such as a filter or a dry analytical element. SOLUTION: In the optical measuring member 1 of the analytical apparatus, the apparatus provides a light source 2 emitting beam B, an object F to be irradiated irradiating beam B, a sensor 9 detecting the amount of the transmitted light or the reflected light from the object F, a shift mechanism 7 shifting the object F or the beam B, a control unit 10 controlling the operation of the mechanism 7 and approaching the center of the beam B and the center of the object F. The control unit 10 stops one of the object F and the beam B at a reference position relative to the other by the mechanism 7. By comparing the amount of the detected light when transferred a predetermined distance at a positive direction from the reference position with the amount of the detected light when transferred a predetermined distance at a negative position, the reference position is amended to a direction so that the former amount and the latter amount are equal. By repeating the amendment, the center position of the beam B and the center position of the object F are approached each other.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、例えば血液、尿等
の検体を比色タイプの乾式分析素子に点着し、この乾式
分析素子の光学濃度変化を測定して検体中の所定の生化
学物質の物質濃度等を求める生化学分析装置等の分析装
置における光学測定部の自動調整装置に関するものであ
る。 【0002】 【従来の技術】従来より、検体の小滴を点着供給するだ
けでこの検体中に含まれている特定の化学成分または有
形成分を定量分析することのできる比色タイプの乾式分
析素子が開発され、実用化されている。この乾式分析素
子を用いた生化学分析装置は、簡単かつ迅速に検体の分
析を行うことができるので、医療機関、研究所等におい
て好適に用いられている。 【0003】比色タイプの乾式分析素子を使用する比色
測定法は、検体を乾式分析素子に点着させた後、これを
インキュベータ内で所定時間恒温保持して呈色反応(色
素生成反応)させ、次いで検体中の所定の生化学物質と
乾式分析素子に含まれる試薬との組み合わせにより予め
選定された波長を含む測定用照射光をこの乾式分析素子
に照射してその光学濃度を測定し、この光学濃度から、
予め求めておいた光学濃度と所定の生化学物質の物質濃
度との対応を表す検量線を用いて該生化学物質の濃度を
求めるものである。 【0004】前記光学濃度の測定を行う光学測定部にお
いては、特定のフィルタを透過させて所定の波長を有す
る測定用ビーム光を得るようにしている。また、この測
定用ビーム光を乾式分析素子の発色部に照射して反射濃
度を測定している。 【0005】 【発明が解決しようとする課題】ところで、上記のよう
な分析装置の光学測定部においては、測定用ビーム光は
フィルタまたは乾式分析素子などの被照射体の中心に対
して正確に一致させて照射することが精度のよい測定を
行う上で重要な事項である。 【0006】例えば、前記フィルタは回転板に複数取り
付けられ、この回転板をモーターによって回転させて、
使用するフィルタを所定位置に停止させているが、その
停止位置精度を確保するために、機構部精度を厳しくし
たり、組立時の調整で中心位置を合わせるようにしてい
たが、その精度を確保するのが困難であった。 【0007】上記フィルタの停止位置精度が低いと、ビ
ーム光の一部がフィルタを保持している回転板の部分に
かかって一部が遮られ、フィルタを透過する光量が低下
したり、遮光量が変化すると光量が変動して測定精度に
影響を与える問題を有する。 【0008】また、ビーム光が遮られないように、フィ
ルタを大きくしたり、ビーム光のビーム径を小さくし
て、フィルタの周辺部を使用しないように設計すると、
光学効率が低下する。 【0009】上記のような不具合が発生しないように手
作業で調整すると生産性が低くなる。また、調整が必要
ないようにするためには、部品精度や組立精度を上げな
ければならず、コスト面で不利となる。 【0010】一方、乾式分析素子に測定用ビーム光を照
射する場合においても、搬送された乾式分析素子を測光
ヘッドに対する測定位置に停止させる精度が測定精度に
影響し、その精度確保が同様に困難となる問題を有して
いる。 【0011】本発明はかかる点に鑑み、分析装置の光学
測定部における測定用ビーム光の中心位置とフィルタま
たは乾式分析素子などの被照射体の中心位置との調整を
正確に自動調整するようにした分析装置における光学測
定部の自動調整装置を提供することを目的とするもので
ある。 【0012】 【課題を解決するための手段】本発明の分析装置におけ
る光学測定部の自動調整装置は、分析装置の光学測定部
において、ビーム光を射出する光源と、前記ビーム光が
照射される被照射体と、該被照射体からの透過光または
反射光の光量を検出する光量センサと、前記被照射体ま
たはビーム光を移動させる移動機構と、該移動機構の作
動を制御して前記ビーム光の中心と前記被照射体の中心
とを接近させる制御ユニットとを備え、前記制御ユニッ
トは、前記移動機構により被照射体とビーム光の一方に
対し他方を基準位置に停止させ、この基準位置からプラ
ス方向に所定量移動させた際の検出光量と、マイナス方
向に所定量移動させた際の検出光量とを比較し、両検出
光量が等しくなる方向に前記基準位置を修正する動作を
繰り返し、前記被照射体とビーム光との中心位置を接近
させることを特徴とするものである。 【0013】前記被照射体は、フィルタのような透過性
のもの、または乾式分析素子のような反射性のものがあ
り、それぞれの透過光量または反射光量を光量センサで
検出する。また、被照射体またはビーム光の位置調整
は、回転角度を変更して調整する方式のもの、横方向ま
たは縦方向に移動して調整するもの、縦横両方向に移動
して調整するものなどが採用可能で、いずれについても
プラス方向およびマイナス方向に移動した際の検出光量
に基づいて位置調整を行う。 【0014】 【発明の効果】上記のような本発明によれば、フィルタ
または乾式分析素子などの被照射体の中心と測定用ビー
ム光との中心位置の接近が高精度に自動的に得られ、ビ
ーム光が一部遮断されることがなく、光量低下が防止で
きと共に、光量変動が小さく良好な測定精度が確保でき
る。また、フィルタ等が周辺部分まで有効利用できるた
め光学効率が向上する。さらに、手作業での調整が不要
になり、生産性が向上する。部品精度や組立精度を上げ
なくても十分な位置精度が得られ、コストダウンが可能
となる。 【0015】 【発明の実施の形態】以下、本発明の実施の形態を図面
に沿って説明する。図1は一実施形態の分析装置におけ
る光学測定部の自動調整装置の概略構成図である。 【0016】図示していないが、分析装置(生化学分析
装置)は、血液等の検体およびその測定に必要な乾式分
析素子その他消耗品(ノズルチップ、希釈液、混合カッ
プ、参照液等)を搭載するサンプラトレイ、検体を吸引
し乾式分析素子に所定量点着する点着ノズルユニット、
点着後の乾式分析素子を収容して所定時間恒温保持し、
比色測定を行うインキュベータなどを備える。 【0017】そして、インキュベータに付設される光学
測定部1は、図1に示すように、ランプおよびレンズ等
を備えた光源2から射出された測定用ビーム光Bが、回
転板5に複数配設されたフィルタF(被照射体)に照射
され、このフィルタFを透過する。上記回転板5は、中
心部にモーター7による移動機構が接続されて、回転板
5の回転によりフィルタFを選択すると共に、所定のフ
ィルタFを測定用ビーム光Bの中心位置と合わせて停止
する。上記モーター7(移動機構)には、制御ユニット
10が接続されて、その駆動制御が行われ、停止位置が
自動調整される。また、フィルタFを透過した測定用ビ
ーム光Bの光路に設置されたビームスプリッタ8によ
り、測定用ビーム光Bの一部が光量センサ9に入射さ
れ、この光量センサ9によって光量が測定され、その信
号が制御ユニット10に送出される。これらにより自動
調整装置が構成されている。 【0018】なお、上記フィルタFを透過した測定用ビ
ーム光Bは、光ファイバなどによって測光ヘッドに導か
れ、検体が点着された乾式分析素子に照射されて反射光
量が測定される。 【0019】前記制御ユニット10によるモーター7の
駆動制御による回転板5の停止位置の自動調整は、基本
的に、フィルタFをビーム光Bに対する基準位置(仮中
心位置)に停止させ、この基準位置からフィルタFをプ
ラス方向に所定量移動させた際の検出光量と、マイナス
方向に所定量移動させた際の検出光量とを比較し、両検
出光量が等しくなる方向に前記基準位置を修正する動作
を繰り返し、ビーム光BとフィルタFの中心位置を接近
させるものである。 【0020】図2は具体的な調整制御を示すフローチャ
ートである。まずステップS1で、回転板5の選択され
たフィルタFを基準位置(仮中心位置)に停止させる。
そして、この位置から回転板5をプラス方向(正回転方
向)に所定角度(+n゜)回転させた(S2)後、この
位置で光量センサ9による光量測定を行い、正回転方向
光量ADpを求める(S3)。次に、回転板5をマイナ
ス方向(負回転方向)に、前記角度n゜の2倍の角度
(−2n゜)すなわち前記基準位置からは−n゜回転さ
せた(S4)後、この位置で光量センサ9による光量測
定を行い、負回転方向光量ADmを求める(S5)。そ
の後、回転板5をプラス方向(正回転方向)に(+n
゜)回転させて基準位置に戻す(S6)。 【0021】次に、ステップS7で、前記正回転方向光
量ADpと負回転方向光量ADmとを比較し、正回転方
向光量ADpが負回転方向光量ADm以上か否かを判定
する。この判定がYESで、正回転方向光量ADpが大
きい(ADp≧ADm)場合には、ステップS8で前回
は小さかった(ADp<ADm)か否かを判定し、この
場合はNO判定により、フィルタFの基準位置をプラス
方向(正回転方向)に微小角度(+δ゜)ずらせて設定
し(S9)、新しい基準位置に回転板5を回転させた
(S10)後、ステップS2に戻る。 【0022】そして、正回転方向光量ADpが大きい
(ADp≧ADm)間は、ステップS2〜S10の処理
を繰り返し、基準位置をプラス方向に修正するのに伴
い、正回転方向光量ADpは徐々に減少する一方、負回
転方向光量ADmは徐々に増加する。 【0023】上記処理の繰り返しにより、ステップS7
の判定がNOとなって、正回転方向光量ADpが負回転
方向光量ADmより小さくなった場合には、ステップS
11で前回は大きかった(ADp≧ADm)か否かを判
定し、この場合はYES判定により、調整を終了する。 【0024】上記調整過程を図3(a)〜(f)により説明
する。破線で示すビーム光Bを基準とし、移動調整を行
うフィルタFを実線で示す。(a)は初期の位置であり、
上記の場合はビーム光Bの中心位置に対してフィルタF
の基準位置(仮中心位置)はマイナス方向(負回転方
向)にずれている。この状態から、(b)のようにフィル
タFを正回転方向に+n゜ずらしたときの光量ADp
は、(c)のようにフィルタFを負回転方向に−n゜ずら
したときの光量ADmより、遮光される光量が少ないこ
とにより大きくなる。その結果、(d)のようにフィルタ
Fの基準位置はプラス方向に微小角度+δ゜調整され
る。これに伴い、(e)のようにフィルタFを正回転方向
に+n゜ずらしたときの光量ADpと、(f)のようにフ
ィルタFを負回転方向に−n゜ずらしたときの光量AD
mが等しくなり、両者の中心位置が接近するようにな
る。 【0025】一方、図2のフローチャートにおいて、調
整開始直後の状態で、前記ステップS7の判定がNOの
場合、すなわち正回転方向光量ADpが負回転方向光量
ADmより小さい(ADp<ADm)場合には、ステッ
プS11で前回は大きかった(ADp≧ADm)か否か
を判定し、この場合はNO判定により、フィルタFの基
準位置をマイナス方向(負回転方向)に微小角度(−δ
゜)ずらせて設定し(S12)、新しい基準位置に回転
板5を回転させた(S10)後、ステップS2に戻る。 【0026】そして、正回転方向光量ADpが小さい
(ADp<ADm)間は、ステップS2〜S7およびS
11,S12,S10の処理を繰り返し、基準位置をマ
イナス方向に修正するのに伴い、正回転方向光量ADp
は徐々に増加する一方、負回転方向光量ADmは徐々に
減少する。 【0027】上記処理の繰り返しにより、ステップS7
の判定がYESとなって、正回転方向光量ADpが負回
転方向光量ADm以上となった場合には、ステップS8
で前回は小さかった(ADp<ADm)か否かを判定
し、この場合はYES判定により、調整を終了する。 【0028】上記実施の形態によれば、フィルタFをプ
ラス方向およびマイナス方向に所定量ずつ移動させた状
態での検出光量を比較して、両者が等しくなる方向に、
自動的に位置調整を行い、簡易に高精度に接近させるこ
とができる。 【0029】なお、前記実施の形態では、フィルタFは
回転板5に設置されて、この回転板5を回転駆動するよ
うにしているが、フィルタFを横方向または縦方向にス
ライドする摺動板に、横方向または縦方向に列状に配置
してもよく、その摺動板の移動調整により、前記と同様
に位置調整が行える。また、横方向および縦方向にマト
リックス状に配置して、縦横方向に移動調整するように
してもよい。また、ビーム光Bを移動させるようにして
もよい。 【0030】一方、被照射体としては、乾式分析素子で
もよく、この場合には、ビーム光Bは乾式分析素子で反
射されるものであり、未使用の乾式分析素子または基準
板を使用して、その反射光を光量センサで測定し、前記
と同様に位置調整を行う。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, spotting a specimen such as blood or urine on a colorimetric dry analytical element and measuring the change in optical density of the dry analytical element. The present invention relates to an automatic adjustment device for an optical measurement unit in an analyzer such as a biochemical analyzer that measures the concentration of a predetermined biochemical substance in a specimen. 2. Description of the Related Art Conventionally, a colorimetric type dry method capable of quantitatively analyzing a specific chemical component or formed component contained in a specimen simply by spotting and feeding a small drop of the specimen. Analytical elements have been developed and put into practical use. A biochemical analyzer using this dry analytical element can be used to analyze a sample easily and quickly, and is therefore preferably used in medical institutions, laboratories and the like. A colorimetric measurement method using a colorimetric type dry analytical element is that a sample is spotted on a dry analytical element and then held at a constant temperature in an incubator for a color reaction (dye generation reaction). And then irradiating the dry analytical element with measurement light containing a wavelength selected in advance by a combination of a predetermined biochemical substance in the specimen and a reagent contained in the dry analytical element, and measuring the optical density thereof, From this optical density,
The concentration of the biochemical substance is obtained using a calibration curve representing the correspondence between the optical density obtained in advance and the substance concentration of the predetermined biochemical substance. In the optical measuring unit for measuring the optical density, a measuring beam having a predetermined wavelength is obtained through a specific filter. Further, the reflection density is measured by irradiating the color beam of the dry analytical element with this measuring beam. By the way, in the optical measuring section of the analyzer as described above, the measuring beam is exactly coincident with the center of the irradiated object such as a filter or a dry analytical element. It is an important matter to perform measurement with high accuracy. For example, a plurality of the filters are attached to a rotating plate, and the rotating plate is rotated by a motor.
Although the filter to be used is stopped at a predetermined position, in order to ensure the accuracy of the stop position, the precision of the mechanical part has been tightened or the center position has been adjusted by adjustment during assembly, but the accuracy is ensured. It was difficult to do. If the stop position accuracy of the filter is low, a part of the light beam is blocked by a part of the rotating plate holding the filter, and the amount of light transmitted through the filter is reduced, or the amount of light shielding is reduced. When the value changes, the amount of light varies, which affects the measurement accuracy. If the filter is enlarged so that the light beam is not blocked, or the beam diameter of the light beam is reduced so that the periphery of the filter is not used,
Optical efficiency is reduced. If the adjustment is made manually so that the above-mentioned problems do not occur, the productivity is lowered. Further, in order to avoid the need for adjustment, it is necessary to increase the component accuracy and assembly accuracy, which is disadvantageous in terms of cost. On the other hand, even when the measuring beam is irradiated to the dry analytical element, the accuracy of stopping the transported dry analytical element at the measuring position with respect to the photometric head affects the measuring accuracy, and it is similarly difficult to ensure the accuracy. Have problems. In view of the above, the present invention is configured to automatically and accurately adjust the center position of the measurement beam light and the center position of the irradiated object such as a filter or a dry analytical element in the optical measuring unit of the analyzer. It is an object of the present invention to provide an automatic adjustment device for an optical measurement unit in an analyzer. According to an automatic adjustment device for an optical measurement unit in an analyzer of the present invention, a light source for emitting beam light and the beam light are irradiated in the optical measurement unit of the analyzer. An object to be irradiated, a light amount sensor for detecting the amount of transmitted or reflected light from the object to be irradiated, a moving mechanism for moving the irradiated object or beam light, and controlling the operation of the moving mechanism to control the beam A control unit that brings the center of the light and the center of the irradiated body closer, and the control unit stops the other of the irradiated body and the beam light at the reference position by the moving mechanism, and this reference position The amount of light detected when moving a predetermined amount in the plus direction from the amount of light detected when moving a predetermined amount in the minus direction is compared, and the operation of correcting the reference position in the direction in which both amounts of detected light are equal is repeated. Returning, the center positions of the irradiated object and the beam light are brought close to each other. The irradiated object may be transmissive such as a filter or reflective such as a dry analytical element, and the amount of transmitted light or the amount of reflected light is detected by a light amount sensor. In addition, the position of the irradiated object or beam light is adjusted by changing the rotation angle, adjusted by moving in the horizontal or vertical direction, adjusted by moving in both the vertical and horizontal directions, etc. In both cases, the position adjustment is performed based on the detected light amount when moving in the plus direction and the minus direction. According to the present invention as described above, the proximity of the center position of the irradiated object such as a filter or dry analytical element and the center position of the measuring beam can be automatically obtained with high accuracy. The light beam is not partially blocked, the light quantity can be prevented from being lowered, and the light quantity fluctuation is small and good measurement accuracy can be ensured. In addition, since the filter and the like can be effectively used up to the peripheral portion, optical efficiency is improved. Furthermore, manual adjustment is not necessary, and productivity is improved. Sufficient positional accuracy can be obtained without increasing the component accuracy and assembly accuracy, and the cost can be reduced. DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of an automatic adjustment device for an optical measurement unit in an analyzer according to an embodiment. Although not shown in the figure, the analyzer (biochemical analyzer) is used for a sample such as blood and dry analysis elements and other consumables (nozzle tip, diluting liquid, mixing cup, reference liquid, etc.) necessary for the measurement. A sampler tray to be mounted, a spotting nozzle unit that sucks a sample and places a predetermined amount on a dry analytical element,
Hold the dry analytical element after spotting and keep it constant temperature for a predetermined time,
An incubator for colorimetric measurement is provided. As shown in FIG. 1, the optical measuring unit 1 attached to the incubator is provided with a plurality of measuring beam lights B emitted from a light source 2 having a lamp, a lens and the like on a rotating plate 5. The irradiated filter F (irradiated body) is irradiated and transmitted through the filter F. The rotating plate 5 is connected to a moving mechanism by a motor 7 at the center, and selects the filter F by the rotation of the rotating plate 5 and stops the predetermined filter F according to the center position of the measuring beam B. . A control unit 10 is connected to the motor 7 (moving mechanism), the drive control is performed, and the stop position is automatically adjusted. Further, a part of the measurement beam light B is incident on the light quantity sensor 9 by the beam splitter 8 installed in the optical path of the measurement beam light B that has passed through the filter F, and the light quantity is measured by the light quantity sensor 9. A signal is sent to the control unit 10. These constitute an automatic adjustment device. The measuring beam B transmitted through the filter F is guided to a photometric head by an optical fiber or the like, and irradiated to a dry analysis element on which a sample is spotted to measure the amount of reflected light. The automatic adjustment of the stop position of the rotating plate 5 by the drive control of the motor 7 by the control unit 10 basically stops the filter F at the reference position (temporary center position) with respect to the beam B, and this reference position. Operation for comparing the detected light amount when the filter F is moved a predetermined amount in the plus direction with the detected light amount when the filter F is moved a predetermined amount in the minus direction, and correcting the reference position in the direction in which both detected light amounts are equal. Is repeated to bring the light beam B and the center position of the filter F closer to each other. FIG. 2 is a flowchart showing specific adjustment control. First, in step S1, the selected filter F of the rotating plate 5 is stopped at the reference position (temporary center position).
Then, after rotating the rotating plate 5 from this position in the plus direction (forward rotation direction) by a predetermined angle (+ n °) (S2), the light amount measurement by the light amount sensor 9 is performed at this position to obtain the positive rotation direction light amount ADp. (S3). Next, the rotating plate 5 is rotated in the minus direction (negative rotation direction) by an angle (-2n °) twice the angle n °, that is, −n ° from the reference position (S4), and then at this position. The light quantity is measured by the light quantity sensor 9 to obtain the negative rotation direction light quantity ADm (S5). Thereafter, the rotating plate 5 is moved in the plus direction (positive rotation direction) (+ n
(°) Rotate back to the reference position (S6). Next, in step S7, the positive rotation direction light amount ADp and the negative rotation direction light amount ADm are compared to determine whether or not the positive rotation direction light amount ADp is greater than or equal to the negative rotation direction light amount ADm. If this determination is YES and the positive rotation direction light amount ADp is large (ADp ≧ ADm), it is determined in step S8 whether or not the previous time was small (ADp <ADm). Is shifted by a small angle (+ δ °) in the plus direction (positive rotation direction) (S9), the rotating plate 5 is rotated to a new reference position (S10), and the process returns to step S2. When the positive rotation direction light amount ADp is large (ADp ≧ ADm), the processes in steps S2 to S10 are repeated, and the positive rotation direction light amount ADp gradually decreases as the reference position is corrected in the plus direction. On the other hand, the negative rotation direction light amount ADm gradually increases. By repeating the above processing, step S7 is performed.
Is NO and the positive rotation direction light amount ADp is smaller than the negative rotation direction light amount ADm, step S
11, it is determined whether or not the previous time was large (ADp ≧ ADm). In this case, the determination is YES, and the adjustment is terminated. The adjustment process will be described with reference to FIGS. A filter F that performs movement adjustment with reference to the light beam B indicated by a broken line is indicated by a solid line. (a) is the initial position,
In the above case, the filter F with respect to the center position of the beam B
The reference position (temporary center position) is shifted in the minus direction (negative rotation direction). From this state, the amount of light ADp when the filter F is shifted + n ° in the forward rotation direction as shown in FIG.
Becomes larger by the amount of light to be shielded being smaller than the amount of light ADm when the filter F is shifted by −n ° in the negative rotation direction as shown in (c). As a result, the reference position of the filter F is adjusted by a minute angle + δ ° in the plus direction as shown in FIG. Accordingly, the light amount ADp when the filter F is shifted by + n ° in the positive rotation direction as shown in (e), and the light amount AD when the filter F is shifted by −n ° in the negative rotation direction as shown in (f).
m becomes equal, and the center position of both approaches. On the other hand, in the flowchart of FIG. 2, in the state immediately after the start of adjustment, if the determination in step S7 is NO, that is, if the positive rotation direction light amount ADp is smaller than the negative rotation direction light amount ADm (ADp <ADm). In step S11, it is determined whether or not the previous time was large (ADp ≧ ADm). In this case, the NO position is determined so that the reference position of the filter F is set to a small angle (−δ) in the minus direction (negative rotation direction).
(°) is set to be shifted (S12), the rotating plate 5 is rotated to a new reference position (S10), and the process returns to step S2. When the light quantity ADp in the positive rotation direction is small (ADp <ADm), steps S2 to S7 and S
11, S12, and S10 are repeated, and as the reference position is corrected in the minus direction, the light amount ADp in the positive rotation direction
Gradually increases, while the amount of light ADm in the negative rotation direction gradually decreases. By repeating the above processing, step S7 is performed.
Is YES and the positive rotation direction light amount ADp is equal to or greater than the negative rotation direction light amount ADm, step S8 is performed.
Then, it is determined whether or not the previous time was small (ADp <ADm). In this case, the determination is YES, and the adjustment is terminated. According to the above embodiment, the detected light amounts in a state where the filter F is moved by a predetermined amount in the plus direction and the minus direction are compared, and in the direction in which both are equal,
The position is automatically adjusted, and can be easily approached with high accuracy. In the above-described embodiment, the filter F is installed on the rotating plate 5 and rotationally drives the rotating plate 5, but a sliding plate that slides the filter F in the horizontal or vertical direction. Further, they may be arranged in a row in the horizontal direction or the vertical direction, and the position can be adjusted in the same manner as described above by adjusting the movement of the sliding plate. Further, it may be arranged in a matrix form in the horizontal direction and the vertical direction, and may be moved and adjusted in the vertical and horizontal directions. Further, the light beam B may be moved. On the other hand, the irradiated object may be a dry analytical element. In this case, the light beam B is reflected by the dry analytical element, and an unused dry analytical element or reference plate is used. Then, the reflected light is measured by a light amount sensor, and the position is adjusted in the same manner as described above.

【図面の簡単な説明】 【図1】本発明の一実施形態にかかる分析装置における
光学測定部の概略構成図 【図2】調整制御を示すフローチャート図 【図3】調整制御の過程を示す説明図 【符号の説明】 1 光学測定部 2 光源 B 測定用ビーム光 F フィルタ(被照射体) 5 回転板 7 モーター(移動機構) 9 光量センサ 10 制御ユニット
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of an optical measurement unit in an analyzer according to an embodiment of the present invention. FIG. 2 is a flowchart showing adjustment control. [Explanation of Symbols] 1 Optical measurement unit 2 Light source B Measurement beam light F Filter (irradiated body) 5 Rotating plate 7 Motor (moving mechanism) 9 Light quantity sensor 10 Control unit

Claims (1)

【特許請求の範囲】 【請求項1】 分析装置の光学測定部において、ビーム
光を射出する光源と、前記ビーム光が照射される被照射
体と、該被照射体からの透過光または反射光の光量を検
出する光量センサと、前記被照射体またはビーム光を移
動させる移動機構と、該移動機構の作動を制御して前記
ビーム光の中心と前記被照射体の中心とを接近させる制
御ユニットとを備え、 前記制御ユニットは、前記移動機構により被照射体とビ
ーム光の一方に対し他方を基準位置に停止させ、この基
準位置からプラス方向に所定量移動させた際の検出光量
と、マイナス方向に所定量移動させた際の検出光量とを
比較し、両検出光量が等しくなる方向に前記基準位置を
修正する動作を繰り返し、前記被照射体とビーム光との
中心位置を接近させることを特徴とする分析装置におけ
る光学測定部の自動調整装置。
What is claimed is: 1. In an optical measuring unit of an analyzer, a light source for emitting beam light, an irradiated object irradiated with the beam light, and transmitted light or reflected light from the irradiated object A light amount sensor for detecting the amount of light, a moving mechanism for moving the irradiated object or beam light, and a control unit for controlling the operation of the moving mechanism to bring the center of the beam light close to the center of the irradiated object The control unit uses the moving mechanism to stop one of the object to be irradiated and the light beam at the reference position, and detects a detected light amount when moving a predetermined amount in the plus direction from the reference position, and minus Comparing the detected light amount when moved by a predetermined amount in the direction, repeating the operation of correcting the reference position in the direction in which both detected light amounts are equal, and bringing the center position of the irradiated object and the beam light closer Special Automatic adjusting apparatus of the optical measuring unit in the analyzer to.
JP2001274456A 2001-09-11 2001-09-11 Automatic regulator of optical measuring member in analytical apparatus Withdrawn JP2003083884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001274456A JP2003083884A (en) 2001-09-11 2001-09-11 Automatic regulator of optical measuring member in analytical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001274456A JP2003083884A (en) 2001-09-11 2001-09-11 Automatic regulator of optical measuring member in analytical apparatus

Publications (1)

Publication Number Publication Date
JP2003083884A true JP2003083884A (en) 2003-03-19

Family

ID=19099479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001274456A Withdrawn JP2003083884A (en) 2001-09-11 2001-09-11 Automatic regulator of optical measuring member in analytical apparatus

Country Status (1)

Country Link
JP (1) JP2003083884A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7876442B2 (en) 2005-07-01 2011-01-25 Sysmex Corporation Analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7876442B2 (en) 2005-07-01 2011-01-25 Sysmex Corporation Analyzer

Similar Documents

Publication Publication Date Title
EP1840559B1 (en) Blood analyzer and blood analyzing method
US8852511B2 (en) Automatic analyzer
US4488810A (en) Chemical analyzer
JP6337905B2 (en) Surface plasmon resonance fluorescence analysis method and surface plasmon resonance fluorescence analyzer
EP2667182B1 (en) Automatic analysis device taking into account thermal drift
JP2007322208A (en) Biochemical analyzer
JP7114611B2 (en) Analysis method and analyzer
JPS6222066A (en) Latex agglutination reaction measuring instrument
EP2466292B1 (en) System for performing scattering and absorbance assays
US5039225A (en) Apparatus for measurement of reflection density
JPH0623694B2 (en) Photometer for analysis of flowing materials
JPWO2015182747A1 (en) Surface plasmon enhanced fluorescence measurement method, surface plasmon enhanced fluorescence measurement device, and analysis chip
WO2016006362A1 (en) Automatic analysis device
WO2017043192A1 (en) Automated analyzer
US20180196077A1 (en) Detection Device And Detection Method
JP6791248B2 (en) Detection method and detection device
JP2003083884A (en) Automatic regulator of optical measuring member in analytical apparatus
JPS6327661B2 (en)
CN108474738B (en) Automatic analyzer and standard liquid for evaluating scattered light measuring optical system thereof
JP2007017310A (en) Analyzer
WO2020116058A1 (en) Analyzer and analysis method
JP6012367B2 (en) Automatic analyzer
JP7093727B2 (en) Sensor chip position detection method and position detection device in optical sample detection system
US10684228B2 (en) System and method of nephelometric determination of an analyte
JP2005291726A (en) Biochemical analyzer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202