JP2003043987A - Plasma display device - Google Patents

Plasma display device

Info

Publication number
JP2003043987A
JP2003043987A JP2001229178A JP2001229178A JP2003043987A JP 2003043987 A JP2003043987 A JP 2003043987A JP 2001229178 A JP2001229178 A JP 2001229178A JP 2001229178 A JP2001229178 A JP 2001229178A JP 2003043987 A JP2003043987 A JP 2003043987A
Authority
JP
Japan
Prior art keywords
plasma display
sustain
panel
electrodes
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001229178A
Other languages
Japanese (ja)
Other versions
JP5044877B2 (en
Inventor
Hiroyuki Tachibana
弘之 橘
Toru Ando
亨 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001229178A priority Critical patent/JP5044877B2/en
Publication of JP2003043987A publication Critical patent/JP2003043987A/en
Application granted granted Critical
Publication of JP5044877B2 publication Critical patent/JP5044877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a plasma display device capable of realizing high luminance and high efficiency without causing any self-discharge. SOLUTION: This plasma display device has a plasma display panel, in which a plurality of scan electrodes and a plurality of sustenance electrodes are arranged on one board of two boards which are disposed oppositely so as to form discharge spaces between them and xenon having partial pressure of >5% is filled in the discharge spaces, and a driving means for driving the plasma display panel. The driving means impresses negatively polar sustaining pluse whose peak value is Vs and whose potential changes in a direction of decreasing the pontential (from the peak value Vs to zero) alternately to the scan electrodes and the sustenance electrodes.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、プラズマディスプ
レイ装置に関するものである。 【0002】 【従来の技術】AC型プラズマディスプレイパネル(以
下、「パネル」という)は、図6の断面図に示すよう
に、間に放電空間1を形成するように、2つのガラス製
の表面基板2とガラス製の背面基板3とが対向配置され
ている。放電空間1には放電によって紫外線を放射する
ネオン(Ne)およびキセノン(Xe)が封入されてお
り、通常は全ガス圧に対してXeの分圧が5%である。
表面基板2上には走査電極4と維持電極5とからなる放
電電極が複数配列されており、走査電極4および維持電
極5を覆って誘電体層6が形成され、誘電体層6の上に
酸化マグネシウム(MgO)等からなる保護膜7が形成
されている。走査電極4は透明電極4aと金属電極4b
とから構成され、維持電極5は透明電極5aと金属電極
5bとから構成されている。 【0003】背面基板3上には、走査電極4および維持
電極5と直交する方向に複数のデータ電極8が互いに平
行配列されており、また各データ電極8を隔離しかつ放
電空間1を形成するための隔壁9がデータ電極8の間に
設けられている。データ電極8と隔壁9の側面を覆って
蛍光体層10が形成されている。そして、走査電極4お
よび維持電極5とデータ電極8との交差部に放電セルが
形成される。 【0004】従来のプラズマディスプレイ装置は、この
ような従来のパネルとそれを駆動するための駆動手段と
を有している。 【0005】次に、従来のパネルに画像データを表示さ
せる方法について説明する。画像の階調表示は、1フィ
ールド期間を2進法に基づいた発光期間の重みを持った
複数のサブフィールドに分割し、発光させるサブフィー
ルドの組み合わせによって行う。各サブフィールドは初
期化期間、アドレス期間および維持期間を有する。 【0006】画像データを表示するためには、初期化期
間、アドレス期間および維持期間でそれぞれ異なる信号
波形を各電極に印加する。初期化期間では、たとえば、
維持電極5およびデータ電極8に対して正極性となるパ
ルス電圧をすべての走査電極4に印加し、保護膜7およ
び蛍光体層10上に壁電荷を蓄積する。 【0007】アドレス期間では、すべての走査電極4に
順次、負極性のパルスを印加することにより走査してい
く。画像データがある場合、走査電極4を走査している
間にデータ電極8に正極性のデータパルスを印加する
と、走査電極4とデータ電極8との間で放電が起こり、
走査電極4上の保護膜7の表面に壁電荷が形成される。 【0008】続く維持期間では一定の期間、走査電極4
と維持電極5との間に放電を維持するのに十分な電圧を
有する維持パルスを交互に印加する。図7(a)、
(b)はそれぞれ走査電極4および維持電極5に印加す
る維持パルスの波形を示しており、維持パルスは、波高
値がVSOでありかつ電位が増加する方向(0からVSO
向かう方向)に変化する正極性のパルスである。維持パ
ルスにより、画像データがある放電セルでは走査電極4
と維持電極5との間に放電プラズマが生成され、維持パ
ルスを印加するごとに蛍光体層10が励起発光する。ア
ドレス期間においてデータパルスが印加されなかった放
電セルでは放電は発生せず、蛍光体層10の励起発光は
起こらない。図7(c)は発光波形を示しており、維持
パルスが立ち上がる(電位が0からVSOに変化する)た
びに発光している。 【0009】以上のようにパネルを駆動した場合、維持
期間における維持パルスの波高値(維持電圧)に対する
パネルの発光効率の変化を図8に示す。パネルにはネオ
ン(Ne)とキセノン(Xe)を封入しており、Xeの
分圧が5、7、10および20%としている。この図か
らわかるように、パネルの発光効率は最大で1.1lm
/W程度であり、維持電圧の上昇に伴って減少してい
る。また、パネルの輝度は維持電圧の上昇に伴って増加
するので、高発光効率かつ高輝度のパネルを得ることは
困難であった。 【0010】また、パネルの高輝度化を図るために、特
開平8−314405号公報には、維持期間において図
9(a)、(b)に示す正極性の維持パルスをそれぞれ
走査電極と維持電極に印加するとき、維持パルスの波高
値VS1を、放電開始電圧Vfより低くかつ誤動作が起こ
らない範囲内の最も放電開始電圧Vfに近い値に設定
し、通電期間Tsの長さをその終了時点で壁電圧が放電
開始電圧Vfを越えるように設定することが開示されて
いる。これによって、図9(c)に示すように、維持パ
ルスが立ち上がるときだけでなく維持パルスが立ち下が
る(電位がVS1から0に変化する)ときにも発光する。
維持パルスが立ち下がることによる発光は、誘電体層上
の蓄積電荷による壁電圧によって生じる放電(自己放
電)を利用したものであり、通常の放電による発光と自
己放電による発光とが交互に発生している。図9(c)
に示すような発光をさせることにより、発光回数を維持
パルスの印加回数の2倍にすることができ、輝度を向上
させるというものである。 【0011】 【発明が解決しようとする課題】しかしながら、特開平
8−314405号公報に記載されたパネルの駆動方法
によって発生する自己放電は、誘電体層上の蓄積電荷に
よる壁電圧と維持パルスの波高値との和からなる電圧で
発生する通常の放電とは異なり、誘電体層上の蓄積電荷
による壁電圧だけによって生じるものであり、壁電圧の
ばらつきがそのまま自己放電による発光強度のばらつき
に影響する。特に、画面が大きくなったり放電セルの数
が多くなると、壁電圧のばらつきが大きくなるのに伴っ
て自己放電による発光強度がかなりばらつくので、画面
全体を輝度むらがなくきれいに表示させることは困難で
あった。 【0012】本発明はこのような課題を解決するために
なされたものであり、自己放電を発生させることなく高
輝度、高発光効率を実現するプラズマディスプレイ装置
を提供することを目的とする。 【0013】 【課題を解決するための手段】この目的を達成するため
に本発明のプラズマディスプレイ装置は、間に放電空間
を形成するよう対向配置された2つの基板のうち一方の
基板上に走査電極と維持電極を複数配列して形成しかつ
前記放電空間に5%を超える分圧のキセノンを封入して
構成したプラズマディスプレイパネルと、維持期間にお
いて、前記プラズマディスプレイパネルの走査電極と維
持電極に負極性のパルスを印加する駆動手段とを有する
ものである。この構成により、自己放電を発生させるこ
となく高輝度かつ高発光効率のプラズマディスプレイ装
置を得ることができる。 【0014】 【発明の実施の形態】以下、本発明の一実施の形態につ
いて図面を用いて説明する。 【0015】本発明の一実施形態におけるプラズマディ
スプレイ装置は、パネルとその駆動手段とを有してお
り、図2にパネルの構造を示している。パネル構造で図
6に示す部分と同一部分については同じ番号を付けてお
り、図2のパネル構造が図6のものと異なる点は、走査
電極11および維持電極12が透明電極を使用せず金属
電極から構成されていることである。 【0016】図1(a)、(b)は、パネルの駆動手段
によってそれぞれ走査電極11と維持電極12に印加さ
れる維持期間での電圧波形を示している。本実施形態で
は、図7、図9に示した波形とは異なり、波高値がVS
でありかつ電位が減少する方向(VSから0へ向かう方
向)に変化する維持パルス(負極性の維持パルス)が走
査電極11と維持電極12に交互に印加されている。図
1(c)は発光波形を示しており、維持パルスが印加さ
れるのに伴い維持放電が発生し発光している。すなわ
ち、維持パルスが立ち下がる(電位がVSから0へ向か
う)ごとに発光しているが、維持パルスが立ち上がる
(電位が0からVSへ向かう)ときには維持放電は発生
していない。すなわち、前述した自己放電は発生してい
ない。したがって、従来のパネルで課題となっていた輝
度むらの発生を防止することができ、従来よりも優れた
表示品質を得ることができる。 【0017】また、本実施形態の負極性の維持パルスを
印加すると、走査電極11と維持電極12との間だけで
なく、その維持パルスを印加した走査電極11または維
持電極12とデータ電極8との間でも放電が発生してい
ることが確認された。これは、例えば走査電極11に負
極性の維持パルスを印加した時、誘電体層6上に蓄積さ
れた負の壁電圧によってデータ電極8側に対して走査電
極11側が負になるため、イオンが保護膜7に衝突して
2次電子が発生するので、走査電極11とデータ電極8
との間で放電が発生するものと考えられる。 【0018】次に、本実施形態のプラズマディスプレイ
装置の場合、すなわち図2のパネルを図1の駆動波形で
駆動した場合での、維持パルスの波高値(維持電圧)に
対するパネルの発光効率および輝度の変化を図3(a)
および(b)に示す。測定に使用したパネルでは、走査
電極11および維持電極12の電極幅をそれぞれ100
μmとし、走査電極11と維持電極12との距離dpを
80μmとし、隔壁9の高さを120μmとした。パネ
ルにはネオン(Ne)とキセノン(Xe)の混合ガスを
66.5kPa封入し、Xe分圧を5%、12%および
20%とした。また、維持期間における駆動波形の周波
数を15.3kHzとした。発光輝度は輝度計にて測定
し、発光効率はパネルの発光輝度と消費電力から求め
た。 【0019】図3(a)、(b)ではXe分圧が5%、
12%および20%のときの結果をそれぞれ実線a、実
線bおよび実線cで示している。従来のプラズマディス
プレイ装置では、図8に示したように維持電圧の上昇に
伴って発光効率は減少しているが、本実施形態のプラズ
マディスプレイ装置では維持電圧の上昇に伴って発光効
率が上昇している領域があり、維持電圧が大きいとき、
すなわち輝度が高いときに発光効率が高くなっているこ
とがわかる。したがって、高輝度かつ高発光効率のプラ
ズマディスプレイ装置が得られる。また、Xe分圧が5
%のときの最大発光効率(発光効率の最大値)は、従来
のプラズマディスプレイ装置の最大発光効率と同程度で
あるが、Xeの分圧が12%および20%のときには、
最大発光効率は1.8lm/W程度となっており、従来
よりも発光効率がかなり大きなプラズマディスプレイ装
置が得られる。 【0020】図4(a)、(b)はそれぞれ、Xe分圧
に対する発光効率、輝度の変化を示している。本実施形
態および従来のプラズマディスプレイ装置の場合をそれ
ぞれ実線aおよび実線bで示しており、それぞれの場合
においてXe分圧が5%のときの輝度および発光効率を
1としている。発光効率は維持電圧によって変化する
が、図4(a)は最大発光効率を相対的に示しており、
そのときの輝度を図4(b)に示している。図4からわ
かるように、本実施形態のプラズマディスプレイ装置で
はXe分圧が5%を超えると、5%の場合に比べて発光
効率は大きくなり、従来のプラズマディスプレイ装置に
比べて高発光効率となっている。また輝度についても同
様に、本実施形態のプラズマディスプレイ装置ではXe
分圧が5%を超えると、5%の場合に比べてかなり大き
くなっている。よって本実施形態によれば、パネル内に
封入しているXe分圧が5%を超えると高輝度かつ高発
光効率のプラズマディスプレイ装置が得られる。 【0021】次に、パネルを駆動するときの容易性を表
す駆動マージンについて説明する。維持電圧を下げてい
ったとき、画像データがあるのに維持放電が発生せず発
光しない放電セルが発生し始める維持電圧を最小維持電
圧Vnとし、逆に維持電圧を上げていったとき、画像デ
ータがないのに維持放電が発生し発光する放電セルが発
生し始める維持電圧を最大維持電圧Vxとするとき、駆
動マージンはVx−Vnで与えられ、駆動マージンが大き
いほど正常に駆動できる電圧範囲が大きく駆動しやす
い。 【0022】図2に示したパネルを使用し、従来の駆動
方法によってXe分圧が5%のパネルを駆動した場合、
最小維持電圧Vnは185Vであり最大維持電圧Vxは2
50Vであった。これに対し、本実施形態の駆動方法に
よってパネルを駆動した場合、最小維持電圧Vnは18
5Vであり最大維持電圧Vxは270Vであった。した
がって、本実施形態の駆動方法を用いることでパネルの
駆動マージンが85Vとなり、従来の駆動方法を用いた
場合の駆動マージン(65V)よりも20V大きくする
ことができるので、従来よりも駆動しやすくなってい
る。Xe分圧が12%および20%の場合も同様に、本
実施形態の駆動方法を用いることでパネルの駆動マージ
ンが従来よりも大きくなり駆動しやすくなる。 【0023】以上では、本発明の一実施形態のパネル
が、金属電極のみから構成された走査電極および維持電
極を有する場合について説明したが、図6に示すような
透明電極を用いて構成した走査電極および維持電極を有
するパネルについても同様な結果が得られる。すなわ
ち、維持電圧の上昇に伴って発光効率が上昇している領
域があり、Xe分圧が5%を超え12%、20%の場合
には、従来に比べて高輝度かつ高発光効率となる。ま
た、駆動マージンは従来に比べて大きくなって駆動しや
すくなり、前述した自己放電は発生しないので輝度むら
の発生が抑制された優れた表示品質のパネルを得ること
ができる。 【0024】なお、透明電極のような電極幅の大きい構
造のパネルを用いることで多くの電力を投入することが
できるため、図2のパネルよりも図6のパネルの方が高
輝度となる。さらに図5に示すように、透明電極を用い
るかわりに、走査電極13および維持電極14をそれぞ
れ複数に分割された金属電極で構成し、走査電極13お
よび維持電極14の全体の電極幅を等価的に広くしたパ
ネルでもよい。 【0025】また、Xe分圧の上限値についてはパネル
の動作条件等を考慮して適宜設定すればよい。 【0026】 【発明の効果】以上のように本発明のプラズマディスプ
レイ装置によれば、放電空間に5%を超える分圧のキセ
ノンを封入して構成したプラズマディスプレイパネルの
走査電極と維持電極に、維持期間において負極性のパル
スを印加することにより、高輝度、高発光効率で優れた
表示品質を得ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma display device. 2. Description of the Related Art As shown in a sectional view of FIG. 6, an AC type plasma display panel (hereinafter referred to as "panel") has two glass surfaces so as to form a discharge space 1 therebetween. The substrate 2 and the rear substrate 3 made of glass are arranged to face each other. The discharge space 1 is filled with neon (Ne) and xenon (Xe) that emit ultraviolet rays by discharge, and the partial pressure of Xe is usually 5% of the total gas pressure.
A plurality of discharge electrodes composed of scan electrodes 4 and sustain electrodes 5 are arranged on the front substrate 2, and a dielectric layer 6 is formed to cover the scan electrodes 4 and the sustain electrodes 5. A protective film 7 made of magnesium oxide (MgO) or the like is formed. The scanning electrode 4 includes a transparent electrode 4a and a metal electrode 4b.
And the sustain electrode 5 is composed of a transparent electrode 5a and a metal electrode 5b. On the back substrate 3, a plurality of data electrodes 8 are arranged in parallel with each other in a direction orthogonal to the scanning electrodes 4 and the sustain electrodes 5, and separate the data electrodes 8 to form the discharge space 1. Partition walls 9 are provided between the data electrodes 8. A phosphor layer 10 is formed to cover the side surfaces of the data electrode 8 and the partition 9. Then, a discharge cell is formed at the intersection of scan electrode 4 and sustain electrode 5 with data electrode 8. A conventional plasma display device has such a conventional panel and a driving means for driving the panel. Next, a method for displaying image data on a conventional panel will be described. The gradation display of an image is performed by dividing one field period into a plurality of subfields having a weight of a light emission period based on a binary system and combining the subfields to emit light. Each subfield has an initialization period, an address period, and a sustain period. In order to display image data, different signal waveforms are applied to each electrode during the initialization period, the address period, and the sustain period. During the initialization period, for example,
A pulse voltage having a positive polarity with respect to the sustain electrode 5 and the data electrode 8 is applied to all the scan electrodes 4 to accumulate wall charges on the protective film 7 and the phosphor layer 10. In the address period, scanning is performed by sequentially applying a negative pulse to all the scanning electrodes 4. When there is image data, when a positive data pulse is applied to the data electrode 8 while scanning the scanning electrode 4, a discharge occurs between the scanning electrode 4 and the data electrode 8,
Wall charges are formed on the surface of the protective film 7 on the scan electrode 4. In the following sustain period, the scanning electrode 4 is kept for a certain period.
A sustain pulse having a voltage sufficient to maintain a discharge is alternately applied between the sustain electrode and the sustain electrode 5. FIG. 7 (a),
(B) shows the waveform of the sustain pulse applied to the scan electrode 4 and the sustain electrode 5, respectively. The sustain pulse has a peak value of V SO and a potential increasing direction (a direction from 0 to V SO ). The positive polarity pulse changes to Due to the sustain pulse, the scan electrodes 4 in the discharge cells having image data
Discharge plasma is generated between the electrode and the sustain electrode 5, and the phosphor layer 10 emits light by excitation each time a sustain pulse is applied. No discharge occurs in the discharge cells to which no data pulse is applied during the address period, and no excitation light emission of the phosphor layer 10 occurs. FIG. 7C shows a light emission waveform, which emits light every time the sustain pulse rises (the potential changes from 0 to V SO ). FIG. 8 shows a change in the luminous efficiency of the panel with respect to the peak value (sustain voltage) of the sustain pulse during the sustain period when the panel is driven as described above. The panel is filled with neon (Ne) and xenon (Xe), and the partial pressure of Xe is 5, 7, 10 and 20%. As can be seen from this figure, the luminous efficiency of the panel is 1.1 lm at maximum.
/ W, which decreases with an increase in the sustain voltage. Further, since the luminance of the panel increases with an increase in the sustain voltage, it has been difficult to obtain a panel with high luminous efficiency and high luminance. In order to increase the luminance of the panel, Japanese Patent Application Laid-Open No. 8-314405 discloses that a sustain pulse having a positive polarity shown in FIGS. When applied to the electrodes, the peak value V S1 of the sustain pulse is set to a value lower than the discharge start voltage Vf and the closest to the discharge start voltage Vf within a range where no malfunction occurs, and the length of the energization period Ts is set to the end. It is disclosed that the wall voltage is set to exceed the discharge starting voltage Vf at a point in time. Thus, as shown in FIG. 9C, light is emitted not only when the sustain pulse rises but also when the sustain pulse falls (the potential changes from V S1 to 0).
Light emission due to the fall of the sustain pulse utilizes discharge (self-discharge) generated by wall voltage due to accumulated charge on the dielectric layer, and light emission due to normal discharge and light emission due to self-discharge occur alternately. ing. FIG. 9 (c)
By causing the light emission as shown in (1), the number of times of light emission can be doubled the number of times of application of the sustain pulse, thereby improving the luminance. However, the self-discharge generated by the panel driving method described in Japanese Patent Application Laid-Open No. 8-314405 is caused by the wall voltage and the sustain pulse caused by the accumulated charge on the dielectric layer. Unlike a normal discharge that occurs at the voltage that is the sum of the peak value, it occurs only due to the wall voltage due to the accumulated charge on the dielectric layer, and the wall voltage variation directly affects the emission intensity variation due to self-discharge. I do. In particular, when the screen is large or the number of discharge cells is large, the luminous intensity due to self-discharge varies considerably as the variation in wall voltage increases, and it is difficult to display the entire screen cleanly without uneven brightness. there were. The present invention has been made to solve such a problem, and an object of the present invention is to provide a plasma display device which realizes high luminance and high luminous efficiency without generating self-discharge. In order to achieve this object, a plasma display device according to the present invention scans one of two substrates disposed opposite to each other so as to form a discharge space therebetween. A plasma display panel formed by arranging a plurality of electrodes and sustain electrodes and enclosing xenon with a partial pressure exceeding 5% in the discharge space, and a scan electrode and a sustain electrode of the plasma display panel during a sustain period. Driving means for applying a pulse of negative polarity. With this configuration, a plasma display device with high luminance and high luminous efficiency can be obtained without causing self-discharge. An embodiment of the present invention will be described below with reference to the drawings. A plasma display device according to an embodiment of the present invention has a panel and driving means for the panel, and FIG. 2 shows the structure of the panel. In the panel structure, the same parts as those shown in FIG. 6 are denoted by the same reference numerals. The difference between the panel structure of FIG. 2 and that of FIG. 6 is that the scanning electrode 11 and the sustaining electrode 12 do not use transparent electrodes and use metal. It is composed of electrodes. FIGS. 1A and 1B show voltage waveforms in a sustain period applied to the scan electrodes 11 and the sustain electrodes 12, respectively, by the panel driving means. In the present embodiment, unlike the waveforms shown in FIGS. 7 and 9, the peak value is V S
In it and sustain pulse to be changed in a direction (direction from V S to 0) the potential is reduced (negative sustain pulse) is applied alternately to the sustain electrode 12 and scan electrode 11. FIG. 1C shows a light emission waveform, in which a sustain discharge is generated as the sustain pulse is applied, and light is emitted. That is, although the sustain pulse falls (potential toward 0 from V S) is emitting light for each sustain pulse rises (the potential is directed from 0 to V S) is not sometimes sustain discharge occurs. That is, the self-discharge described above does not occur. Therefore, it is possible to prevent the occurrence of luminance unevenness, which has been a problem in the conventional panel, and to obtain a display quality superior to that of the conventional panel. When the sustain pulse of the present embodiment is applied, not only between the scan electrode 11 and the sustain electrode 12, but also between the scan electrode 11 or the sustain electrode 12 and the data electrode 8 to which the sustain pulse is applied. It was confirmed that discharge occurred even during the period. This is because, for example, when a sustain pulse of negative polarity is applied to the scan electrode 11, the scan electrode 11 side becomes negative with respect to the data electrode 8 side due to the negative wall voltage accumulated on the dielectric layer 6, so that ions Since secondary electrons are generated by colliding with the protective film 7, the scanning electrodes 11 and the data electrodes 8 are formed.
It is considered that a discharge occurs between the first and second states. Next, in the case of the plasma display device of the present embodiment, that is, when the panel of FIG. 2 is driven by the drive waveform of FIG. Figure 3 (a)
And (b). In the panel used for the measurement, the electrode width of each of the scan electrode 11 and the sustain electrode 12 was set to 100
μm, the distance dp between the scanning electrode 11 and the sustain electrode 12 was 80 μm, and the height of the partition 9 was 120 μm. The panel was filled with a mixed gas of neon (Ne) and xenon (Xe) at 66.5 kPa, and the partial pressure of Xe was set at 5%, 12% and 20%. Further, the frequency of the driving waveform in the sustain period was set to 15.3 kHz. The light emission luminance was measured with a luminance meter, and the light emission efficiency was obtained from the light emission luminance and power consumption of the panel. 3 (a) and 3 (b), the Xe partial pressure is 5%,
The results at 12% and 20% are shown by solid line a, solid line b and solid line c, respectively. In the conventional plasma display device, as shown in FIG. 8, the luminous efficiency decreases as the sustain voltage increases, but in the plasma display device of the present embodiment, the luminous efficiency increases as the sustain voltage increases. When the sustain voltage is large,
That is, it can be seen that the luminous efficiency is high when the luminance is high. Therefore, a plasma display device with high luminance and high luminous efficiency can be obtained. Also, when the Xe partial pressure is 5
%, The maximum luminous efficiency (the maximum value of the luminous efficiency) is about the same as the maximum luminous efficiency of the conventional plasma display device, but when the partial pressure of Xe is 12% and 20%,
The maximum luminous efficiency is about 1.8 lm / W, and a plasma display device having a much higher luminous efficiency than the conventional one can be obtained. FIGS. 4A and 4B show changes in luminous efficiency and luminance with respect to the Xe partial pressure, respectively. The solid line a and the solid line b show the case of the present embodiment and the case of the conventional plasma display device, respectively. In each case, the luminance and the luminous efficiency when the Xe partial pressure is 5% are set to 1. The luminous efficiency changes depending on the sustain voltage, but FIG. 4A shows the relative maximum luminous efficiency.
The luminance at that time is shown in FIG. As can be seen from FIG. 4, in the plasma display device of the present embodiment, when the Xe partial pressure exceeds 5%, the luminous efficiency is higher than in the case of 5%, and the luminous efficiency is higher than that of the conventional plasma display device. Has become. Similarly, regarding the luminance, the plasma display device of the present embodiment also uses Xe.
When the partial pressure exceeds 5%, it is considerably larger than in the case of 5%. Therefore, according to the present embodiment, when the Xe partial pressure sealed in the panel exceeds 5%, a plasma display device with high luminance and high luminous efficiency can be obtained. Next, a description will be given of a drive margin representing the ease of driving the panel. When when down each sustain voltage, the sustain voltage not emitting discharge cell begins to occur without maintaining discharge is generated to have the image data and the minimum sustain voltage V n, went up the sustain voltage to the contrary, when a sustain voltage discharge cells in which the sustain discharge is generated emission for no image data begins to occur with the maximum sustaining voltage V x, the driving margin is given by V x -V n, normally as the driving margin is large The driving voltage range is large and driving is easy. When the panel shown in FIG. 2 is used to drive a panel having a partial pressure of Xe of 5% by the conventional driving method,
Minimum sustaining voltage V n is the 185V maximum sustaining voltage V x is 2
It was 50V. In contrast, when driving the panel by the driving method of this embodiment, the minimum sustaining voltage V n is 18
Maximum sustaining voltage V x is a 5V was 270V. Therefore, by using the driving method of the present embodiment, the driving margin of the panel becomes 85 V, which can be made 20 V larger than the driving margin (65 V) in the case of using the conventional driving method. Has become. Similarly, when the Xe partial pressure is 12% or 20%, by using the driving method of the present embodiment, the driving margin of the panel becomes larger than before and the panel is easily driven. In the above description, the case where the panel of one embodiment of the present invention has the scanning electrodes and the sustaining electrodes composed only of the metal electrodes has been described. However, the scanning composed of the transparent electrodes as shown in FIG. Similar results are obtained for a panel having electrodes and sustain electrodes. That is, there is a region where the luminous efficiency increases with an increase in the sustain voltage. When the Xe partial pressure exceeds 5% and is 12% or 20%, higher luminance and higher luminous efficiency are obtained as compared with the conventional case. . In addition, the driving margin is increased as compared with the related art, which facilitates driving, and the above-described self-discharge does not occur. Therefore, it is possible to obtain a panel with excellent display quality in which the occurrence of uneven brightness is suppressed. Since a large amount of power can be supplied by using a panel having a large electrode width such as a transparent electrode, the panel shown in FIG. 6 has higher luminance than the panel shown in FIG. Further, as shown in FIG. 5, instead of using a transparent electrode, the scan electrode 13 and the sustain electrode 14 are each constituted by a plurality of divided metal electrodes, and the entire electrode width of the scan electrode 13 and the sustain electrode 14 is equivalently reduced. It may be a panel that is wide. The upper limit of the Xe partial pressure may be appropriately set in consideration of the operating conditions of the panel. As described above, according to the plasma display device of the present invention, the scan electrodes and the sustain electrodes of the plasma display panel having the discharge space filled with xenon having a partial pressure exceeding 5% are provided. By applying a pulse of negative polarity during the sustain period, excellent display quality with high luminance and high luminous efficiency can be obtained.

【図面の簡単な説明】 【図1】(a)〜(c)は本発明の一実施の形態による
プラズマディスプレイ装置における維持電圧波形および
発光波形を示す波形図 【図2】本発明の一実施の形態によるプラズマディスプ
レイパネルの断面図 【図3】(a)、(b)は図2のプラズマディスプレイ
パネルを駆動したときの発光効率および輝度の維持電圧
依存性をXe分圧を変えて示す特性図 【図4】(a)、(b)は図2のプラズマディスプレイ
パネルを駆動したときの発光効率および輝度のXe分圧
依存性を従来のものと比較して示す特性図 【図5】本発明の他の実施の形態によるプラズマディス
プレイパネルの断面図 【図6】(a)、(b)は従来のプラズマディスプレイ
パネルの断面図 【図7】(a)〜(c)は従来のプラズマディスプレイ
パネルにおける維持電圧波形および発光波形を示す波形
図 【図8】従来のプラズマディスプレイパネルを駆動した
ときの発光効率の維持電圧依存性を示す特性図 【図9】(a)〜(c)は他の従来のプラズマディスプ
レイパネルにおける維持電圧波形および発光波形を示す
波形図 【符号の説明】 1 放電空間 2 表面基板 3 背面基板 4、11、13 走査電極 5、12、14 維持電極 6 誘電体層 7 保護膜 8 データ電極 9 隔壁 10 蛍光体層
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A to 1C are waveform diagrams showing a sustain voltage waveform and a light emission waveform in a plasma display device according to an embodiment of the present invention. FIG. FIGS. 3 (a) and 3 (b) show characteristics of sustaining voltage dependence of luminous efficiency and luminance when driving the plasma display panel of FIG. 2 by changing the partial pressure of Xe. FIGS. 4 (a) and 4 (b) are characteristic diagrams showing the dependence of luminous efficiency and luminance on the Xe partial pressure when driving the plasma display panel of FIG. 2 in comparison with a conventional one. FIGS. 6A and 6B are cross-sectional views of a conventional plasma display panel according to another embodiment of the present invention. FIGS. 7A and 7B are cross-sectional views of a conventional plasma display panel. Pa FIG. 8 is a waveform diagram showing a sustain voltage waveform and a light emission waveform in a panel. FIG. 8 is a characteristic diagram showing sustain voltage dependence of luminous efficiency when a conventional plasma display panel is driven. FIG. 1 is a waveform diagram showing a sustain voltage waveform and a light emission waveform in a conventional plasma display panel of the related art. DESCRIPTION OF SYMBOLS 1 Discharge space 2 Surface substrate 3 Back substrate 4, 11, 13 Scanning electrodes 5, 12, 14 Protective film 8 Data electrode 9 Partition wall 10 Phosphor layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G09G 3/28 E Fターム(参考) 5C040 FA01 FA04 GB03 GB14 GJ02 GJ08 LA18 MA03 MA20 5C080 AA05 BB05 DD30 FF12 HH04 HH05 JJ04 JJ05 JJ06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) G09G 3/28 EF term (reference) 5C040 FA01 FA04 GB03 GB14 GJ02 GJ08 LA18 MA03 MA20 5C080 AA05 BB05 DD30 FF12 HH04 HH05 JJ04 JJ05 JJ06

Claims (1)

【特許請求の範囲】 【請求項1】 間に放電空間を形成するよう対向配置さ
れた2つの基板のうち一方の基板上に走査電極と維持電
極を複数配列して形成しかつ前記放電空間に5%を超え
る分圧のキセノンを封入して構成したプラズマディスプ
レイパネルと、維持期間において、前記プラズマディス
プレイパネルの走査電極と維持電極に負極性のパルスを
印加する駆動手段とを有することを特徴とするプラズマ
ディスプレイ装置。
Claims: 1. A plurality of scanning electrodes and sustaining electrodes are arranged and formed on one of two substrates opposed to each other so as to form a discharge space therebetween, and the discharge space is formed in the discharge space. A plasma display panel configured by enclosing xenon having a partial pressure of more than 5%, and a driving unit for applying a negative pulse to a scan electrode and a sustain electrode of the plasma display panel during a sustain period. Plasma display device.
JP2001229178A 2001-07-30 2001-07-30 Plasma display device Expired - Fee Related JP5044877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001229178A JP5044877B2 (en) 2001-07-30 2001-07-30 Plasma display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001229178A JP5044877B2 (en) 2001-07-30 2001-07-30 Plasma display device

Publications (2)

Publication Number Publication Date
JP2003043987A true JP2003043987A (en) 2003-02-14
JP5044877B2 JP5044877B2 (en) 2012-10-10

Family

ID=19061565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001229178A Expired - Fee Related JP5044877B2 (en) 2001-07-30 2001-07-30 Plasma display device

Country Status (1)

Country Link
JP (1) JP5044877B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100615270B1 (en) 2004-11-06 2006-08-25 삼성에스디아이 주식회사 Driving method of plasma display panel
KR100615271B1 (en) 2004-11-06 2006-08-25 삼성에스디아이 주식회사 Driving method of plasma display panel
KR100647776B1 (en) * 2004-12-18 2006-11-23 엘지전자 주식회사 Driving method of plasma display panel
KR100649188B1 (en) 2004-03-11 2006-11-24 삼성에스디아이 주식회사 Plasma display device and driving method of plasma display panel
US7482749B2 (en) 2004-10-29 2009-01-27 Lg. Electronics Inc. Gas discharge apparatus and plasma display panel
CN110319767A (en) * 2019-07-09 2019-10-11 南京航大超控科技有限公司 A kind of implementation method of ultrasound electric machine high-precision actuation sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334811A (en) * 1997-05-30 1998-12-18 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacture
JP2000122602A (en) * 1998-10-16 2000-04-28 Nec Corp Driving method of ac discharge memory operating type plasma display panel
JP2000260333A (en) * 1999-03-10 2000-09-22 Matsushita Electric Ind Co Ltd Ac type plasma display device
JP2000294151A (en) * 1999-04-06 2000-10-20 Matsushita Electric Ind Co Ltd Ac plasma display device
JP2001005425A (en) * 1999-06-25 2001-01-12 Matsushita Electric Ind Co Ltd Gas discharge display device
JP2001093427A (en) * 1999-09-28 2001-04-06 Matsushita Electric Ind Co Ltd Ac type plasma display panel and drive method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334811A (en) * 1997-05-30 1998-12-18 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacture
JP2000122602A (en) * 1998-10-16 2000-04-28 Nec Corp Driving method of ac discharge memory operating type plasma display panel
JP2000260333A (en) * 1999-03-10 2000-09-22 Matsushita Electric Ind Co Ltd Ac type plasma display device
JP2000294151A (en) * 1999-04-06 2000-10-20 Matsushita Electric Ind Co Ltd Ac plasma display device
JP2001005425A (en) * 1999-06-25 2001-01-12 Matsushita Electric Ind Co Ltd Gas discharge display device
JP2001093427A (en) * 1999-09-28 2001-04-06 Matsushita Electric Ind Co Ltd Ac type plasma display panel and drive method of the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649188B1 (en) 2004-03-11 2006-11-24 삼성에스디아이 주식회사 Plasma display device and driving method of plasma display panel
US7477213B2 (en) 2004-03-11 2009-01-13 Samsung Sdi Co., Ltd. Plasma display device and driving method of plasma display panel
US7482749B2 (en) 2004-10-29 2009-01-27 Lg. Electronics Inc. Gas discharge apparatus and plasma display panel
KR100615270B1 (en) 2004-11-06 2006-08-25 삼성에스디아이 주식회사 Driving method of plasma display panel
KR100615271B1 (en) 2004-11-06 2006-08-25 삼성에스디아이 주식회사 Driving method of plasma display panel
KR100647776B1 (en) * 2004-12-18 2006-11-23 엘지전자 주식회사 Driving method of plasma display panel
CN110319767A (en) * 2019-07-09 2019-10-11 南京航大超控科技有限公司 A kind of implementation method of ultrasound electric machine high-precision actuation sensor

Also Published As

Publication number Publication date
JP5044877B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP4299987B2 (en) Plasma display device and driving method thereof
JP3984794B2 (en) Plasma display panel and driving method thereof
JP2003043987A (en) Plasma display device
KR20020033664A (en) Driving method and system for improving both luminance and luminous efficiency in ac pdp
WO2004086447A1 (en) Plasma display panel
JP2004296313A (en) Plasma display panel
KR100739549B1 (en) Mehtod of Driving Plasma Display Panel with Trigger-sustain Electrodes Structure
JP4052756B2 (en) AC type plasma display device
KR100298556B1 (en) Plasma display panel using high frequency and its driving method
JP4048637B2 (en) AC type plasma display device
KR100757420B1 (en) Plasma Display Panel and Method of Driving the same
JP5028721B2 (en) Driving method of plasma display panel
JP2000305516A (en) Ac plasma display panel and its driving method
KR100293517B1 (en) Plasma display panel and its driving method
JP2000067758A (en) Plasma display panel
KR100366941B1 (en) Plasma Display Panel And Method Of Driving The Same
KR100389020B1 (en) Plasma Display Panel
KR100351465B1 (en) Plasma Display Panel and Method Of Driving The Same
KR100274796B1 (en) Plasma Display Panel Using High Frequency
KR100605757B1 (en) Plasma Display Panel
KR100273195B1 (en) Plasma display panel and its driving method
KR100293515B1 (en) How to Operate Plasma Display Panel Using High Frequency
KR20010091638A (en) Plasma Display Panel and Discharging Method of The Same
KR19990074400A (en) Cell structure of plasma display panel
KR100293519B1 (en) Plasma display panel using high frequency and its driving method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080612

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees