JP2003003173A - Carbonization method - Google Patents

Carbonization method

Info

Publication number
JP2003003173A
JP2003003173A JP2001190956A JP2001190956A JP2003003173A JP 2003003173 A JP2003003173 A JP 2003003173A JP 2001190956 A JP2001190956 A JP 2001190956A JP 2001190956 A JP2001190956 A JP 2001190956A JP 2003003173 A JP2003003173 A JP 2003003173A
Authority
JP
Japan
Prior art keywords
carbonization
furnace
air
temperature
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001190956A
Other languages
Japanese (ja)
Inventor
Kunihiro Yamashita
邦広 山下
Minoru Sukai
稔 須貝
Teruyuki Takanuma
輝幸 高沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JUKANKYO KOJO JUMOKU SEIBUN RI
JUKANKYO KOJO JUMOKU SEIBUN RIYO GIJUTSU KENKYU KUMIAI
Original Assignee
JUKANKYO KOJO JUMOKU SEIBUN RI
JUKANKYO KOJO JUMOKU SEIBUN RIYO GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JUKANKYO KOJO JUMOKU SEIBUN RI, JUKANKYO KOJO JUMOKU SEIBUN RIYO GIJUTSU KENKYU KUMIAI filed Critical JUKANKYO KOJO JUMOKU SEIBUN RI
Priority to JP2001190956A priority Critical patent/JP2003003173A/en
Publication of JP2003003173A publication Critical patent/JP2003003173A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

PROBLEM TO BE SOLVED: To provide a carbonization method by which a carbonized product having physical properties suitable for new uses is obtained by controlling carbonization conditions in an oven and by which an exhaust gas by-produced on the carbonization can usefully be used for pyroligneous acid production and the like. SOLUTION: This carbonization method is characterized by stirring and circulating air in a carbonization oven 1 with a stirring circulation means 4 to uniform the inner temperature of the oven on the carbonization. Another carbonization method is characterized by introducing air or air and steam from a refinement blower into the oven through an oven floor portion to carbonize and refine a carbonization material. Exhaust gas by-produced on the carbonization is cooled and recovered for each temperature to obtain pyroligneous acid liquids having different physical properties, respectively. The exhaust gas by-produced on the carbonization is burned, and the generated heat is recovered in a heat storage chamber or directly brought into a carbonization material, thus using the heat in a drying and heating process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、新規用途に対応す
る物性を持つ炭化物を均一に炭化できると共に、炭化時
に発生する排煙を有効利用する炭化方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbonization method capable of uniformly carbonizing a carbide having physical properties corresponding to a new application and effectively utilizing exhaust gas generated during carbonization.

【0002】[0002]

【従来の技術】従来、山村に据置されている炭化炉は、
土窯、石窯であり、主として広葉樹の炭材を炭化して燃
料木炭を得ていた。一方、ロータリー炉、流動炉等を含
む連続式機械炉では、街の製材所等から発生する鋸屑や
廃材をチップに砕いて炭化し工業原料や豆炭原料として
いた。また炭化の際に発生する排煙は、土窯、石窯では
冷却して木酢液を回収し、機械炉では燃焼して燃焼廃ガ
スを炭化原料に直接接触させて乾燥に用いていた。
2. Description of the Related Art Conventionally, a carbonization furnace that has been installed in Yamamura is
They were earth and stone kilns, and mainly used charcoal from hardwood to obtain fuel charcoal. On the other hand, in continuous mechanical furnaces including rotary furnaces and fluidized furnaces, sawdust and waste materials generated from lumber mills in the town are crushed into chips and carbonized to be used as an industrial raw material or a charcoal raw material. The flue gas generated during carbonization was cooled in soil kilns and stone kilns to recover wood vinegar, and burned in a mechanical furnace to directly contact combustion waste gas with carbonized raw materials for drying.

【0003】近年炭化物は、新規用途の開発が進み、土
壌改良資材として農地に施用されたり、ゴルフ場の芝の
甫場、または法面へ利用されたり、あるいは家畜の飼料
に混ぜたり、さらには床下吸湿材またはVOC吸着材と
して利用されるなど、新規用途に対応した物性を持つ炭
化物が求められるようになっている。然し、山村据置型
の土窯、石窯では、炉内の上下の炭化温度差が大きくて
均一の物性を持つ炭化物を得ることが困難であった。一
方、機械炉では、設備投資が大きくなるので、処理量を
増やす必要があり、原料の集荷面からも地域の限定を受
け、さらにはチップ化に要するエネルギーコストも大き
かった。
In recent years, the development of new uses of charcoal has progressed, and it has been applied to agricultural lands as a soil improving material, used on grass fields or slopes of golf courses, or mixed with livestock feed. There is a demand for a carbide having physical properties corresponding to a new application such as being used as an underfloor hygroscopic material or a VOC adsorbent. However, it was difficult to obtain a carbide with uniform physical properties due to the large difference in carbonization temperature between the top and bottom in the furnace in the Yamamura deferment type kiln and stone kiln. On the other hand, in the mechanical furnace, the capital investment is large, so it is necessary to increase the amount of processing, the area of the raw material is limited, and the energy cost for chipping is also large.

【0004】[0004]

【発明が解決しようとする課題】本発明は、炉内の炭化
条件をコントロールすることによって新規用途に適した
物性を持つ炭化物が得られると共に、炭化時に発生する
排煙から木酢液を得る他排煙を有効に利用できる炭化方
法を提供することを課題としている。
SUMMARY OF THE INVENTION According to the present invention, by controlling the carbonization conditions in a furnace, a carbide having physical properties suitable for a new use can be obtained, and at the same time, a wood vinegar solution can be obtained from smoke generated during carbonization. It is an object to provide a carbonization method that can effectively use smoke.

【0005】[0005]

【課題を解決するための手段】解決手段の第1は、炭化
炉の炉内空気を撹拌循環手段によって撹拌および循環
し、炭化時の炉内温度を均一化して炭化することを特徴
とするものである。解決手段の第2は、炭化炉の炉床部
より炉内に精錬用ブロワによって空気又は空気と水蒸気
を導入して炭化および精錬することを特徴とする。解決
手段の第3は、解決手段の第1において、撹拌循環手段
が、炭化炉本体に設けた循環ガスダクトであり、該循環
ガスダクトに付設した循環用ブロワによって炉内空気を
撹拌及び循環することを特徴とする。解決手段の第4
は、解決手段の第1において、撹拌循環手段が、炭化炉
本体の頂部に設けた循環用ファンであり、該循環用ファ
ンによって炉内空気を撹拌及び循環することを特徴とす
る。解決手段の第5は、解決手段の第1から第4におい
て、炭化時に発生する排煙を温度別に冷却回収して物性
の異なる木酢液を得ることを特徴とする。解決手段の第
6は、解決手段の第1から第4において、炭化時に発生
する排煙の一部又は全部を燃焼し、発生する熱を蓄熱室
に回収し又は直接炭材と接触させて乾燥・昇温工程に使
用することを特徴とする。
The first of the means for solving the problems is that the air in the furnace of the carbonization furnace is agitated and circulated by the agitation circulation means to make the temperature in the furnace during carbonization uniform and carbonize. Is. The second solution is characterized in that air or air and steam are introduced into the furnace from the hearth of the carbonization furnace by a refining blower for carbonization and refining. A third solution means is that, in the first solution means, the agitation circulation means is a circulation gas duct provided in the carbonization furnace main body, and the agitation and circulation of the furnace air is performed by a circulation blower attached to the circulation gas duct. Characterize. Fourth solution
In the first solution means, the stirring and circulation means is a circulation fan provided at the top of the carbonization furnace main body, and the furnace air is stirred and circulated by the circulation fan. A fifth solution means is characterized in that, in the first to fourth solution means, the flue gas generated at the time of carbonization is cooled and recovered for each temperature to obtain a wood vinegar solution having different physical properties. A sixth solution means is that in the first to fourth solution means, a part or all of the flue gas generated at the time of carbonization is burned, and the generated heat is recovered in the heat storage chamber or is directly contacted with the carbonaceous material for drying. -Characterized by being used in the temperature raising step.

【0006】本発明の固定床式炭化炉における炭化の過
程は、まず窯口で燃材を燃やして炭材を乾燥・昇温させ
ると、280〜300℃で炭材の自発炭化が始まる。炭
化は、炉頂部から始まり、次いで炉底部に向って炭化が
進み、最後に窯口を開いて導入空気量を上げて昇温し、
残存揮発分を排出すると共に焼きしめる精錬工程を経た
後、空気を遮断して冷却する。この炭化工程では、炉頂
部と炉床部の炭化温度差が200℃以上になることが通
常であり、このため得られる炭化物の物性は炉の上下で
大きく異なる。これを解決するため、炉頂部に炉内ガス
を機械的に撹拌、循環するか、あるいは炉外に取り付け
た循環用ブロワで炉頂部より炉内ガスを取り出し、炉床
部より炉内循環ガスや空気を均一に吹き込むことによっ
て温度を均一化させて炭化する。さらに精錬工程も温度
の低くなりやすい炉床部より均一に空気や水蒸気を導入
することによって炉床部の昇温を助け精錬及び活性化を
行う。
In the process of carbonization in the fixed bed carbonization furnace of the present invention, first, when the carbonaceous material is burned at the kiln mouth to dry and heat the carbonaceous material, spontaneous carbonization of the carbonaceous material starts at 280 to 300 ° C. Carbonization starts from the top of the furnace, then proceeds toward the bottom of the furnace, and finally opens the kiln opening to increase the amount of introduced air and raise the temperature.
After passing through a refining process in which residual volatile components are discharged and baked, air is shut off and cooled. In this carbonization step, the difference in carbonization temperature between the furnace top and the hearth is usually 200 ° C. or more, and therefore the physical properties of the obtained carbide are significantly different between the upper and lower parts of the furnace. To solve this, mechanically stir and circulate the in-furnace gas at the top of the furnace, or take out the in-furnace gas from the top of the furnace with a circulation blower installed outside the furnace, and By blowing air uniformly, the temperature is made uniform and carbonization is performed. Further, in the refining process, air and steam are introduced uniformly from the hearth where the temperature tends to be low, so that the temperature rise in the hearth is assisted and refining and activation are performed.

【0007】炉内温度は、昇温時の空気量と精錬時の炉
内へ導入する空気量によって調節するが、もし炉内温度
が上がり過ぎる時は、水蒸気、あるいは水をスプレーし
て吸熱反応によって温度を降下する。又、空気と水蒸気
を導入して炭と反応させ活性化した炭化物を得る。この
ようにして炉内温度を均一化しつつ昇温して炭化する
が、炭化物の使用目的に応じて炭化温度を調整すること
も容易となるし、又、活性化反応も可能となる。炉内温
度を均一化して炭化を進める過程で発生する排煙は温度
別に冷却回収して、物性の異なる木酢液を得ることがで
きる。従来炉の部分的に異なる炭化温度より発生する排
煙を冷却して得られる木酢液とは差別化されたものであ
る。炭化時の排煙の持つカロリーは、炭材の水分が混同
された排煙では低くて燃焼しにくいが、均一温度で炭化
を進めるケースにおいては、発生するガスカロリーの高
い部分を燃焼することが容易となり、燃焼させてその熱
量を煉瓦等で作られた蓄熱室に蓄えたり、熱交換器を使
って熱回収したり、あるいは燃焼ガスを直接炭材の乾燥
・昇温工程等に利用することができる。
The temperature inside the furnace is adjusted by the amount of air at the time of temperature rise and the amount of air introduced into the furnace at the time of refining. If the temperature inside the furnace is too high, endothermic reaction is effected by spraying steam or water. To lower the temperature. In addition, air and steam are introduced to react with charcoal to obtain activated charcoal. In this way, the temperature in the furnace is raised and carbonized while being uniformized. However, it becomes easy to adjust the carbonization temperature according to the purpose of use of the carbide, and the activation reaction becomes possible. The flue gas generated in the process of uniformizing the temperature in the furnace and promoting carbonization can be cooled and recovered for each temperature to obtain a wood vinegar liquid having different physical properties. It is differentiated from the wood vinegar obtained by cooling the flue gas generated by the partially different carbonization temperatures of the conventional furnace. The flue gas during carbonization has a low calorie in flue gas mixed with the water content of the carbonaceous material and is difficult to burn, but in the case where carbonization proceeds at a uniform temperature, the part with a high gas calorie can be burned. It becomes easier and can be burned to store the amount of heat in a heat storage chamber made of bricks, heat can be recovered using a heat exchanger, or combustion gas can be directly used for drying and heating the carbonaceous material. You can

【0008】[0008]

【発明の実施の形態】図1は循環用ブロワを用いる方法
の炭化炉の側面図、図2は図1の断面図、図3は他の実
施例による炭化炉の側面図を示す。炭化炉本体1は任意
の大きさにできるが実施例では、内幅2.3m、高さ
2.4m、長さ4.7mの耐火煉瓦及び断熱耐火物で形
成した。炭化炉本体1には前焚ストーブ2を設けること
ができる。この前焚ストーブ2の役割は、炭材の乾燥工
程と昇温工程に用いられ、燃材として炭材とならない薪
や灯油、重油を用いるが、他の炉の排煙燃焼ガスを用い
て代用することもできる。又、前焚ストーブ2には、イ
ンバータモータ並びに前後に自動制御バルブを備えたス
トーブ用ブロワ3を設けて必要な温度調整を行う。ただ
し、炭材が280〜300℃をこえると自発炭化が始ま
るのでこの前焚ストーブ2は使用しない。
1 is a side view of a carbonization furnace using a circulation blower, FIG. 2 is a sectional view of FIG. 1, and FIG. 3 is a side view of a carbonization furnace according to another embodiment. The carbonization furnace body 1 can be made to have any size, but in the embodiment, it is made of a refractory brick and an adiabatic refractory having an inner width of 2.3 m, a height of 2.4 m and a length of 4.7 m. The carbonization furnace body 1 may be provided with a front heating stove 2. The role of this pre-burning stove 2 is used in the carbon material drying process and the temperature raising process, and firewood, kerosene, or heavy oil that does not become carbonaceous material is used as a combustion material, but the exhaust gas from other furnaces is used as a substitute. You can also do it. Further, the front heating stove 2 is provided with an inverter motor and a stove blower 3 provided with an automatic control valve at the front and rear to perform necessary temperature adjustment. However, since the spontaneous carbonization starts when the carbonaceous material exceeds 280 to 300 ° C, the pre-stove 2 is not used.

【0009】又、炭化炉本体1は、撹拌循環手段(4,
100)によって炉内空気を撹拌及び循環させる。撹拌
循環手段としての循環ガスダクト4は、インバータモー
タ付きで自動制御バルブを備えた循環用ブロワ5によっ
て炭化炉本体1の炉内ガスを循環して炉内温度を均一化
している。異なる方式の撹拌循環手段は、図3に示すよ
うに炭化炉本体1の頂部に設けた炉内ガスの循環用ファ
ン100である。この場合は、循環用ブロワ5によるガ
ス循環は行わないが併用は可能である。炭化炉本体1に
おいて、炭材の自発炭化が起こったときは、前焚ストー
ブ2を止めてインバータモータ付きの給気用ブロワ6に
よって炉内への給気を行い所定の炉温になるよう制御し
ながら給気する。ただし、給気はインバータモータ、制
御弁、流量計を備えた精錬用ブロワ7で行うこともでき
る。炉内温度が所定温度に達したら必要に応じて精錬工
程に入る。精錬工程は、低温炭化の場合は不要である
が、高温炭化の場合は炉床部より多量の空気を一度に吹
き込み昇温させて炭化物を焼きしめたり、水蒸気を併用
して活性化反応などを行う。この精錬工程は空気量のコ
ントロールが重要なので特に精錬用ブロワ7は流量計8
を付け目視によっても流量を確認する。
Further, the carbonization furnace body 1 is provided with a stirring / circulating means (4,
100) stirs and circulates the air in the furnace. The circulating gas duct 4 as a stirring / circulating means circulates the in-furnace gas of the carbonization furnace main body 1 by a circulating blower 5 equipped with an inverter motor and equipped with an automatic control valve to make the in-furnace temperature uniform. The agitating and circulating means of a different system is a furnace gas circulation fan 100 provided at the top of the carbonization furnace body 1 as shown in FIG. In this case, the gas is not circulated by the circulation blower 5, but it can be used in combination. When spontaneous carbonization of carbon material occurs in the carbonization furnace body 1, the front heating stove 2 is stopped, and air is supplied to the inside of the furnace by the air supply blower 6 with an inverter motor, and the temperature is controlled to a predetermined temperature. While supplying air. However, the air can be supplied by the refining blower 7 equipped with an inverter motor, a control valve, and a flow meter. When the temperature in the furnace reaches a predetermined temperature, a refining process is started if necessary. The refining process is not necessary for low-temperature carbonization, but for high-temperature carbonization, a large amount of air is blown from the hearth at once to heat up the carbides, or steam is used to activate the reaction. To do. Since it is important to control the air volume in this refining process, the refining blower 7 has a flow meter 8 in particular.
Check and check the flow rate visually.

【0010】循環ガス、精錬用空気および水蒸気は炉床
部10に設けた分散板で炉内に均一に分散させる。炉床
部10の分散板は一般の流動炉に用いられる構造のもの
でよい。また精錬用空気のみ炉床部10から導入する場
合は、単に穴をあけたパイプを並べて空気ブロワと結合
することもできる。又、精錬用ブロワ7の配管に水蒸気
導入管17を設けて空気と水蒸気を併用して導入するこ
ともできる。この方式は、従来用いられている土窯や石
窯、煉瓦窯等で精錬を行う場合に簡易均一精錬法や活性
化木炭の製造法としても用いられる。炭化時に発生する
排煙は、排煙ダクト11の途中に設けた冷却器12を通
って水冷され木酢液が回収される。冷却器12の大きさ
はガス量に応じて任意に設計されるが、タールの付着時
の除去が容易な構造が望ましい。
The circulating gas, refining air and steam are uniformly dispersed in the furnace by a dispersion plate provided in the hearth 10. The dispersion plate of the hearth 10 may have a structure used in a general fluidized furnace. Further, when only refining air is introduced from the hearth portion 10, it is possible to arrange pipes with holes and connect them to the air blower. Further, a steam introducing pipe 17 may be provided in the pipe of the refining blower 7 to introduce air and steam together. This method is also used as a simple uniform refining method or a method for producing activated charcoal when refining in a conventionally used earth kiln, stone kiln, brick kiln or the like. The flue gas generated during carbonization passes through a cooler 12 provided in the middle of the flue gas duct 11 to be water-cooled and the wood vinegar solution is recovered. The size of the cooler 12 is arbitrarily designed according to the amount of gas, but it is desirable to have a structure that allows easy removal of tar when it adheres.

【0011】冷却器12を流下した木酢液は、排煙の温
度別に分けて流下管13より回収される。排煙を燃焼し
て熱として回収する場合は、図3に示すように、排ガス
燃焼室110のアフターバーナ111によって着火さ
れ、高温の燃焼ガスは耐熱ダクト112を通して利用さ
れる。排熱の利用は、燃焼ガスを直接用いてもよいが蓄
熱室や熱交換器を用いて回収利用することができる。
又、冷却器12で冷却され木酢液を分離したウッドガス
も利用できる。燃焼ガスあるいは熱交換によって得られ
た熱風は、炭材と接触させて炭材の乾燥や昇温工程など
に使用する。
The wood vinegar liquid that has flowed down the cooler 12 is collected by the flow-down pipe 13 according to the temperature of the flue gas. When the flue gas is burned and recovered as heat, it is ignited by the afterburner 111 of the exhaust gas combustion chamber 110, and the high temperature combustion gas is used through the heat resistant duct 112, as shown in FIG. The exhaust heat can be used by directly using the combustion gas, but can be recovered and used by using a heat storage chamber or a heat exchanger.
Further, wood gas that has been cooled by the cooler 12 to separate the wood vinegar solution can also be used. Combustion gas or hot air obtained by heat exchange is brought into contact with the carbonaceous material and used for drying the carbonaceous material or in a temperature rising step.

【0012】実施例1 図1に示す炭化炉本体1(内径幅2.3m、高さ2.4
m、長さ4.7m)は前焚ストーブ2(直径70cm、
長さ1m)を設けたものであり、燃材として薪あるいは
灯油(油量5〜15リットル/hのバーナ)を用いた。
炉床部10は、底面より30cm上がった所に、厚さ6
cmのキャスターブル耐火物に耐熱パイプを埋め込ん
で、このパイプに開孔率1%になるように穴をあけ炉床
の分散板とした。循環ガスダクト4の耐熱パイプは、8
インチを使用した。循環用ブロワ5は、40m/分の
ものを用た。給気用ブロワ6は、6m/分のものを用
いた。精錬用ブロワ7は、10m/分のものを用い
た。
Example 1 A carbonization furnace main body 1 shown in FIG. 1 (inner diameter width 2.3 m, height 2.4)
m, length 4.7 m) is the front heating stove 2 (diameter 70 cm,
The length was 1 m), and firewood or kerosene (burner with an oil amount of 5 to 15 liters / h) was used as the fuel material.
The hearth 10 has a thickness of 6 cm at a position 30 cm above the bottom.
A heat resistant pipe was embedded in a castable refractory having a diameter of 1 cm, and holes were drilled in this pipe so that the open area ratio was 1% to obtain a dispersion plate of the hearth. The heat-resistant pipe of the circulating gas duct 4 is 8
I used inches. The circulation blower 5 used was 40 m 3 / min. The air supply blower 6 used was 6 m 3 / min. The refining blower 7 used was 10 m 3 / min.

【0013】上記ブロワ5,6,7にはインバータモー
タを付けて風量の調整を行い、又、同時に自動制御弁を
使用して精密な温度制御を行った。なお、温度調整は、
コントロールボックス20と炭化炉本体1に差し込んだ
サーモカップル21とを接続し、サーモカップル21か
らの温度情報を検出し、当該コントロールボックス20
からの指令により各ブロワ5,6,7の回転数および制
御弁による流量を調整して行う。排煙の冷却器12は、
水冷ジャケット付きの円筒であって、円筒は耐酸材料を
用いた。管の内径は42cm、高さ3.5mである。
又、排煙ダクト11にはダンパ14を設けて排気量の調
整も行えるようにした。なお、炭化炉本体1の頂部より
精錬時の排ガスを一部排出するための循環ガスダクト4
の分岐管出口40を設け、このパイプにもダンパ41を
付けた。冷却されて流下管13から回収される木酢液
は、回収用のホースを経て排煙温度別に分け、それぞれ
の回収槽に回収した。
An inverter motor was attached to each of the blowers 5, 6 and 7 to adjust the air flow rate, and at the same time, precise temperature control was performed using an automatic control valve. In addition, temperature adjustment is
The control box 20 and the thermocouple 21 inserted into the carbonization furnace main body 1 are connected to detect temperature information from the thermocouple 21,
The rotation speed of each blower 5, 6, and 7 and the flow rate by the control valve are adjusted by a command from the. The flue gas cooler 12
A cylinder with a water cooling jacket, the cylinder made of an acid resistant material. The inner diameter of the tube is 42 cm and the height is 3.5 m.
Further, the smoke exhaust duct 11 is provided with a damper 14 so that the amount of exhaust gas can be adjusted. A circulating gas duct 4 for discharging a part of exhaust gas from refining from the top of the carbonization furnace main body 1
The branch pipe outlet 40 was provided, and a damper 41 was also attached to this pipe. The wood vinegar liquid that was cooled and recovered from the flow-down pipe 13 was separated into smoke collection temperatures through a recovery hose and collected in respective collection tanks.

【0014】本発明による炭化炉を用いて、実験1から
3までの炭化を行い、得られた炭化物や木酢液の分析を
行ってその効果を調べた。実験1は比較のため従来法と
して循環ガスや炉床面より空気を供給する精錬法は行わ
ず、実験2及び実験3は本発明の方法で炭化を行った。
炭材は径6〜11cm、長さ1.8m、含水率45%の
炭材4.5t(乾物換算値)を用い、燃材として抜根廃
材1.2〜1.5tを用いた。乾燥、昇温、精錬等の工
程の温度差を次表に示す。
Using the carbonization furnace according to the present invention, the carbonizations of Experiments 1 to 3 were conducted, and the obtained carbides and wood vinegar solutions were analyzed to examine their effects. In Experiment 1, for comparison, a refining method of supplying circulating gas or air from the hearth surface was not performed as a conventional method, and in Experiments 2 and 3, carbonization was performed by the method of the present invention.
The carbon material used was 4.5 to 11 cm in diameter, 1.8 m in length and 45% in water content (converted to dry matter), and 1.2 to 1.5 t of waste root removal material was used as the combustion material. The following table shows the temperature differences in the processes such as drying, heating, and refining.

【表1】 [Table 1]

【0015】炭化が終り冷却後、炉の前扉を開いて炭化
物を取り出すが、この時、炉内各部位における炭の電気
抵抗を測定して炭化度合いを調べる精錬度計によって精
錬度を測定し、併せて炭化物の物性分析を行って、炉内
の炭化の状況を調べ次の表の結果が得られた。
After the completion of carbonization and cooling, the front door of the furnace is opened to take out the carbide. At this time, the refining degree is measured by a refining meter which measures the electric resistance of the charcoal in each part of the furnace to check the degree of carbonization. At the same time, the physical properties of the carbide were analyzed to examine the state of carbonization in the furnace, and the results in the following table were obtained.

【表2】 以上の分析において、精錬度は「三陽電気製の精錬度
計」を用い、工業分析は「JIS M 8812」によ
り分析し、よう素吸着性能は「JIS K 1474」
によって分析した。この結果から明らかなように、従来
炉では炉頂部と炉底部の温度差が大きく、得られた炭化
物の物性も大きく異なるが、本発明の方法によるとほぼ
均一な炭化物を得ることができた(図4〜6参照)。
[Table 2] In the above analysis, the refining degree was measured by "Sanyo Denki's refining degree meter", the industrial analysis was conducted by "JIS M 8812", and the iodine adsorption performance was "JIS K 1474".
Analyzed by As is clear from this result, in the conventional furnace, the temperature difference between the furnace top and the furnace bottom was large, and the physical properties of the obtained carbides were also very different, but the method of the present invention made it possible to obtain almost uniform carbides ( See Figures 4-6).

【0016】次に、この実験において、排煙を冷却して
得られた木酢液の分析を行ったところ、次の結果が得ら
れた。木酢液の回収は、冷却器下部の排煙温度80〜9
3℃、94〜113℃、114〜220℃の3つのフラ
クションに分けて回収し、成分の比較を行った。
Next, in this experiment, the wood vinegar solution obtained by cooling the flue gas was analyzed, and the following results were obtained. The wood vinegar is collected at a flue gas temperature of 80-9 below the cooler.
The three fractions of 3 ° C., 94 to 113 ° C. and 114 to 220 ° C. were collected separately and the components were compared.

【表3】 上記の結果が示すように、従来炉ではヘミセルローズの
分解、セルローズの分解、リグニンの分解が同時に起っ
ているが、本発明によると初期の木酢液は比較的水分の
多い濃度の高いものが得られ、適応する用途別の使用が
可能となるものである。例えば、フェノール類の含量の
多い木酢液は、木造建築の床下の防蟻剤に用いると有効
であり、また酸度の高いものは希釈して植物の成長促進
剤として有効である。このように、木酢液を蒸留法によ
らず差別化できるのは本発明によって初めてなされたも
のである。
[Table 3] As shown by the above results, in the conventional furnace, the decomposition of hemicellulose, the decomposition of cellulose, and the decomposition of lignin occur at the same time, but according to the present invention, the initial wood vinegar has a relatively high water content. The obtained product can be used for each application. For example, a wood vinegar containing a large amount of phenols is effective when used as an anti-termite agent under the floor of a wooden building, and a material having a high acidity is effective as a plant growth promoter when diluted. As described above, it is the first time that the present invention can differentiate the wood vinegar solution without using the distillation method.

【0017】実施例2 実施例1に用いたものと同型の固定床炭化炉で、図3に
示すような炉頂部に循環用ファン100を3台取り付け
た構造の炉で炭化を行った。炭材は径6〜8cmのカラ
マツ間伐材で、長さ1.5m、含水率34%のものを
3.1t(乾物換算)用いた。炭材の立て込みにあたっ
ては、左右の壁面に隙間をあけるようにして立て込ん
だ。循環用ファン100は炉天井部より30cm下にな
るようにSUS310S製の径50cmの羽根を、ガス
が上向きに流れるように回転させた。炭化時間は、乾燥
工程に34時間、昇温炭化を86時間行い、精錬工程は
実施例1と同様に図3の精錬用ブロワ7を用いて、使用
空気量280m/hで4時間行って、最終炭化温度を
845℃として炭化を終了した。
Example 2 Carbonization was carried out in a fixed bed carbonization furnace of the same type as that used in Example 1 and in a furnace having a structure in which three circulation fans 100 were attached to the furnace top as shown in FIG. As the carbonaceous material, larch thinned wood having a diameter of 6 to 8 cm and a length of 1.5 m and a water content of 34% was used as 3.1 t (dry matter conversion). When setting up the carbonaceous material, it was set up with a gap between the left and right wall surfaces. The circulation fan 100 was rotated by a blade made of SUS310S and having a diameter of 50 cm so as to be located 30 cm below the furnace ceiling so that the gas could flow upward. The carbonization time was 34 hours for the drying step and 86 hours for the elevated temperature carbonization, and the refining step was performed for 4 hours at an air volume of 280 m 3 / h using the refining blower 7 of FIG. 3 as in Example 1. The final carbonization temperature was set to 845 ° C. to complete the carbonization.

【0018】冷却後、炭化物の精錬度を炉内の各部位に
ついて測定した結果、極めて近似の値が得られた。得ら
れたデータを下表に示す。
After cooling, the refining degree of the carbide was measured at each site in the furnace, and as a result, a very approximate value was obtained. The data obtained are shown in the table below.

【表4】 以上の結果により、炭化が均一に行われたことが証明さ
れた。同様に行った炭化工程で、精錬工程のみを変えて
行った。即ち、図1の精錬用ブロワ7で空気量320m
/hと水蒸気導入管17より、30kg/hの水蒸気
を導入して精錬と賦活を同時に行った。この工程は8時
間行った。この時の反応温度は810℃であり収炭率は
18.7%であった。この炭化物の物性を前記の水蒸気
を使用しないケースと比較したところ、次の結果が得ら
れた。
[Table 4] From the above results, it was proved that the carbonization was performed uniformly. In the carbonization process performed in the same manner, only the refining process was changed. That is, the refining blower 7 shown in FIG.
3 / h and 30 kg / h of steam were introduced from the steam introducing pipe 17 to carry out refining and activation at the same time. This step was performed for 8 hours. At this time, the reaction temperature was 810 ° C. and the coal collection rate was 18.7%. When the physical properties of this carbide were compared with the case where the above steam was not used, the following results were obtained.

【表5】 [Table 5]

【0019】次に、炭化時に発生する排煙をアフターバ
ーナ付きの排ガス燃焼室110に導入して燃焼し、排熱
を隣接する同型の炭化炉で利用する。排ガス燃焼室11
0は内径700mm、長さ1.5mの円筒型で、厚さ1
00mmの耐熱材で作られた図3のように構成され、下
部に灯油3〜10リットル/h燃焼の制御器付きのアフ
ターバーナ111が付属設置されている。排ガス燃焼の
2次空気もこのバーナの付属ブロワより供給される。排
ガス燃焼室110を出た燃焼ガスは、内径200mmの
耐熱ダクト112で次の利用先である隣接する図示しな
い炭化炉本体の前焚ストーブに供給する。
Next, the flue gas generated during carbonization is introduced into the exhaust gas combustion chamber 110 with an afterburner and burned, and the exhaust heat is used in the adjacent carbonization furnace of the same type. Exhaust gas combustion chamber 11
0 is a cylindrical type with an inner diameter of 700 mm and a length of 1.5 m, and a thickness of 1
As shown in FIG. 3, which is made of a heat resistant material of 00 mm, an afterburner 111 with a controller for burning 3 to 10 liters / h of kerosene is additionally installed at the bottom. Secondary air for exhaust gas combustion is also supplied from the blower attached to this burner. The combustion gas that has exited the exhaust gas combustion chamber 110 is supplied to a front heating stove of an adjacent carbonization furnace main body (not shown), which is the next destination, through a heat resistant duct 112 having an inner diameter of 200 mm.

【0020】実施例2で発生する排煙は冷却されずに排
ガス燃焼室110に導入されるが、初めの乾燥工程の3
4時間、次の昇温工程の24時間は発生するガスのカロ
リーが低く利用できない。58時間後より、アフターバ
ーナ111に着火させ灯油8リットル/hを6時間燃焼
して昇温し、燃焼室が800℃を超えてから除々に灯油
量を少なくし、72時間後は灯油燃焼量を3リットル/
hとしたが燃焼室は850〜900℃を保った。この時
の発生ガスのカロリーは平均6万カロリー/hと推定さ
れ、灯油量と合わせて約9万カロリー/hの燃焼排ガス
を52時間にわたり隣接する図示しない炭化炉本体の前
焚ストーブに供給し、乾燥・昇温工程に使用した。炭化
工程の熱バランスを推定すると、炭に33%、排ガスカ
ロリー利用に37%、熱ロスが30%となった。固定炉
でこのようなカロリーの高い排煙を得て、これを利用す
るのは本発明の炉で初めて行われたものである。
The flue gas generated in the second embodiment is introduced into the exhaust gas combustion chamber 110 without being cooled.
The calorific value of the generated gas is low for 4 hours and 24 hours of the next temperature raising step, and cannot be used. After 58 hours, the afterburner 111 is ignited and 8 liters / h of kerosene is burned for 6 hours to raise the temperature, and the kerosene amount is gradually reduced after the combustion chamber exceeds 800 ° C. After 72 hours, the kerosene combustion amount is increased. 3 liters /
However, the combustion chamber was maintained at 850 to 900 ° C. The calorie of the gas generated at this time is estimated to be 60,000 calories / h on average, and the combustion exhaust gas of about 90,000 calories / h together with the amount of kerosene is supplied to the pre-burning stove of the adjacent carbonization furnace body for 52 hours for 52 hours. , Used in the drying / heating process. The heat balance of the carbonization process was estimated to be 33% for charcoal, 37% for exhaust gas calorie utilization, and 30% for heat loss. It was the first time in the furnace of the present invention to obtain and utilize such high-calorie flue gas in a fixed furnace.

【0021】実施例3 本実施例においては、日本古来の土窯を用いて本発明の
方法による炭化を行った。土窯の大きさは、出炭量は1
5kg/俵が70俵窯であり、概略の大きさは、長さ7
m、幅3m、高さ1.6mの窯で、約10日間かけて焼
くものである。この窯の炉底部に、長さ2mのSUS3
10S製の2インチパイプに径4mmの孔を左右に10
個あけてこのパイプを50cmおきに5本を6インチパ
イプに接続させて、この6インチパイプを延長して窯外
に出してブロワと接続させた。ブロワは空気量5リット
ル/分のものを使用した。この土窯で通常の炭化方法と
本発明の精錬工程で、炉床部に設けた精錬用空気導入パ
イプを用いて3時間精錬を行った。精錬の状況を観察す
るためにアルメルクロメル製サーモカップル長さ1.4
mのものを窯内の高さ13cmと15cmの部位に2本
挿入して、上下の温度差の少なくなる点を精錬の終了点
とした。また精錬時間を長くするほど炭化温度は高くな
り、目的とする炭化温度に制御することもできた。
Example 3 In this example, carbonization was performed by the method of the present invention using an ancient Japanese kiln. The size of the clay kiln is 1
5 kg / bale is 70 bale kiln, and the approximate size is length 7
It is a kiln with m, width of 3 m, and height of 1.6 m, and is baked for about 10 days. At the bottom of this kiln, SUS3 with a length of 2m
10S 2 inch pipe with 4mm diameter holes 10
Five pieces were connected to a 6-inch pipe at 50 cm intervals, and the 6-inch pipe was extended and taken out of the kiln to be connected to a blower. The blower used had an air volume of 5 liters / minute. Refining was carried out for 3 hours in this soil kiln by the usual carbonization method and the refining process of the present invention using a refining air introduction pipe provided in the hearth. Alumel chromel thermocouple length 1.4 to observe the refining situation
Two pieces of m were inserted into the kiln at the heights of 13 cm and 15 cm, and the point where the temperature difference between the upper and lower sides was reduced was the end point of the refining. Further, the longer the refining time, the higher the carbonization temperature, and it was possible to control the carbonization temperature to the target.

【0022】このように、炉内空気を撹拌又は循環せず
炉床部から空気又は空気と水蒸気を導入して炭化をした
結果と、従来方法によって炭化をした結果を次の表に示
す。
The following table shows the results of carbonization by introducing air or air and steam from the hearth without stirring or circulating the air in the furnace and the results of carbonization by the conventional method.

【表6】 以上のように本発明の精錬法を用いることにより、均一
物性を持つ炭化物が容易に得られた。
[Table 6] By using the refining method of the present invention as described above, a carbide having uniform physical properties was easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の炭化装置を示す側面図。FIG. 1 is a side view showing a carbonization device of the present invention.

【図2】本発明の炭化装置を示す断面図。FIG. 2 is a cross-sectional view showing a carbonization device of the present invention.

【図3】本発明の他の炭化装置を示す断面図。FIG. 3 is a sectional view showing another carbonization device of the present invention.

【図4】実験1における炭化炉内の昇温曲線図。FIG. 4 is a temperature rise curve diagram in the carbonization furnace in Experiment 1.

【図5】実験2における炭化炉内の昇温曲線図。FIG. 5 is a temperature rise curve diagram in the carbonization furnace in Experiment 2.

【図6】実験3における炭化炉内の昇温曲線図。FIG. 6 is a temperature rise curve diagram in the carbonization furnace in Experiment 3.

【符号の説明】[Explanation of symbols]

1 炭化炉本体 2 前焚ストーブ 3 ストーブ用ブロワ 4 循環ガスダクト 5 循環用ブロワ 6 給気用ブロワ 7 精錬用ブロワ 8 流量計 10 炉床部 11 排煙ダクト 12 冷却器 13 流下管 14 ダンパ 17 水蒸気導入管 20 コントロールボックス 21 サーモカップル 40 分岐管出口 41 ダンパ 100 循環用ファン 110 排ガス燃焼室 111 アフターバーナ 112 耐熱ダクト 1 Carbonization furnace body 2 front heating stove Blower for 3 stoves 4 Circulating gas duct 5 Circulation blower 6 Blower for air supply 7 Refining blower 8 flow meter 10 hearth 11 Smoke exhaust duct 12 Cooler 13 Downflow pipe 14 Damper 17 Steam introduction pipe 20 control box 21 Thermo Couple 40 Branch pipe outlet 41 Damper 100 circulation fan 110 Exhaust gas combustion chamber 111 Afterburner 112 Heat-resistant duct

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 炭化炉の炉内空気を撹拌循環手段(4,
100)によって撹拌および循環し、炭化時の炉内温度
を均一化して炭化することを特徴とする炭化方法。
1. A stirring and circulating means (4, 4) for circulating air in the furnace of the carbonization furnace.
100) a method of carbonizing, which comprises agitating and circulating by 100) to homogenize the temperature in the furnace during carbonization and carbonize.
【請求項2】 炭化炉の炉床部(10)より炉内に精錬
用ブロワ(7)によって空気又は空気と水蒸気を導入し
て炭化および精錬することを特徴とする炭化方法。
2. A carbonization method characterized by introducing air or air and steam from a hearth (10) of a carbonization furnace into a furnace by a refining blower (7) for carbonization and refining.
【請求項3】 撹拌循環手段が、炭化炉本体(1)に設
けた循環ガスダクト(4)であり、該循環ガスダクト
(4)に付設した循環用ブロワ(5)によって炉内空気
を撹拌及び循環することを特徴とする請求項1に記載の
炭化方法。
3. The stirring / circulating means is a circulating gas duct (4) provided in the carbonization furnace body (1), and the circulating air blower (5) attached to the circulating gas duct (4) stirs and circulates the air in the furnace. The carbonization method according to claim 1, wherein
【請求項4】 撹拌循環手段が、炭化炉本体(1)の頂
部に設けた循環用ファン(100)であり、該循環用フ
ァン(100)によって炉内空気を撹拌及び循環するこ
とを特徴とする請求項1に記載の炭化方法。
4. The stirring and circulating means is a circulation fan (100) provided on the top of the carbonization furnace body (1), and the circulation fan (100) stirs and circulates the air in the furnace. The carbonization method according to claim 1.
【請求項5】 炭化時に発生する排煙を温度別に冷却回
収して物性の異なる木酢液を得ることを特徴とする請求
項1から4のいずれかに記載の炭化方法。
5. The carbonization method according to any one of claims 1 to 4, wherein flue gas generated during carbonization is cooled and recovered for each temperature to obtain a wood vinegar having different physical properties.
【請求項6】 炭化時に発生する排煙の一部又は全部を
燃焼し、発生する熱を蓄熱室に回収し又は直接炭材と接
触させて乾燥・昇温工程に使用することを特徴とする請
求項1から4のいずれかに記載の炭化方法。
6. A feature of burning part or all of the flue gas generated during carbonization, recovering the heat generated in the heat storage chamber or directly contacting with the carbonaceous material for use in the drying / heating process. The carbonization method according to any one of claims 1 to 4.
JP2001190956A 2001-06-25 2001-06-25 Carbonization method Pending JP2003003173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001190956A JP2003003173A (en) 2001-06-25 2001-06-25 Carbonization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001190956A JP2003003173A (en) 2001-06-25 2001-06-25 Carbonization method

Publications (1)

Publication Number Publication Date
JP2003003173A true JP2003003173A (en) 2003-01-08

Family

ID=19029649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001190956A Pending JP2003003173A (en) 2001-06-25 2001-06-25 Carbonization method

Country Status (1)

Country Link
JP (1) JP2003003173A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100823072B1 (en) * 2007-01-31 2008-04-18 한국과학기술연구원 A method for preparation of aerogel having high transparency and an aerogel prepared therefrom
CN102165035A (en) * 2008-05-13 2011-08-24 卡博尼克斯有限责任公司 Carbonization method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100823072B1 (en) * 2007-01-31 2008-04-18 한국과학기술연구원 A method for preparation of aerogel having high transparency and an aerogel prepared therefrom
CN102165035A (en) * 2008-05-13 2011-08-24 卡博尼克斯有限责任公司 Carbonization method and device

Similar Documents

Publication Publication Date Title
CN104428397A (en) Cement production plant and method for treating biomass in such a plant
CN108977213B (en) Novel straw carbonization equipment
CN102295282A (en) Carbonization and activation integral furnace
WO2011032354A1 (en) External combustion and internal heating type coal retort furnace
JP2007146016A (en) Carbonization furnace for woody material
CN110240913A (en) A kind of crop straw carbonizing furnace and its carbonizing method
CN108467735A (en) A kind of automatic feed/discharge is biomass carbonated-cooling integration self-heating apparatus and method
TW200907041A (en) Method and apparatus for carbonization treatment of highly hydrous organic matter
CN105331377A (en) Coal pyrolysis method and system
US2209255A (en) Coke production
CN104593015A (en) Formcoke refining method and device thereof
CN208500860U (en) The biomass moving bed retort of vertical type
JP2003003173A (en) Carbonization method
CN101691492A (en) Coal carbonization technology
CN205328940U (en) System for pyrolysis coal
JP4396843B2 (en) Multi-stage fluidized bed combustion method
CN202297141U (en) Carbonization and activation integrated furnace
CN201574140U (en) Gas collecting device for coal dry distillation furnace
CN208454883U (en) A kind of automatic feed/discharge is biomass carbonated-cooling integration self-heating apparatus
US3167487A (en) Method for producing coke and gas from carbonizable material
JP2004339327A (en) Carbonization apparatus
CN110357101A (en) A kind of cleaning prepares the vertical integral type internal fired furnace of active carbon
CN209383701U (en) The system for handling corn stover
CN109504405A (en) The system and method for handling corn stover
CN101659881A (en) Destructive distillation device of small grained oil shale

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801