JP2002364286A - Reaction receiving structure of tunnel branch part - Google Patents

Reaction receiving structure of tunnel branch part

Info

Publication number
JP2002364286A
JP2002364286A JP2001169291A JP2001169291A JP2002364286A JP 2002364286 A JP2002364286 A JP 2002364286A JP 2001169291 A JP2001169291 A JP 2001169291A JP 2001169291 A JP2001169291 A JP 2001169291A JP 2002364286 A JP2002364286 A JP 2002364286A
Authority
JP
Japan
Prior art keywords
tunnel
reaction force
tunnels
force receiving
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001169291A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yamanaka
宏之 山中
Koichi Tanaka
耕一 田中
Yutaka Sudo
豊 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2001169291A priority Critical patent/JP2002364286A/en
Publication of JP2002364286A publication Critical patent/JP2002364286A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a reaction receiving structure of a tunnel branch part, which allows smooth boring to be performed by respective shield machines for boring unit tunnels branching off from a large section tunnel. SOLUTION: Reaction receiving bodies 11 for obtaining propulsive reactions of the shield machines 1 and 2 for boring the unit tunnels B and C, respectively, are provided, in the branch part (1) wherein the unit tunnels B and C branch off from the large section tunnel A so as to be bored. The body 11 is composed, in a framework-like manner, of upper and lower horizontal materials 12 and 13 which are installed along an axial direction of the tunnel A inside steel shell concrete installed in a ceiling part (2) of the tunnel A and a roadbed part (3) thereof, respectively, a plurality of supports 14 which are erected to the side of the unit tunnels B and C between the materials 12 and 13, and a plurality of diagonal members 15 which are installed between the support 14 and the material 12 and between the support 14 and the material 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、大断面トンネル
と単体トンネルとのトンネル分岐部の反力受け構造に関
し、例えば地下鉄の駅舎と電車が通る本線トンネルとを
シールド工法によって一つの大空間に連続施工し、さら
にそこから複数の本線トンネルをそれぞれシールド工法
によって施工する場合などに適用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reaction force receiving structure at a branch portion between a large-section tunnel and a single tunnel. For example, a subway station building and a main line tunnel through which a train passes are connected to one large space by a shield method. This method is applied to the case where a tunnel is constructed and then a plurality of main tunnels are constructed by a shield method.

【0002】[0002]

【従来の技術】近年、特に都市部における車道や歩道な
どの地下道路、または地下鉄として利用されるトンネル
を複線トンネルとする場合、あるいは地下鉄の駅舎と電
車が通る本線トンネルを連続する一つの大空間に連続施
工する場合などに、構造上や施工上、あるいは用地上な
どの制約から別々に施工できないことがある。
2. Description of the Related Art In recent years, underground roads such as roads and sidewalks in urban areas, or tunnels used as subways are used as double-track tunnels, or one large space that connects a subway station building and a main line tunnel through which a train passes. In the case of continuous construction, it may not be possible to perform construction separately due to restrictions on the structure, construction, or land use.

【0003】このような場合の地下構造物の施工方法と
して、例えば図5(a),(b)に図示するように、二
つ以上の円、または円と四角形とを組み合わせた形状
の、一台のシールドマシン20によって複数の単体トン
ネルを一つの連続する大断面トンネルAとして掘進する
大断面トンネルの構築工法が開発されている。
As a method of constructing an underground structure in such a case, for example, as shown in FIGS. 5A and 5B, one of two or more circles or a combination of a circle and a square is used. A construction method of a large-section tunnel in which a plurality of single tunnels are excavated as one continuous large-section tunnel A by one shield machine 20 has been developed.

【0004】また、こうして一定区間を大断面トンネル
として掘進した後、一台に組み合わせられた複数のシー
ルドマシン20a,20b,20cを独立したシールド
マシンにそれぞれ切り離し、そこから各シールドマシン
20a,20b,20cによってさらに複数の独立した
単体トンネルB、Cを掘進するトンネルの施工方法も開
発されている。
After excavating a certain section as a large section tunnel, a plurality of shield machines 20a, 20b, 20c combined into one unit are separated into independent shield machines, and each shield machine 20a, 20b, 20c has further developed a method of constructing a tunnel for excavating a plurality of independent single tunnels B and C.

【0005】その際、各シールドマシン20a,20
b,20cは、図4(c)に図示するように、テール部
において各単体トンネルの地山に組み込まれたセグメン
ト21を推進ジャッキ22の反力受けとして単体トンネ
ルB、Cをそれぞれ掘進することとなる。
At this time, each shield machine 20a, 20
4b and 20c, as shown in FIG. 4 (c), excavating the unit tunnels B and C respectively with the segment 21 incorporated in the ground of each unit tunnel at the tail part as a reaction force receiving of the propulsion jack 22. Becomes

【0006】[0006]

【発明が解決しようとする課題】しかし、大断面トンネ
ルAと各単体トンネルB、Cとの分岐部においては、図
4(d)に図示するように地山側には普通にセグメント
21が組み込まれるため、このセグメント21を各シー
ルドマシン20a,20b,20cの反力受けとして利
用できるものの、単体トンネルB、C間の境界部分ホに
はシールドマシン20a,20b,20cの反力受けと
なり得るセグメントは特に組み込まれないため、別途反
力受けとなる構造体を設ける必要がり、かかる構造体の
開発が望まれていた。
However, at the junction between the large-section tunnel A and each of the individual tunnels B and C, the segment 21 is normally incorporated on the ground side as shown in FIG. 4D. Therefore, although this segment 21 can be used as a reaction force receiver for each of the shield machines 20a, 20b, and 20c, a segment that can be a reaction force receiver for the shield machines 20a, 20b, and 20c is provided at the boundary E between the single tunnels B and C. Since it is not particularly incorporated, it is necessary to provide a separate structure for receiving a reaction force, and development of such a structure has been desired.

【0007】この発明は、このような事情に勘案してな
されたもので、特に大断面トンネルと大断面トンネルか
ら分岐する各単体トンネルとの分岐部において、大断面
トンネルから分岐させて単体トンネルを掘進する各シー
ルドマシンをスムーズに掘進させられるようにしたトン
ネル分岐部の反力受け構造を提供することを目的とす
る。
The present invention has been made in view of such circumstances. In particular, at a branch portion between a large-section tunnel and each of the individual tunnels branching from the large-section tunnel, the single-section tunnel is branched from the large-section tunnel. An object of the present invention is to provide a reaction force receiving structure of a tunnel branching section that enables each shield machine to be dug smoothly excavated.

【0008】[0008]

【課題を解決するための手段】請求項1記載のトンネル
分岐部の反力受け構造は、大断面トンネルとこの大断面
トンネルから分岐して掘進される単体トンネルとの分岐
部に、前記単体トンネルを掘進するシールドマシンの推
進反力を得るための反力受け体が設けられていることを
特徴とする。
According to a first aspect of the present invention, there is provided a reaction force receiving structure for a tunnel branch portion, wherein the single tunnel is provided at a branch portion between a large-section tunnel and a single tunnel that is excavated from the large-section tunnel. And a reaction force receiving body for obtaining a propulsion reaction force of the shield machine for excavating the vehicle.

【0009】請求項2記載のトンネル分岐部の反力受け
構造は、請求項1記載のトンネル分岐部の反力受け構造
において、反力受け体は軸組状または壁状に設けられて
いることを特徴とする。
According to a second aspect of the present invention, there is provided a reaction force receiving structure for a tunnel branch portion, wherein the reaction force receiving body is provided in a shaft-like shape or a wall shape. It is characterized by.

【0010】請求項3記載のトンネル分岐部の反力受け
構造は、請求項1または2記載のトンネル分岐部の反力
受け構造において、反力受け体はS構造、RC構造また
はSRC構造によって構成されていることを特徴とす
る。
According to a third aspect of the present invention, there is provided a reaction force receiving structure for a tunnel branch portion, wherein the reaction force receiving member comprises an S structure, an RC structure or an SRC structure. It is characterized by having been done.

【0011】[0011]

【発明の実施の形態】図1(a)〜(c)は、横方向に
長い矩形断面形に構築された大断面トンネルAとこの大
断面トンネルAから分岐し、それぞれ独立して掘進され
た、矩形断面形をなす中央の単体トンネルBおよびこの
単体トンネルBの両側において円形断面形をなす単体ト
ンネルCとの分岐部を示したものである。
1 (a) to 1 (c) show a large section tunnel A constructed in a laterally long rectangular section and a branch from the large section tunnel A, each of which is excavated independently. The figure shows a central unit tunnel B having a rectangular cross section and a branching portion with a unit tunnel C having a circular cross section on both sides of the single tunnel B.

【0012】大断面トンネルAは、図2に図示するよう
な中央とその両側にそれぞれ配置された、面板1a,2
aがそれぞれ、矩形板状をなす1台のシールドマシン1
と円形板状をなす2台のシールドマシン2,2との組み
合わせからなる1台のシールドマシン3によって掘進さ
れている。
The large-section tunnel A is provided with face plates 1a, 2a arranged at the center and at both sides thereof as shown in FIG.
a is a shield machine 1 having a rectangular plate shape
And one shield machine 3 composed of a combination of two shield machines 2 and 2 having a circular plate shape.

【0013】また、大断面トンネルAから分岐された中
央の単体トンネルBとその両側の単体トンネルCはそれ
ぞれ、上述した1台のシールドマシン3から互いに切り
離された単体の各シールドマシン1と2によってそれぞ
れ掘進されている。
The single tunnel B at the center and the single tunnel C on both sides of the large tunnel T are separated from the single shield machine 3 by the single shield machines 1 and 2, respectively. Each is excavated.

【0014】さらに、こうして掘進された大断面トンネ
ルAの地山、各単体トンネルB、Cの地山、および大断
面トンネルAと各単体トンネルB、Cとの分岐部イの地
山は鋼殻内にコンクリートを打設して形成される鋼殻コ
ンクリート、または鋼製セグメント、あるいはRCセグ
メント等の覆工材4によって覆工され、特に大断面トン
ネルAの天井部分ロと路盤部分ハの地山は、例えば図1
(c)に図示するような鋼殻5内にコンクリート6を打
設して形成される鋼殻コンクリートセグメントによって
覆工されている。
Further, the ground of the large-section tunnel A excavated in this way, the ground of each of the unit tunnels B and C, and the ground of the branching point A between the large-section tunnel A and each of the unit tunnels B and C are steel shells. Steel lining concrete or steel segments formed by casting concrete inside, or lining with a lining material 4 such as a steel segment or an RC segment. Is, for example, FIG.
As shown in (c), the steel 6 is covered with a steel shell concrete segment formed by placing concrete 6 in a steel shell 5.

【0015】この場合の鋼殻5としては、例えば大断面
トンネルAの周方向に平行に、かつ大断面トンネルAの
軸方向に所定間隔おきに設置された複数の主桁7とこの
主桁7,7間に大断面トンネルAの軸方向に沿って設置
された複数の縦リブ8と主桁7および縦リブ8の地山側
に設置されたスキンプレート9などから形成されてい
る。
In this case, the steel shell 5 includes, for example, a plurality of main girders 7 arranged parallel to the circumferential direction of the large-section tunnel A and at predetermined intervals in the axial direction of the large-section tunnel A, and the main girders 7. , 7 are formed from a plurality of vertical ribs 8 installed along the axial direction of the large-section tunnel A, the main girder 7, and a skin plate 9 installed on the ground side of the vertical ribs 8.

【0016】主桁7は鋼殻5の主要構造部材であり、主
に地山側からの土圧に梁材(曲げ材)として抵抗するも
ので、それ相当の梁成と厚さを有する鋼材、例えば帯鋼
やI形、あるいはH形鋼などの形鋼から形成されてい
る。
The main girder 7 is a main structural member of the steel shell 5, which mainly resists earth pressure from the ground side as a beam (bending material), and has a beam structure and a thickness corresponding to the beam. For example, it is formed from a shaped steel such as a strip steel, an I-shaped steel, or an H-shaped steel.

【0017】縦リブ8は、主にシールドマシン1,2が
トンネルを掘進する際の反力受けとしての働きをするも
のであり、主桁7と同様にそれ相当の断面を有する鋼
材、例えば帯鋼やI形鋼、あるいはH形鋼などの形鋼か
ら形成されている。
The vertical rib 8 mainly serves as a reaction force receiving when the shield machines 1 and 2 excavate a tunnel, and has a cross section corresponding to that of the main girder 7 such as a steel material, for example, a belt. It is formed from steel, I-beam, or H-beam.

【0018】また、縦リブ8は、シールドマシン1,2
の推進ジャッキ(図省略)が配置される地山側寄りの各
主桁7,7間に大断面トンネルAの軸方向に沿って設置
されている。
The vertical ribs 8 are provided on the shield machines 1 and 2.
Are installed along the axial direction of the large-section tunnel A between the main girders 7, 7 on the ground side, where the propulsion jack (not shown) is disposed.

【0019】その際、シールドマシン1,2の推進ジャ
ッキは一般に、大断面トンネルAの周方向に所定間隔お
きに複数配置されていることから、これに合わせて縦リ
ブ8も大断面トンネルAの周方向に所定間隔おきに複数
設置されている。
At this time, since a plurality of propulsion jacks of the shield machines 1 and 2 are generally arranged at predetermined intervals in the circumferential direction of the large-section tunnel A, the vertical ribs 8 are also adjusted accordingly. A plurality is provided at predetermined intervals in the circumferential direction.

【0020】スキンプレート9は地山からの土圧を直接
受ける面部材であり、薄鋼板から形成され、かつ主桁7
および縦リブ8の地山側に設置されている。
The skin plate 9 is a surface member that directly receives the earth pressure from the ground, is formed of a thin steel plate, and has a main girder 7.
And it is installed on the ground side of the vertical rib 8.

【0021】こうして形成された鋼殻5は、大断面トン
ネルAの天井部分ロと路盤部分ハの地山に大断面トンネ
ルAの周方向と軸方向にそれぞれ隣接して設置され、特
に大断面トンネルAの周方向に隣接する鋼殻5,5間の
継手部においては、双方の主桁7の端部どうしが互いに
突き合わせられ、かつボルト接合または溶接などによっ
て一体的に接合されている。
The steel shell 5 thus formed is installed adjacent to the large section tunnel A in the circumferential direction and the axial direction on the ceiling portion B and the roadbed section C of the large section tunnel A, and particularly in the large section tunnel A. In the joint portion between the steel shells 5 and 5 which are adjacent to each other in the circumferential direction of A, the ends of the two main girders 7 abut against each other and are integrally joined by bolting or welding.

【0022】また、大断面トンネルAと単体トンネル
B、Cとの分岐部イには、例えば図1(b)に図示する
ように、大断面トンネルAの妻面の隙間を塞ぐための分
岐セグメント10が取り付けられている。
In addition, as shown in FIG. 1B, for example, a branch segment for closing a gap between the end surfaces of the large-section tunnel A is provided at a branch portion between the large-section tunnel A and the single tunnels B and C. 10 is attached.

【0023】さらに、大断面トンネルAと単体トンネル
B、Cとの分岐部イには、大断面トンネルAからそれぞ
れ分岐した単体トンネルB、Cをそれぞれ独立して掘進
する各シールドマシン1,2の反力受け体11が、例え
ば図3と図4にそれぞれ図示するような構成で設置され
ている。
Further, at the junction between the large-section tunnel A and the single tunnels B and C, the shield machines 1 and 2 that independently excavate the single tunnels B and C branched from the large-section tunnel A, respectively. The reaction force receiving body 11 is installed in a configuration as shown in FIGS. 3 and 4, for example.

【0024】反力受け体11は、大断面トンネルAから
それぞれ分岐した単体トンネルB、Cの坑口部分を大断
面トンネルA側から一定深さ掘進する際、単体トンネル
B、Cをそれぞれ掘進する各シールドマシンを前進させ
るための反力受けとなるもので、中央の単体トンネルB
とその両側の単体トンネルCとの境界部分ニにそれぞれ
設置されている。
The reaction force receiving member 11 excavates the single tunnels B and C when excavating the pit portions of the single tunnels B and C respectively branched from the large section tunnel A from the side of the large section tunnel A to a certain depth. A single tunnel T at the center, which serves as a reaction force to advance the shield machine.
And at both sides of the boundary between the unit tunnel C and the unit tunnel C.

【0025】反力受け体11は単体トンネルB、Cの坑
口部分を大断面トンネルA側から一定深さ掘進し終えた
後、原則として撤去されるが、分岐部イを補強する構造
躯体としてそのまま設置されていてもよい。
The reaction force receiving member 11 is removed in principle after excavating the pit portions of the single tunnels B and C from the side of the large-section tunnel A to a certain depth, but is removed in principle. It may be installed.

【0026】この場合の反力受け体11としては、例え
ば図3(a),(b)の例で説明すると、大断面トンネ
ルAの天井部分ロと路盤部分ハにそれぞれ設置された鋼
殻コンクリートの内側に、トンネルAの軸方向に沿って
設置された上水平材12および下水平材13と、この上
下水平材12,13間の単体トンネルB,C側寄りに立
設された複数の支柱14とこの支柱14と上下水平材1
2,13間にそれぞれ設置された複数の斜材15とから
軸組状に構成されている。
The reaction force receiving body 11 in this case will be described with reference to, for example, the examples of FIGS. 3A and 3B. An upper horizontal member 12 and a lower horizontal member 13 installed along the axial direction of the tunnel A, and a plurality of pillars erected near the unit tunnels B and C between the upper and lower horizontal members 12 and 13. 14 and this support 14 and upper and lower horizontal members 1
A plurality of diagonal members 15 installed between the members 2 and 13 form a shaft.

【0027】上下水平材12と13、支柱14、そして
斜材15はいずれもH形鋼などの形鋼から形成され、ま
た上下水平材12と13は鋼殻5の主桁7などに固定ボ
ルトまたは溶接などによってそれぞれ固定されている。
The upper and lower horizontal members 12 and 13, the support 14 and the diagonal member 15 are all formed from a shaped steel such as an H-section steel, and the upper and lower horizontal members 12 and 13 are fixed to the main girder 7 of the steel shell 5 by fixing bolts. Alternatively, each is fixed by welding or the like.

【0028】また、支柱14は上下水平材12と13
に、さらに斜材15は支柱14と上下水平材12、13
に連結ボルトまたは溶接によってそれぞれ連結されてい
る。
The column 14 is composed of upper and lower horizontal members 12 and 13.
In addition, the diagonal member 15 is composed of the column 14 and the upper and lower horizontal members 12 and 13.
Are connected to each other by connecting bolts or welding.

【0029】この場合、上下水平材12と13は、それ
ぞれトンネルAの周方向に所定間隔おきに複数取り付け
られ、この上下水平材12と13間に支柱14がそれぞ
れ設置され、そして各支柱14と上下水平材12と13
間に斜材15がそれぞれ設置されている。
In this case, a plurality of the upper and lower horizontal members 12 and 13 are attached at predetermined intervals in the circumferential direction of the tunnel A, and a column 14 is provided between the upper and lower horizontal members 12 and 13, respectively. Upper and lower horizontal members 12 and 13
The diagonal members 15 are provided between them.

【0030】図4(a),(b)の例では、反力受け体
11が大断面トンネルAの単体トンネルB、C側の端部
にRC構造またはSRC構造によってトンネルAの軸方
向に所定長さ連続する壁状に構築されている。なお、S
RC構造の反力受け体の場合、図3で示した反力受け体
11を鉄骨として構築されていてもよい。
In the example shown in FIGS. 4A and 4B, the reaction force receiving member 11 is provided at the end of the large section tunnel A on the side of the single tunnel B or C in the axial direction of the tunnel A by the RC structure or the SRC structure. It is constructed as a continuous wall. Note that S
In the case of the reaction force receiver having the RC structure, the reaction force receiver 11 shown in FIG. 3 may be constructed as a steel frame.

【0031】このような構成において、互いに切り離さ
れたシールドマシン1,2は反力受け体11と地山側の
覆工材(セグメント)4に推進ジャキ1bと2bをそれ
ぞれセットし、単体トンネルB,Cをそれぞれ掘進する
ことができる。
In such a configuration, the shield machines 1 and 2 separated from each other set the propulsion jacks 1b and 2b on the reaction force receiving body 11 and the lining material (segment) 4 on the ground side, respectively, and set the single tunnels B and C can be dug respectively.

【0032】[0032]

【発明の効果】この発明は以上説明したとおりであり、
大断面トンネルと大断面トンネルから分岐する各単体ト
ンネルとの分岐部に、互いに切り離された各シールドマ
シンの推進反力を得るための反力受け体が設けられてい
るので、大断面トンネルから分岐する複数の単体トンネ
ルを掘進する各シールドマシンをスムーズに前進させる
ことができる。
The present invention has been described above.
At the junction between the large-section tunnel and each single tunnel that branches off from the large-section tunnel, a reaction force receiver is provided to obtain the propulsion reaction force of each shield machine separated from each other. Each shield machine that excavates a plurality of single tunnels can be advanced smoothly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は大断面トンネルの一部斜視図、(b)
は大断面トンネルと単体トンネルとの分岐部を示す斜視
図、(c)は鋼殻とコンクリートとからなる覆工材の一
部斜視図である。
FIG. 1A is a partial perspective view of a large-section tunnel, and FIG.
FIG. 2 is a perspective view showing a branch portion between a large-section tunnel and a single tunnel, and FIG. 2C is a partial perspective view of a lining material made of a steel shell and concrete.

【図2】シールドマシンの斜視図である。FIG. 2 is a perspective view of the shield machine.

【図3】反力受け体を示し、(a)は大断面トンネルと
単体トンネルとの分岐部を示す断面図、(b)は(a)
におけるイ−イ線断面図である。
FIG. 3 shows a reaction force receiving body, (a) is a cross-sectional view showing a branch portion between a large-section tunnel and a single tunnel, and (b) is (a).
3 is a sectional view taken along the line II in FIG.

【図4】反力受け体を示し、(a)は大断面トンネルと
単体トンネルとの分岐部を示す断面図、(b)は(a)
におけるイ−イ線断面図である。
FIGS. 4A and 4B show a reaction force receiving body, wherein FIG.
3 is a sectional view taken along the line II in FIG.

【図5】(a),(b)はシールドマシンの斜視図、
(c)はシールドマシンテール部の一部断面図、(d)
はトンネル分岐部の断面図である。
5 (a) and 5 (b) are perspective views of a shield machine,
(C) is a partial cross-sectional view of the shield machine tail, (d)
FIG. 4 is a sectional view of a tunnel branching portion.

【符号の説明】[Explanation of symbols]

A 大断面トンネル B 単体トンネル C 単体トンネル 1 シールドマシン 2 シールドマシン 3 シールドマシン 4 覆工材 5 鋼殻 6 コンクリート 7 主桁 8 縦リブ 9 スキンプレート 10 分岐セグメント 11 反力受け体 12 上水平材 13 下水平材 14 支柱 15 斜材 A Large section tunnel B Single tunnel C Single tunnel 1 Shield machine 2 Shield machine 3 Shield machine 4 Lining material 5 Steel shell 6 Concrete 7 Main girder 8 Vertical rib 9 Skin plate 10 Branch segment 11 Reaction force receiver 12 Upper horizontal member 13 Lower horizontal material 14 Prop 15 Diagonal material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須藤 豊 東京都港区元赤坂1丁目2番7号 鹿島建 設株式会社内 Fターム(参考) 2D054 AA03 AB01 AB03 AB05 AC02 AD32 EA05 EA09  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yutaka Sudo 1-2-7 Moto-Akasaka, Minato-ku, Tokyo Kashima Construction Co., Ltd. F-term (reference) 2D054 AA03 AB01 AB03 AB05 AC02 AD32 EA05 EA09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 大断面トンネルとこの大断面トンネルか
ら分岐して掘進される単体トンネルとの分岐部に、前記
単体トンネルを掘進するシールドマシンの推進反力を得
るための反力受け体が設けられていることを特徴とする
トンネル分岐部の反力受け構造。
1. A reaction force receiving member for obtaining a propulsion reaction force of a shield machine that excavates the single tunnel is provided at a branch portion between the large tunnel and a single tunnel that branches and excavates from the large tunnel. A reaction force receiving structure for a tunnel branch portion, which is characterized in that:
【請求項2】 反力受け体は軸組状または壁状に設けら
れていることを特徴とする請求項1記載のトンネル分岐
部の反力受け構造。
2. The reaction force receiving structure according to claim 1, wherein the reaction force receiving body is provided in a frame or wall shape.
【請求項3】 反力受け体はS構造、RC構造またはS
RC構造によって構成されていることを特徴とする請求
項1または2記載のトンネル分岐部の反力受け構造。
3. The reaction force receiving body is of S structure, RC structure or S structure.
3. The reaction force receiving structure for a tunnel branch according to claim 1, wherein the reaction force receiving structure is constituted by an RC structure.
JP2001169291A 2001-06-05 2001-06-05 Reaction receiving structure of tunnel branch part Withdrawn JP2002364286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001169291A JP2002364286A (en) 2001-06-05 2001-06-05 Reaction receiving structure of tunnel branch part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169291A JP2002364286A (en) 2001-06-05 2001-06-05 Reaction receiving structure of tunnel branch part

Publications (1)

Publication Number Publication Date
JP2002364286A true JP2002364286A (en) 2002-12-18

Family

ID=19011387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169291A Withdrawn JP2002364286A (en) 2001-06-05 2001-06-05 Reaction receiving structure of tunnel branch part

Country Status (1)

Country Link
JP (1) JP2002364286A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9388690B2 (en) 2012-07-09 2016-07-12 Komatsu Ltd. Tunnel excavation method
US9617853B2 (en) 2012-07-09 2017-04-11 Komatsu Ltd. Auxiliary tunneling apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9388690B2 (en) 2012-07-09 2016-07-12 Komatsu Ltd. Tunnel excavation method
US9617853B2 (en) 2012-07-09 2017-04-11 Komatsu Ltd. Auxiliary tunneling apparatus

Similar Documents

Publication Publication Date Title
JP4647544B2 (en) Underpass construction method and underpass
JP2007009430A (en) Tunnel composition structure and its construction method
JP4022687B2 (en) Construction method for underground structures
JP2001520340A (en) Arch support structure
JP2005290889A (en) Structure of depressed road and its execution method
JP2002364286A (en) Reaction receiving structure of tunnel branch part
KR100455247B1 (en) Cast-in-site diaphragms wall and the method with benoto method and grouting method of high pressure
JP4303512B2 (en) Construction method of large section tunnel
JP5012149B2 (en) Ground support structure and ground support method
JP2762133B2 (en) How to build a large architectural space underground
JP5685508B2 (en) Pipe roof construction method
JP5136344B2 (en) Construction method of rectangular tunnel and rectangular tunnel
CN104695479A (en) Construction method of connecting channel of civil basement and subway
CN219240614U (en) Subway station structure built by combining PBA (Poly-p-phenylene-assisted-A) underground excavation method and open excavation method
JP4730608B2 (en) segment
JP4141321B2 (en) How to construct a confluence of shield tunnels
JP2000220400A (en) Construction method for underground structure
JPH0584773B2 (en)
JPS62220616A (en) Construction work for underground space
JP5167578B2 (en) Construction method for underground structures
JP3646698B2 (en) Construction method for underground structures
JP2009046897A (en) Tunnel construction method
JPH03257299A (en) Center pillar bearing/replacing construction method in multiple-connected tunnel lining
JPH06317095A (en) Tunnel constructing method
JPH07208065A (en) Tunnel construction method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805