JP2002355236A - Method to measure joint angle using biaxial acceleration sensor and electric stimulator - Google Patents

Method to measure joint angle using biaxial acceleration sensor and electric stimulator

Info

Publication number
JP2002355236A
JP2002355236A JP2001166774A JP2001166774A JP2002355236A JP 2002355236 A JP2002355236 A JP 2002355236A JP 2001166774 A JP2001166774 A JP 2001166774A JP 2001166774 A JP2001166774 A JP 2001166774A JP 2002355236 A JP2002355236 A JP 2002355236A
Authority
JP
Japan
Prior art keywords
acceleration sensor
axis
acceleration
axis direction
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001166774A
Other languages
Japanese (ja)
Inventor
Kiyomi Iizuka
清美 飯塚
Goro Ohigata
五郎 大日方
Yoichi Shimada
洋一 島田
Atsushi Nakayama
淳 中山
Kiyoshi Nagasaku
清 永作
Shigeru Ando
滋 安藤
Yoshihiro Abe
善博 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001166774A priority Critical patent/JP2002355236A/en
Publication of JP2002355236A publication Critical patent/JP2002355236A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method to measure a joint angle by assuming the joint angle by a two-dimensional acceleration sensor put on a body and an electric stimulator capable of giving electric stimulation to muscles of a lost function of a disabled person at good timing in a required period. SOLUTION: This is a method to measure a joint angle using an acceleration sensor. Two dimensional acceleration sensors 1a-1f to measure acceleration are mounted on a body. A microprocessor comprising an input means to receive two-dimensional acceleration signals in the X-axis direction and the Y-axis direction or the X-direction and the Z-axis direction from biaxial acceleration sensors, a time pattern processing means to process the acceleration signals as time elapses into patterns, a predicting means to analyze patterns from the time pattern processing means to predict motion of the thigh part 4, and an output means to output electric stimulation from the predicting means at timing when a foot leaves a floor processes signals to measure and detect estimates of joint angles and timing of body motion such as foot contact, heel- off, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、身体に装着した2
次元の加速度センサにより関節角度を推定する関節角測
定方法及び疾病、事故等によって麻痺した筋肉に電気刺
激を与えて筋肉を収縮又は伸張させる電気刺激器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention
TECHNICAL FIELD The present invention relates to a joint angle measuring method for estimating a joint angle using a three-dimensional acceleration sensor and an electric stimulator for contracting or expanding a muscle paralyzed by a disease, an accident or the like by applying an electric stimulation to the muscle.

【0002】[0002]

【従来の技術】従来、電気刺激を行う筋力増強器は、特
開2000−279536号公報が公知である。上記公
開公報は、図5に示すように、大腿部用装具7と下腿部
用装具8をゴニオメーター9で接続してなり、大腿部用
基材10の内側には2個所に電極部40、41を設け、
ゴニオメーター9の角度を検知するセンサー31の情報
をコントローラー42に伝え、電極部40、41に電気
を供給して筋肉に電気的刺激を与える筋力増強器Kであ
る。これは、主動筋となる筋肉が収縮しているときに、
拮抗筋となる筋肉に電気的刺激を与えることで、拮抗筋
に遠心性収縮に伴う閉鎖性運動連鎖による運動をさせる
ことができ、その筋力の維持又は増強のために使用する
ことができるものである。また、この筋力増強器を利用
し、主動筋を能動的(意識的)に動かすことのできない
又は困難な、例えば高齢者、障害者で筋力の弱い患者又
は麻痺のある患者の主動筋を受動的に集中的に増強する
こともできる。しかし、前記筋力増強器は、必要な時期
にタイミングを図って筋肉に電気刺激を与える、障害者
の失われた機能再建を目的としたものではなかった。
2. Description of the Related Art Conventionally, a muscular strength enhancer for performing electrical stimulation is known from Japanese Patent Application Laid-Open No. 2000-279536. In the above publication, as shown in FIG. 5, a thigh orthosis 7 and a lower thigh orthosis 8 are connected by a goniometer 9, and two electrodes are provided inside a thigh base 10. Parts 40 and 41 are provided,
A muscle strength enhancer K that transmits information from a sensor 31 that detects the angle of the goniometer 9 to a controller 42 and supplies electricity to the electrode units 40 and 41 to provide electrical stimulation to muscles. This is when the muscle that is the driving muscle is contracting,
By applying electrical stimulation to the muscle that becomes the antagonist muscle, the antagonist muscle can be exercised by a closed kinematic chain accompanying efferent contraction, and can be used for maintaining or enhancing its muscle strength. is there. In addition, by using the muscle augmenter, the active muscles of the elderly, disabled, weak or paralyzed patients cannot be passively moved (consciously). It can also be intensively strengthened. However, the above-mentioned muscular strength enhancer is not intended for the purpose of reconstructing lost functions of persons with disabilities, which provides electrical stimulation to muscles in a timely manner when necessary.

【0003】[0003]

【発明が解決しようとする課題】そこで、本発明は、身
体に装着した2次元の加速度センサにより関節角度を推
定する関節角測定方法及び障害者の失われた機能に、必
要な時期にタイミングを図ってその筋肉に電気刺激を与
えることができる電気刺激器を提供することを目的とす
る。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a joint angle measuring method for estimating a joint angle by a two-dimensional acceleration sensor attached to a body and a timing required for a lost function of a disabled person. It is an object of the present invention to provide an electrical stimulator capable of applying electrical stimulation to the muscle.

【0004】[0004]

【課題を解決するための手段】そのために、本発明の加
速度センサを用いた関節角測定方法は、加速度を測定す
る2次元の加速度センサを身体に装着し、2軸加速度セ
ンサからのX軸、Y軸方向又はX軸、Z軸方向の2次元
の加速度信号を受け取る入力手段と、前記加速度信号を
経時的処理してパターン化する時間パターン処理手段
と、該時間パターン処理手段からのパターンを解析して
大腿部の動作を予測する予測手段と、足が床から離れる
タイミングで前記予測手段から電気刺激を出力する出力
手段とからなるマイクロプロセッサで処理することによ
って、関節角度の推定値やフットコンタクト、ヒールオ
フなどの身体動作のタイミングを測定、検出するもので
ある。さらに、本発明の加速度センサを用いた電気刺激
器は、加速度を測定する2次元の加速度センサを身体に
装着し、2軸加速度センサからのX軸、Y軸方向又はX
軸、Z軸方向の2次元の加速度信号を受け取る入力手段
と、前記加速度信号を経時的処理してパターン化する時
間パターン処理手段と、該時間パターン処理手段からの
パターンを解析して大腿部の動作を予測する予測手段
と、足が床から離れるタイミングで前記予測手段から電
気刺激を出力する出力手段とからなるマイクロプロセッ
サと、さらに筋肉の麻痺筋の刺激点に至るように挿入し
た電極を前記マイクロプロセッサに接続するものであ
る。
For this purpose, a joint angle measuring method using an acceleration sensor according to the present invention comprises: attaching a two-dimensional acceleration sensor for measuring acceleration to a body; Input means for receiving a two-dimensional acceleration signal in the Y-axis direction, X-axis direction, or Z-axis direction; time pattern processing means for processing the acceleration signal over time to form a pattern; and analyzing a pattern from the time pattern processing means The processing is performed by a microprocessor including prediction means for predicting the movement of the thigh and output means for outputting electrical stimulation from the prediction means at a timing when the foot leaves the floor. It measures and detects the timing of body movements such as contact and heel-off. Further, the electric stimulator using the acceleration sensor according to the present invention has a two-dimensional acceleration sensor for measuring acceleration attached to the body, and the X-axis, Y-axis direction or X-axis from the two-axis acceleration sensor.
Input means for receiving a two-dimensional acceleration signal in the axial and Z-axis directions, time pattern processing means for processing the acceleration signal over time to form a pattern, and analyzing the pattern from the time pattern processing means to obtain a thigh And a microprocessor comprising output means for outputting electrical stimulation from the prediction means at the timing when the foot leaves the floor, and an electrode inserted so as to reach the stimulation point of the paralyzed muscle of the muscle. It is connected to the microprocessor.

【0005】[0005]

【実施例】本発明の2次元の加速度センサを用いた電気
刺激器の一実施例として、障害者の失われた機能とし
て、つま先が下がったままになり、杖などの助けを借り
ないと歩けない尖足(せんそく)の場合について、以下
に説明する。脳卒中の後遺症として多い尖足は、麻痺に
よって足のつま先を上げる筋が働かなくなることによっ
て生じる。したがって、歩行時の必要な時期にタイミン
グを図って、その筋肉を電気刺激によって収縮させれば
よい。これに必要な電気刺激器は、何時刺激を開始すれ
ばよいかを予測すること及び選んだ筋肉を適切に収縮さ
せることである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As one embodiment of the electric stimulator using a two-dimensional acceleration sensor of the present invention, as a lost function of a disabled person, the toes can remain down and walking without the help of a walking stick or the like. The following is a description of the case of a non-cuspid leg. Equine footsteps, a common sequela of stroke, result from paralysis of the muscles that raise the toes of the feet. Therefore, the muscles may be contracted by electrical stimulation at a necessary time during walking. The electrical stimulator required for this is to predict when to start the stimulation and to properly contract the selected muscle.

【0006】そこで、本発明の2次元の加速度センサを
用いた電気刺激器を、図1に基づいて説明する。1a、
1bは2軸加速度センサで、X軸、Y軸方向又はX軸、
Z軸方向の2次元の加速度信号を出力するものであり、
電池(図示せず)及び刺激パターンを作り出すマイクロ
プロセッサ2と共に大腿部4外側にバンド等の固定手段
3により装着される。
Accordingly, an electric stimulator using the two-dimensional acceleration sensor of the present invention will be described with reference to FIG. 1a,
1b is a two-axis acceleration sensor, in the X-axis, Y-axis direction or X-axis,
It outputs a two-dimensional acceleration signal in the Z-axis direction,
A battery (not shown) and a microprocessor 2 for creating a stimulation pattern are attached to the outside of the thigh 4 by a fixing means 3 such as a band.

【0007】前記マイクロプロセッサ2は、2軸加速度
センサ1a、1bからのX軸、Y軸方向又はX軸、Z軸方
向の2次元の加速度信号を受け取る入力手段と、前記加
速度信号を経時的処理してパターン化する時間パターン
処理手段と、該時間パターン処理手段からのパターンを
解析して大腿部4の動作を予測する予測手段と、足が床
から離れるタイミングで前記予測手段から電気刺激を出
力する出力手段とからなる。なお、前記予測手段は、ニ
ューラルネットワークと呼ばれる情報処理機構を構成
し、使用者への適合、変化への適応の機能がある。
The microprocessor 2 has an input means for receiving two-dimensional acceleration signals from the two-axis acceleration sensors 1a and 1b in the X-axis and Y-axis directions or in the X-axis and Z-axis directions, and processes the acceleration signals with time. Time pattern processing means for performing patterning, and a prediction means for analyzing the pattern from the time pattern processing means to predict the movement of the thigh 4; Output means for outputting. The prediction means constitutes an information processing mechanism called a neural network, and has a function of adapting to a user and adapting to a change.

【0008】そして、前記マイクロプロセッサ2に大腿
部4の麻痺筋の刺激点に至るように挿入した電極(図示
せず)を接続するものである。
Then, an electrode (not shown) inserted so as to reach the stimulating point of the paralyzed muscle of the thigh 4 is connected to the microprocessor 2.

【0009】次に、本発明の加速度センサを用いた電気
刺激器のデータ処理系について、図2に基づいて説明す
る。大腿部4に装着された2軸加速度センサ1a、1bか
らのX軸、Y軸方向又はX軸、Z軸方向の2次元の加速
度信号をマイクロプロセッサ2に送信し、2次元の加速
度信号を受け取ったマイクロプロセッサ2は、前記加速
度信号の時間的変化をトレースすることによって予測で
きる刺激タイミングで、大腿部4の麻痺筋の刺激点に至
るように挿入した電極(図示せず)に電気刺激を出力す
る。これによって、歩行時の必要な時期にタイミングを
図って、電気刺激を与えることによってその筋肉に収縮
を起こさせる。これを拡張して、尖足障害のヒールオフ
タイミングの予測だけでなく、膝関節の角度を推定する
こともできる。そして、動作のタイミングの予測とフッ
トスイッチ並びに膝関節角の推定とゴニオメータとを比
較したものを図3、図4に示す。以上述べたものは、人
が目的に応じてある定められたパターンの動作を行うこ
と、歩行はほぼ同じパターンが繰り返される動作である
ことの2つによって成り立つ技術である。また、加速度
センサ1c、1d、1eは、図1に示すように、体の色々
な部位に装着すると体の色々な関節角度が測定できる
し、この体の関節角度測定は患者の遠隔モニタリングや
リハビリテーションをはじめとして多くの応用場所が考
えられる。
Next, a data processing system of an electric stimulator using the acceleration sensor of the present invention will be described with reference to FIG. X-axis, Y-axis or X-axis, Z-axis two-dimensional acceleration signals from the two-axis acceleration sensors 1a and 1b attached to the thighs 4 are transmitted to the microprocessor 2, and the two-dimensional acceleration signals are transmitted. The received microprocessor 2 applies an electric stimulus to an electrode (not shown) inserted so as to reach a stimulating point of the paralyzed muscle of the thigh 4 at a stimulating timing that can be predicted by tracing a temporal change of the acceleration signal. Is output. Thereby, the muscles are contracted by applying electrical stimulation at a necessary time during walking. By extending this, it is possible to estimate not only the heel-off timing of the equicuspid disorder but also the angle of the knee joint. FIG. 3 and FIG. 4 show the comparison between the prediction of the operation timing, the estimation of the foot switch and the knee joint angle, and the goniometer. What has been described above is a technique that is realized by two things: a person performs an operation in a predetermined pattern according to a purpose, and walking is an operation in which substantially the same pattern is repeated. Also, as shown in FIG. 1, the acceleration sensors 1c, 1d, and 1e can measure various joint angles of the body when they are mounted on various parts of the body. And many other applications.

【0010】[0010]

【効果】本発明の関節角測定方法は、身体に装着した2
次元の加速度センサにより、特にニューラルネットワー
クのような処理によって関節角度を推定することができ
る。本発明の2次元の加速度センサを用いた電気刺激器
によって、今まで杖を必要としていた人が杖なしで歩行
できるようになる。また、2次元の加速度センサを体の
色々な部位に装着することによって、歩行以外の支援に
も適用できる。
[Effects] The joint angle measuring method of the present invention can be applied to a body worn on a body.
The joint angle can be estimated by the three-dimensional acceleration sensor, particularly by a process such as a neural network. The electric stimulator using the two-dimensional acceleration sensor of the present invention enables a person who has ever needed a cane to walk without a cane. Also, by attaching a two-dimensional acceleration sensor to various parts of the body, it can be applied to support other than walking.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の加速度センサを用いた電気刺激器の説
明図である。
FIG. 1 is an explanatory diagram of an electric stimulator using an acceleration sensor of the present invention.

【図2】本発明のマイクロプロセッサのデータ処理系構
成図である。
FIG. 2 is a configuration diagram of a data processing system of a microprocessor according to the present invention.

【図3】足が床から離れるタイミングの予測グラフ図で
ある。
FIG. 3 is a graph showing a prediction of a timing at which a foot separates from a floor;

【図4】膝関節角度の推定グラフ図である。FIG. 4 is a graph showing an estimation of a knee joint angle.

【図5】従来の筋力増強器の説明図である。FIG. 5 is an explanatory view of a conventional muscular strength enhancer.

【符号の説明】[Explanation of symbols]

1a 加速度センサ(大腿) 1b 加速度センサ(大腿) 1c 加速度センサ(腕) 1d 加速度センサ(胸) 1e 加速度センサ(腕) 2 マイクロプロセッサ 3 固定手段 4 大腿部 1a acceleration sensor (thigh) 1b acceleration sensor (thigh) 1c acceleration sensor (arm) 1d acceleration sensor (chest) 1e acceleration sensor (arm) 2 microprocessor 3 fixing means 4 thigh

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯塚 清美 秋田県秋田市広面字碇80−1 有限会社バ イオテック内 (72)発明者 大日方 五郎 秋田県秋田市桜ガ丘1−7−1 (72)発明者 島田 洋一 秋田県秋田市桜ガ丘3−10−17 (72)発明者 中山 淳 秋田県秋田市柳田字糠塚42 糠塚宿舎3− 204 (72)発明者 永作 清 秋田県秋田市牛島西4−2−24 (72)発明者 安藤 滋 秋田県秋田市広面蓮沼9−1−305 (72)発明者 阿部 善博 秋田県南秋田郡五城目町富津内富田字雷2 Fターム(参考) 2F069 AA71 BB40 HH30 4C038 VA12 VB14 VC20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kiyomi Iizuka 80-1 Hiromi Ikari, Akita City, Akita Prefecture Inside Biotech Co., Ltd. (72) Inventor Goro Oinata 1-7-1, Sakuragaoka, Akita City, Akita Prefecture (72) Invention Person Yoichi Shimada 3-10-17 Sakuragaoka, Akita City, Akita Prefecture (72) Inventor Jun Nakayama 42, Nukazuka, Yanagita Character, Akita City, Akita Prefecture 3-204 (72) Inventor Kiyoshi Nagasaku 4-2 Ushijima Nishi, Akita City, Akita Prefecture 24 (72) Inventor Shigeru Ando 9-1-305 Hiromen, Hiruma, Akita-shi, Akita (72) Inventor Yoshihiro Abe 2 F0-term (reference) 2F069 AA71 BB40 HH30 4C038 VA12 VB14 VC20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加速度を測定する2次元の加速度センサ
を身体に装着し、2軸加速度センサからのX軸、Y軸方
向又はX軸、Z軸方向の2次元の加速度信号を受け取る
入力手段と、前記加速度信号を経時的処理してパターン
化する時間パターン処理手段と、該時間パターン処理手
段からのパターンを解析して大腿部の動作を予測する予
測手段と、足が床から離れるタイミングで前記予測手段
から電気刺激を出力する出力手段とからなるマイクロプ
ロセッサで処理することによって、関節角度の推定値や
フットコンタクト、ヒールオフなどの身体動作のタイミ
ングを測定、検出することを特徴とする加速度センサを
用いた関節角測定方法。
1. An input means for wearing a two-dimensional acceleration sensor for measuring acceleration on a body, and receiving a two-dimensional acceleration signal in the X-axis, Y-axis direction or X-axis or Z-axis direction from the two-axis acceleration sensor. A time pattern processing means for processing the acceleration signal over time to form a pattern, a prediction means for analyzing a pattern from the time pattern processing means to predict the movement of the thigh, and a timing at which the foot leaves the floor. An acceleration sensor for measuring and detecting the timing of a joint motion, such as an estimated value of a joint angle, a foot contact, or a heel-off, by processing with a microprocessor including an output unit that outputs an electrical stimulus from the prediction unit. Method for measuring joint angles using a computer.
【請求項2】 加速度を測定する2次元の加速度センサ
を身体に装着し、2軸加速度センサからのX軸、Y軸方
向又はX軸、Z軸方向の2次元の加速度信号を受け取る
入力手段と、前記加速度信号を経時的処理してパターン
化する時間パターン処理手段と、該時間パターン処理手
段からのパターンを解析して大腿部の動作を予測する予
測手段と、足が床から離れるタイミングで前記予測手段
から電気刺激を出力する出力手段とからなるマイクロプ
ロセッサと、さらに筋肉の麻痺筋の刺激点に至るように
挿入した電極を前記マイクロプロセッサに接続すること
を特徴とする加速度センサを用いた電気刺激器。
2. An input means for wearing a two-dimensional acceleration sensor for measuring acceleration on a body, and receiving a two-dimensional acceleration signal in the X-axis, Y-axis direction or X-axis, Z-axis direction from the two-axis acceleration sensor. A time pattern processing means for processing the acceleration signal over time to form a pattern, a prediction means for analyzing a pattern from the time pattern processing means to predict the movement of the thigh, and a timing at which the foot leaves the floor. A microprocessor comprising output means for outputting an electrical stimulus from the prediction means, and an acceleration sensor characterized by connecting an electrode inserted so as to reach a stimulation point of a paralyzed muscle of the muscle to the microprocessor. Electric stimulator.
JP2001166774A 2001-06-01 2001-06-01 Method to measure joint angle using biaxial acceleration sensor and electric stimulator Pending JP2002355236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001166774A JP2002355236A (en) 2001-06-01 2001-06-01 Method to measure joint angle using biaxial acceleration sensor and electric stimulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001166774A JP2002355236A (en) 2001-06-01 2001-06-01 Method to measure joint angle using biaxial acceleration sensor and electric stimulator

Publications (1)

Publication Number Publication Date
JP2002355236A true JP2002355236A (en) 2002-12-10

Family

ID=19009268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001166774A Pending JP2002355236A (en) 2001-06-01 2001-06-01 Method to measure joint angle using biaxial acceleration sensor and electric stimulator

Country Status (1)

Country Link
JP (1) JP2002355236A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004084725A1 (en) * 2003-03-26 2004-10-07 Neopraxis Pty Ltd Motion analysis system and method
WO2006085387A1 (en) * 2005-02-08 2006-08-17 Kouki Nagamune Noninvasive moving body analytic system and its using method
JP2009039454A (en) * 2007-08-10 2009-02-26 Univ Nagoya Biological motion support apparatus
JP2010227236A (en) * 2009-03-26 2010-10-14 Hidekazu Motoda Functional electrostimulation walking assisting device
JP2012090735A (en) * 2010-10-26 2012-05-17 Toyota Motor Corp Knee joint resistance measurement system
WO2014030296A1 (en) * 2012-08-24 2014-02-27 パナソニック 株式会社 Body movement-determining device and electric stimulation device
WO2014030295A1 (en) * 2012-08-24 2014-02-27 パナソニック 株式会社 Body movement-detecting device and electric stimulation device provided with same
WO2014057619A1 (en) * 2012-10-11 2014-04-17 パナソニック 株式会社 Body motion detection device and human body stimulation apparatus comprising said device
CN104207783A (en) * 2014-09-02 2014-12-17 北京智谷技术服务有限公司 Left and right side determining method and device and portable equipment
WO2015142302A1 (en) 2014-03-19 2015-09-24 Koc Universitesi A muscle stimulating device
CN105997097A (en) * 2016-06-22 2016-10-12 武汉纺织大学 Reproduction system and reproduction method for human lower limb movement posture
JP2018015023A (en) * 2016-07-25 2018-02-01 国立大学法人 宮崎大学 Posture identification system, action determination system, posture identification method, and posture identification program
JP2020174924A (en) * 2019-04-18 2020-10-29 株式会社PlusTips Exercise support system
WO2021004680A1 (en) * 2019-07-09 2021-01-14 Vonnemann Anna Portable device and method for mobilizing a person suffering from a neurological gait dysfunction as a result of impaired proprioception, and carrying aid for such a device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004084725A1 (en) * 2003-03-26 2004-10-07 Neopraxis Pty Ltd Motion analysis system and method
WO2006085387A1 (en) * 2005-02-08 2006-08-17 Kouki Nagamune Noninvasive moving body analytic system and its using method
JP2009039454A (en) * 2007-08-10 2009-02-26 Univ Nagoya Biological motion support apparatus
JP2010227236A (en) * 2009-03-26 2010-10-14 Hidekazu Motoda Functional electrostimulation walking assisting device
JP2012090735A (en) * 2010-10-26 2012-05-17 Toyota Motor Corp Knee joint resistance measurement system
JP2014042606A (en) * 2012-08-24 2014-03-13 Panasonic Corp Body-motion determination device, and electro-stimulator
WO2014030295A1 (en) * 2012-08-24 2014-02-27 パナソニック 株式会社 Body movement-detecting device and electric stimulation device provided with same
JP2014042605A (en) * 2012-08-24 2014-03-13 Panasonic Corp Body-motion detection device, and electro-stimulator having the same
WO2014030296A1 (en) * 2012-08-24 2014-02-27 パナソニック 株式会社 Body movement-determining device and electric stimulation device
CN104602661A (en) * 2012-10-11 2015-05-06 松下知识产权经营株式会社 Body motion detection device and human body stimulation apparatus comprising said device
JP2014076199A (en) * 2012-10-11 2014-05-01 Panasonic Corp Body motion detection apparatus and human-body stimulation apparatus comprising the apparatus
WO2014057619A1 (en) * 2012-10-11 2014-04-17 パナソニック 株式会社 Body motion detection device and human body stimulation apparatus comprising said device
US9802040B2 (en) 2012-10-11 2017-10-31 Panasonic Intellectual Property Management Co., Ltd. Body motion detection device and human body stimulation apparatus comprising said device
WO2015142302A1 (en) 2014-03-19 2015-09-24 Koc Universitesi A muscle stimulating device
CN104207783A (en) * 2014-09-02 2014-12-17 北京智谷技术服务有限公司 Left and right side determining method and device and portable equipment
CN105997097A (en) * 2016-06-22 2016-10-12 武汉纺织大学 Reproduction system and reproduction method for human lower limb movement posture
JP2018015023A (en) * 2016-07-25 2018-02-01 国立大学法人 宮崎大学 Posture identification system, action determination system, posture identification method, and posture identification program
JP2020174924A (en) * 2019-04-18 2020-10-29 株式会社PlusTips Exercise support system
WO2021004680A1 (en) * 2019-07-09 2021-01-14 Vonnemann Anna Portable device and method for mobilizing a person suffering from a neurological gait dysfunction as a result of impaired proprioception, and carrying aid for such a device

Similar Documents

Publication Publication Date Title
Huo et al. Fast gait mode detection and assistive torque control of an exoskeletal robotic orthosis for walking assistance
Van Asseldonk et al. The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control
Joshi et al. Classification of gait phases from lower limb EMG: Application to exoskeleton orthosis
Huo et al. Lower limb wearable robots for assistance and rehabilitation: A state of the art
US20200170547A1 (en) A human intention detection system for motion assistance
JP2002355236A (en) Method to measure joint angle using biaxial acceleration sensor and electric stimulator
US20140094345A1 (en) Active robotic gait-training system and method
CN109589496B (en) Wearable bionic rehabilitation system for whole process of human body movement
KR102193771B1 (en) Wearable robot and method for controlling the same
Crea et al. Controlling a robotic hip exoskeleton with noncontact capacitive sensors
Jacob et al. An adaptive and flexible brain energized full body exoskeleton with IoT edge for assisting the paralyzed patients
Foroutannia et al. A deep learning strategy for EMG-based joint position prediction in hip exoskeleton assistive robots
CN111898487A (en) Human motion mode real-time identification method of flexible exoskeleton system
Caulcrick et al. Human joint torque modelling with MMG and EMG during lower limb human-exoskeleton interaction
Naruse et al. Development of wearable exoskeleton power assist system for lower back support
He et al. A study on lower-limb muscle activities during daily lower-limb motions
Żuk et al. Use of the surface electromyography for a quantitative trend validation of estimated muscle forces
Yi et al. Smart healthcare-oriented online prediction of lower-limb kinematics and kinetics based on data-driven neural signal decoding
Wang et al. Prediction of contralateral lower-limb joint angles using vibroarthrography and surface electromyography signals in time-series network
Mayag et al. Human-in-the-loop control for AGoRA unilateral lower-limb exoskeleton
Rabe et al. Use of sonomyography for continuous estimation of hip, knee and ankle moments during multiple ambulation tasks
Liu et al. Joint kinematics, kinetics and muscle synergy patterns during transitions between locomotion modes
Meng et al. A quantitative lower limb function assessment method based on fusion of surface EMG and inertial data in stroke patients during cycling task
Wang et al. Qualitative evaluations of gait rehabilitation via EMG muscle activation pattern: Repetition, symmetry, and smoothness
Chambers et al. Repeated robot-assisted unilateral stiffness perturbations result in significant aftereffects relevant to post-stroke gait rehabilitation

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040521