JP2002500533A - Stent with variable expansion force - Google Patents

Stent with variable expansion force

Info

Publication number
JP2002500533A
JP2002500533A JP55064198A JP55064198A JP2002500533A JP 2002500533 A JP2002500533 A JP 2002500533A JP 55064198 A JP55064198 A JP 55064198A JP 55064198 A JP55064198 A JP 55064198A JP 2002500533 A JP2002500533 A JP 2002500533A
Authority
JP
Japan
Prior art keywords
stent
region
length
force
central region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP55064198A
Other languages
Japanese (ja)
Other versions
JP2002500533A5 (en
Inventor
ジャーマイン、ジョン ピー. セント
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Limited
Original Assignee
Boston Scientific Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Limited filed Critical Boston Scientific Limited
Publication of JP2002500533A publication Critical patent/JP2002500533A/en
Publication of JP2002500533A5 publication Critical patent/JP2002500533A5/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/88Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30014Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30092Properties of materials and coating materials using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30317The prosthesis having different structural features at different locations within the same prosthesis
    • A61F2002/30322The prosthesis having different structural features at different locations within the same prosthesis differing in surface structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30317The prosthesis having different structural features at different locations within the same prosthesis
    • A61F2002/30324The prosthesis having different structural features at different locations within the same prosthesis differing in thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30317The prosthesis having different structural features at different locations within the same prosthesis
    • A61F2002/30327The prosthesis having different structural features at different locations within the same prosthesis differing in diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/821Ostial stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • A61F2210/0019Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at only one temperature whilst inside or touching the human body, e.g. constrained in a non-operative shape during surgery, another temperature only occurring before the operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0026Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in surface structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0036Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter

Abstract

A stent having a length, the stent expandable from an unexpanded state to an expanded state, the radius of the stent in the unexpanded state constant along the length of the stent, the stent comprising: a tubular shaped structure, said structure having a radially outward biased force, said force being varied long said length, said tubular structure having a first end region, a middle region, and second end region, wherein said force is weakest in said first end region, stronger in said middle region than in said first region, and stronger in said second end region than in said middle region, the structure including a plurality of zig-zag bands (102), adjacent zig-zag bands connected by interconnecting elements (109). <IMAGE>

Description

【発明の詳細な説明】 変わる拡張力を有するステント 発明の分野 本発明は一般的に医学デバイスに関する。より詳細には、本発明は、動脈など の血管の流動の開放性を保つステントに関する。 発明の背景 ステントは挿入可能な医学デバイスである。ステントは、同ステントを使用し ない場合には閉鎖し、流体の流動を妨害しうる部分で流体流動のために開放性を 維持すべく使用される。経皮的管腔貫通カテーテル血管形成(PTCA)後の再 発狭窄症を予防するために、バルーン拡張後の元に戻る可能性のある血管に対し 放射状に外向きの力を有するステントが用いられる。ステントは炎症性血管壁の 開放性を維持する。ステントを使用しない場合には炎症性血管壁は腫れて閉鎖し 、流動が妨害される。排膿のために手術で作出された孔の開放性を保つためにも ステントを用いることができる。 ステントはしばしば、管状血管領域中に挿入される管状デバイスである。バル ーンによって拡張可能なステントでは、バルーン上に搭載され、位置を定め、バ ルーンを膨張させてステントを放射状で外向きに拡張することが必要である。自 己拡張型ステントは、束縛されていないときに、バルーンによる助けを必要とし ないで拡張する。自己拡張型ステントは、デリバリィカテーテルから取り外され ることによって拡張するようになっている。 血管の狭窄は、円筒血管壁への堅い材料からなる内向きに突出しているアーチ 形の付加物というモデルで表されうる。円筒血管壁では狭窄領域が弾性壁に沿っ て付着したやや堅いボディを有する。狭窄は、狭窄がまたがる領域で血管の拡張 に対し抵抗性を示す。狭窄は、組成において、例えば石灰化の程度で異なり、そ れ故、性質においても異なる。 多数の狭窄のアーチ形形状により、ステントの放射状に働く外向きの力に対す る血管軸に沿っての抵抗力に変化がある。詳細には、狭窄のある血管の抵抗力は しばしば中央の方で最大であり、末端の方で小さくなり、健全な血管組織の出発 点で急速に減少する。通常の自己拡張型ステントは最適には、開放性を保つため に、狭窄領域の長さより大きい長さを有する。現行のステントは、長さに沿って ほぼ均一の外向きに働く放射状の力を有する。現在、狭窄形状や狭窄抵抗性に合 わせてはステントの外向きに働く放射状の力は変わらない。狭窄内に開放性チャ ネルを維持するのに十分な力である一定な力を有するステントは、狭窄の末端を 越えた健全な血管部分で必要な力よりも大きい力を有する。こうして、ステント 末端は外向きに漏斗状に開き、非狭窄組織の中に突き出で、該組織を刺激する可 能性がある。 狭窄の両側に存在する非対称形状を有する血管領域で狭窄は起りうる。この一 例は冠状動脈口であり、それは、大動脈の方に向かって広い開口部を有し、より 狭い冠状動脈内に収斂する。該口に置かれた通常のステントは、非均一な血管直 径に対しほぼ均一の外向き力を発揮する。この力は狭い方の血管開口部に対し適 切に合うならば、広い方の領域に対しては最適よりも小さそうである。 望ましいが、今まで出来なかったことは、元に戻る狭窄内で血管を開放性に保 つために十分な力を有することができるが、健全な非狭窄血管領域に対し必要な 力のみを提供できるステントである。更に提供されなかったことは、狭窄の両側 で非均一の血管直径を有する血管領域で狭窄に沿って必要な、しかし必要なだけ の力を提供するステントである。発明の概要 本発明は、外向きに働く放射状の力がステントの長さに沿って長手軸位置によ り異なる管状構造の自己拡張型ステントを含む。一実施形態では、力は中央で大 きく、両末端で小さい。このようなステントは、狭窄血管領域に置くのに適して いる。別の実施形態では、力は、一端で小さく、中央で大きく、反対端で更に大 きい。このようなステントは、冠状動脈口近くに置くことを含む、狭窄のある狭 くなっていく血管領域に置くのに適する。 ひとつのステントは形状記憶材料から形成される構造を有する。一実施形態で は、ステントはニッケル−チタン合金から形成される。 一好適実施形態のステント構造は、末端よりも中央の方でより密接な間隔のヘ リックスターンを有するワイヤから形成されるヘリックスを備える。ヘリックス は、軸に沿って伸ばされ、解放された後、外径において拡張し、長さにおいて収 縮するようになっている。別の実施形態では、ヘリックスターンは、一端から反 対端に向かって間隔が大きくなる。別の実施形態では、相互に織られた、又は相 互に巻かれたワイヤが管状構造を形成し、ワイヤの数は、末端に比べて中央側が 単位長さ当たり多い。相互に巻かれたワイヤは金属製ワイヤでありうる。ワイヤ は、管状ステント形状に巻かれた後、ラセン、即ちヘリックスに似ていることが ありうる。更に別の実施形態では、ワイヤの数は一端から反対端へ向って増加す る。 より大きい放射状の力を必要とする領域ではより多くの材料を、より小さい力 を必要とする領域ではより少ない材料を有する接続部にて交差するステント構造 要素を備えることによって、一つのステントにおいて放射状の力が変化すること になる。接続の材料の量は、接続部の面積の大きさを変えることによって変えら れる。一好適実施形態では、ステント構造は、ニチノールチューブをレーザー切 削し、外向きに働く放射状の力を一層多く必要とする領域により大きな支柱寸法 を残すことによって形成される。 別の実施形態では、ステント構造は、“ジグザグ”形状を有する一連のワイヤ バネを有し、ワイヤバネの各々は放射状に管状セクションを取囲む。バネは長手 軸方向に相互連結されている。この実施形態と他の実施形態においてステント壁 厚さを変えることによって、必要な外向き放射状力を変えることができる。一実 施形態では、より大きい放射状力を必要とするステント領域は、より小さい力を 必要とする領域よりもより厚い壁を有する。 本発明により製造されたステントは、局所的力の必要性に、より適合する外向 き放射状力を発揮できる。特に、本発明のステントは、健全組織領域であまりに 大きな力を発揮せずに、狭窄中心で必要な場所でのみより大きな力を発揮する。 本発明のステントは、狭くなっていく血管領域の必要性に、より適合する拡張形 状を有し、より広い領域ではより大きな拡張をし、より狭い領域ではより小さな 拡張をする。図面の簡単な説明 図1は、狭窄のある血管領域部分の長手軸方向の断面図である。 図2は、通常のステントが置かれている狭窄血管領域の部分の断面図である。 図3は、図2の通常のステントにおける長さに対する力を示すプロットである 。 図4は、狭くなっていく血管領域における部分の長手軸方向の断面図である。 図5は、図1での配置のための改良ステントの長さに対する力を示すプロット である。 図6は、図4での配置のための改良ステントの長さに対する力を示すプロット である。 図7は、長手軸中央で単位長さ当り、より多くのワイヤを有する自己拡張型ス テントの側面図である。 図8は、中央の方でより密接な間隔の自己拡張型ステントコイルの側面図であ る。 図9は、長手軸中央の方でより太い要素を有する自己拡張型ステントの側面図 である。 図10は、図9のステントの端図である。 図11は、図9のステントのウェーハー図である。 図12は、ステントの長さに沿って直径が不均一である本発明の別の実施形態 の長手軸方向の輪郭である。 図13は、自己拡張型ステントにおける要素接続部の拡大図である。 図14は、図13の自己拡張型ステントの一つの要素接続部の拡大図である。 図15は、自己拡張型ステントの一つの要素接続部の拡大図である。 図16は、一端方向に要素の密度が大きくなる自己拡張型ステントの側面図で ある。 図17は、一端方向により密接な間隔の要素を有する自己拡張型ステントの側 面図である。 好適な実施の形態の詳細な説明 図1は、血管壁32内の血管31内で狭領域34を形成する狭窄30を示す。 狭窄30に隣接して健全な血管領域36がある。図2は、44で示される血流チ ャネルの外の狭窄30を貫通する通常のステント40を示す。ステント40は、 健全な血管部分36内に、38である角度で進む図示されたステント端44を有 する。図示されるステント40は、狭窄30の元に戻る力に対し血管30を開い たままにしておくのに十分な力を有し、ステント端42で必要な力よりも大きい 力を有し、ステント40は、健全な血管内に、38である角度で進む。図3は、 図2で示すような通常のステントにおける、ステント長さLに対する外向き放射 状力の理想的プロット50を示す。図示するように、力は長さに対しほぼ一定で ある。 図4は、広領域56、狭領域58、狭窄54を有する狭くなっていく血管52 を示す。図4の狭くなっていく血管は、大動脈からの血液が左冠状動脈に入る左 冠状動脈口のような孔に存在する形状を示す。広領域56を開いたままにしてお くのに十分な力を有するステントは、狭領域58を開いたままにしておくのに必 要な力よりも大きい力を有する。図3の外向きに働く放射状の力の軸分布を有す るステントは、広領域56(狭領域58で必要な力より大きい)で不十分な力を 有する。 図5は、本発明を具体化する一ステントにおけるステント長さLに沿った外向 きの放射状の力Fのプロット60を示す。ステントは、末端領域64、65にお けるよりも中央領域62で大きい力を有する。図5の力曲線を有するステントは 、図1に示す狭窄をまたぐのに適し、図2で符号38にて示す健全な組織内に角 度をもって進むことを防ぐ。図6は、本発明を具体化する別のステントにおける ステント長さLに沿っての外向きに働く放射状の力Fのプロット66を示す。該 ステントは、末端領域68で反対側の末端領域70におけるよりも大きい力を有 する。図6の力曲線を有するステントは、図4に示すような狭窄をまたぐのに適 し、血管広領域56を開放性に保つのに十分な力を有するが、より小さい力が必 要な血管狭領域58ではより小さい力を有する。 図7は、図5に示す力分布を有する本発明の好適な実施の形態を示す。自己拡 張型ステント80は、88で示すように相互に織られた多数の弾力性ワイヤ82 を有する。使用の際に、ステント80は長手軸の方向に引かれ、長さが増加し、 直径が減少する。ステント80は、デリバリィカテーテルの末梢端内に挿入され 、貫通される狭窄に進められ、デリバリィカテーテル末梢端から外される。チュ ーブ(カテーテル)を出ると、ステント80は放射状に拡張し、軸方向で短縮し 、 狭窄と血管壁を圧迫する。 ステント80は中央領域84と末端領域86、87を有する。ステントワイヤ 82は非束縛状態に戻るようにされるが、チューブ(カテーテル)内の束縛され たステント形よりも広く、かつ短い。ステントの単位長さ当たりで発揮される外 向きに働く放射状の力の量は、単位長さ当たりワイヤのより大きい密度を有する 領域でより大きい。図7で示されるように、ステント80では、末端領域86、 87におけるよりも中央領域84で単位長さ当たりのワイヤ数は多い。ステント 80は、末端領域86、87よりも中央領域84で大きな外向きの放射状の力を 有する。一実施形態における単位長さ当たりのワイヤのより大きな数は、ステン ト全長に延び、ステント中央の方により密接度の大きいワイヤを形成することか ら得られる。別の実施形態では、ワイヤのより大きい数は、ステントの中央領域 でのみ存在する更なるワイヤを加えることから得られる。 図8は、本発明の別の実施形態の自己拡張型ステント90を示すが、それは、 中央領域94と末端領域96、97を有する。ステント90は単一のラセン状に 巻かれたワイヤ92から形成され、ヘリックス98を形成する。好適実施形態で は、ワイヤ92用にニチノール材料を用いる。ヘリックス98では、符号99で 示すように、ヘリックスターン間には距離がある。距離99は、長手軸での位置 で変わり、中央領域で大きく、末端領域96、97で小さい。ワイヤ92はバネ として形成され、軸方向に引き延ばされた後、放されるときに非束縛形状に戻さ れる。発揮される外向き放射状力の量は、単位長さ当たりより多くのワイヤ要素 をもつ領域で大きく、このことは、ステント90では、ヘリックスターン間の距 離99がより小さいことで達成される。即ち、ステント90は、末端領域96、 97よりも中央領域94でより大きな外向き放射状力を有する。 図9は本発明の更に別の実施形態のステント100を示すが、それは、中央領 域104と末端領域106、107を有する。ステント100は、ワイヤ102 から形成される管状形態を有する。ワイヤは、ジグザグ形を有する幾つかのバネ 108に成形され、各バネ108は、図10に示すように、ステント100のセ グメントを放射状に取囲む。図9に再度言及する。バネ108はセグメント10 9と長手軸方向に相互連結される。一実施形態では、バネ108とセグメント1 09は、セグメント109をバネ108にはんだづけ等による標準的ワイヤ曲げ ジグ及び技術を用いて形成される。ステント100の形成用好適材料はニチノー ルである。別の実施形態では、バネとセグメントは、連続的な壁を有する金属チ ューブをレーザー切削し、バネ108とセグメント109のみを残すことによっ て形成される。 図11は、図10の11−11に沿っての立面ウェーハー断面図を示す。ワイ ヤ要素102の中央領域104と末端領域107とが断面にて示される。末端領 域107での幅及び/又は長さの大きさ(101で示される)は、中央領域10 4での大きさ(103で示される)よりも小さい。大きさ103を有する中央領 域は、相対的に小さな大きさ101を有する末端領域よりも外向きに働く放射状 の力が大きくなる。放射状に働く拡張力はまた、ジグザグ形の頻度及び/又は大 きさにより変わりうる。 図12は、本発明の別の実施形態を想像線にて模式的に示す。ステント110 の輪郭を想像線で示す。ステント110は中央領域114と末端領域116、1 17を有する。ステント110は、少なくとも一部が形状記憶材料から形成され る。好適な実施の形態では、ステント110はニチノールから形成される。形状 記憶材料を第1の形に焼きなまし、加熱し、それによって材料構造をセットし、 冷却し、第2の形に変形できる。第1の形は、第2の形よりも大きな平均外側直 径を有する。材料は、材料組成に特異的な相転移温度で第1の記憶形状に戻る。 図12は、体温に達すると復元されるべきステント形状を示す。ステント11 0は中央外側直径113と末端外側直径111を有し、中央外側直径は末端外側 直径よりも大きい。ステント110をデリバリィカテーテル内に合うように圧縮 し、デリバリィカテーテルを狭窄部位まで進め、ステントをデリバリィカテーテ ル末梢端から押し出すことができる。次いで、ステント110は図12の記憶形 状を思い出し始める。狭窄領域は典型的には図1のアーチ形を有する。ステント の中央外側直径113は末端外側直径111よりも大きく、血管の中央内側直径 は典型的には血管の末端内側直径よりも小さいので、ステント110は、末端血 管壁に対し末端ステント領域117、116を適用することにおいてよりも中央 血管壁に対し中央ステント領域114を適用することにおいて大きな力を加える ことができる。 図13は本発明の別の実施形態を示す。特に、図13は、接続部で連結される 要素から形成される管状ステント構造を示す。接続部の大きさはステントの長さ により変わりうる。要素124を有する構造122を有するステント120を示 す。図14で詳細に示すように、要素124は接続部130で互いに交差する。 図15は、図14の接続部よりも多量の材料を有する接続部を示す。図15の実 施形態では、接続部132は接続部130よりも大きな表面積を有する。より多 くの材料を有する接続部は、より少しの材料を有する接続部よりも放射方向にお いて外向きの力を有する能力が大きい。本発明の一実施形態は、チューブ中央領 域でより多くの材料を有し、チューブ末端領域でより少ない材料を有する接続部 で接続する、又は交差する要素を有する。一好適実施形態では、接続部は、レー ザー切削されたニチノールチューブ材料によって形成される。 使用の際に、チューブはデリバリィカテーテル内に合うように圧縮され、狭窄 部位に進められ、デリバリィカテーテル末梢端から末梢に押されることができる 。チューブは再度非圧縮形になるので、接続部でより多くの材料を有する部分は よ り大きな放射方向において外向きな力を発揮できる。 図16は、左冠状動脈口のような狭くなっていく血管領域での狭窄を横切って の使用に適した本発明の実施形態を示す。ステント140は、第1の末端領域1 47と第2の反対側の末端領域146を有する。ステント140は図7のステン ト80と類似している。ステントチューブは、ステントの回りで巻かれ、相互に 織られることができるワイヤ142を有する。図16に示すように、ワイヤ14 2は、第1の末端領域147におけるよりも第2の末端領域146でステント単 位長さ当たり大きな密度を有する。このことにより、第2末端領域146は第1 末端領域147よりも大きな外向きの放射状の力を発揮するのが可能となる。即 ち、第1末端領域147は狭血管領域58に適合でき、第2末端領域146は広 血管領域56に適合できる。 図17は、狭窄した狭くなっていく血管領域を通っての使用に適した本発明の 別の実施形態を示す。ステント150は第1の末端領域157から第2末端領域 156に延びる。ステント150は図8のステント90の構築と類似しており、 ヘリックス、即ちラセン158に成形されるワイヤ152を有する。ヘリックス ターンは距離159をおいて離れている。図17に示すように、ヘリックスター ンは、第2末端領域156よりも第1末端領域157で更に離れている。この間 隔により、ステント150が、第1末端領域157でよりも第2末端領域156 で大きな放射方向の外向きの力を発揮することが可能となる。 図16と図17は、他端よりも一端で大きな放射状力を有する2つの実施形態 を示す。この性質は、他の構造を用いても得ることができる。この性質を有する 別の実施形態は、図9の長手軸方向の半分に類似し、他端よりも一端で大きな要 素太さを有する。更に別の実施形態は、図12の長手軸方向の半分と類似し、他 端よりも一端でより大きな外側直径を有する。 図16と図17の実施形態におけるように、他端よりも一端でより大きな放射 状に働く外向きの力を発揮するステントは、図4に示す狭くなっていく血管領域 での狭窄を通り置かれるのが可能となる。より大きな放射状の力を有するステン ト末端はより広い血管領域中に拡張できる。一方、より小さな放射状の力を有す るステント末端はより狭い血管領域壁まで拡張できるが、該ステント末端がより 広い血管領域で拡張するのに必要な力よりも小さな力によって拡張できる。この ことにより、血管壁に対する不必要な力を小さくでき、血管を開いたままにし、 血管流路の外にステントをほぼ保つことができる。 本発明は、ステント長さに沿って変わる放射状の力を有するステントを提供す る。例示した目的のために狭窄血管領域をまたぐものとして使用されるステント を説明してきた。別の使用は、炎症の、又はそれ以外のように制限された身体内 管腔を通るチャネルを開いたままに維持することである。他の目的のために使用 されるステントも本発明の範囲内であることは明瞭である。 本発明を例示するために、自己拡張型ステントを本明細書で記載したが、いわ ゆるバルーン拡張型ステントも本明細書記載の変わる拡張力という性質を有しう ることに注意すべきである。しかし、バルーン拡張型ステントの場合、一般的に これらの力は、ステントを拡張するのに必要な力より小さく、ステントの拡張を 完全にするために、当業者に公知のようにバルーンを用いる。堅い、又は重い部 材を有するステントはステントの柔軟性が高められるのが望ましい場所である孔 (ostium)などの血管の屈曲部分で、上記のバルーン拡張型ステントを好ましくも 配備できる。それ故、バルーン拡張型ステントも本発明の範囲内であることを理 解すべきである。 本明細書によって包含される本発明の多数の特徴と利点を詳述した。しかし、 この開示は多くの点で例示のみを目的とすることが理解されよう。本発明の範囲 を超えることなく、詳細な点、特に部材の形、大きさ、配置に関し、変更を行う ことができる。無論、本発明の範囲は、請求の範囲に記載されている。Description: FIELD OF THE INVENTION The invention relates generally to medical devices. More specifically, the present invention relates to a stent that maintains the openness of flow of a blood vessel such as an artery. BACKGROUND OF THE INVENTION A stent is an insertable medical device. Stents are used to close when not in use and to maintain openness for fluid flow in areas where fluid flow may be obstructed. To prevent restenosis after percutaneous transluminal catheter angioplasty (PTCA), a stent is used that has a radial outward force on blood vessels that may return after balloon dilatation. The stent maintains the openness of the inflammatory vessel wall. Without a stent, the inflammatory vessel wall swells and closes, disrupting flow. Stents can also be used to keep open holes created by surgery for drainage. Stents are often tubular devices that are inserted into a tubular vessel region. Balloon expandable stents require that the stent be mounted on the balloon, positioned and inflated to radially expand the stent radially. Self-expanding stents expand when unconstrained without the need for balloon assistance. Self-expanding stents are adapted to expand upon removal from a delivery catheter. Vessel stenosis can be modeled as an inwardly projecting arched appendage of rigid material to the cylindrical vessel wall. In a cylindrical vessel wall, the stenotic region has a slightly stiff body attached along the elastic wall. Stenosis is resistant to dilation of blood vessels in the area where the stenosis straddles. Stenosis varies in composition, for example, in the degree of calcification, and therefore also in nature. Due to the multiple stenotic arch shape, there is a change in the resistance along the vessel axis to outwardly acting radial forces of the stent. In particular, the resistance of stenotic vessels is often greatest in the middle, less at the ends, and decreases rapidly at the beginning of healthy vascular tissue. Conventional self-expanding stents optimally have a length greater than the length of the stenotic region to maintain openness. Current stents have a substantially uniform outwardly acting radial force along their length. At present, the radial force acting outward of the stent does not change according to the stenosis shape or stenosis resistance. A stent with a constant force that is sufficient to maintain an open channel within the stenosis will have more force than is required in a healthy vascular segment beyond the end of the stenosis. Thus, the stent distal end may open outwardly and funnel into the non-stenotic tissue, stimulating the tissue. Stenosis can occur in a region of the blood vessel that has an asymmetric shape on both sides of the stenosis. One example of this is the coronary ostium, which has a wide opening toward the aorta and converges into a narrower coronary artery. A conventional stent placed in the mouth will exert a substantially uniform outward force on non-uniform vessel diameters. This force is likely to be less than optimal for the larger area if it fits properly for the smaller vessel opening. Desirably, what has not been done before is that it can have enough force to keep the vessel open within the returning stenosis, but can only provide the necessary force to healthy, non-stenotic vascular areas It is a stent. Also not provided is a stent that provides the necessary but necessary force along the stenosis in a vascular region having a non-uniform vascular diameter on both sides of the stenosis. SUMMARY OF THE INVENTION The present invention includes a self-expanding stent having a tubular structure in which radial forces acting outwardly vary with longitudinal position along the length of the stent. In one embodiment, the force is large at the center and small at both ends. Such a stent is suitable for placement in a stenotic vascular region. In another embodiment, the force is small at one end, large at the center, and greater at the opposite end. Such stents are suitable for placement in stenotic narrowing vessel areas, including placement near the coronary ostia. One stent has a structure formed from a shape memory material. In one embodiment, the stent is formed from a nickel-titanium alloy. The stent structure of one preferred embodiment comprises a helix formed from a wire having more closely spaced helix turns in the middle than at the ends. The helix is adapted to expand along its axis and contract in length after being extended and released along an axis. In another embodiment, the helix turns are spaced from one end to the opposite end. In another embodiment, the interwoven or interwound wires form a tubular structure, the number of wires being greater per unit length on the medial side than on the ends. The mutually wound wires may be metal wires. After being wound into a tubular stent shape, the wire can resemble a helix or helix. In yet another embodiment, the number of wires increases from one end to the other end. By providing stent structures that intersect at a connection with more material in areas requiring more radial force and less material in areas requiring less force, a Will change. The amount of connection material can be varied by changing the size of the area of the connection. In one preferred embodiment, the stent structure is formed by laser cutting a Nitinol tube, leaving larger strut dimensions in areas requiring more outwardly acting radial forces. In another embodiment, the stent structure has a series of wire springs having a "zigzag" shape, each of which radially surrounds the tubular section. The springs are interconnected longitudinally. By varying the stent wall thickness in this and other embodiments, the required outward radial force can be varied. In one embodiment, areas of the stent that require more radial force have thicker walls than areas that require less force. Stents made in accordance with the present invention can exhibit outward radial forces that better match local force needs. In particular, the stents of the present invention do not exert too much force in healthy tissue regions, but rather only where needed at the center of the stenosis. The stent of the present invention has an expanded configuration that better matches the needs of the narrowing vascular region, with greater expansion in larger regions and smaller expansion in smaller regions. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view of a stenotic blood vessel region. FIG. 2 is a cross-sectional view of a portion of a stenotic blood vessel region where a normal stent is placed. FIG. 3 is a plot showing force versus length for the conventional stent of FIG. FIG. 4 is a longitudinal sectional view of a portion in a narrowing blood vessel region. FIG. 5 is a plot showing force versus length for an improved stent for deployment in FIG. FIG. 6 is a plot showing the force versus length of the modified stent for the deployment in FIG. FIG. 7 is a side view of a self-expanding stent having more wires per unit length at the center of the longitudinal axis. FIG. 8 is a side view of a more closely spaced self-expanding stent coil in the middle. FIG. 9 is a side view of a self-expanding stent having a thicker element in the middle of the longitudinal axis. FIG. 10 is an end view of the stent of FIG. FIG. 11 is a wafer view of the stent of FIG. FIG. 12 is a longitudinal profile of another embodiment of the present invention having a non-uniform diameter along the length of the stent. FIG. 13 is an enlarged view of the element connection part in the self-expandable stent. FIG. 14 is an enlarged view of one element connection of the self-expanding stent of FIG. FIG. 15 is an enlarged view of one element connection portion of the self-expanding stent. FIG. 16 is a side view of a self-expanding stent in which the density of elements increases in one end direction. FIG. 17 is a side view of a self-expanding stent having elements closer together in one end. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a stenosis 30 forming a narrow region 34 within a blood vessel 31 within a blood vessel wall 32. Adjacent to the stenosis 30 is a healthy vascular region 36. FIG. 2 shows a conventional stent 40 penetrating a stenosis 30 outside the blood flow channel indicated at 44. The stent 40 has an illustrated stent end 44 that advances at an angle of 38 within a healthy vascular segment 36. The illustrated stent 40 has a force sufficient to keep the vessel 30 open against the force returning to the stenosis 30, a force greater than that required at the stent end 42, 40 advances at an angle that is 38 into a healthy blood vessel. FIG. 3 shows an ideal plot 50 of outward radial force against stent length L for a conventional stent as shown in FIG. As shown, the force is approximately constant over length. FIG. 4 shows a narrowing blood vessel 52 having a wide area 56, a narrow area 58, and a stenosis 54. The narrowing vessel in FIG. 4 shows a shape that exists in a hole such as the left coronary ostium where blood from the aorta enters the left coronary artery. A stent that has sufficient force to keep the wide area 56 open will have a greater force than is necessary to keep the narrow area 58 open. The outwardly acting radial force axial distribution stent of FIG. 3 has insufficient force in the wide area 56 (greater than the force required in the narrow area 58). FIG. 5 shows a plot 60 of outward radial force F along stent length L for one stent embodying the present invention. The stent has a greater force in the central region 62 than in the distal regions 64,65. A stent having the force curve of FIG. 5 is suitable for straddling the stenosis shown in FIG. 1 and prevents it from going angularly into healthy tissue, designated 38 in FIG. FIG. 6 shows a plot 66 of an outwardly acting radial force F along a stent length L in another stent embodying the present invention. The stent has a greater force at end region 68 than at the opposite end region 70. A stent having the force curve of FIG. 6 is suitable for straddling a stenosis as shown in FIG. 4 and has sufficient force to keep the wide vessel region 56 open, but requires a smaller force. 58 has a smaller force. FIG. 7 shows a preferred embodiment of the present invention having the force distribution shown in FIG. Self-expanding stent 80 has a number of resilient wires 82 woven together as shown at 88. In use, the stent 80 is pulled in the longitudinal direction, increasing in length and decreasing in diameter. The stent 80 is inserted into the distal end of the delivery catheter, advanced to a stenosis that is pierced, and removed from the distal end of the delivery catheter. Upon exiting the tube (catheter), the stent 80 expands radially and contracts axially, compressing the stenosis and the vessel wall. The stent 80 has a central region 84 and terminal regions 86,87. The stent wire 82 is allowed to return to the unconstrained state, but is wider and shorter than the constrained stent form in the tube (catheter). The amount of outwardly acting radial force exerted per unit length of the stent is greater in regions having a higher density of wires per unit length. As shown in FIG. 7, the stent 80 has more wires per unit length in the central region 84 than in the distal regions 86,87. The stent 80 has a greater outward radial force at the central region 84 than at the distal regions 86,87. The higher number of wires per unit length in one embodiment results from extending the entire length of the stent and forming a wire that is more tighter toward the center of the stent. In another embodiment, a larger number of wires results from adding additional wires that are only present in the central region of the stent. FIG. 8 illustrates another embodiment of a self-expanding stent 90 of the present invention, which has a central region 94 and terminal regions 96,97. The stent 90 is formed from a single helically wound wire 92, forming a helix 98. In a preferred embodiment, a nitinol material is used for wire 92. In helix 98, there is a distance between helix turns, as shown at 99. The distance 99 varies at a position along the longitudinal axis, being greater in the central region and smaller in the distal regions 96,97. The wire 92 is formed as a spring and, after being stretched in the axial direction, returns to its unconstrained shape when released. The amount of outward radial force exerted is greater in areas with more wire elements per unit length, which is achieved in stent 90 by a smaller distance 99 between helix turns. That is, the stent 90 has a greater outward radial force in the central region 94 than in the distal regions 96, 97. FIG. 9 shows a stent 100 according to yet another embodiment of the present invention, which has a central region 104 and terminal regions 106,107. Stent 100 has a tubular configuration formed from wires 102. The wire is formed into a number of springs 108 having a zigzag shape, each spring radially surrounding a segment of the stent 100, as shown in FIG. Referring again to FIG. Spring 108 is longitudinally interconnected with segment 109. In one embodiment, spring 108 and segment 109 are formed using standard wire bending jigs and techniques, such as by soldering segment 109 to spring 108. The preferred material for forming the stent 100 is Nitinol. In another embodiment, the springs and segments are formed by laser cutting a metal tube having continuous walls, leaving only the springs 108 and segments 109. FIG. 11 shows an elevational wafer cross-sectional view along 11-11 of FIG. A central region 104 and a distal region 107 of the wire element 102 are shown in cross section. The magnitude of the width and / or length at the distal region 107 (shown at 101) is smaller than the size at the central region 104 (shown at 103). The central region having a magnitude 103 has a greater radial force acting outward than the distal region having a relatively small magnitude 101. The radial expansion force may also vary with the frequency and / or size of the zigzag shape. FIG. 12 schematically shows another embodiment of the present invention by imaginary lines. The contour of the stent 110 is shown in phantom. The stent 110 has a central region 114 and terminal regions 116,117. The stent 110 is at least partially formed from a shape memory material. In a preferred embodiment, stent 110 is formed from Nitinol. The shape memory material can be annealed to a first shape and heated, thereby setting the material structure, cooling, and deforming to a second shape. The first shape has a larger average outer diameter than the second shape. The material returns to the first memory shape at a phase transition temperature specific to the material composition. FIG. 12 shows the stent shape to be restored when body temperature is reached. The stent 110 has a central outer diameter 113 and a distal outer diameter 111, where the central outer diameter is greater than the distal outer diameter. The stent 110 can be compressed to fit within the delivery catheter, the delivery catheter advanced to the stenosis, and the stent can be pushed out of the delivery catheter distal end. The stent 110 then begins to remember the memory configuration of FIG. The stenotic region typically has the arch shape of FIG. Because the stent's central outer diameter 113 is greater than the distal outer diameter 111 and the central medial diameter of the vessel is typically smaller than the distal medial diameter of the vessel, the stent 110 may have a distal stent region 117, 116 with respect to the distal vessel wall. A greater force can be applied in applying the central stent region 114 to the central vessel wall than in applying. FIG. 13 shows another embodiment of the present invention. In particular, FIG. 13 shows a tubular stent structure formed from elements connected at a connection. The size of the connection can vary with the length of the stent. 1 shows a stent 120 having a structure 122 having elements 124. As shown in detail in FIG. 14, the elements 124 intersect each other at the connection 130. FIG. 15 shows a connection with more material than the connection of FIG. In the embodiment of FIG. 15, the connection 132 has a larger surface area than the connection 130. Connections with more material have a greater ability to have outward forces in the radial direction than connections with less material. One embodiment of the invention has elements that connect or intersect at a connection with more material in the tube center region and less material in the tube end region. In one preferred embodiment, the connection is formed by laser cut Nitinol tubing. In use, the tube may be compressed to fit within the delivery catheter, advanced to the stenosis, and pushed distally from the distal end of the delivery catheter. Since the tube is again incompressible, the portion with more material at the connection can exert an outward force in a larger radial direction. FIG. 16 illustrates an embodiment of the present invention suitable for use across a stenosis in a narrowing vessel region, such as the left coronary ostium. The stent 140 has a first end region 147 and a second opposite end region 146. Stent 140 is similar to stent 80 of FIG. The stent tube has wires 142 that can be wrapped around the stent and interwoven. As shown in FIG. 16, the wires 142 have a greater density per unit length of the stent at the second end region 146 than at the first end region 147. This allows the second end region 146 to exert a greater outward radial force than the first end region 147. That is, the first end region 147 can conform to the narrow vessel region 58 and the second end region 146 can conform to the wide vessel region 56. FIG. 17 shows another embodiment of the present invention suitable for use through a stenotic narrowing vessel region. Stent 150 extends from first end region 157 to second end region 156. Stent 150 is similar to the construction of stent 90 of FIG. 8 and has a wire 152 that is formed into a helix or helix 158. The helix turns are separated by a distance of 159. As shown in FIG. 17, the helix turns are further apart at the first end region 157 than at the second end region 156. This spacing allows the stent 150 to exert a greater radial outward force at the second end region 156 than at the first end region 157. 16 and 17 show two embodiments that have a greater radial force at one end than the other. This property can also be obtained using other structures. Another embodiment having this property is similar to the longitudinal half of FIG. 9 and has a greater element thickness at one end than the other. Yet another embodiment is similar to the longitudinal half of FIG. 12 and has a larger outer diameter at one end than the other. As in the embodiment of FIGS. 16 and 17, a stent exerting a greater radially outward force at one end than the other end is passed through the narrowing in the narrowing vessel region shown in FIG. It becomes possible. A stent end with a greater radial force can expand into a larger vessel area. On the other hand, a stent end having a smaller radial force can expand to a narrower vessel area wall, but can be expanded with less force than the stent end requires to expand in a larger vessel area. This can reduce unnecessary forces on the vessel wall, keep the vessel open, and keep the stent substantially outside the vessel flow path. The present invention provides a stent having a radial force that varies along the length of the stent. A stent has been described that is used as a straddle vessel region for the purpose of illustration. Another use is to keep open channels through inflamed or otherwise restricted internal body lumens. It is clear that stents used for other purposes are also within the scope of the invention. Although a self-expanding stent has been described herein to illustrate the invention, it should be noted that so-called balloon-expandable stents may also have the variable expanding force properties described herein. However, for balloon expandable stents, these forces are typically less than the force required to expand the stent, and a balloon is used to complete expansion of the stent, as is known to those skilled in the art. Stents with stiff or heavy members can preferably deploy the balloon-expandable stents described above at bends in blood vessels, such as ostium, where enhanced stent flexibility is desirable. Therefore, it should be understood that balloon expandable stents are also within the scope of the present invention. A number of features and advantages of the invention encompassed by this specification have been described in detail. However, it will be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of members without exceeding the scope of the invention. Of course, the scope of the invention is set forth in the following claims.

Claims (1)

【特許請求の範囲】 1. 長さに沿って長さと半径を有するステントにおいて、 管状構造を備え、該構造は放射方向において外方に働く力を有し、該力は長さに 沿って変わり、管状構造は、第1の末端領域、中央領域、第2の末端領域を有し 、該力は、第1の末端領域において最小で、第1の末端領域よりも中央領域で強 く、中央領域よりも第2の末端領域で強いことを特徴とするステント。 2. 長さに沿って長さと半径を有するステントにおいて、 管状構造を備え、該構造は放射方向において外方に働く力を発揮する手段を有し 、該力は長さに沿って変わり、管状構造は、中央領域、第1の末端領域、第2の 末端領域を有し、力を発揮する手段はいくつかのヘリックスを有し、その数は最 低1個であり、ヘリックスの各々は複数のターンを有し、ターンはターン間の軸 上の間隔を有し、間隔は中央領域でより小さく、第1と第2の末端領域でより大 きいことを特徴とするステント。 3. ステントは長さを有し、ヘリックスの数は2つ以上であり、ヘリックスは 長さに沿って相互に巻かれていることを特徴とする請求項2に記載のステント。 4. 長さに沿って長さと半径を有するステントにおいて、 管状構造を備え、該構造は放射状外向き力を発揮する手段を有し、該力は長さに 沿って変わり、管状構造は複数の交差要素を有し、交差要素はある量の材料を有 する接続部で交差し、接続部の材料の量は両末端領域よりも中央領域で大きいこ とを特徴とするステント。 5. 長さを有するステントにおいて、 管状構造を備え、該構造は形状記憶材料から形成され、該構造は第1の位置と第 2の位置を有し、第1の位置は、第2の位置よりも小さい平均外側直径を有し、 第2の位置は長さに沿って外側直径を有し、第2の位置の外側直径は長さに沿っ て変わることを特徴とするステント。 6. ステントは、中央領域、第1の末端領域、第2の末端領域を有し、第2の 位置の外側直径は、末端領域におけるよりも中央領域でより大きいことを特徴と する請求項5に記載のステント。 7. ステントは、第1の末端領域、中央領域、第2の末端領域を有し、第2の 位置の外側直径は、第1領域でより小さく、第1の領域におけるよりも中央領域 でより大きく、中央領域におけるよりも第2の末端領域でより大きいことを特徴 とする請求項5に記載のステント。[Claims] 1. In a stent having a length and a radius along its length, Comprising a tubular structure having a radially outwardly acting force, the force being reduced in length. Along, the tubular structure has a first end region, a central region, a second end region The force is minimal in the first end region and stronger in the central region than in the first end region. A stent that is stronger at the second distal region than at the central region. 2. In a stent having a length and a radius along its length, Comprising a tubular structure having means for exerting a radially outwardly acting force , The force varies along the length and the tubular structure comprises a central region, a first end region, a second Having a terminal region, the means for exerting force has several helices, the number of which is Low one, each helix has multiple turns, the turns being the axis between turns With an upper spacing, the spacing being smaller in the central region and greater in the first and second end regions. A stent characterized by the following. 3. The stent has a length, the number of helices is two or more, and the helix is 3. The stent of claim 2, wherein the stent is wound together along its length. 4. In a stent having a length and a radius along its length, Comprising a tubular structure having means for exerting a radial outward force, the force being reduced in length. Along, the tubular structure has a plurality of crossing elements, each of which has a certain amount of material. The amount of material in the connection is greater in the central region than in both end regions. And a stent. 5. In a stent having a length, A tubular structure, wherein the structure is formed from a shape memory material, the structure comprising a first location and a first location. 2 positions, the first position having a smaller average outer diameter than the second position, The second location has an outer diameter along the length, and the outer diameter at the second location is along the length. A stent characterized by changing. 6. The stent has a central region, a first terminal region, a second terminal region, and a second region. Characterized in that the outer diameter of the location is larger in the central region than in the distal region The stent according to claim 5, wherein 7. The stent has a first end region, a central region, a second end region, and a second end region. The outer diameter of the location is smaller in the first region and in the central region than in the first region Characterized by being larger in the second end region than in the central region The stent according to claim 5, wherein
JP55064198A 1997-05-22 1998-05-21 Stent with variable expansion force Pending JP2002500533A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US861,798 1997-05-22
US08/861,798 US5836966A (en) 1997-05-22 1997-05-22 Variable expansion force stent
PCT/US1998/010415 WO1998052497A2 (en) 1997-05-22 1998-05-21 Variable expansion force stent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009010540A Division JP4996633B2 (en) 1997-05-22 2009-01-21 Stent with changing expansion force

Publications (2)

Publication Number Publication Date
JP2002500533A true JP2002500533A (en) 2002-01-08
JP2002500533A5 JP2002500533A5 (en) 2005-12-08

Family

ID=25336794

Family Applications (2)

Application Number Title Priority Date Filing Date
JP55064198A Pending JP2002500533A (en) 1997-05-22 1998-05-21 Stent with variable expansion force
JP2009010540A Expired - Lifetime JP4996633B2 (en) 1997-05-22 2009-01-21 Stent with changing expansion force

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009010540A Expired - Lifetime JP4996633B2 (en) 1997-05-22 2009-01-21 Stent with changing expansion force

Country Status (7)

Country Link
US (5) US5836966A (en)
EP (2) EP1001718B1 (en)
JP (2) JP2002500533A (en)
AT (2) ATE502607T1 (en)
CA (1) CA2288044C (en)
DE (2) DE69842197D1 (en)
WO (1) WO1998052497A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006506118A (en) * 2002-11-13 2006-02-23 アリウム インコーポレイテッド Lumen lining
JP2007524449A (en) * 2003-06-17 2007-08-30 メドトロニック ヴァスキュラー インコーポレイテッド Superelastic coiled stent
JP2008200499A (en) * 2007-02-20 2008-09-04 Cardiatis Sa Stent for hyperplasia plaque prophylaxis
JP2008535627A (en) * 2005-04-12 2008-09-04 アボット カーディオヴァスキュラー システムズ インコーポレイテッド Stent with contour for grasping balloon catheter and mold for producing stent
KR20160019203A (en) * 2014-08-11 2016-02-19 주식회사 바이오알파 Vascular Stent
JP2017512559A (en) * 2014-03-18 2017-05-25 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Stent design to reduce granulation and inflammation
JP2021513890A (en) * 2018-02-15 2021-06-03 ヴェスパー メディカル、 インコーポレイテッドVesper Medical, Inc. Tapered stent

Families Citing this family (236)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896696B2 (en) 1998-11-20 2005-05-24 Scimed Life Systems, Inc. Flexible and expandable stent
US7204848B1 (en) 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
CA2192520A1 (en) 1996-03-05 1997-09-05 Ian M. Penn Expandable stent and method for delivery of same
WO1997032544A1 (en) 1996-03-05 1997-09-12 Divysio Solutions Ulc. Expandable stent and method for delivery of same
US6796997B1 (en) 1996-03-05 2004-09-28 Evysio Medical Devices Ulc Expandable stent
US6432127B1 (en) 1996-10-11 2002-08-13 Transvascular, Inc. Devices for forming and/or maintaining connections between adjacent anatomical conduits
US6835203B1 (en) 1996-11-04 2004-12-28 Advanced Stent Technologies, Inc. Extendible stent apparatus
US6692483B2 (en) 1996-11-04 2004-02-17 Advanced Stent Technologies, Inc. Catheter with attached flexible side sheath
EP0944366B1 (en) 1996-11-04 2006-09-13 Advanced Stent Technologies, Inc. Extendible double stent
US6682536B2 (en) 2000-03-22 2004-01-27 Advanced Stent Technologies, Inc. Guidewire introducer sheath
US8211167B2 (en) 1999-12-06 2012-07-03 Boston Scientific Scimed, Inc. Method of using a catheter with attached flexible side sheath
US6599316B2 (en) 1996-11-04 2003-07-29 Advanced Stent Technologies, Inc. Extendible stent apparatus
US6325826B1 (en) 1998-01-14 2001-12-04 Advanced Stent Technologies, Inc. Extendible stent apparatus
US7591846B2 (en) 1996-11-04 2009-09-22 Boston Scientific Scimed, Inc. Methods for deploying stents in bifurcations
US5827321A (en) 1997-02-07 1998-10-27 Cornerstone Devices, Inc. Non-Foreshortening intraluminal prosthesis
US20040267350A1 (en) * 2002-10-30 2004-12-30 Roubin Gary S. Non-foreshortening intraluminal prosthesis
US6200335B1 (en) * 1997-03-31 2001-03-13 Kabushikikaisha Igaki Iryo Sekkei Stent for vessel
US5836966A (en) * 1997-05-22 1998-11-17 Scimed Life Systems, Inc. Variable expansion force stent
CA2241558A1 (en) 1997-06-24 1998-12-24 Advanced Cardiovascular Systems, Inc. Stent with reinforced struts and bimodal deployment
US20040130599A1 (en) * 1997-07-15 2004-07-08 Silverbrook Research Pty Ltd Ink jet printhead with amorphous ceramic chamber
ES2290995T3 (en) * 1997-09-24 2008-02-16 Med Institute, Inc. RADIALLY EXPANDABLE ENDOPROTESIS.
EP1625833A3 (en) * 1997-11-25 2010-09-22 TriVascular2, Inc. Layered endovascular graft
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
US5931866A (en) * 1998-02-24 1999-08-03 Frantzen; John J. Radially expandable stent featuring accordion stops
DK174814B1 (en) * 1998-02-25 2003-12-01 Cook William Europ stent device
US5938697A (en) * 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
DE69935716T2 (en) * 1998-05-05 2007-08-16 Boston Scientific Ltd., St. Michael STENT WITH SMOOTH ENDS
DE19839646A1 (en) 1998-08-31 2000-03-09 Jomed Implantate Gmbh Stent
US20020019660A1 (en) * 1998-09-05 2002-02-14 Marc Gianotti Methods and apparatus for a curved stent
US7815763B2 (en) 2001-09-28 2010-10-19 Abbott Laboratories Vascular Enterprises Limited Porous membranes for medical implants and methods of manufacture
US6755856B2 (en) * 1998-09-05 2004-06-29 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection, coupled with improved protection against restenosis and thrombus formation
US6682554B2 (en) 1998-09-05 2004-01-27 Jomed Gmbh Methods and apparatus for a stent having an expandable web structure
US7887578B2 (en) 1998-09-05 2011-02-15 Abbott Laboratories Vascular Enterprises Limited Stent having an expandable web structure
SG75982A1 (en) * 1998-12-03 2000-10-24 Medinol Ltd Controlled detachment stents
US8382821B2 (en) 1998-12-03 2013-02-26 Medinol Ltd. Helical hybrid stent
US7655030B2 (en) 2003-07-18 2010-02-02 Boston Scientific Scimed, Inc. Catheter balloon systems and methods
US7018401B1 (en) 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
DE60024592T2 (en) * 1999-02-01 2006-07-20 Board of Regents, The University of Texas System, Austin WOVEN INTRAVASCULAR DEVICE AND METHOD OF MANUFACTURING
US6409750B1 (en) * 1999-02-01 2002-06-25 Board Of Regents, The University Of Texas System Woven bifurcated and trifurcated stents and methods for making the same
WO2000049973A2 (en) * 1999-02-26 2000-08-31 Vascular Architects, Inc. Coiled stent and catheter assembly
US6248122B1 (en) 1999-02-26 2001-06-19 Vascular Architects, Inc. Catheter with controlled release endoluminal prosthesis
US6325825B1 (en) * 1999-04-08 2001-12-04 Cordis Corporation Stent with variable wall thickness
ATE435626T1 (en) 1999-04-15 2009-07-15 Smart Therapeutics Inc INTRAVASCULAR STENT FOR THE TREATMENT OF NEUROVASCULAR BLOOD VESSEL LESIONS
US6899730B1 (en) 1999-04-15 2005-05-31 Scimed Life Systems, Inc. Catheter-stent device
US6273911B1 (en) * 1999-04-22 2001-08-14 Advanced Cardiovascular Systems, Inc. Variable strength stent
US6270521B1 (en) 1999-05-21 2001-08-07 Cordis Corporation Stent delivery catheter system for primary stenting
US6540774B1 (en) 1999-08-31 2003-04-01 Advanced Cardiovascular Systems, Inc. Stent design with end rings having enhanced strength and radiopacity
US6689156B1 (en) 1999-09-23 2004-02-10 Advanced Stent Technologies, Inc. Stent range transducers and methods of use
US20010047200A1 (en) 1999-10-13 2001-11-29 Raymond Sun Non-foreshortening intraluminal prosthesis
US6610087B1 (en) * 1999-11-16 2003-08-26 Scimed Life Systems, Inc. Endoluminal stent having a matched stiffness region and/or a stiffness gradient and methods for providing stent kink resistance
US6585758B1 (en) 1999-11-16 2003-07-01 Scimed Life Systems, Inc. Multi-section filamentary endoluminal stent
US6423090B1 (en) 2000-02-11 2002-07-23 Advanced Cardiovascular Systems, Inc. Stent pattern with staged expansion
JP3527940B2 (en) * 2000-05-01 2004-05-17 筑波大学長 Stent to ensure patency of stenosis in body lumen
JP2003533335A (en) * 2000-05-22 2003-11-11 オーバス メディカル テクノロジーズ インク. Self-expanding stent
US6652576B1 (en) 2000-06-07 2003-11-25 Advanced Cardiovascular Systems, Inc. Variable stiffness stent
US7632303B1 (en) 2000-06-07 2009-12-15 Advanced Cardiovascular Systems, Inc. Variable stiffness medical devices
US6652579B1 (en) 2000-06-22 2003-11-25 Advanced Cardiovascular Systems, Inc. Radiopaque stent
US6805704B1 (en) * 2000-06-26 2004-10-19 C. R. Bard, Inc. Intraluminal stents
AU2001286731A1 (en) * 2000-08-25 2002-03-04 Kensey Nash Corporation Covered stents, systems for deploying covered stents
US8070792B2 (en) 2000-09-22 2011-12-06 Boston Scientific Scimed, Inc. Stent
US6695833B1 (en) 2000-09-27 2004-02-24 Nellix, Inc. Vascular stent-graft apparatus and forming method
US6881217B2 (en) * 2000-10-13 2005-04-19 Henry M. Israel Stent assembly
US6547818B1 (en) * 2000-10-20 2003-04-15 Endotex Interventional Systems, Inc. Selectively thinned coiled-sheet stents and methods for making them
US7976648B1 (en) 2000-11-02 2011-07-12 Abbott Cardiovascular Systems Inc. Heat treatment for cold worked nitinol to impart a shape setting capability without eventually developing stress-induced martensite
US6602272B2 (en) 2000-11-02 2003-08-05 Advanced Cardiovascular Systems, Inc. Devices configured from heat shaped, strain hardened nickel-titanium
US6855161B2 (en) 2000-12-27 2005-02-15 Advanced Cardiovascular Systems, Inc. Radiopaque nitinol alloys for medical devices
JP4290985B2 (en) 2001-02-16 2009-07-08 アボット ラボラトリーズ バスキュラー エンタープライゼズ リミテッド Implant using FK506
DE10118944B4 (en) 2001-04-18 2013-01-31 Merit Medical Systems, Inc. Removable, essentially cylindrical implants
US8617231B2 (en) 2001-05-18 2013-12-31 Boston Scientific Scimed, Inc. Dual guidewire exchange catheter system
US6605110B2 (en) 2001-06-29 2003-08-12 Advanced Cardiovascular Systems, Inc. Stent with enhanced bendability and flexibility
EP1424960B1 (en) 2001-07-26 2010-04-21 Merit Medical Systems, Inc. Removable stent
US6796999B2 (en) 2001-09-06 2004-09-28 Medinol Ltd. Self articulating stent
US20030176914A1 (en) * 2003-01-21 2003-09-18 Rabkin Dmitry J. Multi-segment modular stent and methods for manufacturing stents
EP1917931A3 (en) 2001-12-03 2013-02-27 Intek Technology LLC Multi-segment modular stent and methods for manufacturing stents
US20030135265A1 (en) * 2002-01-04 2003-07-17 Stinson Jonathan S. Prostheses implantable in enteral vessels
US20040068314A1 (en) * 2002-01-16 2004-04-08 Jones Donald K. Detachable self -expanding aneurysm cover device
US7637935B2 (en) * 2002-05-06 2009-12-29 Abbott Laboratories Endoprosthesis for controlled contraction and expansion
AU2003228890A1 (en) * 2002-05-08 2003-11-11 Abbott Laboratories Endoprosthesis having foot extensions
US6656220B1 (en) 2002-06-17 2003-12-02 Advanced Cardiovascular Systems, Inc. Intravascular stent
WO2004004602A1 (en) * 2002-07-08 2004-01-15 Abbott Laboratories Vascular Enterprises Limited Drug eluting stent and methods of manufacture
AU2003272682C1 (en) 2002-09-20 2009-07-16 Nellix, Inc. Stent-graft with positioning anchor
US20040093056A1 (en) 2002-10-26 2004-05-13 Johnson Lianw M. Medical appliance delivery apparatus and method of use
US7959671B2 (en) 2002-11-05 2011-06-14 Merit Medical Systems, Inc. Differential covering and coating methods
US7637942B2 (en) 2002-11-05 2009-12-29 Merit Medical Systems, Inc. Coated stent with geometry determinated functionality and method of making the same
US7527644B2 (en) 2002-11-05 2009-05-05 Alveolus Inc. Stent with geometry determinated functionality and method of making the same
US7875068B2 (en) 2002-11-05 2011-01-25 Merit Medical Systems, Inc. Removable biliary stent
US20040102831A1 (en) * 2002-11-22 2004-05-27 Murray Robert J. Stent having tapered edges
US8105373B2 (en) 2002-12-16 2012-01-31 Boston Scientific Scimed, Inc. Flexible stent with improved axial strength
US7381222B2 (en) 2002-12-30 2008-06-03 Quiescence Medical, Inc. Stent for maintaining patency of a body region
US7992566B2 (en) 2002-12-30 2011-08-09 Quiescence Medical, Inc. Apparatus and methods for treating sleep apnea
US7316710B1 (en) * 2002-12-30 2008-01-08 Advanced Cardiovascular Systems, Inc. Flexible stent
US7647931B2 (en) 2002-12-30 2010-01-19 Quiescence Medical, Inc. Stent for maintaining patency of a body region
US6849084B2 (en) * 2002-12-31 2005-02-01 Intek Technology L.L.C. Stent delivery system
US7637934B2 (en) 2003-03-31 2009-12-29 Merit Medical Systems, Inc. Medical appliance optical delivery and deployment apparatus and method
US7942892B2 (en) 2003-05-01 2011-05-17 Abbott Cardiovascular Systems Inc. Radiopaque nitinol embolic protection frame
US7604660B2 (en) 2003-05-01 2009-10-20 Merit Medical Systems, Inc. Bifurcated medical appliance delivery apparatus and method
US7625398B2 (en) * 2003-05-06 2009-12-01 Abbott Laboratories Endoprosthesis having foot extensions
US7625401B2 (en) * 2003-05-06 2009-12-01 Abbott Laboratories Endoprosthesis having foot extensions
US7226473B2 (en) * 2003-05-23 2007-06-05 Brar Balbir S Treatment of stenotic regions
US20040236414A1 (en) * 2003-05-23 2004-11-25 Brar Balbir S. Devices and methods for treatment of stenotic regions
US7112216B2 (en) * 2003-05-28 2006-09-26 Boston Scientific Scimed, Inc. Stent with tapered flexibility
US7247986B2 (en) * 2003-06-10 2007-07-24 Samsung Sdi. Co., Ltd. Organic electro luminescent display and method for fabricating the same
US7105015B2 (en) * 2003-06-17 2006-09-12 Medtronic Vascular, Inc. Method and system for treating an ostium of a side-branch vessel
US9155639B2 (en) 2009-04-22 2015-10-13 Medinol Ltd. Helical hybrid stent
US9039755B2 (en) 2003-06-27 2015-05-26 Medinol Ltd. Helical hybrid stent
DE10335649A1 (en) * 2003-07-30 2005-02-24 Jotec Gmbh Braid stent for implantation in a blood vessel
US7628806B2 (en) * 2003-08-20 2009-12-08 Boston Scientific Scimed, Inc. Stent with improved resistance to migration
US8298280B2 (en) 2003-08-21 2012-10-30 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US7344557B2 (en) 2003-11-12 2008-03-18 Advanced Stent Technologies, Inc. Catheter balloon systems and methods
US7258697B1 (en) 2003-12-22 2007-08-21 Advanced Cardiovascular Systems, Inc. Stent with anchors to prevent vulnerable plaque rupture during deployment
US7763011B2 (en) * 2003-12-22 2010-07-27 Boston Scientific Scimed, Inc. Variable density braid stent
US7402170B2 (en) * 2003-12-30 2008-07-22 Scimed Life Systems, Inc. Crimp and weld wire connection
US20050185061A1 (en) * 2004-02-23 2005-08-25 Andy Baker Self photographing camera system
US7686825B2 (en) 2004-03-25 2010-03-30 Hauser David L Vascular filter device
US20050222672A1 (en) * 2004-04-01 2005-10-06 Cappella, Inc. Ostial stent
US8048145B2 (en) 2004-07-22 2011-11-01 Endologix, Inc. Graft systems having filling structures supported by scaffolds and methods for their use
EP1789030A2 (en) 2004-08-30 2007-05-30 Interstitial Therapeutics Medical implant provided with inhibitors of atp synthesis
US7887579B2 (en) 2004-09-29 2011-02-15 Merit Medical Systems, Inc. Active stent
EP1848368A1 (en) * 2004-12-20 2007-10-31 Cook Incorporated Intraluminal support frame and medical devices including the support frame
US7947207B2 (en) 2005-04-12 2011-05-24 Abbott Cardiovascular Systems Inc. Method for retaining a vascular stent on a catheter
US7763198B2 (en) 2005-04-12 2010-07-27 Abbott Cardiovascular Systems Inc. Method for retaining a vascular stent on a catheter
US8628565B2 (en) * 2005-04-13 2014-01-14 Abbott Cardiovascular Systems Inc. Intravascular stent
US8961585B2 (en) * 2005-04-25 2015-02-24 Covidien Lp Controlled fracture connections for stents
US7731654B2 (en) 2005-05-13 2010-06-08 Merit Medical Systems, Inc. Delivery device with viewing window and associated method
EP2364676B1 (en) 2005-06-30 2018-12-19 Abbott Laboratories Endoprosthesis having foot extensions
CA2614203A1 (en) 2005-07-07 2007-01-18 Nellix, Inc. Systems and methods for endovascular aneurysm treatment
JP2009502302A (en) 2005-07-25 2009-01-29 グロス,ヨシ Electrical stimulation of blood vessels
US20070061003A1 (en) * 2005-09-15 2007-03-15 Cappella, Inc. Segmented ostial protection device
US20070088428A1 (en) * 2005-09-15 2007-04-19 Cappella, Inc. Intraluminal device with asymmetric cap portion
US8551153B2 (en) * 2005-12-20 2013-10-08 Cordis Corporation Prosthesis comprising a coiled stent and method of use thereof
US20070225749A1 (en) 2006-02-03 2007-09-27 Martin Brian B Methods and devices for restoring blood flow within blocked vasculature
US8821561B2 (en) 2006-02-22 2014-09-02 Boston Scientific Scimed, Inc. Marker arrangement for bifurcation catheter
US8043358B2 (en) * 2006-03-29 2011-10-25 Boston Scientific Scimed, Inc. Stent with overlap and high extension
US8348991B2 (en) * 2006-03-29 2013-01-08 Boston Scientific Scimed, Inc. Stent with overlap and high expansion
US8240020B2 (en) * 2006-06-30 2012-08-14 Advanced Cardiovascular Systems, Inc. Stent retention mold and method
JP5406025B2 (en) 2006-07-06 2014-02-05 クワイエセンス メディカル インコーポレイテッド Apparatus and system for treatment of sleep apnea
US7988720B2 (en) 2006-09-12 2011-08-02 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US20080065192A1 (en) * 2006-09-13 2008-03-13 Medtronic Vascular, Inc. Compliance Graded Stent
CA2667322C (en) 2006-10-22 2016-09-13 Idev Technologies, Inc. Devices and methods for stent advancement
WO2008051935A1 (en) 2006-10-22 2008-05-02 Idev Technologies, Inc. Methods for securing strand ends and the resulting devices
US8512392B2 (en) * 2007-03-09 2013-08-20 Boston Scientific Scimed, Inc. Stent design with struts of various angles and stiffness
US8016874B2 (en) 2007-05-23 2011-09-13 Abbott Laboratories Vascular Enterprises Limited Flexible stent with elevated scaffolding properties
US8128679B2 (en) 2007-05-23 2012-03-06 Abbott Laboratories Vascular Enterprises Limited Flexible stent with torque-absorbing connectors
US9144509B2 (en) 2007-05-31 2015-09-29 Abbott Cardiovascular Systems Inc. Method and apparatus for delivering an agent to a kidney
US9364586B2 (en) 2007-05-31 2016-06-14 Abbott Cardiovascular Systems Inc. Method and apparatus for improving delivery of an agent to a kidney
US9149610B2 (en) 2007-05-31 2015-10-06 Abbott Cardiovascular Systems Inc. Method and apparatus for improving delivery of an agent to a kidney
US8216209B2 (en) 2007-05-31 2012-07-10 Abbott Cardiovascular Systems Inc. Method and apparatus for delivering an agent to a kidney
US20080319535A1 (en) * 2007-06-25 2008-12-25 Medtronic Vascular, Inc. Vascular Stent and Method of Making Vascular Stent
US8486134B2 (en) 2007-08-01 2013-07-16 Boston Scientific Scimed, Inc. Bifurcation treatment system and methods
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
BRPI0817488A2 (en) 2007-10-04 2017-05-16 Trivascular Inc low percutaneous profile modular vascular graft
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8920488B2 (en) 2007-12-20 2014-12-30 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having a stable architecture
US8337544B2 (en) 2007-12-20 2012-12-25 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having flexible connectors
US7850726B2 (en) 2007-12-20 2010-12-14 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having struts linked by foot extensions
US8291781B2 (en) 2007-12-21 2012-10-23 Schlumberger Technology Corporation System and methods for actuating reversibly expandable structures
EP2242456A2 (en) 2007-12-31 2010-10-27 Boston Scientific Scimed, Inc. Bifurcation stent delivery system and methods
US8538535B2 (en) 2010-08-05 2013-09-17 Rainbow Medical Ltd. Enhancing perfusion by contraction
WO2009132309A1 (en) 2008-04-25 2009-10-29 Nellix, Inc. Stent graft delivery system
US10028747B2 (en) 2008-05-01 2018-07-24 Aneuclose Llc Coils with a series of proximally-and-distally-connected loops for occluding a cerebral aneurysm
US10716573B2 (en) 2008-05-01 2020-07-21 Aneuclose Janjua aneurysm net with a resilient neck-bridging portion for occluding a cerebral aneurysm
US8377108B2 (en) 2008-06-02 2013-02-19 Boston Scientific Scimed, Inc. Staggered two balloon bifurcation catheter assembly and methods
US8945199B2 (en) 2008-06-04 2015-02-03 Nellix, Inc. Sealing apparatus and methods of use
EP2299945B1 (en) 2008-06-05 2016-03-23 Boston Scientific Scimed, Inc. Balloon bifurcated lumen treatment
US8827954B2 (en) 2008-06-05 2014-09-09 Boston Scientific Scimed, Inc. Deflatable bifurcated device
US8734502B2 (en) * 2008-12-17 2014-05-27 Cook Medical Technologies Llc Tapered stent and flexible prosthesis
EP2403583B1 (en) 2009-03-06 2016-10-19 Lazarus Effect, Inc. Retrieval systems
US8795317B2 (en) * 2009-07-08 2014-08-05 Concentric Medical, Inc. Embolic obstruction retrieval devices and methods
US8529596B2 (en) 2009-07-08 2013-09-10 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US8357179B2 (en) * 2009-07-08 2013-01-22 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US8795345B2 (en) * 2009-07-08 2014-08-05 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US20110009941A1 (en) * 2009-07-08 2011-01-13 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US8357178B2 (en) * 2009-07-08 2013-01-22 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US9060889B2 (en) * 2009-09-18 2015-06-23 Medtronic Vascular, Inc. Methods for forming an orthogonal end on a helical stent
US9358140B1 (en) 2009-11-18 2016-06-07 Aneuclose Llc Stent with outer member to embolize an aneurysm
US20110276078A1 (en) 2009-12-30 2011-11-10 Nellix, Inc. Filling structure for a graft system and methods of use
WO2011126572A2 (en) * 2010-04-07 2011-10-13 Office Of Technology Transfer An expandable stent that collapses into a non-convex shape and expands into an expanded, convex shape
AU2011253042A1 (en) * 2010-05-12 2013-01-10 Helical Solutions, Inc. Method and device for treatment of arrhythmias and other maladies
US20130109987A1 (en) * 2011-05-12 2013-05-02 Medical Device Innovations Inc. Method and device for treatment of arrhythmias and other maladies
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
CN101926699A (en) * 2010-07-13 2010-12-29 北京迈迪顶峰医疗科技有限公司 Atrial septal pore-forming scaffold and conveyor thereof
WO2012009675A2 (en) 2010-07-15 2012-01-19 Lazarus Effect, Inc. Retrieval systems and methods for use thereof
WO2012082791A2 (en) 2010-12-13 2012-06-21 Quiescence Medical, Inc. Apparatus and methods for treating sleep apnea
EP2658484A1 (en) 2010-12-30 2013-11-06 Boston Scientific Scimed, Inc. Multi stage opening stent designs
US8801768B2 (en) 2011-01-21 2014-08-12 Endologix, Inc. Graft systems having semi-permeable filling structures and methods for their use
RU2599592C2 (en) 2011-02-04 2016-10-10 Концентрик Медикал, Инк. Device for embolic occlusion extraction
US8790388B2 (en) 2011-03-03 2014-07-29 Boston Scientific Scimed, Inc. Stent with reduced profile
CA2823535A1 (en) 2011-03-03 2012-09-07 Boston Scientific Scimed, Inc. Low strain high strength stent
WO2012139054A1 (en) 2011-04-06 2012-10-11 Endologix, Inc. Method and system for endovascular aneurysm treatment
SG2014013320A (en) 2011-05-23 2014-07-30 Lazarus Effect Inc Retrieval systems and methods for use thereof
WO2013035092A2 (en) 2011-09-09 2013-03-14 Enopace Biomedical Ltd. Wireless endovascular stent-based electrodes
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
US9066825B2 (en) 2012-05-14 2015-06-30 C.R. Bard, Inc. Uniformly expandable stent
US8784434B2 (en) 2012-11-20 2014-07-22 Inceptus Medical, Inc. Methods and apparatus for treating embolism
USD723165S1 (en) 2013-03-12 2015-02-24 C. R. Bard, Inc. Stent
CN105120910B (en) 2013-03-14 2019-04-12 恩朵罗杰克斯股份有限公司 Method for material to be formed in situ in medical instrument
US9907684B2 (en) 2013-05-08 2018-03-06 Aneuclose Llc Method of radially-asymmetric stent expansion
WO2014205442A1 (en) 2013-06-21 2014-12-24 Kunis Christopher G Implant device with stablizer
WO2014210282A1 (en) * 2013-06-26 2014-12-31 Kunis Christopher G Implant device with spine and c-ring
US10238406B2 (en) 2013-10-21 2019-03-26 Inari Medical, Inc. Methods and apparatus for treating embolism
CN105899166B (en) * 2013-11-06 2018-07-06 伊诺佩斯生医有限公司 The intravascular electrode based on stent of radio-type
US9693860B2 (en) * 2014-12-01 2017-07-04 Medtronic, Inc. Segmented transcatheter valve prosthesis having an unsupported valve segment
WO2016130647A1 (en) 2015-02-11 2016-08-18 Lazarus Effect, Inc. Expandable tip medical devices and methods
AU2016341439B2 (en) 2015-10-23 2021-07-08 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
JP6965336B2 (en) 2016-03-31 2021-11-10 ヴェスパー メディカル、 インコーポレイテッドVesper Medical, Inc. Intravascular implant
US10022255B2 (en) 2016-04-11 2018-07-17 Idev Technologies, Inc. Stent delivery system having anisotropic sheath
WO2018080590A1 (en) 2016-10-24 2018-05-03 Inari Medical Devices and methods for treating vascular occlusion
US11191555B2 (en) 2017-05-12 2021-12-07 Covidien Lp Retrieval of material from vessel lumens
US10709464B2 (en) 2017-05-12 2020-07-14 Covidien Lp Retrieval of material from vessel lumens
US10722257B2 (en) 2017-05-12 2020-07-28 Covidien Lp Retrieval of material from vessel lumens
US11298145B2 (en) 2017-05-12 2022-04-12 Covidien Lp Retrieval of material from vessel lumens
US11129630B2 (en) 2017-05-12 2021-09-28 Covidien Lp Retrieval of material from vessel lumens
US10945746B2 (en) 2017-06-12 2021-03-16 Covidien Lp Tools for sheathing treatment devices and associated systems and methods
US10478322B2 (en) 2017-06-19 2019-11-19 Covidien Lp Retractor device for transforming a retrieval device from a deployed position to a delivery position
CN109124840A (en) * 2017-06-19 2019-01-04 上海微创医疗器械(集团)有限公司 A kind of method and medical device of the binding force improving bracket and sacculus
US10575864B2 (en) 2017-06-22 2020-03-03 Covidien Lp Securing element for resheathing an intravascular device and associated systems and methods
US10849769B2 (en) 2017-08-23 2020-12-01 Vesper Medical, Inc. Non-foreshortening stent
AU2018328011B2 (en) 2017-09-06 2022-09-15 Inari Medical, Inc. Hemostasis valves and methods of use
US11357650B2 (en) 2019-02-28 2022-06-14 Vesper Medical, Inc. Hybrid stent
US10271977B2 (en) 2017-09-08 2019-04-30 Vesper Medical, Inc. Hybrid stent
US11628076B2 (en) 2017-09-08 2023-04-18 Vesper Medical, Inc. Hybrid stent
WO2019084136A1 (en) 2017-10-25 2019-05-02 Boston Scientific Scimed, Inc. Stent with atraumatic spacer
WO2019089741A1 (en) 2017-11-01 2019-05-09 Boston Scientific Scimed, Inc. Esophageal stent including a valve member
CN111587099A (en) * 2018-01-16 2020-08-25 奥林巴斯株式会社 Urethral stent
US11154314B2 (en) 2018-01-26 2021-10-26 Inari Medical, Inc. Single insertion delivery system for treating embolism and associated systems and methods
US10500078B2 (en) 2018-03-09 2019-12-10 Vesper Medical, Inc. Implantable stent
CN112867455A (en) 2018-08-13 2021-05-28 伊纳里医疗有限公司 Systems for treating emboli and related devices and methods
US11684498B2 (en) 2018-10-19 2023-06-27 Inspire M.D Ltd. Methods of using a self-adjusting stent assembly and kits including same
CN110314024B (en) * 2019-06-26 2021-11-05 北京工业大学 Conformal adherent endovascular stent
CN114845648A (en) 2019-10-16 2022-08-02 伊纳里医疗有限公司 Systems, devices, and methods for treating vascular occlusions
US10881541B1 (en) * 2020-05-01 2021-01-05 Krishna Rocha-Singh Systems and methods for treating venous compression/obstruction syndromes
US11400299B1 (en) 2021-09-14 2022-08-02 Rainbow Medical Ltd. Flexible antenna for stimulator

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0183372A1 (en) * 1984-10-19 1986-06-04 RAYCHEM CORPORATION (a Delaware corporation) Prosthetic stent
IL94138A (en) * 1990-04-19 1997-03-18 Instent Inc Device for the treatment of constricted fluid conducting ducts
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5108417A (en) * 1990-09-14 1992-04-28 Interface Biomedical Laboratories Corp. Anti-turbulent, anti-thrombogenic intravascular stent
DE4104702C2 (en) * 1991-02-15 1996-01-18 Malte Neuss Implants for organ pathways in spiral form
FR2683449A1 (en) * 1991-11-08 1993-05-14 Cardon Alain ENDOPROTHESIS FOR TRANSLUMINAL IMPLANTATION.
DK6192A (en) * 1992-01-20 1993-07-21 Engineers & Doctors As SEGMENTALLY EXPANDABLE TUBULAR ENDOLUMINAL PROSTHESIS
FR2688401B1 (en) * 1992-03-12 1998-02-27 Thierry Richard EXPANDABLE STENT FOR HUMAN OR ANIMAL TUBULAR MEMBER, AND IMPLEMENTATION TOOL.
GR920100104A (en) * 1992-03-13 1993-11-30 Christodoulos I Stefanadis Temporary luminal stent for the support of the vascular wall.
US5540712A (en) * 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
EP0888758B1 (en) * 1992-05-08 2003-08-20 Schneider (Usa) Inc. Esophageal stent
DE4303181A1 (en) * 1993-02-04 1994-08-11 Angiomed Ag Implantable catheter
FR2714815B1 (en) 1994-01-10 1996-03-08 Microfil Ind Sa Elastic prosthesis to widen a duct, in particular a blood vessel.
US5466242A (en) * 1994-02-02 1995-11-14 Mori; Katsushi Stent for biliary, urinary or vascular system
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5556413A (en) * 1994-03-11 1996-09-17 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
US5449373A (en) * 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
EP0793457B2 (en) * 1994-04-06 2006-04-12 WILLIAM COOK EUROPE ApS A medical article for implantation into the vascular system of a patient
CA2147813A1 (en) * 1994-04-28 1995-10-29 Richard Dixon Intravascular prosthesis with anti-thrombogenic coating
DE4418336A1 (en) * 1994-05-26 1995-11-30 Angiomed Ag Stent for widening and holding open receptacles
US6013854A (en) * 1994-06-17 2000-01-11 Terumo Kabushiki Kaisha Indwelling stent and the method for manufacturing the same
JP3577353B2 (en) * 1995-01-27 2004-10-13 テルモ株式会社 In-vivo stent
US5575818A (en) * 1995-02-14 1996-11-19 Corvita Corporation Endovascular stent with locking ring
WO1996028116A1 (en) * 1995-03-10 1996-09-19 Cardiovascular Concepts, Inc. Tubular endoluminar prosthesis having oblique ends
DE19512342C2 (en) * 1995-04-01 1998-05-14 Webasto Karosseriesysteme Vehicle roof
BE1009278A3 (en) * 1995-04-12 1997-01-07 Corvita Europ Guardian self-expandable medical device introduced in cavite body, and medical device with a stake as.
BE1009277A3 (en) * 1995-04-12 1997-01-07 Corvita Europ Guardian self-expandable medical device introduced in cavite body, and method of preparation.
DE69632844T2 (en) * 1995-04-12 2005-07-14 Corvita Europe Self-expanding stent for introducing a medical device into a body cavity and manufacturing process
US5824037A (en) * 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
DE69526857T2 (en) * 1995-11-27 2003-01-02 Schneider Europ Gmbh Buelach Stent for use in one pass
US5658308A (en) * 1995-12-04 1997-08-19 Target Therapeutics, Inc. Bioactive occlusion coil
WO1997025937A1 (en) * 1996-01-18 1997-07-24 Jang G David Programmable variably flexible modular stents
US5938682A (en) * 1996-01-26 1999-08-17 Cordis Corporation Axially flexible stent
US5843117A (en) * 1996-02-14 1998-12-01 Inflow Dynamics Inc. Implantable vascular and endoluminal stents and process of fabricating the same
CA2192520A1 (en) * 1996-03-05 1997-09-05 Ian M. Penn Expandable stent and method for delivery of same
US5868780A (en) 1996-03-22 1999-02-09 Lashinski; Robert D. Stents for supporting lumens in living tissue
NZ331269A (en) * 1996-04-10 2000-01-28 Advanced Cardiovascular System Expandable stent, its structural strength varying along its length
US5922021A (en) * 1996-04-26 1999-07-13 Jang; G. David Intravascular stent
US5617878A (en) * 1996-05-31 1997-04-08 Taheri; Syde A. Stent and method for treatment of aortic occlusive disease
US5807404A (en) 1996-09-19 1998-09-15 Medinol Ltd. Stent with variable features to optimize support and method of making such stent
US5776142A (en) * 1996-12-19 1998-07-07 Medtronic, Inc. Controllable stent delivery system and method
US5868782A (en) * 1996-12-24 1999-02-09 Global Therapeutics, Inc. Radially expandable axially non-contracting surgical stent
US5827321A (en) 1997-02-07 1998-10-27 Cornerstone Devices, Inc. Non-Foreshortening intraluminal prosthesis
US5817126A (en) * 1997-03-17 1998-10-06 Surface Genesis, Inc. Compound stent
US6200335B1 (en) 1997-03-31 2001-03-13 Kabushikikaisha Igaki Iryo Sekkei Stent for vessel
US5868783A (en) * 1997-04-16 1999-02-09 Numed, Inc. Intravascular stent with limited axial shrinkage
US5836966A (en) 1997-05-22 1998-11-17 Scimed Life Systems, Inc. Variable expansion force stent
US5913895A (en) * 1997-06-02 1999-06-22 Isostent, Inc. Intravascular stent with enhanced rigidity strut members
DE19728337A1 (en) * 1997-07-03 1999-01-07 Inst Mikrotechnik Mainz Gmbh Implantable stent
US5855600A (en) * 1997-08-01 1999-01-05 Inflow Dynamics Inc. Flexible implantable stent with composite design
US6179867B1 (en) 1998-01-16 2001-01-30 Advanced Cardiovascular Systems, Inc. Flexible stent and method of use
US5938697A (en) * 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
US6273910B1 (en) 1999-03-11 2001-08-14 Advanced Cardiovascular Systems, Inc. Stent with varying strut geometry
US6273911B1 (en) 1999-04-22 2001-08-14 Advanced Cardiovascular Systems, Inc. Variable strength stent

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006506118A (en) * 2002-11-13 2006-02-23 アリウム インコーポレイテッド Lumen lining
US8282678B2 (en) 2002-11-13 2012-10-09 Allium Medical Solutions Ltd. Endoluminal lining
JP2007524449A (en) * 2003-06-17 2007-08-30 メドトロニック ヴァスキュラー インコーポレイテッド Superelastic coiled stent
JP2008535627A (en) * 2005-04-12 2008-09-04 アボット カーディオヴァスキュラー システムズ インコーポレイテッド Stent with contour for grasping balloon catheter and mold for producing stent
JP2008200499A (en) * 2007-02-20 2008-09-04 Cardiatis Sa Stent for hyperplasia plaque prophylaxis
JP2019010545A (en) * 2014-03-18 2019-01-24 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Reduced granulation and inflammation stent design
JP2017512559A (en) * 2014-03-18 2017-05-25 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Stent design to reduce granulation and inflammation
US10117763B2 (en) 2014-03-18 2018-11-06 Boston Scientific Scimed, Inc. Reduced granulation and inflammation stent design
JP7102308B2 (en) 2014-03-18 2022-07-19 ボストン サイエンティフィック サイムド,インコーポレイテッド Stent
KR101631492B1 (en) 2014-08-11 2016-06-17 주식회사 바이오알파 Vascular Stent
KR20160019203A (en) * 2014-08-11 2016-02-19 주식회사 바이오알파 Vascular Stent
JP2021513890A (en) * 2018-02-15 2021-06-03 ヴェスパー メディカル、 インコーポレイテッドVesper Medical, Inc. Tapered stent
JP7430142B2 (en) 2018-02-15 2024-02-09 ヴェスパー メディカル、 インコーポレイテッド tapered stent

Also Published As

Publication number Publication date
US6423084B1 (en) 2002-07-23
EP1001718B1 (en) 2005-09-14
CA2288044C (en) 2007-03-20
EP1001718A2 (en) 2000-05-24
US5836966A (en) 1998-11-17
WO1998052497A2 (en) 1998-11-26
DE69831575T2 (en) 2006-02-02
ATE502607T1 (en) 2011-04-15
EP1598032B1 (en) 2011-03-23
EP1598032A2 (en) 2005-11-23
DE69831575D1 (en) 2005-10-20
EP1598032A3 (en) 2005-11-30
JP2009082739A (en) 2009-04-23
US7485130B2 (en) 2009-02-03
US20020099406A1 (en) 2002-07-25
DE69842197D1 (en) 2011-05-05
CA2288044A1 (en) 1998-11-26
JP4996633B2 (en) 2012-08-08
US20060100691A1 (en) 2006-05-11
WO1998052497A3 (en) 1999-02-25
US6146403A (en) 2000-11-14
US6997945B2 (en) 2006-02-14
ATE304329T1 (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP4996633B2 (en) Stent with changing expansion force
US6613079B1 (en) Radially-expandable stent with controllable force profile
US7780719B2 (en) Stent having variable properties and method of its use
US5897588A (en) Coronary stent and method of fabricating same
EP1123065B1 (en) Helical stent design
US6416543B1 (en) Expandable stent with variable thickness
US5843168A (en) Double wave stent with strut
US9345599B2 (en) Low profile stent with flexible link
US5899934A (en) Dual stent
US20010007955A1 (en) Intravascular hinge stent
US20080114391A1 (en) Aneurysm covering devices and delivery devices
WO1998041168A1 (en) Coronary stent and method of fabricating same
WO1998041169A1 (en) Coiled sheet stent having helical articulation and methods of use
IL130063A (en) Radially expandable support structure
KR100241822B1 (en) Stent for expanding lumen
JPH1066729A (en) Luminal expanding indwelling implement

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080408

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090226

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090507