JP2002350339A - Method for analyzing particulate material in exhaust gas from engine - Google Patents

Method for analyzing particulate material in exhaust gas from engine

Info

Publication number
JP2002350339A
JP2002350339A JP2001156455A JP2001156455A JP2002350339A JP 2002350339 A JP2002350339 A JP 2002350339A JP 2001156455 A JP2001156455 A JP 2001156455A JP 2001156455 A JP2001156455 A JP 2001156455A JP 2002350339 A JP2002350339 A JP 2002350339A
Authority
JP
Japan
Prior art keywords
exhaust gas
engine
organic component
lubricating oil
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001156455A
Other languages
Japanese (ja)
Inventor
Ichiro Asano
一朗 浅野
Ko Inoue
香 井上
Masayuki Adachi
正之 足立
Hitoshi Yamazaki
均 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2001156455A priority Critical patent/JP2002350339A/en
Publication of JP2002350339A publication Critical patent/JP2002350339A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for analyzing a particulate material in exhaust gas from an engine which can simply perform desired analysis and preparation for measuring in a short time. SOLUTION: A filter F is provided in a flow path 27 that the exhaust gas G from the engine or the diluted gas S flows. After the particulate material included in the exhaust gas G from the engine is collected by the filter F, a soluble organic component in the particulate material is extracted by using a solvent having an infrared absorbing region different from the soluble organic component. An absorbing spectrum of an extracted solution is measured by a spectroscopic apparatus 1. Absorbing spectrums of fuel and lubricating oil are previously collected as references. Quantities of a fuel-based soluble organic component and a lubricating oil-based soluble organic component included in the particulate material are separately determined by analyzing the absorbing spectrum of the extracted solution by quantitative analysis using a multivariate analyzing method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えばディーゼ
ルエンジンなどから排出されるガス中に含まれる粒子状
物質(パーティキュレートマター、以下、PMという)
の分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particulate matter (hereinafter referred to as PM) contained in a gas discharged from a diesel engine or the like.
Analysis method.

【0002】[0002]

【従来の技術】ディーゼルエンジンの排ガス中に含まれ
るPMの分類の一つに、SOF(Soluble Or
ganic Fraction)と呼ばれる可溶有機成
分(以下、SOFという)がある。そして、このSOF
は、未燃焼の燃料(この場合は軽油)に基づくもの(以
下、未燃燃料分という)とエンジンオイルなどの潤滑油
に基づくもの(以下、潤滑油分という)とがあり、これ
らの割合(または量)を正確に把握することは、PMの
排出量を低減する上できわめて重要である。
2. Description of the Related Art One of the classifications of PM contained in exhaust gas of a diesel engine is SOF (Soluble Or).
There is a soluble organic component (hereinafter, referred to as SOF) called “ganofraction”. And this SOF
Are based on unburned fuel (in this case, light oil) (hereinafter, referred to as unburned fuel) and those based on lubricating oil such as engine oil (hereinafter, referred to as lubricating oil). Or the amount) is extremely important in reducing PM emissions.

【0003】そして、前記SOFにおける未燃燃料分と
潤滑油分との割合を求める従来の手法として、1)PM
を捕集したフィルタを加熱炉内において温度上昇させな
がら加熱し、燃料と潤滑油の温度重量曲線の違いから熱
重量法で前記割合を求める手法や、2)PMを捕集した
フィルタからSOF分を有機溶媒で抽出し、その溶液を
ガスクロマトグラフを用いて分析し、このSOFのガス
クロマトグラムと、燃料、潤滑油のガスクロマトグラム
とから前記割合を求める手法などがある。
[0003] As a conventional method for obtaining the ratio between the unburned fuel component and the lubricating oil component in the SOF, 1) PM
A filter that collects PM is heated in a heating furnace while increasing the temperature, and the ratio is determined by a thermogravimetric method from the difference between the temperature and weight curves of the fuel and the lubricating oil. Is extracted with an organic solvent, the solution is analyzed using a gas chromatograph, and the ratio is determined from the gas chromatogram of the SOF and the gas chromatograms of the fuel and the lubricating oil.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記
1)の手法においては、一旦昇温した加熱炉の温度を降
温させるのに時間を要し、1試料の分析に30〜60分
程度の時間を要するので、多数の試料を短時間で分析す
るのが困難であるとともに、熟練した技術が必要である
といった課題がある。また、前記2)の手法において
も、SOFの抽出、濃縮などの準備作業やガスクロマト
グラフの取扱いに熟練した技術が必要であるとともに、
1試料の分析に30〜60分程度の時間を要するので、
多数の試料を短時間で分析するのが困難であるといった
課題がある。このように、従来の手法はいずれも熟練し
た技術が必要であり、分析やその準備に時間を要すると
いった課題があった。
However, in the above-mentioned method 1), it takes time to lower the temperature of the heating furnace once it has been heated, and it takes about 30 to 60 minutes to analyze one sample. Therefore, there are problems that it is difficult to analyze a large number of samples in a short time and that a skilled technique is required. In addition, the technique 2) requires a skilled technique for preparation work such as extraction and concentration of SOF and handling of gas chromatograph.
Since it takes about 30 to 60 minutes to analyze one sample,
There is a problem that it is difficult to analyze a large number of samples in a short time. As described above, all of the conventional methods require a skilled technique, and have a problem that analysis and preparation thereof require time.

【0005】この発明は、上述の事柄に留意してなされ
たもので、その目的は、簡単かつ短時間で所望の分析を
行うことができ、しかも、測定のための準備も簡単かつ
短時間で行うことができるエンジン排ガス中の粒子状物
質の分析方法(以下、PM分析方法という)を提供する
ことである。
The present invention has been made in consideration of the above-mentioned matters, and has as its object to perform a desired analysis easily and in a short time, and to prepare for measurement easily and in a short time. An object of the present invention is to provide a method for analyzing particulate matter in engine exhaust gas (hereinafter, referred to as PM analysis method) that can be performed.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、この発明のPM分析方法は、エンジン排ガスまたは
その希釈後のガスが流れる流路にフィルタを設けて、こ
のフィルタにエンジン排ガス中に含まれる粒子状物質を
捕集させた後、この粒子状物質中の可溶有機成分を、こ
の可溶有機成分とは赤外線吸収領域の異なる溶媒を用い
て抽出し、この抽出溶液の吸収スペクトルを分光分析装
置を用いて測定し、この吸収スペクトルを、予め採取し
てある燃料と潤滑油の吸収スペクトルを基準として、多
変量解析法を用いて定量分析することにより、前記粒子
状物質に含まれる燃料に基づく可溶有機成分と潤滑油に
基づく可溶有機成分とを区別して定量することを特徴と
している。
In order to achieve the above object, the present invention provides a PM analysis method in which a filter is provided in a flow passage of an engine exhaust gas or a diluted gas thereof, and the filter is contained in the engine exhaust gas. After collecting the particulate matter to be collected, the soluble organic component in the particulate matter is extracted using a solvent having an infrared absorption region different from that of the soluble organic component, and the absorption spectrum of the extracted solution is spectrally analyzed. Measured using an analyzer, the absorption spectrum, based on the absorption spectrum of the fuel and lubricating oil previously collected as a reference, by quantitative analysis using a multivariate analysis method, the fuel contained in the particulate matter And a soluble organic component based on lubricating oil.

【0007】この発明は、燃料と潤滑油の赤外線吸収ス
ペクトルが互いに異なっており、この赤外線吸収スペク
トルの相違に基づいて、前記SOFにおける未燃燃料分
と潤滑油分とを峻別することができることに着目してな
されたものである。すなわち、この発明のPM分析方法
は、エンジンからの排ガスが流れる流路にフィルタを設
置し、排ガスを定流量流して排ガス中のPMをフィルタ
で捕集する。そして、このフィルタに捕集されたPM中
に含まれるSOFを、このSOFとは赤外線吸収領域の
異なる有機溶媒、例えば四塩化炭素を用いて抽出し、こ
のSOFを抽出した溶媒の吸収スペクトルを、例えばフ
ーリエ変換赤外光度計などの分光分析装置を用いて測定
し、この吸収スペクトルを、予め採取してある燃料と潤
滑油の吸収スペクトルを基準として、多変量解析法を用
いて定量分析するのである。
According to the present invention, the infrared absorption spectra of the fuel and the lubricating oil are different from each other, and the unburned fuel component and the lubricating oil component in the SOF can be distinguished based on the difference in the infrared absorption spectra. It was done with attention. That is, in the PM analysis method of the present invention, a filter is provided in a flow path through which exhaust gas from the engine flows, and the exhaust gas is caused to flow at a constant flow rate, and PM in the exhaust gas is collected by the filter. Then, the SOF contained in the PM collected by the filter is extracted using an organic solvent having a different infrared absorption region from the SOF, for example, carbon tetrachloride, and the absorption spectrum of the solvent from which the SOF is extracted, For example, it is measured using a spectroscopic analyzer such as a Fourier transform infrared photometer, and the absorption spectrum is quantitatively analyzed using a multivariate analysis method based on the absorption spectra of a fuel and a lubricant previously collected. is there.

【0008】上記PM分析方法によれば、SOFにおけ
る未燃燃料分と潤滑油分とを区別して定量分析すること
ができ、それらの割合を簡単かつ確実に求めることがで
きる。
[0008] According to the above-mentioned PM analysis method, the unburned fuel component and the lubricating oil component in the SOF can be quantitatively analyzed separately, and their ratio can be obtained simply and reliably.

【0009】[0009]

【発明の実施の形態】発明の実施の形態を図面を参照し
ながら説明する。図1および図2は、この発明の一つの
実施例を示す。まず、図1は、前記PM分析方法におい
て使用する装置の構成の一例を概略的に示すもので、こ
の図において、1は分光分析装置で、例えばフーリエ変
換赤外分光計(以下、FTIRという)よりなる。すな
わち、この図において、2は分析部、3はこの分析部2
の出力であるインターフェログラムを処理するデータ処
理部である。
Embodiments of the present invention will be described with reference to the drawings. 1 and 2 show one embodiment of the present invention. First, FIG. 1 schematically shows an example of the configuration of an apparatus used in the PM analysis method. In this figure, reference numeral 1 denotes a spectroscopic analyzer, for example, a Fourier transform infrared spectrometer (hereinafter, referred to as FTIR). Consisting of That is, in this figure, 2 is an analysis unit, 3 is this analysis unit 2
Is a data processing unit that processes the interferogram that is output from.

【0010】前記分析部2は、平行な赤外線レーザ光4
を発するように構成された赤外光源5と、ビームスプリ
ッタ6、固定ミラー7、図外の駆動機構によって例えば
X−Y方向に平行移動してスキャンする可動ミラー8か
らなる干渉計9と、測定試料などを収容し、干渉計9を
介して赤外光源5からの赤外線レーザ光4が照射される
セル10と、半導体検出器11とから構成されている。
[0010] The analysis section 2 has a parallel infrared laser beam 4.
And an interferometer 9 including a beam splitter 6, a fixed mirror 7, and a movable mirror 8 that is moved in parallel in the XY direction by a driving mechanism (not shown) and scans, for example. It comprises a cell 10 that accommodates a sample and the like and is irradiated with infrared laser light 4 from an infrared light source 5 via an interferometer 9, and a semiconductor detector 11.

【0011】そして、前記データ処理部3は、例えばコ
ンピュータよりなり、インターフェログラムを加算平均
し、その加算平均出力を高速フーリエ変換(Fast
Fourier Transform)し、吸収スペク
トルを得るように構成されている。
The data processing section 3 is composed of, for example, a computer. The data processing section 3 adds and averages interferograms, and outputs the averaged output of the data to a fast Fourier transform (Fast Fourier transform).
Fourier Transform) to obtain an absorption spectrum.

【0012】このように構成されたFTIR1において
は、次のようにして分析することができる。すなわち、
セル10に比較試料または測定試料をそれぞれ収容して
赤外光源5からの赤外線レーザ光4をセル10に照射
し、比較試料および測定試料のインターフェログラムを
測定する。これらのインターフェログラムをデータ処理
部3において、それぞれ高速フーリエ変換してパワース
ペクトルを得た後、比較試料のパワースペクトルに対す
る測定試料のパワースペクトルの比を求め、透過率スペ
クトルあるいは吸光度スペクトルを得て、定性分析また
は定量分析を行う。
The FTIR 1 configured as described above can be analyzed as follows. That is,
The comparison sample or the measurement sample is accommodated in the cell 10 and the cell 10 is irradiated with the infrared laser beam 4 from the infrared light source 5 to measure the interferogram of the comparison sample and the measurement sample. These interferograms are each subjected to fast Fourier transform in the data processing unit 3 to obtain a power spectrum. Then, the ratio of the power spectrum of the measurement sample to the power spectrum of the comparison sample is obtained, and the transmittance spectrum or the absorbance spectrum is obtained. Perform qualitative or quantitative analysis.

【0013】そして、この発明のPM分析方法を実施す
るに際しては、エンジン排ガス中に含まれるPMをフィ
ルタに捕集させる必要があり、そのため、エンジンから
の排ガスを定流量流すことができる、例えば図2に示す
ようなサンプリング装置が用いられる。すなわち、図2
において、21は例えば自動車に搭載されるディーゼル
エンジン、22はこれに連なる排気管である。23は排
気管22に挿入接続され、排気管22中を流れる排ガス
Gをサンプリングするためのプローブで、その下流側は
サンリングされた排ガスGを希釈する希釈トンネル24
に接続されている。25はこの希釈トンネル24の上流
側に接続される希釈用空気の供給管である。
When the PM analysis method of the present invention is carried out, it is necessary to trap PM contained in the engine exhaust gas by a filter. Therefore, the exhaust gas from the engine can flow at a constant flow rate. 2 is used. That is, FIG.
In the figure, 21 is a diesel engine mounted on an automobile, for example, and 22 is an exhaust pipe connected to the diesel engine. Reference numeral 23 denotes a probe inserted and connected to the exhaust pipe 22 for sampling the exhaust gas G flowing through the exhaust pipe 22, and a downstream side thereof is a dilution tunnel 24 for diluting the sampled exhaust gas G.
It is connected to the. Reference numeral 25 denotes a supply pipe for dilution air connected to the upstream side of the dilution tunnel 24.

【0014】26は希釈トンネル24の下流側に接続さ
れ、希釈されたサンプルガスSが流れるガス流路で、こ
の流路26の下流側は二つの流路27,28に分岐し、
それぞれの流路27,28に希釈サンプルガスS中に含
まれるPMを捕集するためのフィルタ装置29,30を
設けて、一方の流路27はPM採取時にサンプルガスS
を流すためのサンプルガス流路に、また、他方の流路2
8はPM非採取時にサンプルガスSを流すためのバイパ
ス流路にそれぞれ構成されている。なお、フィルタ装置
29,30のうち、一方のフィルタ装置29には測定用
フィルタが装着され、他方のフィルタ装置30にはダミ
ーフィルタが装着される。
Reference numeral 26 denotes a gas passage connected to the downstream side of the dilution tunnel 24 and through which the diluted sample gas S flows. The downstream side of the passage 26 is branched into two passages 27 and 28,
Filter devices 29 and 30 for collecting PM contained in the diluted sample gas S are provided in the respective flow channels 27 and 28, and one of the flow channels 27 is provided with the sample gas S when collecting PM.
Flow through the sample gas flow path and the other flow path 2
Reference numeral 8 denotes a bypass passage for flowing the sample gas S when PM is not collected. Note that, of the filter devices 29 and 30, one of the filter devices 29 is provided with a measurement filter, and the other filter device 30 is provided with a dummy filter.

【0015】31はサンプルガス流路27、バイパス流
路28の下流側に設けられる流路切換え手段としての三
方電磁弁で、その下流側はガス流路32に接続され、こ
のガス流路32には、回転数制御によって吸引能力を変
えることができる吸引ポンプ、例えばルーツブロアポン
プ33と、測定精度の高い流量計、例えばベンチュリ流
量計34がこの順に設けられている。
Reference numeral 31 denotes a three-way solenoid valve as flow switching means provided on the downstream side of the sample gas flow path 27 and the bypass flow path 28, and the downstream side thereof is connected to the gas flow path 32. Is provided with a suction pump whose suction capacity can be changed by controlling the number of revolutions, for example, a roots blower pump 33, and a flow meter with high measurement accuracy, for example, a Venturi flow meter 34, in this order.

【0016】次に、この発明のPM分析方法について説
明すると、まず、分析に先立って、図2に示したサンプ
リング装置を用いて、エンジン21からの排ガスGを定
流量サンプリングおよび希釈して、この希釈サンプルガ
スS中のPMを測定用フィルタ装置29に内蔵されてい
る測定用フィルタFに捕集する。
Next, the PM analysis method of the present invention will be described. First, prior to the analysis, the exhaust gas G from the engine 21 is sampled at a constant flow rate and diluted using the sampling device shown in FIG. The PM in the diluted sample gas S is collected by the measurement filter F built in the measurement filter device 29.

【0017】前記PMを捕集したフィルタF上のSOF
を、炭化水素に特徴的なCH結合由来の赤外線吸収を示
さない溶媒、例えばCH結合を持たない四塩化炭素(C
Cl 4 )を用いて抽出する。なお、図1において、符号
12は前記溶媒を示し、13はこの溶媒12を収容した
容器を示している。
SOF on the filter F that traps the PM
Shows infrared absorption derived from the CH bond characteristic of hydrocarbons.
Solvent such as carbon tetrachloride having no CH bond (C
Cl Four) To extract. Note that, in FIG.
Reference numeral 12 denotes the solvent, and 13 accommodates the solvent 12.
Shows a container.

【0018】そして、前記SOFを抽出した溶液を測定
試料としてセル10に収容し、FTIR1を用いてその
インターフェログラムを測定する。このインターフェロ
グラムと、別に測定したSOF抽出前の溶媒(比較試
料)のインターフェログラムとからSOFの吸収スペク
トルが算出され、コンピュータ3内のメモリ部に試料ス
ペクトルとして記憶される。
Then, the solution from which the SOF has been extracted is accommodated in the cell 10 as a measurement sample, and its interferogram is measured using FTIR1. The absorption spectrum of SOF is calculated from the interferogram and the interferogram of the solvent (comparative sample) before SOF extraction which is separately measured, and stored as a sample spectrum in the memory unit of the computer 3.

【0019】一方、エンジン排ガス試験に使用する燃料
(この場合は軽油)と潤滑油を、それぞれ、前記溶媒1
2と同一の溶媒に溶かし、SOF溶液と同様に、FTI
R1を用いて、前記燃料および潤滑油の溶液の吸収スペ
クトルをそれぞれ測定しておく。これらは基準スペクト
ルとしてコンピュータ3内のメモリ部に予め記憶されて
いる。
On the other hand, the fuel (in this case, light oil) and the lubricating oil used for the engine exhaust gas test were respectively mixed with the solvent 1
2 and dissolved in the same solvent as in the case of the SOF solution.
Using R1, the absorption spectra of the fuel and lubricating oil solutions are measured in advance. These are stored in the memory section of the computer 3 in advance as reference spectra.

【0020】なお、燃料中の低沸点の炭化水素は、エン
ジン中で容易にガス化して燃焼してしまうため、SOF
として残る未燃燃料は、主として高沸点成分からなると
考えられる。そこで、前記使用燃料の基準スペクトルを
測定するときには、予め所定温度に加熱して低沸点成分
を気化させた加熱処理済みの燃料を用いてもよい。
Since low-boiling hydrocarbons in the fuel are easily gasified and burned in the engine, the SOF
It is considered that the unburned fuel remaining mainly consists of high-boiling components. Therefore, when measuring the reference spectrum of the used fuel, a heat-treated fuel which has been heated to a predetermined temperature in advance to vaporize low-boiling components may be used.

【0021】そして、コンピュータ3においては、前記
予め測定し、記憶している使用燃料と潤滑油の赤外線吸
収スペクトルを基準として、前記SOFを抽出した試料
溶液のの赤外線吸収スペクトルに、例えば最小二乗法
(CLS)や主成分分析法(PCR)といった公知の多
変量解析法を適用して定量演算を行うことにより、フィ
ルタFに採取されたSOF中の未燃燃料分と潤滑油分の
濃度がそれぞれ得られ、これにより、両者の割合が得ら
れる。なお、前記演算には、3000cm-1付近のCH
結合由来の吸収スペクトルが使用できる。
In the computer 3, the infrared absorption spectrum of the sample solution from which the SOF has been extracted is applied to the infrared absorption spectrum of the sample solution from which the SOF has been measured and stored, for example, using the least square method. By applying a known multivariate analysis method such as (CLS) or principal component analysis (PCR) and performing a quantitative calculation, the concentrations of the unburned fuel component and the lubricating oil component in the SOF collected in the filter F are respectively reduced. To obtain the ratio of the two. In the above calculation, the CH around 3000 cm -1 was used.
An absorption spectrum derived from the bond can be used.

【0022】くそして、前記SOF中の未燃燃料分の濃
度および潤滑油分の濃度と、抽出に用いた溶媒の量とを
考慮することにより、希釈されたサンプルガスS中にお
ける未燃燃料分の重量および潤滑油分の重量がそれぞれ
得られ、さらに、サンプルガスSがフィルタFを通過し
た流量と排ガスGの希釈率を考慮に入れて演算を行うこ
とにより、前記排ガスG中の未燃燃料分の重量および潤
滑油分の重量をそれぞれ得ることができる。
Further, by taking into account the concentration of the unburned fuel and the concentration of the lubricating oil in the SOF and the amount of the solvent used for the extraction, the unburned fuel in the diluted sample gas S is taken into account. And the weight of the lubricating oil are obtained, and the calculation is performed in consideration of the flow rate of the sample gas S passing through the filter F and the dilution ratio of the exhaust gas G, whereby the unburned fuel in the exhaust gas G is obtained. And the weight of the lubricating oil component can be obtained respectively.

【0023】上述のように、この発明のPM分析方法
は、SOF中の未燃燃料分と潤滑油分との割合を簡単か
つ短時間に測定できるとともに、繰り返し測定を行う場
合、測定の準備作業も短時間に行えるといった特長があ
る。
As described above, according to the PM analysis method of the present invention, the ratio between the unburned fuel component and the lubricating oil component in the SOF can be measured simply and in a short time. Has the advantage that it can be performed in a short time.

【0024】なお、フィルタF上のSOFを抽出する溶
媒としては、前記四塩化炭素のように、SOF、燃料、
潤滑油の赤外線吸収領域(3000cm-1付近)に赤外
線吸収特性をもたないものであれば、種々のものを用い
ることができる。以下に、用いることができる溶媒とそ
の気相での主吸収波数(単位はcm-1)を列記する。 CCl4 740〜 820 CF4 1270〜1290 CF3 Cl 1080〜1240 CF2 Cl2 860〜1190 CFCl3 820〜1120 例えばクロロフロロカーボンなど炭化水素(CH結合)
の赤外線領域で赤外線を吸収しない溶媒を用いることが
できる。
As a solvent for extracting SOF on the filter F, SOF, fuel,
Various lubricating oils can be used as long as they do not have infrared absorption characteristics in the infrared absorption region (around 3000 cm -1 ) of the lubricating oil. The solvents that can be used and the main absorption wave number in the gas phase (unit: cm −1 ) are listed below. CCl 4 740 to 820 CF 4 1270 to 1290 CF 3 Cl 1800 to 1240 CF 2 Cl 2 860 to 1190 CFCl 3 820 to 1120 Hydrocarbons such as chlorofluorocarbon (CH bond)
Solvents that do not absorb infrared light in the infrared region can be used.

【0025】そして、燃料や潤滑油の組成が比較的安定
している場合、例えば同一条件の測定を長期にわたって
繰り返す場合などにおいては、コンピュータ3には基準
スペクトルそのものではなく、濃度演算に用いる行列式
のみを記憶しておいてもよい。
When the composition of the fuel or the lubricating oil is relatively stable, for example, when the measurement under the same conditions is repeated for a long period of time, the computer 3 uses not the reference spectrum itself but the determinant used for the concentration calculation. Only the information may be stored.

【0026】また、分光分析装置としては、FTIR以
外の赤外分光測定装置を用いてもよい。さらに、フィル
タFにPMを採取する場合、エンジン排ガスを希釈しな
い所謂生ガス(ダイレクトガス)の状態でサンプリング
を行うようにしてもよい。
Further, an infrared spectrometer other than FTIR may be used as the spectrometer. Further, when collecting PM in the filter F, sampling may be performed in a so-called raw gas (direct gas) state in which engine exhaust gas is not diluted.

【0027】さらに、この発明のPM分析方法は、ディ
ーゼルエンジンからの排ガスにおけるPMだけでなく、
ガソリンエンジンからの排ガスにおけるPMの分析にも
適用してもよい。
Further, the PM analysis method of the present invention can be applied to not only PM in exhaust gas from a diesel engine but also PM.
It may be applied to the analysis of PM in exhaust gas from a gasoline engine.

【0028】[0028]

【発明の効果】以上説明したように、この発明のPM分
析方法によれば、SOFにおける未燃燃料分と潤滑油分
とを区別して定量分析することができ、それらの割合を
簡単かつ確実に求めることができる。
As described above, according to the PM analysis method of the present invention, the unburned fuel component and the lubricating oil component in SOF can be distinguished and quantitatively analyzed, and their ratio can be simply and reliably determined. You can ask.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明のPM分析方法に用いる分光分析装置
の構成の一例を概略的に示す図である。
FIG. 1 is a diagram schematically showing an example of the configuration of a spectroscopic analyzer used for a PM analysis method of the present invention.

【図2】フィルタにPMを捕集させるためのサンプリン
グ装置の一例を概略的に示す図である。
FIG. 2 is a diagram schematically showing an example of a sampling device for causing a filter to collect PM.

【符号の説明】[Explanation of symbols]

1…分光分析装置、12…溶媒、27…ガス流路、F…
フィルタ、G…エンジン排ガス、S…希釈されたガス。
DESCRIPTION OF SYMBOLS 1 ... Spectroscopic analyzer, 12 ... Solvent, 27 ... Gas flow path, F ...
Filter, G: engine exhaust gas, S: diluted gas.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 足立 正之 京都府京都市南区吉祥院宮の東町2番地 株式会社堀場製作所内 (72)発明者 山崎 均 茨城県新治郡八郷町柿岡1029−30 Fターム(参考) 2G052 AA02 AB11 AC20 AD04 AD24 AD46 BA03 BA14 BA22 CA03 CA12 CA35 EA03 EB11 FD09 GA12 JA04 2G059 AA05 BB01 BB09 CC19 DD04 DD12 EE01 EE09 EE10 EE12 FF08 GG01 HH01 HH06 JJ13 JJ22 KK01 MM03 MM05 MM10 3G091 AA18 AA24 AB13 BA00 BA31 DB10 DB13 EA00  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masayuki Adachi 2 Higashi-cho, Kichijoin-gu, Minami-ku, Kyoto, Kyoto Inside Horiba Seisakusho Co., Ltd. (Ref.) EA00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エンジン排ガスまたはその希釈後のガス
が流れる流路にフィルタを設けて、このフィルタにエン
ジン排ガス中に含まれる粒子状物質を捕集させた後、こ
の粒子状物質中の可溶有機成分を、この可溶有機成分と
は赤外線吸収領域の異なる溶媒を用いて抽出し、この抽
出溶液の吸収スペクトルを分光分析装置を用いて測定
し、この吸収スペクトルを、予め採取してある燃料と潤
滑油の吸収スペクトルを基準として、多変量解析法を用
いて定量分析することにより、前記粒子状物質に含まれ
る燃料に基づく可溶有機成分と潤滑油に基づく可溶有機
成分とを区別して定量することを特徴とするエンジン排
ガス中の粒子状物質の分析方法。
1. A filter is provided in a flow path through which an engine exhaust gas or a gas after dilution thereof flows, and the filter collects particulate matter contained in the engine exhaust gas. The organic component is extracted using a solvent having an infrared absorption region different from that of the soluble organic component, and the absorption spectrum of the extracted solution is measured using a spectroscopic analyzer. And the absorption spectrum of the lubricating oil as a reference, by performing a quantitative analysis using a multivariate analysis method to distinguish between a soluble organic component based on fuel and a soluble organic component based on lubricating oil contained in the particulate matter. A method for analyzing particulate matter in engine exhaust gas, characterized by quantifying.
JP2001156455A 2001-05-25 2001-05-25 Method for analyzing particulate material in exhaust gas from engine Pending JP2002350339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001156455A JP2002350339A (en) 2001-05-25 2001-05-25 Method for analyzing particulate material in exhaust gas from engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001156455A JP2002350339A (en) 2001-05-25 2001-05-25 Method for analyzing particulate material in exhaust gas from engine

Publications (1)

Publication Number Publication Date
JP2002350339A true JP2002350339A (en) 2002-12-04

Family

ID=19000460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001156455A Pending JP2002350339A (en) 2001-05-25 2001-05-25 Method for analyzing particulate material in exhaust gas from engine

Country Status (1)

Country Link
JP (1) JP2002350339A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126111A (en) * 2004-11-01 2006-05-18 Horiba Ltd Method of producing liquid sample for component analysis
US7442936B2 (en) 2006-03-31 2008-10-28 Exxonmobil Research And Engineering Company Infrared spectroscopy method for measuring the base number of overbased lubricants
JP2014016251A (en) * 2012-07-09 2014-01-30 Isuzu Motors Ltd Method for analyzing exhaust gas of internal-combustion engine
JP2015517099A (en) * 2012-03-27 2015-06-18 シーメンス アクティエンゲゼルシャフト Infrared spectrometer measurements of droplets collected from oil mist in a breather tube of a gas turbine
JP2019020230A (en) * 2017-07-14 2019-02-07 株式会社堀場製作所 Gas analyzer, program for gas analyzer, and gas analysis method
JP2019203714A (en) * 2018-05-21 2019-11-28 株式会社Subaru Exhaust gas analysis method and exhaust gas analysis system
WO2022014126A1 (en) * 2020-07-13 2022-01-20 株式会社堀場製作所 Analysis device, analysis method, program for analysis device, learning device for analysis, learning method for analysis, and program for learning device for analysis

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126111A (en) * 2004-11-01 2006-05-18 Horiba Ltd Method of producing liquid sample for component analysis
US7442936B2 (en) 2006-03-31 2008-10-28 Exxonmobil Research And Engineering Company Infrared spectroscopy method for measuring the base number of overbased lubricants
JP2015517099A (en) * 2012-03-27 2015-06-18 シーメンス アクティエンゲゼルシャフト Infrared spectrometer measurements of droplets collected from oil mist in a breather tube of a gas turbine
US9863873B2 (en) 2012-03-27 2018-01-09 Siemens Aktiengesellschaft Infrared spectrometer measurement of droplets collected from an oil mist in a breather pipe of a gas turbine
JP2014016251A (en) * 2012-07-09 2014-01-30 Isuzu Motors Ltd Method for analyzing exhaust gas of internal-combustion engine
JP2019020230A (en) * 2017-07-14 2019-02-07 株式会社堀場製作所 Gas analyzer, program for gas analyzer, and gas analysis method
US11099124B2 (en) 2017-07-14 2021-08-24 Horiba, Ltd. Gas analysis apparatus, program for gas analysis apparatus, and gas analysis method
JP2019203714A (en) * 2018-05-21 2019-11-28 株式会社Subaru Exhaust gas analysis method and exhaust gas analysis system
JP7064378B2 (en) 2018-05-21 2022-05-10 株式会社Subaru Exhaust gas analysis method and exhaust gas analysis system
WO2022014126A1 (en) * 2020-07-13 2022-01-20 株式会社堀場製作所 Analysis device, analysis method, program for analysis device, learning device for analysis, learning method for analysis, and program for learning device for analysis

Similar Documents

Publication Publication Date Title
Soleimanian et al. Impact of secondary and primary particulate matter (PM) sources on the enhanced light absorption by brown carbon (BrC) particles in central Los Angeles
CN104568836B (en) Low-concentration and multi-component gas detection method based on integration of multiple spectrum technologies
US4747297A (en) Apparatus for analyzing particulates
JPH0545284A (en) Continuous particulate analyzing device
EP0307082B1 (en) Method of measuring multicomponent constituency of gas emission flow
Turpin et al. Intercomparison of photoacoustic and thermal-optical methods for the measurement of atmospheric elemental carbon
JP2002350339A (en) Method for analyzing particulate material in exhaust gas from engine
Yang et al. Impacts of exhaust transfer system contamination on particulate matter measurements
Price et al. More unsaturated, cooking-type hydrocarbon-like organic aerosol particle emissions from renewable diesel compared to ultra low sulfur diesel in at-sea operations of a research vessel
Dwyer et al. A study of emissions from a Euro 4 light duty diesel vehicle with the European particulate measurement programme
Liu et al. A source dilution sampling system for characterization of engine emissions under transient or steady-state operation
Adachi Emission measurement techniques for advanced powertrains
JP5994440B2 (en) Method for analyzing exhaust gas of internal combustion engine
JP4320021B2 (en) Method and apparatus for analyzing particulate matter in engine exhaust gas
Gierczak et al. FTIR: fundamentals and applications in the analysis of dilute vehicle exhaust
Parks et al. Towards a field-portable real-time organic and elemental carbon monitor
JP3872657B2 (en) Method and apparatus for analyzing particulate matter in engine exhaust gas
Butler et al. On-Line Characterization of Vehicle Emissions by FT-IR and Mass Spectrometry
Kraft et al. Determination of polycyclic aromatic hydrocarbons in diluted and undiluted exhaust gas of diesel engines
JP2003028765A (en) Analytical device and method of particulate matter in engine exhaust gas
Hariharan A novel integrated instrumentation technique for air pollution monitoring
JP2676602B2 (en) Method for measuring the concentration of combustion produced fine particles contained in exhaust gas
Kong et al. Correction methods of Rayleigh scattering of three-dimensional fluorescence spectra of spilled oil on sea
Paturel et al. A data acquisition and processing software for high-resolution Shpol'skii spectrofluorometry
Fanick et al. Comparison of Partial and Total Dilution Systems for the Measurement of Polycyclic Aromatic Hydrocarbons and Hydrocarbon Speciation in Diesel Exhaust