JP2003049557A - Building damping device - Google Patents

Building damping device

Info

Publication number
JP2003049557A
JP2003049557A JP2001237355A JP2001237355A JP2003049557A JP 2003049557 A JP2003049557 A JP 2003049557A JP 2001237355 A JP2001237355 A JP 2001237355A JP 2001237355 A JP2001237355 A JP 2001237355A JP 2003049557 A JP2003049557 A JP 2003049557A
Authority
JP
Japan
Prior art keywords
vibration
damper
building
vibration damping
elastic spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001237355A
Other languages
Japanese (ja)
Inventor
Hiroaki Ichinose
博明 一ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2001237355A priority Critical patent/JP2003049557A/en
Publication of JP2003049557A publication Critical patent/JP2003049557A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

(57)【要約】 【課題】 大変形後の制振ダンパーに復元力を持たせて
設置初期から長年月経過後も所定の耐震性能、制振性能
を安定よく発揮させることができるようにする。 【解決手段】 建物の骨組部材(10,10、11,1
1)側に固定のガゼットプレート14,14´間に亘っ
て制振ダンパー1を架設して構成される建物の制振装置
において、制振ダンパー1を構成するように軸方向に相
対移動可能に組み付けられた複数の鋼板プレートのう
ち、一方のガゼットプレート14に固定接合される二枚
の鋼板プレート2A,2A側に連結された板状取付部5
と他方のガゼットプレート14´に固定接合される一枚
の鋼板プレート2Bの軸方向一端部との間に、制振ダン
パー1に対して軸方向の変形復元力を付与するコイル状
の弾性ばね8を、一枚の鋼板プレート2Bと直列の状態
で張設している。
(57) [Abstract] [Problem] To provide a vibration damper having a large deformation with a restoring force so that a predetermined seismic resistance and vibration damping performance can be exhibited stably even after many months have passed since the initial installation. . SOLUTION: A frame member (10, 10, 11, 1) of a building is provided.
1) In a vibration damping device for a building constructed by mounting a vibration damper 1 between gusset plates 14 and 14 'fixed on the side, the vibration damper 1 is relatively movable in the axial direction so as to constitute the vibration damper 1. Of the plurality of assembled steel plates, the plate-shaped mounting portion 5 connected to the two steel plates 2A, 2A fixedly joined to one gusset plate 14
A coiled elastic spring 8 for applying an axial deformation restoring force to the vibration damper 1 between the steel plate 2B and one axial end of the steel plate 2B fixedly joined to the other gusset plate 14 '. Are stretched in series with one steel plate 2B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は建物の制振装置に関
する。詳しくは、例えばビルや戸建住宅等の新設あるい
は既設の建物の耐震性能及び制振性能を高めるために、
軸方向に相対移動可能に組付けられた二つの剛性部材間
に粘弾性体等のエルネギー吸収材を介在させてなる制振
ダンパーを建物の相対変位可能な二つの骨組部材間に亘
って架設して構成される建物の制振装置に関するもので
ある。
TECHNICAL FIELD The present invention relates to a building vibration damping device. Specifically, for example, in order to enhance the seismic resistance and damping performance of new or existing buildings such as buildings and detached houses,
A damping damper made by interposing an energy absorbing material such as a viscoelastic body between two rigid members that are relatively movable in the axial direction is installed between two frame members that can be relatively displaced in the building. The present invention relates to a vibration damping device for a building.

【0002】[0002]

【従来の技術】ビル等の建物の耐震性能、制振性能を高
めるために、例えば柱と梁や柱と梁といった骨組部材の
接合部位間に亘って、粘弾性ダンパー、粘性ダンパー、
オイルダンパー等の各種制振ダンパーをブレースや方杖
として架設することは従来より広く知られている。
2. Description of the Related Art In order to improve the seismic resistance and damping performance of buildings such as buildings, viscoelastic dampers, viscous dampers, etc. are provided between joints of frame members such as columns and beams or columns and beams.
It has been widely known that various vibration dampers such as oil dampers are installed as braces and canes.

【0003】従来一般の建物の制振装置では、その主要
機能部となる制振ダンパーの設計にあたって、地震等に
より建物に入力される振動エネルギーをいかに効率よく
吸収して所定の振動減衰性能を高め得るかに重点がおか
れ、地震後などの振動終息後の対策についてはほとんど
考慮されていないといって過言でない。例えばエネルギ
ー吸収材として微小変形から大変形までの広い範囲の変
形に対して優れたエネルギー吸収性能を有し、かつ、微
小変形に対しては復元性を有する粘弾性体を用いてなる
粘弾性ダンパーを制振ダンパーとして使用する場合で
も、粘弾性体による振動エネルギーの吸収能力を高める
ために、その粘性を第一義的に重視し、変形終息後の復
元力となる弾性はほとんど考慮されておらず、大変形後
はエネルギー吸収材を含めて制振ダンパー全体が元の状
態に戻らないものが多い。
In the conventional general vibration damping device for a building, when designing a vibration damping damper which is a main function part thereof, it is possible to efficiently absorb the vibration energy input to the building due to an earthquake or the like to enhance a predetermined vibration damping performance. It is no exaggeration to say that the emphasis is on obtaining information, and that little attention is paid to measures after the end of vibration such as an earthquake. For example, as an energy absorbing material, a viscoelastic damper that uses a viscoelastic body that has excellent energy absorption performance over a wide range of deformation from small deformation to large deformation and that has resilience to small deformation. Even when using as a vibration damper, in order to enhance the ability of the viscoelastic body to absorb vibration energy, the viscosity is primarily emphasized, and the elasticity that is the restoring force after the end of deformation has not been considered. In many cases, the entire vibration damper including the energy absorbing material does not return to its original state after large deformation.

【0004】[0004]

【発明が解決しようとする課題】上記のような従来一般
の建物の制振装置においては、建物がエネルギー吸収材
の弾性範囲内で変形する時にのみ制振ダンパーによって
所定の耐震性能、制振性能を発揮することが可能である
が、建物がエネルギー吸収材の塑性領域に入るまで大き
く変形した後はエネルギー吸収材を含めて制振ダンパー
が元の状態に復元しないために、建物が次に変形した時
には耐震性能、制振性能を全く発揮させることができな
い、あるいは、発揮させることができるにしても性能の
著しい低下は避けられず、長年月の間に何回となく繰り
返し変形された後は建物が大きく歪変形したり倒壊した
りするなど所定の耐震性能、制振性能を持続させること
ができないという問題があった。
In the conventional vibration damping device for a general building as described above, a predetermined vibration resistance and vibration damping performance are provided by the vibration damping damper only when the building is deformed within the elastic range of the energy absorbing material. However, after the building undergoes a large deformation until it enters the plastic region of the energy absorbing material, the damping damper including the energy absorbing material does not return to its original state, so the building deforms next. When it does, it is not possible to exert seismic resistance and vibration control performance at all, or even if it can be exerted, a significant decrease in performance is unavoidable, and after being repeatedly deformed many times over many years There was a problem that the prescribed seismic performance and vibration control performance could not be maintained, such as the building being greatly distorted and deformed or collapsed.

【0005】本発明は上記実情に鑑みてなされたもの
で、大変形後の制振ダンパーに復元力を持たせて設置か
ら長年月経過後も所定の耐震性能、制振性能を安定よく
発揮させることができる建物の制振装置を提供すること
を目的としている。
The present invention has been made in view of the above-mentioned circumstances, and the damping damper after large deformation is given a restoring force so that predetermined seismic resistance and damping performance can be stably exhibited even after many years have passed since installation. The purpose of the present invention is to provide a vibration damping device for a building.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る建物の制振装置は、軸方向に相対移動
可能に組付けられた二つの剛性部材間にエネルギー吸収
材を介在させてなる制振ダンパーを建物の相対変位可能
な二つの骨組部材の接合部間に亘って架設して構成され
る建物の制振装置であって、上記建物の二つの骨組部材
の接合部またはそれに連なる部材間には、制振ダンパー
に変形復元力を付与する弾性ばねが介装されていること
を特徴とするものである。
In order to achieve the above object, the vibration damping device for a building according to the present invention interposes an energy absorbing material between two rigid members assembled so as to be relatively movable in the axial direction. A vibration damping device for a building, which is constructed by erection of a vibration damper thus made between two frame members which are capable of relative displacement in a building, and which is a joint part of two frame members of the building, or An elastic spring that gives a deformation restoring force to the vibration damper is interposed between the members connected to it.

【0007】上記構成の本発明によれば、制振ダンパー
とは別に変形復元力を付与するための専用の弾性ばねが
設けられているので、制振ダンパーの設計に際しては、
振動エネルギーを最も効率よく吸収する特性のエネルギ
ー吸収材を用いることに設計の重点をおけることと、弾
性ばねが建物の変形に対して弾性抵抗を付与することと
が相俟って、高い振動減衰性能を発揮させつつ、地震等
による変形終息後は、変形したエネルギー吸収材を含む
制振ダンパーを弾性ばねの復元力によって元の状態に戻
して、次の振動付加に伴う変形時にも同等の振動減衰性
能を持続することが可能である。これによって、制振ダ
ンパーの設置から長年月経過後も所定の耐震性能、制振
性能を安定よく発揮させて建物の歪変形や倒壊を確実に
防止することができる。
According to the present invention having the above-described structure, since a dedicated elastic spring for imparting a deformation restoring force is provided in addition to the vibration damping damper, the vibration damping damper should be designed as follows.
The design emphasis is placed on the use of energy absorbers that absorb vibration energy most efficiently, and the elastic springs provide elastic resistance to deformation of the building, which results in high vibration damping. While exhibiting its performance, after the end of deformation due to an earthquake, etc., the vibration damper containing the deformed energy absorbing material is returned to its original state by the restoring force of the elastic spring, and the same vibration is generated during the deformation accompanying the next vibration addition. It is possible to maintain the damping performance. As a result, even after many years have passed since the installation of the vibration damping damper, the predetermined seismic resistance and vibration damping performance can be stably exhibited, and distortion deformation and collapse of the building can be reliably prevented.

【0008】特に、制振ダンパーとして、請求項2に記
載のように、互いに平行状に対向配置された複数の剛性
部材の対向面間に粘弾性体を層状に挟在させてなる粘弾
性ダンパーを用いる場合、建物が粘弾性体の弾性範囲を
越えて塑性領域にまで大きく変形したとしても、変形終
息後はその大きく剪断変形した粘弾性ダンパーを優れた
元の履歴特性に復元させて長年月使用後の耐震性能、制
振性能を一層安定よく維持することができる。
In particular, as a vibration damper, as described in claim 2, a viscoelastic damper in which a viscoelastic body is sandwiched between opposing surfaces of a plurality of rigid members arranged in parallel to each other. When the building is used, even if the building deforms significantly beyond the elastic range of the viscoelastic body to the plastic region, after the end of the deformation, the large shear-deformed viscoelastic damper is restored to the excellent original hysteresis characteristic and it has been used for many years. The seismic resistance and damping performance after use can be maintained more stably.

【0009】上記建物の制振装置において、制振ダンパ
ーに変形復元力を付与する弾性ばねは、請求項3に記載
のように、制振ダンパーと別個に並列の状態で介装させ
ても、また、請求項4に記載のように、制振ダンパーを
構成する複数の剛性部材のうち一方の接合部に接合され
た一部の剛性部材と直列の状態で介装させてもよいが、
特に、直列の状態に介装する場合は、予想を越える大き
な変形に伴って粘弾性体等のエネルギー吸収材がダンパ
ー構成用剛性部材との接着箇所で破断したとしても、制
振ダンパーを完全に分解させることなく、直列状態にあ
る一部の剛性部材と弾性ばねとは建物の相対変位可能な
二つの骨組部材の接合部間に亘る架設状態に維持するこ
とが可能であり、したがって、大地震等の大変形時にお
ける建物の倒壊防止効果を一層高めることができる。
In the vibration damping device for a building described above, the elastic spring for applying the deformation restoring force to the vibration damping damper may be interposed in parallel with the vibration damping damper separately from the vibration damping damper. Further, as described in claim 4, it may be interposed in series with a part of the rigid members joined to one joint of the plurality of rigid members constituting the vibration damper,
In particular, in the case of interposing in series, even if the energy absorbing material such as the viscoelastic body breaks at the bonding point with the rigid member for damper construction due to a large deformation that exceeds the expectation, the damping damper can be completely removed. Without disassembling, it is possible to maintain some rigid members and elastic springs in series in the erected state between the joints of two frame members that can be displaced relative to each other in the building, and therefore a large earthquake It is possible to further enhance the effect of preventing the collapse of the building when it is greatly deformed.

【0010】また、上記のように、制振ダンパーを構成
する複数の剛性部材のうち一方の接合部に接合された一
部の剛性部材と弾性ばねとが直列の状態で介装される構
成のものにおいて、請求項7に記載のように、その弾性
ばねを、制振ダンパーを構成する一部の剛性部材を除く
他の剛性部材により被覆させる構成、例えば剛性部材が
それぞれ互いに平行状に対向配置された偏平帯状プレー
トの場合は隣接する偏平帯状プレート間に位置させ、ま
た、剛性部材がそれぞれ内外同心状に嵌合配置された筒
状体の場合はその一方の筒状体の内部に収納位置させる
構成を採用することによって、弾性ばね全体が露出し錆
付き等による性能劣化や夾雑物の挟み込みによる性能障
害の発生をなくして、該弾性ばねによる変形復元作用を
長期間に亘り安定維持することができる。
Further, as described above, a part of the rigid members joined to one joint of the plurality of rigid members constituting the vibration damper and the elastic spring are interposed in series. According to a seventh aspect of the present invention, the elastic spring is covered with another rigid member excluding a part of the rigid member that constitutes the vibration damper, for example, the rigid members are arranged in parallel to each other. In the case of a flat strip that has been installed, it is located between the adjacent flat strips, and in the case of a tubular body in which the rigid members are fitted concentrically inside and outside, the storage position is inside one of the tubular bodies. By adopting a configuration that allows the entire elastic spring to be exposed, performance deterioration due to rusting etc. and performance failure due to entrapment of foreign substances are eliminated, and the deformation restoring action of the elastic spring is stable for a long period of time. It is possible to equity.

【0011】なお、本発明における制振ダンパーのエネ
ルギー吸収材としては、粘弾性体が最も有効であるが、
粘弾性体以外に、粘性体や弾塑性体を使用してもよい。
A viscoelastic body is most effective as an energy absorbing material for the vibration damper of the present invention.
In addition to the viscoelastic body, a viscous body or an elastoplastic body may be used.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
にもとづいて説明する。図1は本発明に係る建物の制振
装置の完成状態を示す概略正面図であり、水平方向で隣
接する柱10,10(骨組部材)と上下で隣接する梁1
1,11(骨組部材)とからなる骨組体13を水平方向
に複数列及び垂直方向に多段に構成して構築された鉄骨
造りのビル(建物)において、複数の骨組体13…のう
ち、例えば水平方向で一つ置きに位置する二列の骨組体
13,13にそれぞれ制振ダンパー1,1…がブレース
として架設されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic front view showing a completed state of a vibration damping device for a building according to the present invention. A beam 1 vertically adjacent to columns 10 and 10 (frame members) that are horizontally adjacent to each other.
In a steel frame building (building) constructed by constructing a skeleton body 13 including 1 and 11 (frame members) in a plurality of rows in the horizontal direction and in a plurality of stages in the vertical direction, among the plurality of skeleton bodies 13, ... Vibration dampers 1, 1 ... Are respectively installed as braces on two rows of frame bodies 13, 13 which are positioned at every other position in the horizontal direction.

【0013】具体的には、図2に示すように、各骨組体
13を構成し地震等の振動がビルに入力したとき、相対
変位する一方の柱10と上部梁11の接合内隅部に固着
のガゼットプレート(接合部位)14と、他方の柱10
と下部梁11の接合内隅部に固着のガゼットプレート
(接合部位)14´との間に亘ってそれぞれ制振ダンパ
ー1…がその軸方向両端の取付部5,5´をガゼットプ
レート14,14´にボルト・ナット等の締付具6,6
´を介して固定接合して架設されている。
More specifically, as shown in FIG. 2, when each frame 13 is constructed and vibration such as an earthquake is input to the building, one of the columns 10 and the upper beam 11 which are relatively displaced relative to each other is located at the inner corner of the joint. A fixed gusset plate (joint part) 14 and the other pillar 10
And the gazette plate (joint portion) 14 'fixed to the inner corner of the joint of the lower beam 11 and the damping dampers 1 ... Fasteners 6, 6 such as bolts and nuts on the ´
It is installed by being fixedly joined via the ‘

【0014】上記制振ダンパー1は、例えば図3に示す
ように、互いに平行状に対向配置した二枚の鋼板プレー
ト(帯状偏平剛性部材の一例)2A,2Aとそれら二枚
の鋼板プレート2A,2A間の中央位置にそれらと平行
に配置された一枚の鋼板プレート(帯状剛性部材の一
例)2Bとの各対向面間にエルネギー吸収材の一例とな
る粘弾性体3,3が層状に挟在され、二枚の鋼板プレー
ト2A,2Aの長手方向一端側には間隔維持部材4,4
及びボルト・ナット9を介して一方のガゼットプレート
14に対する板状取付部5が連結されているとともに、
一枚の鋼板プレート2Bの長手方向他端側には該鋼板プ
レート2Bから一体に延設した板状部により他方のガセ
ットプレート14´に対する取付部5´が形成されてい
る。
As shown in FIG. 3, for example, the vibration damper 1 includes two steel plate plates (an example of a strip-shaped flat rigid member) 2A, 2A and two steel plate plates 2A, which are arranged in parallel and face each other. The viscoelastic bodies 3 which are an example of an energy absorbing material are sandwiched between the facing surfaces of one steel plate (an example of a band-shaped rigid member) 2B arranged in parallel to the central position between the 2A and the two plates. The two steel plate plates 2A, 2A on one end side in the longitudinal direction of the space maintaining members 4, 4
And the plate-shaped mounting portion 5 for the one gusset plate 14 is connected via the bolt and nut 9, and
A mounting portion 5'for the other gusset plate 14 'is formed by a plate-shaped portion integrally extending from the steel plate 2B on the other end side in the longitudinal direction of the one steel plate 2B.

【0015】このような構成の制振ダンパー1は、図2
に示す架設状態において、建物に地震等の振動エネルギ
ーが入力して骨組体13を構成する柱10,10及び梁
11,11が相対変位したとき、その相対変位に伴い二
枚の鋼板プレート2A,2Aと一枚の鋼板プレート2B
とが層状の粘弾性体3,3を剪断変形させる方向、つま
り、軸方向に相対移動して振動エネルギーの吸収減衰性
能を発揮するものである。
The damping damper 1 having such a structure is shown in FIG.
When vibration energy such as an earthquake is input to the building and the columns 10, 10 and the beams 11, 11 constituting the skeleton 13 are relatively displaced in the erected state shown in Fig. 2, the two steel plate plates 2A, 2A, 2A and one steel plate 2B
And are to move relatively in the direction in which the layered viscoelastic bodies 3 and 3 are sheared, that is, in the axial direction, and exhibit absorption and damping performance of vibration energy.

【0016】なお、制振ダンパー1としては、図3に示
したように、三枚の鋼板プレート2A,2A、2Bを用
いて各対向面間に二層の粘弾性体3,3を挟在させたも
の以外に、二枚の鋼板プレートの対向面間に一層の粘弾
性体を挟在させたもの、五枚の鋼板プレートを用いて各
対向面間に四層の粘弾性体を挟在させたものなど種々の
多段積層タイプの粘弾性ダンパーに限らず、軸方向に相
対移動可能に組み付けられた板状あるいは筒状の二つの
剛性部材間にオイルを含む粘性体や弾塑性体を介在させ
てなる粘性ダンパーや履歴ダンパーを用いてもよい。
As the damping damper 1, as shown in FIG. 3, three steel plate plates 2A, 2A, 2B are used and two layers of viscoelastic bodies 3, 3 are sandwiched between opposing surfaces. In addition to the above, one layer of viscoelastic material is sandwiched between two steel plates facing each other, and four layers of viscoelastic material are sandwiched between each steel surface using five steel plates. Not only various types of multi-layered viscoelastic dampers, but also viscous or elastoplastic bodies containing oil between two plate-like or tubular rigid members that are assembled so that they can move relative to each other in the axial direction. You may use the viscous damper and hysteresis damper which are made to do.

【0017】上記図2のように建物の骨組体13のガゼ
ットプレート14,14´間に架設して用いられる制振
ダンパー(粘弾性ダンパー)1において、骨組体13の
一方のガゼットプレート14に固定接合される二枚の鋼
板プレート2A,2A側に連結された板状取付部5と他
方のガゼットプレート14´に固定接合される一枚の鋼
板プレート2Bの軸方向一端部との間には、制振ダンパ
ー1に対して軸方向の変形復元力を付与するコイル状の
弾性ばね8が、一枚の鋼板プレート2Bと直列の状態
で、かつ、二枚の鋼板プレート2A,2Aにより上下ま
たは左右が覆われる状態で張設(介装)されている。
In the vibration damping damper (viscoelastic damper) 1 which is used by being installed between the gazette plates 14 and 14 'of the frame 13 of the building as shown in FIG. 2, it is fixed to one gazette plate 14 of the frame 13. Between the two steel plate plates 2A to be joined, the plate-shaped mounting portion 5 connected to the 2A side, and the one axial end portion of one steel plate plate 2B fixedly joined to the other gusset plate 14 ', A coil-shaped elastic spring 8 that applies a deformation restoring force in the axial direction to the vibration damper 1 is in a state of being in series with one steel plate 2B, and by the two steel plates 2A and 2A, it is moved vertically or horizontally. It is stretched (interposed) so that it is covered.

【0018】上記のような制振ダンパー1が介装されて
いる建物の制振装置によれば、架設初期の通常時には、
図4(a)の模式図に示すように、粘弾性体3,3が非
変形状態にある。この状態で、建物に地震等の振動エネ
ルギーが入力して骨組体13を構成する柱10,10及
び梁11,11が相対変位し、これに伴い制振ダンパー
1に軸方向引張り力が加わった時は、図4(b)の模式
図に示すように、二枚の鋼板プレート2A,2Aと一枚
の鋼板プレート2Bとが層状の粘弾性体3,3を剪断変
形させる軸方向に相対移動して振動エネルギーの吸収減
衰性能を発揮し所定の耐震性能、制振性能が得られる。
According to the vibration damping device for a building in which the vibration damping damper 1 is interposed as described above, at the normal time of the initial installation,
As shown in the schematic view of FIG. 4A, the viscoelastic bodies 3 and 3 are in a non-deformed state. In this state, vibration energy such as an earthquake is input to the building and the columns 10, 10 and the beams 11, 11 constituting the frame body 13 are relatively displaced, and along with this, an axial tensile force is applied to the vibration damper 1 At this time, as shown in the schematic view of FIG. 4B, the two steel plate plates 2A, 2A and the one steel plate plate 2B relatively move in the axial direction to shear and deform the layered viscoelastic bodies 3, 3. As a result, vibration energy absorption and damping performance is exhibited, and the prescribed seismic performance and vibration damping performance are obtained.

【0019】地震等による振動終息後は、剪断変形した
層状粘弾性体3,3を含む制振ダンパー1の全体が弾性
ばね8の復元力によって図4(c)の模式図に示すよう
に、元の状態、つまり、図4(a)に示す架設初期の状
態に戻され、これに伴い建物全体が元の状態に復元され
ることになるため、次に建物に地震等の振動エネルギー
が入力し骨組体13を構成する柱10,10及び針1
1,11が相対変位した場合にも上述したと同等の振動
減衰性能が持続されており、所定の耐震性能、制振性能
を発揮することが可能である。特に、制振ダンパー1と
して粘弾性ダンパーを用いることによって、建物が粘弾
性体3,3の弾性範囲を越えて塑性領域に移行するまで
大きく変形したとしても、変形終息後は大きく塑性変形
した層状の粘弾性体3,3を元の履歴特性に復元させて
長年月使用後の耐震性能、制振性能を安定よく維持する
ことが可能である。
After the end of vibration due to an earthquake or the like, the entire vibration damper 1 including the sheared and deformed layered viscoelastic bodies 3 and 3 is restored by the elastic spring 8 as shown in the schematic view of FIG. The original state, that is, the initial state of erection shown in Fig. 4 (a), is restored, and the entire building is restored to the original state accordingly, so vibration energy such as an earthquake is input to the building next. Pillars 10 and 10 and needle 1 that form the skeleton structure 13
Even when 1, 1 are relatively displaced, the vibration damping performance equivalent to that described above is maintained, and it is possible to exhibit the predetermined seismic performance and vibration damping performance. In particular, by using a viscoelastic damper as the vibration damper 1, even if the building is greatly deformed until it goes beyond the elastic range of the viscoelastic bodies 3 and 3 into the plastic region, it undergoes a large plastic deformation after the deformation ends. It is possible to restore the viscoelastic bodies 3 and 3 to the original hysteresis characteristics and stably maintain the seismic resistance and the vibration damping performance after many years of use.

【0020】また、弾性ばね8が制振ダンパー1におけ
る一枚の鋼板プレート2Bと直列の状態で介装されてい
るので、予想を越える大きな変形に伴って粘弾性体3,
3が二枚の鋼板プレート2A,2Aとの接着箇所x,x
で破断したとしても、制振ダンパー1を完全に分解させ
ることなく、直列状態にある一枚の鋼板プレート2Bと
弾性ばね8とは建物の相対変位可能な二つの骨組部材1
0,11のガゼットプレート14,14´間に亘る架設
状態に維持されることになり、したがって、大地震等の
大変形時における建物の倒壊防止効果を一層高めること
が可能である。
Further, since the elastic spring 8 is interposed in series with the single steel plate 2B of the vibration damper 1, the viscoelastic body 3 is accompanied by a large deformation which is unexpected.
3 is an adhesion point x with two steel plate plates 2A, 2A
Even if it is broken by, the steel plate 2B in series and the elastic spring 8 in the serial state without completely disassembling the vibration damper 1 are two frame members 1 capable of relative displacement of the building.
The erected state is maintained over the 0 and 11 gusset plates 14 and 14 ', and therefore, the collapse prevention effect of the building at the time of large deformation such as a large earthquake can be further enhanced.

【0021】図5〜図8はそれぞれ本発明に係る建物の
制振装置の主要機能部となる制振ダンパー1の他の実施
例の構成を模式的に示す。図5に示す実施例では、図3
に示すような構成を持つ粘弾性ダンパー(制振ダンパ
ー)1とは別個に、建物の骨組体13のガゼットプレー
ト14,14´間に亘ってコイル状の弾性ばね8を粘弾
性ダンパー1と並列の状態に張設したものである。図6
に示す実施例では、図3に示すような構成を持つ粘弾性
ダンパー(制振ダンパー)1において、軸方向一端部に
建物における骨組体13の一方のガゼットプレート14
に固定接合可能な取付部5を連結した二枚の鋼板プレー
ト2A,2Aの各軸方向他端部と他方のガゼットプレー
ト14´との間にそれぞれ、制振ダンパー1に対して軸
方向の変形復元力を付与するコイル状の弾性ばね8を、
二枚の鋼板プレート2A,2Aと直列の状態で張設した
ものである。
5 to 8 schematically show the construction of another embodiment of the vibration damping damper 1 which is the main functional portion of the building vibration damping device according to the present invention. In the embodiment shown in FIG.
Separately from the viscoelastic damper (vibration damper) 1 having the configuration as shown in FIG. 1, the coiled elastic spring 8 is arranged in parallel with the viscoelastic damper 1 across the gusset plates 14 and 14 ′ of the building frame 13. It was stretched in the state of. Figure 6
In the embodiment shown in Fig. 3, in the viscoelastic damper (vibration damper) 1 having the structure as shown in Fig. 3, one gusset plate 14 of the frame structure 13 of the building is provided at one end in the axial direction.
Axial deformation with respect to the vibration damper 1 between the other axial end of each of the two steel plate plates 2A, 2A that are connected to the mounting portion 5 that can be fixedly joined to each other and the other gusset plate 14 '. A coil-shaped elastic spring 8 which gives a restoring force,
The two steel plate plates 2A and 2A are stretched in series.

【0022】また、図7に示す実施例では、内外同心状
に嵌合配置させた金属製筒状体からなる二つの剛性部材
2B´,2A´の内外円周面間に筒状の粘弾性体3を介
在させてなる筒型粘弾性ダンパー(制振ダンパー)1を
使用し、この筒型粘弾性ダンパー1の内筒剛性部材2B
´の軸方向一端部と骨組体13における一方のガゼット
プレート14に固定接合可能な外筒剛性部材2A´側の
取付部5との間に、制振ダンパー1に対して軸方向の変
形復元力を付与するコイル状の弾性ばね8を、内筒剛性
部材2B´と直列の状態で、かつ、外筒剛性部材2A´
内に収容される状態に張設したものである。さらに、図
8に示す実施例では、二枚の鋼板プレート2A,2Aを
共用し、その軸方向の両側にそれら二枚の鋼板プレート
2A,2Aと平行状にそれぞれ一枚の鋼板プレート2
B,2Bを配置し、これら各鋼板プレート2B,2Bと
二枚の共用鋼板プレート2A,2Aとの対向面間にそれ
ぞれ粘弾性体3,3…を介在させてなる二つの粘弾性ダ
ンパー1A,1Aにおける一枚の鋼板プレート2B,2
Bの端部間に軸方向の変形復元力を付与するコイル状の
弾性ばね8を張設したものである。
Further, in the embodiment shown in FIG. 7, the cylindrical viscoelasticity is provided between the inner and outer circumferential surfaces of the two rigid members 2B 'and 2A' which are made of metal cylindrical bodies which are concentrically fitted inside and outside. A cylindrical viscoelastic damper (vibration damper) 1 including a body 3 is used, and an inner cylinder rigid member 2B of the cylindrical viscoelastic damper 1 is used.
Between the axial one end portion of ‘′ and the mounting portion 5 on the outer cylinder rigid member 2 </ b> A ′ side that can be fixedly joined to the one gusset plate 14 of the skeleton 13, the axial deformation restoring force with respect to the vibration damping damper 1. The coil-shaped elastic spring 8 that gives the force is in series with the inner cylinder rigid member 2B ′ and the outer cylinder rigid member 2A ′.
It is stretched so that it can be housed inside. Further, in the embodiment shown in FIG. 8, two steel plate plates 2A, 2A are shared, and one steel plate plate 2 is provided in parallel with the two steel plate plates 2A, 2A on both sides in the axial direction.
B and 2B are arranged, and two viscoelastic dampers 1A, which are formed by interposing viscoelastic bodies 3, 3 between the opposing surfaces of the steel plate plates 2B and 2B and the two common steel plate plates 2A and 2A, respectively. One steel plate 2B, 2 in 1A
A coil-shaped elastic spring 8 that applies a deformation restoring force in the axial direction is stretched between the ends of B.

【0023】図5〜図7に示す各実施例では、そのいず
れにおいても、建物に地震等の振動エネルギーが入力し
て骨組体13を構成する柱10,10及び梁11,11
が相対変位したとき、制振ダンパー1を構成する剛性部
材、すなわち、二枚の鋼板プレート2A,2Aと一枚の
鋼板プレート2Bあるいは外筒剛性部材2A´と内筒剛
性部材2B´とが層状の粘弾性体3,3あるいは筒状の
粘弾性体3を剪断変形させる軸方向に相対移動して所定
の耐震性能、制振性能を発揮する一方、地震等による振
動終息後は、剪断変形した層状の粘弾性体3,3あるい
は筒状の粘弾性体3を含む制振ダンパー1の全体が弾性
ばね8の復元力によって、架設初期の状態に戻され、こ
れに伴い建物全体が元の状態に復元されることになるた
め、次に建物に地震等の振動エネルギーが入力し骨組体
13を構成する柱10,10及び針11,11が相対変
位した場合にも同等の耐震性能、制振性能を持続させる
ことができる。
In each of the embodiments shown in FIGS. 5 to 7, the columns 10, 10 and the beams 11, 11 constituting the frame structure 13 by inputting vibration energy such as an earthquake into the building
Is relatively displaced, the rigid members constituting the vibration damper 1, that is, the two steel plate plates 2A, 2A and one steel plate plate 2B or the outer cylinder rigid member 2A 'and the inner cylinder rigid member 2B' are layered. The viscoelastic bodies 3 and 3 or the cylindrical viscoelastic body 3 are shear-deformed relative to each other in the axial direction to exert predetermined seismic resistance and vibration damping performance, while shear deformation is caused after the end of vibration due to an earthquake or the like. The entire damping damper 1 including the layered viscoelastic bodies 3 and 3 or the tubular viscoelastic body 3 is returned to the initial state of the erection by the restoring force of the elastic spring 8, and the entire building is in the original state accordingly. Since the vibration energy such as an earthquake is input to the building and the columns 10, 10 and the needles 11, 11 constituting the frame structure 13 are displaced relative to each other, the same seismic performance and damping are obtained. The performance can be sustained.

【0024】特に、図7に示す実施例のように、変形復
元用の弾性ばね8を、制振ダンパー1を構成する外筒剛
性部材2A内に収容される状態に張設するものでは、弾
性ばね8を外筒剛性部材2Aで保護することになるため
に、雨水等に晒されて錆付いて性能劣化したり周囲に浮
遊する夾雑物を挟み込んで性能障害を発生したりするこ
とがなく、該弾性ばね8による変形復元作用を長期間に
亘り安定維持することができる。
In particular, as in the embodiment shown in FIG. 7, when the elastic spring 8 for restoring the deformation is stretched so as to be housed in the outer cylinder rigid member 2A constituting the vibration damper 1, the elastic spring 8 is elastic. Since the spring 8 is protected by the outer cylinder rigid member 2A, the performance is not deteriorated by being exposed to rainwater or the like and rusting to deteriorate the performance or entrapment of foreign matters floating around the performance. The deformation restoring action by the elastic spring 8 can be stably maintained for a long period of time.

【0025】また、図8に示す実施例の場合は、建物に
地震等の振動エネルギーが入力して骨組体13を構成す
る柱10,10及び梁11,11の相対変位に伴い、二
つの粘弾性ダンパー(制振ダンパー)1A,1Bが軸方
向圧縮力及び引張り力を受けていずれの軸方向に相対移
動したとしても、振動終息後は単一のコイル状弾性ばね
8の変形復元力によって両粘弾性ダンパー1A,1Bを
元の状態に復元させることができる。
In the case of the embodiment shown in FIG. 8, vibration energy such as an earthquake is input to the building and the two columns are viscous due to the relative displacement of the columns 10, 10 and the beams 11, 11 constituting the frame structure 13. Even if the elastic dampers (vibration dampers) 1A and 1B move relative to each other in either axial direction by receiving the compressive force and the tensile force in the axial direction, after the end of the vibration, the deformation restoring force of the single coil-like elastic spring 8 causes both of them to move. The viscoelastic dampers 1A and 1B can be restored to their original state.

【0026】[0026]

【発明の効果】以上のように、本発明によれば、変形復
元力を付与するための専用の弾性ばねを別個に設けるこ
とによって、制振ダンパー自体は、地震等による振動エ
ネルギーを最も効率よく吸収する特性のエネルギー吸収
材を使用することに設計の重点をおきながらも、地震等
による振動終息後は弾性ばねの復元力によって制振ダン
パーを元の状態に戻して、次の振動付加に伴う変形時に
も同等の振動減衰性能が発揮されるような初期性能を持
続することができる。したがって、弾性ばねを付加する
のみの簡単な構成改造を施すだけで、制振ダンパーの設
置初期の段階から長年月経過後も所定の耐震性能、制振
性能を安定よく発揮させて建物の歪変形や倒壊を確実に
防止することができるという効果を奏する。
As described above, according to the present invention, by separately providing a dedicated elastic spring for imparting a deformation restoring force, the vibration damping damper itself can most efficiently transmit the vibration energy due to an earthquake or the like. Although the design is focused on using an energy absorbing material that absorbs the energy, the vibration damper is restored to its original state by the restoring force of the elastic spring after the end of vibration due to an earthquake, etc. It is possible to maintain the initial performance such that the same vibration damping performance is exhibited even when deformed. Therefore, by simply modifying the structure by adding elastic springs, even after many years have passed from the initial stage of installation of the vibration damper, the specified seismic performance and vibration damping performance can be stably exerted to prevent distortion of the building. The effect of being able to surely prevent or collapse is exhibited.

【0027】特に、請求項2のように、互いに平行状に
対向配置された複数の剛性部材の対向面間に粘弾性体を
層状に挟在させてなる粘弾性ダンパーを制振ダンパーと
して用いる時は、建物が粘弾性体の弾性範囲を越えて塑
性領域にまで大きく変形した場合でも、変形終息後はそ
の大きく剪断変形した粘弾性ダンパーを優れた元の履歴
特性に復元させて長年月使用後の耐震性能、制振性能を
一層安定よく維持することができる。
In particular, when a viscoelastic damper formed by sandwiching a viscoelastic body in layers between opposing surfaces of a plurality of rigid members arranged in parallel to each other is used as a vibration damper. Even if the building is greatly deformed beyond the elastic range of the viscoelastic body to the plastic region, after the end of deformation, the large shear-deformed viscoelastic damper is restored to its excellent original hysteresis characteristics and used for many years. It is possible to maintain the seismic resistance performance and vibration control performance of the product more stably.

【0028】また、請求項4に記載のように、制振ダン
パーを構成する複数の剛性部材のうち一方の接合部に接
合された一部の剛性部材と直列の状態で変形復元用の弾
性ばねを介装させる構成を採用することによって、予想
を越える大きな変形に伴って粘弾性体等のエネルギー吸
収材がダンパー構成用剛性部材との接着箇所で破断した
としても、制振ダンパーを完全に分解させることなく、
直列状態にある一部の剛性部材と弾性ばねとを建物の相
対変位可能な二つの骨組部材の接合部間に亘る架設状態
に維持することができて、大地震等の大変形時における
建物の倒壊防止効果を一層高めることができる。
Further, as described in claim 4, the elastic spring for restoring the deformation in series with a part of the rigid members joined to one joint of the plurality of rigid members constituting the vibration damper. By adopting a configuration in which the vibration damper is interposed, even if the energy absorbing material such as the viscoelastic body breaks at the adhesion point with the rigid member for damper construction due to unexpectedly large deformation, the damping damper is completely disassembled. Without letting
It is possible to maintain some rigid members and elastic springs in series in a erected state that spans the joints between two frame members that can be displaced relative to each other in the building, and The collapse prevention effect can be further enhanced.

【0029】さらに、請求項7に記載のように、変形復
元用の弾性ばねを制振ダンパーを構成する一部の剛性部
材を除く他の剛性部材により被覆させる構成、例えば剛
性部材がそれぞれ互いに平行状に対向配置された偏平帯
状プレートの場合は隣接する偏平帯状プレート間に位置
させ、また、剛性部材がそれぞれ内外同心状に嵌合配置
された筒状体の場合はその一方の筒状体の内部に収納位
置させる構成を採用することによって、弾性ばね全体の
露出を防いで錆付き等による性能劣化や夾雑物の挟み込
みによる性能障害の発生をなくし、該弾性ばねによる変
形復元作用を長期間に亘り安定維持することができる。
Further, as described in claim 7, the elastic spring for restoring the deformation is covered with other rigid members excluding a part of the rigid members constituting the vibration damper, for example, the rigid members are parallel to each other. In the case of flat strips that are arranged opposite to each other, the flat strips are positioned between adjacent flat strips, and in the case of a tubular body in which the rigid members are fitted concentrically inside and outside, one of the tubular bodies is By adopting a configuration that is stored inside, the entire elastic spring is prevented from being exposed, performance deterioration due to rusting etc. and performance failure due to entrapment of foreign substances are eliminated, and the elastic spring's deformation restoring action can be done for a long time. It can be maintained stable over the entire range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る建物の制振装置の完成状態を示す
概略正面図である。
FIG. 1 is a schematic front view showing a completed state of a vibration damping device for a building according to the present invention.

【図2】図1の要部の拡大正面図である。FIG. 2 is an enlarged front view of the main part of FIG.

【図3】制振ダンパーの構造を示す拡大側面図である。FIG. 3 is an enlarged side view showing the structure of a vibration damper.

【図4】(a)〜(c)は架設初期時、変形時及び復元
力作用時の状態変化を説明するための模式図である。
4 (a) to 4 (c) are schematic views for explaining state changes at the initial stage of installation, during deformation, and during restoring force.

【図5】第2の実施例の構成を示す模式図である。FIG. 5 is a schematic diagram showing a configuration of a second exemplary embodiment.

【図6】第3の実施例の構成を示す模式図である。FIG. 6 is a schematic diagram showing a configuration of a third exemplary embodiment.

【図7】第4の実施例の構成を示す模式図である。FIG. 7 is a schematic diagram showing a configuration of a fourth exemplary embodiment.

【図8】第5の実施例の構成を示す模式図である。FIG. 8 is a schematic diagram showing a configuration of a fifth exemplary embodiment.

【符号の説明】[Explanation of symbols]

1,1A,1B 制振ダンパー 2A,2B 鋼板プレート(剛性部材) 2A´,2B´ 筒剛性部材 3 粘弾性体(エネルギー吸収材) 8 変形復元力付与用弾性ばね 10 柱(骨組部材) 11 梁(骨組部材) 14,14´ ガゼットプレート(接合部位) 1,1A, 1B damping damper 2A, 2B Steel plate (rigid member) 2A ', 2B' Cylinder rigid member 3 Viscoelastic body (energy absorbing material) 8 Elastic spring for applying deformation restoring force 10 columns (frame members) 11 Beams (frame members) 14,14 'Gazette plate (joint site)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2E001 DG01 DG02 FA01 FA02 FA03 GA02 GA10 GA12 GA42 GA59 HB02 HE01 LA01 LA09 LA11 LA18 3J048 AA03 AB01 AC01 BA11 BC02 BD08 DA02 DA03 DA05 EA38   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2E001 DG01 DG02 FA01 FA02 FA03                       GA02 GA10 GA12 GA42 GA59                       HB02 HE01 LA01 LA09 LA11                       LA18                 3J048 AA03 AB01 AC01 BA11 BC02                       BD08 DA02 DA03 DA05 EA38

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 軸方向に相対移動可能に組付けられた二
つの剛性部材間にエネルギー吸収材を介在させてなる制
振ダンパーを建物の相対変位可能な二つの骨組部材の接
合部間に亘って架設して構成される建物の制振装置であ
って、 上記建物の二つの骨組部材の接合部またはそれに連なる
部材間には、制振ダンパーに変形復元力を付与する弾性
ばねが介装されていることを特徴とする建物の制振装
置。
1. A vibration damping damper having an energy absorbing material interposed between two rigid members assembled so as to be relatively movable in the axial direction across a joint portion between two frame members which can be relatively displaced in a building. A vibration damping device for a building constructed by erection of a structure, wherein an elastic spring for imparting a deformation restoring force to a vibration damper is interposed between a joint portion of two frame members of the building or a member connected thereto. A vibration control device for buildings.
【請求項2】 上記制振ダンパーが、互いに平行状に対
向配置された複数の剛性部材の対向面間に粘弾性体を層
状に挟在させてなる粘弾性ダンパーである請求項1に記
載の建物の制振装置。
2. The vibration damping damper is a viscoelastic damper formed by sandwiching a viscoelastic body in a layered manner between facing surfaces of a plurality of rigid members arranged in parallel to each other. Vibration control device for buildings.
【請求項3】 上記弾性ばねが、制振ダンパーとは別個
に並列の状態で介装されている請求項1または2に記載
の建物の制振装置。
3. The building vibration damping device according to claim 1, wherein the elastic spring is interposed in parallel with the vibration damping damper separately from the vibration damping damper.
【請求項4】 上記弾性ばねが、制振ダンパーを構成す
る複数の剛性部材のうち一方の接合部に接合された一部
の剛性部材と直列の状態で介装されている請求項1また
は2に記載の建物の制振装置。
4. The elastic spring is interposed in series with a part of a rigid member joined to one joint of a plurality of rigid members constituting a vibration damper. Damping device for the building described in.
【請求項5】 上記制振ダンパーを構成する複数の剛性
部材がそれぞれ偏平帯状プレートからなるものである請
求項1ないし4に記載の建物の制振装置。
5. The vibration damping device for a building according to claim 1, wherein each of the plurality of rigid members forming the vibration damping damper is a flat strip plate.
【請求項6】 上記制振ダンパーを構成する複数の剛性
部材がそれぞれ内外同心状に嵌合配置された筒状体から
なるものである請求項1ないし4のいずれかに記載の建
物の制振装置。
6. The vibration damping system for a building according to claim 1, wherein the plurality of rigid members forming the vibration damping damper are cylindrical bodies fitted inside and outside concentrically. apparatus.
【請求項7】 上記制振ダンパーを構成する複数の剛性
部材のうち一方の接合部に接合された一部の剛性部材と
直列の状態で介装された弾性ばねが、その一部の剛性部
材を除く他の剛性部材により覆われている請求項4ない
し6のいずれかに記載の建物の制振装置。
7. An elastic spring interposed in series with a part of a rigid member joined to one joint of a plurality of rigid members constituting the vibration damper is a part of the rigid member. The building vibration damping device according to any one of claims 4 to 6, which is covered with a rigid member other than.
【請求項8】 上記弾性ばねが、コイル状ばねである請
求項1ないし7のいずれかに記載の建物の制振装置。
8. The vibration damping device for a building according to claim 1, wherein the elastic spring is a coil spring.
JP2001237355A 2001-08-06 2001-08-06 Building damping device Withdrawn JP2003049557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001237355A JP2003049557A (en) 2001-08-06 2001-08-06 Building damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001237355A JP2003049557A (en) 2001-08-06 2001-08-06 Building damping device

Publications (1)

Publication Number Publication Date
JP2003049557A true JP2003049557A (en) 2003-02-21

Family

ID=19068450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001237355A Withdrawn JP2003049557A (en) 2001-08-06 2001-08-06 Building damping device

Country Status (1)

Country Link
JP (1) JP2003049557A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006026980A1 (en) * 2004-09-06 2006-03-16 Gerb Schwingungsisolierungen Gmbh & Co. Kg System for stabilizing supporting structures
JP2007046722A (en) * 2005-08-10 2007-02-22 Ohbayashi Corp Damping device, damping structure building, seismic isolator, and multi-span damping structure
WO2010018269A1 (en) * 2008-08-07 2010-02-18 Universidad De Granada Seismic energy dissipater for a primary resistant structure of a construction
CN102312491A (en) * 2011-07-08 2012-01-11 华中科技大学 Metal sand damper
CN102587530A (en) * 2012-02-17 2012-07-18 华中科技大学 Design method of viscous liquid damper for adjacent building structures
CN103276830A (en) * 2013-06-03 2013-09-04 中南大学 Lead shear damper
US8857110B2 (en) 2011-11-11 2014-10-14 The Research Foundation For The State University Of New York Negative stiffness device and method
JP2014535026A (en) * 2011-11-01 2014-12-25 ムーグ インコーポレーテッド Vibration isolation system and method
US9206616B2 (en) 2013-06-28 2015-12-08 The Research Foundation For The State University Of New York Negative stiffness device and method
CN108005249A (en) * 2017-12-06 2018-05-08 福建工程学院 The Seismic Isolation of Isolation Layer limiting and protecting device of building first floor capital shock insulation
JP2020097966A (en) * 2018-12-17 2020-06-25 株式会社ブリヂストン Vibration control member, vibration control member with jig, and vibration control structure
KR102209355B1 (en) * 2020-07-21 2021-01-29 김남식 Fixing device of stone panel having earthquake proof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006026980A1 (en) * 2004-09-06 2006-03-16 Gerb Schwingungsisolierungen Gmbh & Co. Kg System for stabilizing supporting structures
JP2007046722A (en) * 2005-08-10 2007-02-22 Ohbayashi Corp Damping device, damping structure building, seismic isolator, and multi-span damping structure
WO2010018269A1 (en) * 2008-08-07 2010-02-18 Universidad De Granada Seismic energy dissipater for a primary resistant structure of a construction
ES2357591A1 (en) * 2008-08-07 2011-04-28 Universidad De Granada SISMIC ENERGY SINK FOR A PRIMARY RESISTANT STRUCTURE OF A CONSTRUCTION.
CN102312491A (en) * 2011-07-08 2012-01-11 华中科技大学 Metal sand damper
JP2014535026A (en) * 2011-11-01 2014-12-25 ムーグ インコーポレーテッド Vibration isolation system and method
US8857110B2 (en) 2011-11-11 2014-10-14 The Research Foundation For The State University Of New York Negative stiffness device and method
CN102587530A (en) * 2012-02-17 2012-07-18 华中科技大学 Design method of viscous liquid damper for adjacent building structures
CN103276830A (en) * 2013-06-03 2013-09-04 中南大学 Lead shear damper
CN103276830B (en) * 2013-06-03 2015-09-30 中南大学 A kind of lead shear damper
US9206616B2 (en) 2013-06-28 2015-12-08 The Research Foundation For The State University Of New York Negative stiffness device and method
CN108005249A (en) * 2017-12-06 2018-05-08 福建工程学院 The Seismic Isolation of Isolation Layer limiting and protecting device of building first floor capital shock insulation
CN108005249B (en) * 2017-12-06 2023-11-21 福建工程学院 Seismic layer limit protection device for column top isolation on the first floor of a building
JP2020097966A (en) * 2018-12-17 2020-06-25 株式会社ブリヂストン Vibration control member, vibration control member with jig, and vibration control structure
JP7221673B2 (en) 2018-12-17 2023-02-14 株式会社ブリヂストン Vibration damping member with jig and mounting method of vibration damping member
KR102209355B1 (en) * 2020-07-21 2021-01-29 김남식 Fixing device of stone panel having earthquake proof

Similar Documents

Publication Publication Date Title
EP1948878B1 (en) Structure with increased damping by means of fork configuration dampers
Pekcan et al. The seismic response of a 1: 3 scale model RC structure with elastomeric spring dampers
JP2003049557A (en) Building damping device
CN102859097B (en) Vibration damping metal sheet and building construction
JP2004019361A (en) Brace damper
Chakraborty et al. Design of re-centering spring for flat sliding base isolation system: Theory and a numerical study
CN102011439B (en) Staged Yield Type Mild Steel Damper
JP2002089077A (en) Viscoelastic brace with springs joined in series
CN116025061A (en) An assembled self-resetting RC frame beam-column joint based on SMA material
JP2001182359A (en) Seismic brace device
JP2002338018A (en) Three-dimensional warehouse
JP3664611B2 (en) Seismic structure of wooden buildings
JPH0960334A (en) Three dimensional base insulation method and vibration isolation device
JP4771136B2 (en) Anti-seismic brace
CN110344634B (en) Anti-seismic low-rise building
JPH0366473B2 (en)
JP2520038B2 (en) Seismic isolation steel beam
JP2001152696A (en) Seismic isolation support device for roof framework
JP3811854B2 (en) Vibration control mechanism
JP3772245B2 (en) Vibration control frame with composite damper
Malhotra et al. Friction dampers for seismic upgrade of St. Vincent Hospital, Ottawa
JP5184815B2 (en) Vibration control device
Jiang et al. Pseudo-dynamic tests of steel frame with disc spring self-centering energy dissipation braces under doublet earthquake and mainshock-aftershock sequence
JP2002161648A (en) Damping structure building
CN109296102B (en) A shear key damping support capable of stiffness degradation and energy dissipation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007