JP2002336673A - 有機廃棄物の高速分解方法とその装置 - Google Patents

有機廃棄物の高速分解方法とその装置

Info

Publication number
JP2002336673A
JP2002336673A JP2001145338A JP2001145338A JP2002336673A JP 2002336673 A JP2002336673 A JP 2002336673A JP 2001145338 A JP2001145338 A JP 2001145338A JP 2001145338 A JP2001145338 A JP 2001145338A JP 2002336673 A JP2002336673 A JP 2002336673A
Authority
JP
Japan
Prior art keywords
decomposition
air
superheated steam
organic
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001145338A
Other languages
English (en)
Inventor
Masahiro Sato
正大 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAWA INDUSTRY SUPPORT FOUND
Kagawa Industry Support Foundation
Original Assignee
KAGAWA INDUSTRY SUPPORT FOUND
Kagawa Industry Support Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAWA INDUSTRY SUPPORT FOUND, Kagawa Industry Support Foundation filed Critical KAGAWA INDUSTRY SUPPORT FOUND
Priority to JP2001145338A priority Critical patent/JP2002336673A/ja
Publication of JP2002336673A publication Critical patent/JP2002336673A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

(57)【要約】 【課題】 生物系廃棄物から生じる有機酸等の有機廃棄
物を発煙と悪臭の発生を低減し、無触媒で分解処理する
こと。 【解決手段】 分解対象物と溶媒と空気とを混合し、5
50℃以下の温度で加熱し、圧力0.1MPa〜0.5
MPa程度の過熱水蒸気とし、過熱蒸気を所定の時間に
反応管を通過させることで、分解対象物を無触媒で分解
処理する方法であって、溶媒として、水を用いるととも
に、空気中の酸素による酸化反応と過熱水蒸気による乾
燥、加水分解反応、熱分解反応の全てまたはいずれかの
組み合わせにより分解することを特徴とする難分解性有
機物および有機廃棄物の酸化分解処理方法および装置。
上記の過熱水蒸気に、別に550℃以下の温度に加熱さ
れた空気を向流接触させ、それにより空気比1以下の少
ない空気を含む過熱水蒸気への溶解の促進を行いつつ、
分解処理物からの熱分解による発煙と悪臭の発生を低減
し、無触媒で分解処理する。

Description

【発明の詳細な説明】
【0001】
【産業の属する技術分野】本発明は環境に負荷を与え
る、または与える可能性のある難分解性有機物質、有機
廃棄物の高速酸化分解処理に関し、特に、生物系廃棄物
から生じる有機酸等の有機廃棄物を、特に空気を注入し
た過熱水蒸気の雰囲気下で乾燥および反応させることに
より、熱分解、加水分解、酸化反応のいずれか、または
それらの組み合わせを行なって分解する方法と装置に関
するものである。
【0002】
【従来の技術】従来より、有機廃棄物の処理法として、
焼却法、ガス化溶融法、水熱法(湿式酸化法)、超臨界
水酸化法が知られている。特に、湿式酸化法、超臨界水
法は熱水、超臨界水の物理化学的性質が、温度、圧力の
操作条件を変化させることにより連続的に変化する性質
を利用して、廃棄物を高度に分解を実施することが可能
である。
【0003】焼却法は温度600〜800℃で焼却する
ものであり、普及しているものの、ダイオキシン、NO
xを排出する課題があり、今後、排ガス規制強化により
付帯設備の費用増加が課題である。ガス化溶融法は有機
廃棄物に燃料を添加し1500℃で溶融、スラグ化する
ものである。ガス化溶融法は無害化は可能であるが、燃
料利用によるコスト増加が課題である。
【0004】湿式酸化法は温度250〜300℃程度,
10MPa付近の液体水で有機廃棄物を処理する。この
温度、圧力領域では酸素の溶解が少ないため有機物の酸
化反応が遅くなり、排水、排ガスの2次処理を必要とす
る。
【0005】超臨界水酸化法は温度374℃以上、圧力
22MPa以上の超臨界水中で有機廃棄物を酸化処理す
る方法である。超臨界水は誘電率が低く、酸素や有機物
の良溶媒となり、粘性も低く細孔内に拡散しやすいた
め、有機廃棄物の短時間処理が可能である。飛灰中のダ
イオキシンやPCBなどの難分解性の有害有機塩素系廃
棄物や生物系有機廃棄物である有機酸などの有機廃棄物
を分解処理可能である。しかし、圧力が高く、供給ポン
プ、酸素圧縮機が特殊仕様となるための費用増加が課題
である。
【0006】前述のように、超臨界水酸化法、湿式酸化
法の場合、高温条件下で高圧力の保持を必要とされるた
め、まず、そのような高温高圧水条件下で、長時間耐食
性のある材料を一般的に選択することは困難である。超
臨界水酸化分解や湿式酸化分解においては、分解対象物
の種類により材料の腐食が大きく、あるいは応力腐食割
れを発生する例が知られており、配管設計する際に、材
料選択についての一般性は無い。また、耐腐食性のある
新材料は高価である場合が多く、配管、圧力調整弁、配
管に適用される場合、装置全体の価格に反映されてくる
ことになる。また、圧力調整弁は、製作に特殊技術を要
し、高価であるが、圧力調整弁の腐食による破壊により
安全性に問題が生じることが多い。他方、汚泥、ふん尿
のようなスラリ−系有機廃棄物を水熱分解処理する場
合、送液ポンプは、スクリュ−ポンプや、縦型シリンダ
−ポンプ、ギアポンプ等、高価で特殊仕様になるものが
多く、装置全体の価格に占有割合を大きくする。また、
スラリ−系生物有機廃棄物には、無機塩類やタンパク質
が含まれていることが多いため、熱により熱凝固物の固
着・沈積や難分解性の有機物の再結晶化による固着・沈
積により配管が閉塞しやすく、流路の狭くなったところ
に、加えた圧力以上の高圧力が負荷され、局部腐食の進
行による配管の応力低下が発生、その部分への熱衝撃、
応力集中による割れ、すなわち応力腐食割れ等が発生す
ると、配管の破裂等の事故を誘因する可能性があり、安
全性と信頼性に問題を生じる。つまり、腐食と閉塞は超
臨界水酸化法や水熱酸化法に内包している問題であると
言って良い。
【0007】これらの問題点を回避するため、圧力が水
蒸気圧を越えない有機廃棄物の分解法の可能性が検討さ
れてきた。特公昭58−5639号公報には、過熱水蒸
気発生器で得られた過熱水蒸気を分解炉内に噴霧して、
廃タイヤをガス化し、カ−ボン等の残さおよびビ−トワ
イヤ−等に分離し、再利用を可能とした熱分解装置が提
示されている。また、特開平3−12220号公報には
フロンを酸化鉄を担持した活性炭を触媒上を、分解対象
物の過熱水蒸気を通過させることにより加水分解する方
法が開示されている。
【0008】また、特開平10−349号公報、特開平
10−16583号公報には、鉄、炭素鋼、炭素板を配
管内に配列し、過熱水蒸気により、以下の水性ガス反応
【化1】 C+H2O(gas)=CO(gas)+H2(gas) (1) またはメッサ−シュミット反応
【化2】 Fe+H2O(gas)=Fe23(gas)+H2(gas) (2) を行わせ、水素を発生させ、その水素の高温条件下での
還元反応と、過熱水蒸気の加水分解効果を併用した、固
体系の有機廃棄物と有機物の分解方法と装置が提示され
ている。また、フロン類に対しては650〜700℃の
温度の過熱水蒸気を用いており、フェノ−ル、クロロフ
ェノ−ル、ベンゼンの分解に対しては過酸化水素を添加
することにより酸化反応を促進し分解可能であることが
提示されている。これと関連して、特開平10−216
506号公報には過熱水蒸気分解装置の冷却装置部分に
関して、二段型の冷却方法を採用し、腐食の防止および
冷却操作によるダイオキシン類の発生を防止する装置が
開示されている。
【0009】また、特開平2000−42512号公報
には熱分解(450〜650℃)と水蒸気改質(900
〜1100℃)との2段階方式のフロン含有廃棄物の処
理が開示されており、過熱水蒸気によりフロン含有廃棄
物中のフロン分解が促進されることが述べられている。
他方、特開2000−033355号公報には、温度3
74℃の超臨界点以上、圧力が5MPa〜22MPaの
超臨界点以下の温度圧力領域における高温高圧水蒸気を
用いた有機性廃棄物の処理法及び装置が開示されてい
る。その他、過熱水蒸気が汚泥の乾燥などに用いられる
技術が開発されており、過熱水蒸気は200℃以上の温
度では、高温空気乾燥よりも乾燥効果が大きいとされて
いる。また、無酸素条件、200〜500℃の温度で食
品加工にも利用され、加工後の食品品質の向上が報告さ
れている。
【0010】
【発明が解決しようとする課題】前記、特公昭58−5
6396号公報に記載された熱分解装置では、廃タイヤ
を分解ガスと炭素残渣、ビ−トワイヤ−に分解すること
が可能であるが、廃タイヤ以外の有機物または有機廃棄
物の分解について言及しておらず、この方法では他の有
機廃棄物の分解を実施することはできない。また、特開
平3−1220号公報に記載されたフロンを過熱水蒸気
下、酸化鉄を担持させた触媒を用いて分解する方法で
は、触媒の耐久性に問題があり、フロン以外の有機廃棄
物の処理についての記述は見られないため、実施するこ
とはできない。一方、特開平10−000349号公
報、特開平10−165803号公報に記載された過熱
水蒸気装置では、炭素鋼および炭素盤を配置した反応容
器を用いて、水性ガス反応またはメッサ−シュミット反
応による水素発生源とし、650〜700℃における高
温においてフロン、フェノ−ル、クロロベンゼン、ベン
ゼンを高度に分解可能としている。しかし、炭素源が無
くなると水素発生量が低下し、配管材料である炭素鋼か
ら炭素の消失が発生した場合には粒界腐食割れを生じや
すくなるため、炭素の補給が必要となる。また、上記有
機廃棄物についての具体的実施例はなく、潜熱や大きな
吸熱反応に対する反応熱の熱損失対策および、高濃度生
物系廃棄物の熱分解に伴う、発煙や悪臭の防止対策につ
いても実施されていない。特開2000−042512
公報に記載された過熱水蒸気分解処理装置ではフロン含
有廃棄物とフロン以外の記載はない。
【0011】他方、特開2000−033355公報に
記載された過熱水蒸気装置では、温度374℃の超臨界
点以上、圧力が5MPa〜22MPaの超臨界点以下の
温度圧力領域の高温高圧水蒸気による汚泥の処理が実施
されているのみであり、他の有機物、有機廃棄物の分解
処理や空気酸化については示されていない。
【0012】本発明者は無酸素、無触媒条件での過熱水
蒸気のみを用いて分解を実施した場合、分解対象物によ
っては、反応物や分解物およびすす等の付着物が凝集し
やすい知見を得た。したがって、無酸素条件ではすすや
発煙が発生しやすく、分解装置の配管内での付着物によ
る閉塞が発生しやすいことになる。このことは、装置の
閉塞以外にすす等の付着物による通気差電池の形成が促
進されるため、腐食しやすい状況を招来し、装置の耐久
性や維持に影響を与え、ランニングコスト等の経済的な
問題を生じる。
【0013】そこで、本発明は環境に負荷を与える、ま
たは与える可能性のある難分解性有機物質、有機廃棄物
の高速酸化分解処理、および生物系廃棄物から生じる有
機酸等の有機廃棄物を、安全性に問題のない、廉価な空
気を用いて、空気比1以下の少ない空気を注入しなが
ら、水蒸気発生の潜熱や反応熱の熱的損失を補償しつ
つ、過熱水蒸気の雰囲気下で乾燥、反応させることによ
り、熱分解、加水分解、酸化反応のいずれか、またはそ
れらの組み合わせを行なって無触媒分解し、悪臭や発煙
を防止する方法と装置について提供するものである。
【0014】
【課題を解決するための手段】上記目的を達成するた
め、本発明は、分解対象物と溶媒と空気とを混合し、加
熱装置内のボイラ−で蒸気を発生、貫流させ、550℃
以下の温度に加熱し、圧力0.1〜0.5MPaの過熱
蒸気とし、当該過熱蒸気を所定の時間に反応管を通過さ
せることで、分解対象物を無触媒で分解処理する方法で
あって、溶媒として、水を用いるとともに、空気中の酸
素による酸化反応と過熱水蒸気による乾燥、加水分解反
応、熱分解反応の全てまたはいずれかの組み合わせによ
り分解することを特徴とする、難分解性有機物および有
機廃棄物の酸化分解処理方法を要旨としている。
【0015】また、分解対象物、溶媒と空気との混合物
を加熱装置を用いて、550℃以下の温度に過熱して過
熱水蒸気として、別に550℃以下の温度に加熱された
空気をその過熱水蒸気に向流接触させることにより、空
気比1以下の少ない空気の過熱水蒸気への溶解の促進を
行いつつ、分解処理物からの熱分解による発煙と悪臭の
発生を低減して分解処理することを特徴とする、難分解
性有機物および有機廃棄物の低煙・防臭酸化分解処理方
法を提供する。すなわち本発明は、分解対象物と溶媒と
空気とを混合し、550℃以下の温度で加熱し、圧力
0.1MPa〜0.5MPa程度の過熱水蒸気とし、過
熱蒸気を所定の時間に反応管を通過させることで、分解
対象物を無触媒で分解処理する方法であって、溶媒とし
て、水を用いるとともに、空気中の酸素による酸化反応
と過熱水蒸気による乾燥、加水分解反応、熱分解反応の
全てまたはいずれかの組み合わせにより分解すること、
上記の分解対象物と溶媒と空気とを混合物を加熱して得
た過熱水蒸気に、別に550℃以下の温度に加熱された
空気を向流接触させ、それにより空気比1以下の少ない
空気を含む過熱水蒸気への溶解の促進を行いつつ、分解
処理物からの熱分解による発煙と悪臭の発生を低減し、
無触媒で分解処理することを特徴とする難分解性有機物
および有機廃棄物の酸化分解処理方法を要旨としてい
る。
【0016】メタンの水蒸気改質反応において、過熱水
蒸気による有機物の水性ガス反応は、水蒸気の潜熱の他
に、膨大な吸熱を伴うため吸熱反応に対する、多量の熱
を加える必要があり、エネルギ−損失が大きい。また、
過熱水蒸気のみで有機廃棄物を分解する場合には、高温
条件(>650℃)が必要となってくる。他方、メタン
のガス化においては、部分酸化法と呼ばれる、触媒存在
下、過熱水蒸気に空気を添加し、発熱反応である酸化分
解反応、熱分解、水性ガス反応を同時に行わせ多量の吸
熱を補償する方法がある。この原理を用れば、廉価で安
全な空気を酸化剤として、水蒸気発生の潜熱と反応熱の
熱的損失を酸化反応による発生熱で補償することによ
り、550℃以下の温度で分解することを可能とする。
また、例えば、酢酸の場合、加水分解反応は
【化3】 CH3COOH+2H2O=2CO2+2H2−36.044kcal/mol(550℃) (3) であり、熱分解反応は
【化4】 CH3COOH=2CO2+2CH4−8.451kcal/mol(550℃) (4) であり、両反応とも吸熱反応である。ところが、酸素に
よる酸化反応、
【化5】 CH3COOH+2O2=2CO2+2H2O+199.739kcal/mol(550℃) (5) を併発して行えば、逆に全体の反応熱が発熱となり、水
蒸気に変化する際の潜熱や反応熱に対する熱損失を補償
することが可能である。
【0017】また、温度550℃付近、圧力0.1MP
a〜0.5MPaの水は気体状態であり、誘電率が1.
00と低く、溶媒としての極性が低い。したがって過熱
水蒸気は、同じ気体状態にある酸素のような気体とは境
膜抵抗を生成することなく、相溶しやすい。従って、空
気中の酸素は極めて溶解し易くなり、酸素の分解物への
拡散が促進され、空気比1.00程度で酸化分解を行う
ことが可能となる。
【0018】従って上記事由により過熱水蒸気は加水分
解反応に加えて、過熱水蒸気中に相溶した酸素により酸
化分解を行い、酸化分解に要する空気を等量より低減す
ることを可能とする。
【0019】一方、分解対象液の体積流量よりも多い空
気を合わせて送液することで、分解対象液と空気の混合
液の装置内における滞留時間は、分解対象液のみを送液
分解した場合よりも短くなり、高速分解を可能とする。
【0020】また、空気以外の酸素富化空気、酸素、オ
ゾン、過酸化水素による分解も当該発明により実施する
ことができ、空気の代わりに、酸素富化空気、酸素、オ
ゾン、過酸化水素を溶媒に混合した場合の上記の難分解
性有機物および有機廃棄物の酸化による分解処理法も提
供する。
【0021】さらに、分解をさらに容易にするため、酸
化促進剤、加水分解促進剤としての水酸化ナトリウムを
溶媒に混合した場合の上記の難分解性有機物および有機
廃棄物の酸化による分解処理法を提供する。
【0022】さらに、分解対象溶液が水に溶解が困難
な、有機塩素系化合物等の有機廃棄物の場合に関して
は、溶媒を水に代えて、水と有機溶媒の混合物または有
機溶媒を用いる上記の難分解性有機物および有機廃棄物
の酸化による分解処理法を提供する。
【0023】また、本発明は、ボイラに水を供給するポ
ンプ、閉塞物質(無機物)を除去しつつ水蒸気を供する
非貫流ボイラ−、空気を注入するためのコンプレッサ−
と配管、空気を予熱する螺旋状配管、空気を向流に注入
できる配管および有機廃棄物を分解する反応管から組み
立てられ、ボイラと反応管および配管が1つの加熱炉に
コンパクトに納められた、水蒸気の自発圧力で排水が排
出が可能な、高濃度の有機廃棄物を高速酸化分解する装
置システムを要旨としている。
【0024】この装置の防食に関しては、ボイラ、反応
管、配管のすす等の付着物が管内表面に付着することに
起因する、酸素濃度差から発生する腐食を防止し、管内
表面をできるだけ清浄にするための、上記の装置システ
ムに、水をボイラ蒸発速度以上で、分解処理時よりも速
く送液することで、フラディングを行わせ、管内表面か
ら、付着したすす等の付着物を剥離し、装置の防食を行
う防食手段を提供する。
【0025】
【発明の実施の形態】以下図面に従って説明する。本発
明は、上記目的を達成するため、図2のボイラおよび図
3の反応管を配置した、図1の装置を採用した。主要装
置類はボックス型加熱炉(7)にコンパクトに収納し、
加熱を実施する。さらに、廉価で、安全性の高い空気を
酸化剤として用いて、大気中の空気をコンプレッサ(2
1)により、配管(22)、ティ−(23)、配管(2
4)を通じ、1次空気をクロス(6)に送気する。一方
で、分解対象液をポンプ(2)によってクロス(6)を
通じ、非貫流ボイラ(8)に送液して、発生する水蒸気
の自圧力により、配管(10)を通じ、触媒や充填物の
ない反応管(11)内に霧滴流として吹込まれた流体に
対し、コンプレッサ(21)から配管(22,25)、
ティ−(23)により送気され、スパイラル状の予熱配
管(26)を通過し、予熱2次空気を反対方向から向流
接触させることにより、分解効率を向上させる方式であ
る(図2参照)。1次空気を送気しない場合には配管
(24)が無くなり、ティ−(23)のボイラ−側がキ
ャップで閉じられる。排出経路に関しては、反応管(1
1)を通過した流体は配管(13)を通じて加熱炉を出
てバルブ(14)を通過して、配管(16)で水冷凝縮
器(17)で急冷され、気液分離器(18)通過後、気
体が(20)の位置で配管により、凝縮液が受液槽(1
9)採取される。なお、冷却槽はダイオキシン発生防止
のため、空冷とはしなかった。また、温度センサ(4,
5)により流体の温度が直接測温可能であり、圧力計、
圧力センサ(15)を用いることで圧力も測定可能であ
る。本発明装置は耐圧性の低い継手で連結するだけで十
分であり、装置自体の価格やランニングコストを低減す
ることに直接関係してくる。
【0026】さらに、装置を分解掃除することなく、装
置のスケ−ル、未分解有機物、炭素残渣の付着を防止す
るため、有機物分解実施後、ポンプ2によってボイラ−
容積程度の水の強制送液を実施し、過熱水蒸気を含む熱
水のフラディングを行わせることで配管、ボイラ−、反
応管等の装置を洗浄を可能とした。このことは、間接的
には装置の防食と装置寿命の延命化に関係する。さら
に、これは未分解または部分分解生成物が有機物の装置
内への蓄積の有無を確認する簡単な手法ともなりうる。
【0027】一方、酸化反応を利用することで、各種有
機物の低分子化を実施することが可能となる。特に、含
硫黄化合物からのメルカプタンやチオ−ル類の酸化を実
施可能なため石油精製におけるスイ−トニング法と同様
に悪臭防止を達成可能である。
【0028】他方、安価な空気による酸化反応を利用す
ることで、低分子分解後に生成した炭素に由来する多芳
香環化物質を起因とする、発煙を防止することが可能と
なる。空気の送気なしの場合、高濃度有機物は送液によ
り発煙しやすい。
【0029】
【実施例】本願発明の詳細を実施例で説明する。本願発
明はこれら実施例によって何ら限定されるものではな
い。
【0030】実施例 酢酸を過熱水蒸気空気酸化分解したときの例を以下に示
す。まず、装置の最適温度の決定するために、加熱炉を
設定温度に設定し、数分後、空気を空気比2.0で送気
し、ポンプから酢酸を溶解させた水溶液を1.5ml/
分で送液した。水溶液は非貫流ボイラ−で水蒸気とな
り、配管を通過して反応管に導入され分解が実施され
る。分解後の排出水蒸気は熱交換され、液体状態となっ
て排出される。なお、排出液の分解率はTOCで分析
し、適宜GC/MS,LC/MSを用いた。
【0031】酢酸の分解時の温度の効果を検討してみた
ところ500℃以上550℃以下の温度付近の温度が最
適であると判断された(図4)。
【0032】また、空気流量に対する理論空気量の割合
である空気比の最適化を行った。空気比0.0〜1.0
の範囲でも分解が可能であることが示唆された(図
5)。この場合、空気比0.0の場合にはヒドロキシ酢
酸の臭気があったが、空気が吹込まれると分解が促進さ
れ、臭気がほとんどなかった。
【0033】一般的に、分解対象有機物の状態や化学種
の種類により、均一系または不均一系といった物理的状
態や化学結合の種類が異なるため、温度、空気流量は異
なってくることは定性的には予想される。しかし、本発
明による装置特性を把握し、定温度運転可能な装置とす
る目的で、約525℃付近の温度、空気流量2.0で各
種有機化合物、有機廃棄物の飽和水溶液、または、分散
水溶液を用いて分解実験を実施した(図6−図12)。
【0034】悪臭の主要成分である有機酸(カルボン
酸)類の分解(図6)では、酢酸、プロピオン酸、酪
酸、イソ酪酸の場合、94%以上の高分解率が得られ
た。ぎ酸を除き、有機酸の種類によって分解率が異なる
傾向がないことから、有機酸のα位が酸化され、α−ヒ
ドロキシ有機酸が生成、脱炭酸し分解すると考えられる
(式6〜9)。他方、ぎ酸の場合、α位に活性水素がな
いため、過熱水蒸気による熱分解反応のみが起こってい
ると考えられる(式10〜12)。
【化6】 RCH2CO2H+O2→RC・HCO2H+HO2 (6)
【化7】 RC・HCO2H+O2→RCH(OOH)CO2H (7)
【化8】 RCH(OOH)CO2H→RCOCO2H+H2O (8)
【化9】 RCOCO2H→RCHO+CO2 (9)
【化10】 RCO2H→RH+CO2 (10)
【化11】 RH+O2→R・+HO2・ (11)
【化12】 R・+O2→ROOH (12)
【化13】 ROOH→RH+CO2 (13) R'CH2OOH→R'CHO+H2O R''R'''CHOOH→R''R'''C=O+H2
【0035】酢酸と酢酸ナトリウムを比較すると酢酸ナ
トリウムが分解率が4%程度向上することから、熱分解
による脱炭酸とその後のアルキルナトリウムの生成とお
よびアニオンの高い反応性が関与していると考えられる
(式14〜16)。
【化14】 RCO2Na→RNa+CO2 (14)
【化15】 RNa+O2→ROONa (15)
【化16】 R'CH2OONa→RCHO+NaOH (16)
【化17】 R''RCHOONa→R''R=O+NaOH (17)
【化18】 RCHO または R''R=O → 分解 (18)
【0036】不飽和二重結合を有するアクリル酸も95
%で分解可能であった。食品添加物、化粧品等に多量に
添加されるソルビン酸カリウムは完全分解可能であっ
た。はんだの接着助剤に用いられ、果実および食品添加
物である、クエン酸は低濃度2,000ppmでは96
%であったが、高濃度20,000ppmにするとほぼ
完全分解した。なお、芳香族の有機酸類の場合、分解率
は85%程度であった。芳香族化合物の場合、共鳴効果
によって開環分解反応が遅くなり分解率が低下したもの
と考えられる。
【0037】悪臭の主要成分であるアルデヒド類の分解
(図7)では、アセトアルデヒド、プロピオンアルデヒ
ドを実施し、分解率がやや低下し70〜80%の分解率
であった。ホルミル基の水素引抜き、酸化後、過酸から
有機酸となって分解していくか、または、熱分解による
脱ホルミル化が起こって分解していくと推定される。
【化19】 RCHO+O2→RCO・+HO2・ (19)
【化20】 RCO・+HO2→RCO(OOH) (20)
【化21】 RCO(OOH)→RCO2H+O (21)
【化22】 RCO2H→RH+CO2 (22)
【化23】 RCHO→R・+・CHO (23)
【化24】 RH または R・→ 分解 (24) ここで、分解率がやや低下した理由は、水の存在により
アルデヒドがアセタ−ルとなっており、
【化25】 RCHO+H2O→RCH(OH)2 (25) 酸素によるホルミル基の水素引抜反応が抑制され、カル
ボン酸への転化により反応が遅くなったのではないかと
考えられる。
【0038】一方、国際規制等で生体系にとって有害有
機廃棄物とされ、油分洗浄剤や不燃剤に用いられてい
る、有機ハロゲン化合物の分解(図8)では、脂肪族ハ
ロゲン化合物に関しては高濃度でも分解可能であった。
揮発性であることから、揮散防止のため、実験時には装
置の送液や排出口を、注射針をさしたシリコンセプタム
のキャップで閉じ、半閉鎖系にして水溶液を回収後、分
析を実施した。例えばジクロロメタン(塩化メチレン)
の高濃度の飽和水溶液13,000ppmは空気なしで
分解率20%であったが、空気吹込みによって分解率9
9%にまで向上した。クロロホルム(モノクロロメタ
ン)でも8,000ppm飽和水溶液を用いて行ったと
ころ、分解率99%であった。ところが、トリクロロメ
チレンの場合、90%とやや低く、テトラクロロメチレ
ンになるとさらに分解率が78%に低下した。四塩化炭
素も分解率が87%と低下した。従って、水素原子が全
く存在しない、完全塩素(パ−クロロ)置換体の場合、
分解率が低下する傾向があり、水素の存在は、過熱水蒸
気空気酸化分解を促進するためには重要であると考えら
れる。クロロベンゼンの飽和水溶液低濃度であるが9
9.4%と高分解率であった。ここで、ダイオキシン生
成に関しては、通常、ダイオキシンは温度300〜50
0℃の温度、触媒(フライアッシュ、銅などの金属
塩)、酸素または溶融塩化ナトリウム(温度800℃以
上)、酸素のすべての要件を満たすことで発生するとさ
れており、本発明の場合、空気中の酸素を用いているも
のの、1)ダイオキシン生成温度とされる300〜50
0℃付近、800℃付近を回避していること、2)流出
流体を水により急冷していること、3)問題となる等価
毒性の強い2,3,4,7−TCDDは本発明で分解可
能とされる水素を有していることの3点からダイオキシ
ン生成はないと考えられ、これらをGC/MSにより確
認した。さらに、PCBに関しても、本発明により、完
全塩素置換体以外は分解は容易であると予想される。
【0039】芳香族系有機化合物に関しては、やや低い
分解率が得られた(図9,10)。フェノ−ルを用い
て、温度と空気比の最適化を実施したところ、空気比
0.0で10%程度であり、排出液は強烈な悪臭を有し
たが、空気比を0〜2.0まで上げることで、分解率が
70%程度まで向上し、悪臭もかなり低減された。この
際の約30%の未分解生成物はほとんどがカテコ−ルで
あり、生体系で電子伝達系や微生物における酸化回路に
存在する物質であり、有害性は少ない。525℃以上の
温度でも実施したが、分解率は顕著には向上しなかった
(図10)。また、分解排出後の過熱水蒸気を再度ボイ
ラ−へリサイクラ−配管で導入、分解を実施したとこ
ろ、分解率は45%程度と極端に低下した。このことは
分解反応物(カテコール)と未分解生成物(フェノ−
ル)の混合流体中には、連鎖停止化学種(フェノール)
が含まれており、分解反応を抑制する効果があると考え
られる。ところが、水酸基を2個含む芳香族化合物(カ
テコ−ル、レゾルシン、ハイドロキノン)では分解率が
88〜90%程度と向上した。
【0040】生物系有機物の分解では、グルコ−ス6,
000ppmで完全分解したが、高濃度にすると分解率
が低下した。溶性でんぷん5,000ppmでは分解率
85%で、ヨウ素でんぷん反応により発色しない低分子
デキストリンが30%程度得られた(図11)。でんぷ
んやセルロ−スでは同じ実験条件では見かけ上完全分解
となったが、実際には、溶液を多めに送液してフラディ
ングを行うことにより、ボイラ−へ蓄積していることが
分かった。ところが、このフラディング操作によって、
セルロ−スの場合、分解生成物であるデキストリンが5
0%の程度、でんぷんの場合30%の収率で得られた。
このことは、本発明装置を用いた多量送液により、部分
分解も実施することが可能であることを示唆するもので
あり、空気量をさらに低減し、550℃以下の温度に設
定することでセルロ−ス、でんぷんからのデキストリン
合成、低分子多糖類や単糖類の合成が可能となり、生物
系有機廃棄物からの再資源化が可能となると判断され
る。
【0041】有機廃棄物の一つとして家畜や人間のふん
があるが、ふんは、様々な要因によって化学成分は変動
するものの、腸内バクテリアが主要成分であり、細菌類
の構成成分と類似し、糖類は割合少なく、タンパク質が
多いことが一般的に明らかとなっている。そこで、ふん
のタンパク組成を模擬し、閉塞の原因になると推定され
る、熱凝固性の疎水性アミノ酸のみを用いて、10,2
40ppm水溶液(ロイシン5,780ppm、イソロ
イシン1680ppm、フェニルアラニン2,500p
pm、プロリン1,640ppm、トリプトファン42
0ppm、バリン4,240ppm)を調製し、分解を
実施したところ85%程度の分解率が得られた。さら
に、ふんを分散した水溶液(1,084ppm)を用い
て、分解を実施したところ(図12)、原液の特有の悪
臭に比較し、格段に臭気が低下し、97%分解可能であ
った。このことは、加熱によるバクテリアの死滅後の構
成成分の分解が行われていることを示すものであり、衛
生的かつ無公害のふん尿処理の可能性を示すものであ
る。また、同じバクテリアと無機塩類から構成されてい
る汚泥も分解可能であることを示唆するものである。ふ
ん分解時には発熱反応であるため、分解処理時のエネル
ギ−利用の可能性も意味する。ところが、尿については
100,000ppm程度と高濃度で、有機窒素化合物
である、尿素と尿酸、および有機リン化合物が主要化学
成分であるため、触媒を併用しなければ分解が困難な有
機廃棄物である。有機窒素化合物や有機リン化合物は、
ポリリン酸化合物を生成するため防燃効果があり、燃焼
のような急速酸化反応を抑制する。この理由に関連する
と考えられるが、尿の分解では(図12)、分解率が低
下し、閉塞が発生し易くなった。実際に、閉塞配管部分
(9)を取り外し、直接ポンプでフラディングを実施し
たところ、多量のアモルファス炭素が排出された。ま
た、空気比0.0の場合には、ボイラ−から反応管への
導入配管9や反応管から冷却への配管13の部分に細い
配管を用いた場合、尿酸とアモルファス炭素が閉塞する
ことが、閉塞配管のフライス盤による断面加工と閉塞物
に対するラマン分光装置により確認された。
【0042】
【発明の効果】本発明により、水溶性または水に分散し
た状態にある、バイオマスや有機酸類、ハロゲン化合物
をコンパクトで、安価な空気を用いて分解または再資源
化することが可能となる。通常、高温水利用装置の場
合、閉塞防止の理由から、飽和濃度以上の水溶液におい
て液・液分離や固液分離する場合には、分離操作後、分
解を実施するか、流体の特異性を利用して固体分離・回
収装置を装着することが多い。本発明の一部を構成す
る、特許申請中の非貫流ボイラ−は、チュ−ブを用いて
非連続的な配置で構成し、不揮発性の無機物や固形物を
分離可能である(図2)。従って、ボイラ−底部に無機
物や固形物を除去する開閉式の下蓋を取付けることで洗
浄および保守・管理を容易にすることが可能とする。ま
た、本発明装置を用いて、酸素流量を低減してさらに酸
素比を小さし、温度を550℃以下に設定することで部
分分解手法も実施することが可能であり、セルロ−スか
らのデキストリン合成、低分子多糖類や単糖類の合成が
可能となり、有機廃棄物からの再資源化を可能とする。
【図面の簡単な説明】
【図1】過熱水蒸気空気酸化分解装置の図面である。
【図2】非貫流ボイラの図面である。
【図3】反応管内部の向流方式空気接触方式の図面であ
る。
【図4】酢酸の過熱水蒸気空気酸化分解における温度最
適化を説明する図面である。
【図5】酢酸の過熱水蒸気空気酸化分解における空気比
最適化を説明する図面である。
【図6】有機酸(カルボン酸)の過熱水蒸気空気酸化分
解を説明する図面である。
【図7】アルデヒド類の過熱水蒸気空気酸化分解を説明
する図面である。
【図8】有機塩素廃棄物の過熱水蒸気空気酸化分解を説
明する図面である。
【図9】フェノ−ルの過熱水蒸気空気酸化分解における
温度・空気の最適化を説明する図面である。
【図10】フェノールの過熱水蒸気空気酸化分解を説明
する図面である。
【図11】バイオマス系廃棄物の過熱水蒸気空気酸化分
解を説明する図面である。
【図12】ふん・尿の過熱水蒸気空気酸化分解を説明す
る図面である。
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 19/04 C07C 19/04 19/041 19/041 21/10 21/10 21/12 21/12 25/06 25/06 31/22 31/22 39/04 39/04 39/08 39/08 47/02 47/02 47/04 47/04 47/06 47/06 Z 47/54 47/54 49/08 49/08 Z 53/02 53/02 53/08 53/08 53/122 53/122 53/124 53/124 57/04 57/04 57/10 57/10 275/00 275/00 Fターム(参考) 4D059 AA01 AA07 BC02 BC03 BD01 DA01 EB08 EB10 4H006 AA05 AC13 BA02 BA29 BA90 BB31 BC10 BC18 BD81 BE30 BE31 BE32 BE60

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 分解対象物と溶媒と空気とを混合し、5
    50℃以下の温度で加熱し、圧力0.1MPa〜0.5
    MPa程度の過熱水蒸気とし、過熱蒸気を所定の時間に
    反応管を通過させることで、分解対象物を無触媒で分解
    処理する方法であって、溶媒として、水を用いるととも
    に、空気中の酸素による酸化反応と過熱水蒸気による乾
    燥、加水分解反応、熱分解反応の全てまたはいずれかの
    組み合わせにより分解することを特徴とする難分解性有
    機物および有機廃棄物の酸化分解処理方法。
  2. 【請求項2】 上記の過熱水蒸気に、別に550℃以下
    の温度に加熱された空気を向流接触させ、それにより空
    気比1以下の少ない空気を含む過熱水蒸気への溶解の促
    進を行いつつ、分解処理物からの熱分解による発煙と悪
    臭の発生を低減し、無触媒で分解処理する請求項1の難
    分解性有機物および有機廃棄物の酸化分解処理方法。
  3. 【請求項3】 空気の代わりに酸素富化空気、酸素、オ
    ゾンおよび/または過酸化水素を用いる請求項1または
    2の難分解性有機物および有機廃棄物の酸化分解処理
    法。
  4. 【請求項4】 酸化促進剤および加水分解促進剤として
    の水酸化ナトリウムを溶媒に混合する請求項1、2また
    は3の難分解性有機物および有機廃棄物の酸化分解処理
    法。
  5. 【請求項5】 溶媒を水に代えて、水と有機溶媒の混合
    物または有機溶媒を用いる請求項1ないし4のいずれか
    の難分解性有機物および有機廃棄物の酸化分解処理法。
  6. 【請求項6】 ボイラに水を供給するポンプと、水蒸気
    を供するボイラ−と、空気を注入するためのコンプレッ
    サ−と配管、空気を予熱する螺旋状配管、空を向流に注
    入できる配管および有機廃棄物を分解する反応管から組
    み立てられ、ボイラと反応管および配管が1つの加熱炉
    にコンパクトに納められた、水蒸気の自発圧力で排水の
    排出が可能な、高濃度の有機廃棄物を高速酸化による無
    触媒分解する装置システム。
  7. 【請求項7】 ボイラ、反応管、配管のすす等の付着物
    が管内表面に付着することによる酸素濃度差から発生す
    る腐食を防止し、管内表面をできるだけ清浄にするため
    の、上記の装置システムに、水をボイラ蒸発速度以上
    で、分解処理時よりも速く送液を行うことで、フラディ
    ングを行わせ、管内表面から、すす等の付着物を剥離す
    る防食手段を付加した請求項6の高濃度の有機廃棄物を
    高速酸化による無触媒分解する装置システム。
JP2001145338A 2001-05-15 2001-05-15 有機廃棄物の高速分解方法とその装置 Withdrawn JP2002336673A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001145338A JP2002336673A (ja) 2001-05-15 2001-05-15 有機廃棄物の高速分解方法とその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001145338A JP2002336673A (ja) 2001-05-15 2001-05-15 有機廃棄物の高速分解方法とその装置

Publications (1)

Publication Number Publication Date
JP2002336673A true JP2002336673A (ja) 2002-11-26

Family

ID=18991175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001145338A Withdrawn JP2002336673A (ja) 2001-05-15 2001-05-15 有機廃棄物の高速分解方法とその装置

Country Status (1)

Country Link
JP (1) JP2002336673A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032163A1 (ja) * 2005-09-16 2007-03-22 Karasawa Fine, Ltd. 有機廃棄物の酸化処理方法と、有機廃棄物の酸化処理装置
AT509319B1 (de) * 2010-05-25 2011-08-15 Biogas Systems Gmbh Verfahren und vorrichtung zur hydrolyse von vorzugsweise festen, organischen substraten
CN102151683A (zh) * 2010-12-02 2011-08-17 北京工商大学 餐厨垃圾湿热—发酵综合无害化和资源化处理系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032163A1 (ja) * 2005-09-16 2007-03-22 Karasawa Fine, Ltd. 有機廃棄物の酸化処理方法と、有機廃棄物の酸化処理装置
AT509319B1 (de) * 2010-05-25 2011-08-15 Biogas Systems Gmbh Verfahren und vorrichtung zur hydrolyse von vorzugsweise festen, organischen substraten
AT509319A4 (de) * 2010-05-25 2011-08-15 Biogas Systems Gmbh Verfahren und vorrichtung zur hydrolyse von vorzugsweise festen, organischen substraten
CN102151683A (zh) * 2010-12-02 2011-08-17 北京工商大学 餐厨垃圾湿热—发酵综合无害化和资源化处理系统

Similar Documents

Publication Publication Date Title
JP3877770B2 (ja) 流出ガスの処理
US4819571A (en) Process for the destruction of organic waste material
KR20020089499A (ko) 초임계 수 반응물로 유기물-귀금속 조성물로부터 귀금속회수
RU2509833C2 (ru) Способ и устройство для гидролиза целлюлозного материала
JP2002336673A (ja) 有機廃棄物の高速分解方法とその装置
JP4501028B2 (ja) 酢酸の製造方法
JP4763789B2 (ja) テレフタル酸工程から発生する廃棄物の処理方法
JP2008178769A (ja) 廃水処理方法
JP2004108692A (ja) アクリル酸及びアクリル酸エステルプロセス廃棄物の処理方法
KR100393284B1 (ko) 초임계수에 의한 유기물의 열분해 및 산화처리를 결합한프로세스
JP3219689B2 (ja) 難分解物質の分解処理方法及びその装置
JP4702868B2 (ja) 有機性廃棄物の処理方法、同処理装置
KR930010569B1 (ko) 물질 혼합물로부터 성분, 원소 또는 화합물을 제조하는 방법
JP2012200654A (ja) 液体中のアンモニア除去方法及び除去装置
JP3730794B2 (ja) 難分解物質の分解処理方法及びその装置
JP3219706B2 (ja) 難分解物質の分解処理方法及びその装置
JP4244043B2 (ja) 有機塩素化合物を含む廃棄物の再資源化方法
JP3669881B2 (ja) 難分解物質の分解処理方法及びその装置
JP2005270816A (ja) 有機性廃棄物の高温高圧処理装置
US5641412A (en) Free radical oxidation process and installation for treating liquid effluents contaminated by organic substances
RU2014346C1 (ru) Способ переработки отходов
JP2005152806A (ja) 排水の処理方法
JP3302125B2 (ja) 廃水の処理方法
JP4195163B2 (ja) 廃液及び排ガス処理方法
JP3664716B2 (ja) 環境汚染物質のガス化方法及びその装置並びにその分解処理方法及びその装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805