JP2002322611A - Earthquake-proof structure of suspension bridge and earthquake-proof and reinforcing method - Google Patents

Earthquake-proof structure of suspension bridge and earthquake-proof and reinforcing method

Info

Publication number
JP2002322611A
JP2002322611A JP2001125329A JP2001125329A JP2002322611A JP 2002322611 A JP2002322611 A JP 2002322611A JP 2001125329 A JP2001125329 A JP 2001125329A JP 2001125329 A JP2001125329 A JP 2001125329A JP 2002322611 A JP2002322611 A JP 2002322611A
Authority
JP
Japan
Prior art keywords
bridge
earthquake
cable
pier
main tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001125329A
Other languages
Japanese (ja)
Other versions
JP4362020B2 (en
Inventor
Shunzo Oka
俊蔵 岡
Satoru Kamihira
悟 上平
Koichi Inoue
幸一 井上
Hisaya Myojin
久也 明神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001125329A priority Critical patent/JP4362020B2/en
Publication of JP2002322611A publication Critical patent/JP2002322611A/en
Application granted granted Critical
Publication of JP4362020B2 publication Critical patent/JP4362020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an earthquake-proof structure of a suspension bridge and an earthquake-proof and reinforcing method for the suspension bridge improved in earthquake-proof performance. SOLUTION: In this earthquake-proof structure for the suspension bridge 15, 25, 32, 38, a bridge girder 2 is supported through a support member 6 by a pier 4, a main tower 8 is provided in a part corresponding to the pier on the bridge girder, and the main stupa hangs down the bridge girder through cables 10. The suspension bridge of the invention has a first and second brackets 16, 17 projected on the top part of the pier on both sides in the cross direction of the bridge, and at least one set of auxiliary cables 22 connecting the first and second brackets and the upper pat of the main tower, disposed substantially symmetrically in the cross direction of the bridge, and to which designated tension is applied. Further, the earthquake-proof reinforcing method is also provided for the suspension bridge.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吊り橋の耐震構造
及び耐震補強方法に係り、特に、橋脚により支承部材を
介して橋桁を支持し、この橋桁上の橋脚に対応した部分
に主塔を設けこの主塔がケーブルを介して上記橋桁を吊
り下げる吊り橋の耐震構造及び耐震補強方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an earthquake-resistant structure and a method for reinforcing a suspension bridge, and more particularly to a bridge girder supporting a bridge girder via a support member and a main tower provided on a portion corresponding to the bridge pier on the bridge girder. The present invention relates to an anti-seismic structure and an anti-seismic reinforcement method for a suspension bridge in which the main tower suspends the bridge girder via a cable.

【0002】[0002]

【従来の技術】阪神淡路大震災以降、これを教訓として
吊り橋に対する耐震性の考え方が見直され、それに伴っ
て新設及び既設の吊り橋に対しても、種々の耐震対策が
実施されている。新設の吊り橋の場合は、当初から耐震
対策を考慮した設計が行えるが、既設の吊り橋の場合は
吊り橋を構成する部材の取り合い等の制約が多く、耐震
対策を施すことは容易でない。
2. Description of the Related Art Since the Great Hanshin-Awaji Earthquake, the concept of earthquake resistance for suspension bridges has been reviewed using this as a lesson, and various seismic measures have been implemented for new and existing suspension bridges. In the case of a new suspension bridge, the design can be made considering seismic measures from the beginning, but in the case of an existing suspension bridge, there are many restrictions such as the connection of the members that make up the suspension bridge, and it is not easy to take seismic measures.

【0003】次に、図1及び図2により、吊り橋の一例
である斜張橋に対して耐震補強方法を実施する場合の従
来技術を説明する。図1に示すように、一般的に、斜張
橋1は、橋桁2を備え、この橋桁2は橋脚4の上に支承
部材6を介して支持され、さらに橋桁2上には主塔8が
設けられ、この主塔8と橋桁2との間を複数のケーブル
10により接続して橋桁2が支持されるような構造とな
っている。図2は、既設の斜張橋の支持構造を示す部分
拡大図である。図2に示すように、従来から、斜張橋の
耐震性を向上させる場合には、橋桁2と橋脚4との間に
免震装置12を新たに介装する方法や、主塔8の下部に
補強材14を取付けることにより主塔8を直接的に補強
する方法等が、採用されている。
[0003] Next, with reference to Figs. 1 and 2, a description will be given of a conventional technique in which an earthquake-resistant reinforcement method is applied to a cable-stayed bridge which is an example of a suspension bridge. As shown in FIG. 1, the cable-stayed bridge 1 generally includes a bridge girder 2, which is supported on a pier 4 via a support member 6, and a main tower 8 on the bridge girder 2. The main tower 8 and the bridge girder 2 are connected by a plurality of cables 10 so that the bridge girder 2 is supported. FIG. 2 is a partially enlarged view showing a support structure of an existing cable stayed bridge. As shown in FIG. 2, conventionally, to improve the seismic resistance of a cable-stayed bridge, a method of newly interposing a seismic isolation device 12 between the bridge girder 2 and the pier 4, A method of directly reinforcing the main tower 8 by attaching a reinforcing material 14 to the main tower 8 is adopted.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の既設の斜張橋に対する従来の耐震補強方法において、
橋桁2と橋脚4との間に免震装置12を介装する方法
は、大重量の橋桁2をジャッキアップしなければならな
いので、その工事が大掛かりとなって工事費が高くなっ
たり、工期も長くなる等の問題がある。また、免震装置
自身も大重量を支持することから大面積を必要とし、免
震化により地震時の変位が大きくなることから橋脚上面
を広げなければならなくなる等の問題もある。次に、主
塔8を補強材14により補強する方法は、補強部材の数
が多い場合や補強個所によっては交通規制の必要があ
り、足場架設が広範囲に亘るため、コストが増加する等
の問題がある。
However, in the conventional seismic retrofitting method for these existing cable stayed bridges,
In the method of interposing the seismic isolation device 12 between the bridge girder 2 and the pier 4, the heavy bridge girder 2 must be jacked up, so that the construction becomes large and the construction cost becomes high, and the construction period is also reduced. There is a problem such as lengthening. In addition, the seismic isolation device itself requires a large area because it supports a large weight, and there is a problem that the upper surface of the pier has to be expanded because the displacement during an earthquake increases due to seismic isolation. Next, the method of reinforcing the main tower 8 with the reinforcing material 14 requires a traffic regulation depending on the number of reinforcing members or a reinforcing point, and a problem that the cost is increased because the scaffolding is extensively installed. There is.

【0005】一方、新設の斜張橋の耐震性を向上させる
ためには、主塔の断面を大きくするか、主塔を構成する
板厚を大きくする必要があり、また、免震装置を設ける
場合にはその免震装置が大重量を支持するために大面積
な装置となる必要があり、さらに、免震化により地震時
の変位が大きくなることから橋脚の上面までも広くとら
なければならず、コスト的に問題がある。
On the other hand, in order to improve the seismic resistance of the newly installed cable-stayed bridge, it is necessary to increase the cross section of the main tower or to increase the thickness of the main tower, and to provide a seismic isolation device. In this case, the seismic isolation device must be a large-area device to support a large weight, and the seismic isolation increases displacement during an earthquake, so it must be large enough to cover the top of the pier. There is a problem in cost.

【0006】そこで、本発明は、従来技術の問題を解決
するためになされたものであり、新設の吊り橋及び既設
の吊橋の耐震性能を容易に向上させることができる吊り
橋の耐震構造及び耐震補強方法を提供することを目的と
している。
Accordingly, the present invention has been made to solve the problems of the prior art, and a seismic structure and an antiseismic reinforcement method for a suspension bridge capable of easily improving the seismic performance of a new suspension bridge and an existing suspension bridge. It is intended to provide.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、橋脚により支承部材を介して橋桁を支持
し、この橋桁上の橋脚に対応した部分に主塔を設けこの
主塔がケーブルを介して上記橋桁を吊り下げる吊り橋の
耐震構造であって、橋脚の上部に橋幅方向の両側にそれ
ぞれ突出して設けられた第1及び第2のブラケットと、
これらの第1及び第2のブラケットと主塔の上部とをそ
れぞれ接続し且つ橋幅方向においてほぼ対称に設けられ
ると共に予め所定の張力が付与された少なくとも1組の
補助ケーブルと、を有することを特徴としている。この
ように構成された本発明の吊り橋の耐震構造において
は、地震により主塔及び橋桁が橋幅方向に振動した場合
であっても、予め所定の張力が付与された少なくとも1
組の補助ケーブルにより、第1及び第2のブラケットと
主塔の上部とがそれぞれ接続され、さらに、これらの1
組の補助ケーブルがほぼ対称に設けられているため、主
塔の揺れが抑制され、さらに、橋桁両端部の浮上がりと
押下がりの動作も抑制される。これにより、主塔の基部
に発生する応力及び支承部材に発生する反力が低減させ
る。この結果、吊り橋全体において耐震効果を得ること
ができる。
According to the present invention, a bridge girder is supported by a pier via a support member, and a main tower is provided at a portion corresponding to the pier on the bridge girder. Is a quake-resistant structure of a suspension bridge that suspends the bridge girder via a cable, and first and second brackets provided on an upper portion of a pier, respectively, protruding on both sides in a bridge width direction;
At least one set of auxiliary cables that connect the first and second brackets and the upper part of the main tower respectively and are provided substantially symmetrically in the bridge width direction and are given a predetermined tension in advance. Features. In the seismic structure of the suspension bridge of the present invention configured as described above, even if the main tower and the bridge girder vibrate in the bridge width direction due to the earthquake, at least one of the pre-set tension is applied.
The set of auxiliary cables connects the first and second brackets to the upper part of the main tower, respectively.
Since the set of auxiliary cables is provided substantially symmetrically, the swing of the main tower is suppressed, and the lifting and pushing operations of both ends of the bridge girder are also suppressed. This reduces the stress generated at the base of the main tower and the reaction force generated at the bearing member. As a result, an earthquake-resistant effect can be obtained in the entire suspension bridge.

【0008】本発明の吊り橋の耐震構造は、好ましく
は、更に、第1及び第2のブラケットと主塔の中間部と
をそれぞれ接続し且つ橋幅方向においてほぼ対称に設け
られると共に予め所定の張力が付与された少なくとも1
組の第2の補助ケーブルを有する。本発明の吊り橋の耐
震構造は、好ましくは、更に、第1及び第2のブラケッ
トと橋脚とをそれぞれ接続し且つ橋幅方向においてほぼ
対称に設けられると共に予め所定の張力が付与された少
なくとも1組の第3の補助ケーブルを有する。
[0008] The earthquake-resistant structure of the suspension bridge of the present invention is preferably further provided so as to connect the first and second brackets to the intermediate portion of the main tower, and to be provided substantially symmetrically in the bridge width direction and to have a predetermined tension. At least one with
It has a set of second auxiliary cables. Preferably, the earthquake-resistant structure of the suspension bridge according to the present invention further comprises at least one set of first and second brackets each connected to the pier and provided substantially symmetrically in the bridge width direction and given a predetermined tension in advance. Has a third auxiliary cable.

【0009】さらに、本発明は、橋脚により支承部材を
介して橋桁を支持し、この橋桁上の橋脚に対応した部分
に主塔を設けこの主塔がケーブルを介して橋桁を吊り下
げる吊り橋の耐震補強方法であって、橋脚の上部に橋幅
方向の両側にそれぞれ突出する第1及び第2のブラケッ
トを設ける工程と、これらの第1及び第2のブラケット
と主塔の上部とをそれぞれ接続する予め所定の張力が付
与された少なくとも1組の補助ケーブルを橋幅方向にお
いてほぼ対称に設ける工程と、を有することを特徴とし
ている。
Further, the present invention provides an earthquake-resistant suspension bridge in which a bridge pier supports a bridge girder via a support member, and a main tower is provided on a portion of the bridge girder corresponding to the pier, and the main tower suspends the bridge girder via a cable. A reinforcing method for providing first and second brackets projecting on both sides of a bridge pier in an upper portion of a bridge pier, and connecting the first and second brackets to an upper portion of a main tower, respectively. Providing at least one set of auxiliary cables to which a predetermined tension is applied in advance, in a substantially symmetric manner in the bridge width direction.

【0010】[0010]

【発明の実施の形態】以下、添付図面を参照して、本発
明の実施形態を説明する。まず、図3及び図4により本
発明の第1実施形態を説明する。図3は吊り橋を全体正
面図であり、図4は、図3のIV−IV線に沿って見た
拡大側面図である。図3及び図4に示すように、符号1
5は、本実施形態が適用される吊り橋の一種である斜張
橋を示し、この斜張橋15は、橋桁2と、この橋桁2を
支承部材6を介して支持する橋脚4と、橋桁2上の橋脚
4に対応した部分に設けられた主塔8と、この主塔8と
橋桁2とを接続し橋桁2を吊るすケーブル10を備えて
いる。なお、主塔8は、その基部8aで橋桁2に固定さ
れ、さらに、支承部材6は、橋桁2の橋幅方向の中央に
設けられた支承部材6aと、両側に設けられた支承部材
6b,6cとから構成されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 3 is an overall front view of the suspension bridge, and FIG. 4 is an enlarged side view taken along line IV-IV in FIG. As shown in FIG. 3 and FIG.
Reference numeral 5 denotes a cable-stayed bridge which is a type of suspension bridge to which the present embodiment is applied. The cable-stayed bridge 15 includes a bridge girder 2, a pier 4 for supporting the bridge girder 2 via a support member 6, and a bridge girder 2. A main tower 8 provided at a portion corresponding to the upper pier 4 and a cable 10 for connecting the main tower 8 to the bridge girder 2 and suspending the bridge girder 2 are provided. The main tower 8 is fixed to the bridge girder 2 at its base 8a. Further, the support member 6 includes a support member 6a provided at the center of the bridge girder 2 in the bridge width direction and support members 6b provided on both sides. 6c.

【0011】斜張橋15は、更に、橋脚4の上部の橋幅
方向の両側には、橋幅方向に突出するブラケット16,
17を備え、これらのブラケット16,17の先端の上
側に位置する先端取付部16a,17aと主塔8の頂部
の両側に設けられた頂部取付部20a,21aの間に
は、これらを接続する補助ケーブル22が橋幅方向に対
称となるように設けられている。さらに、これらの補助
ケーブル22には、地震が発生したときに過度なゆるみ
が生じて補助ケーブル22による拘束が失われないよう
に、予め所定の張力が付与されている。
The cable-stayed bridge 15 further includes brackets 16 projecting in the bridge width direction on both sides of the bridge pier 4 in the bridge width direction.
17 are connected between tip mounting portions 16a, 17a located above the tips of the brackets 16, 17 and top mounting portions 20a, 21a provided on both sides of the top of the main tower 8. The auxiliary cable 22 is provided symmetrically in the bridge width direction. Furthermore, a predetermined tension is applied to these auxiliary cables 22 in advance so that excessive loosening does not occur when an earthquake occurs and the restraint by the auxiliary cables 22 is not lost.

【0012】次に第1実施形態の作用を説明する。新設
の斜張橋15を建設する場合には、上述した橋桁2、ブ
ラケット16,17が一体的に設けられた橋脚4、支承
部材6(6a,6b,6c)、主塔8、ケーブル10、
及び、補助ケーブル22をそれぞれ準備し、これらを組
立てて、図3及び図4に示すような斜張橋15の耐震構
造を得ることができる。
Next, the operation of the first embodiment will be described. When constructing a new cable stayed bridge 15, the bridge girder 2, the pier 4 integrally provided with the brackets 16 and 17, the support members 6 (6 a, 6 b, 6 c), the main tower 8, the cable 10,
In addition, the auxiliary cables 22 are prepared and assembled to obtain an earthquake-resistant structure of the cable-stayed bridge 15 as shown in FIGS. 3 and 4.

【0013】一方、既設の斜張橋に対して、耐震補強す
る場合には、橋桁2、橋脚4、支承部材6(6a,6
b,6c)、主塔8、及び、ケーブル10を備えた既設
の斜張橋に対して、上述したブラケット16,17を橋
脚4の上部の橋幅方向の両側に突出するように設け、次
ぎに、補助ケーブル22により、ブラケット16,17
の先端取付部16a,17aと主塔8の頂部の両側に設
けられた頂部取付部20a,21aとを接続すると共
に、これらの補助ケーブル22を橋幅方向に対称となる
ように設ける。このとき、補助ケーブル22には、地震
が発生したときに過度なゆるみが生じて補助ケーブル2
2による拘束が失われないように、予め所定の張力が付
与されている。このようにして、耐震補強された斜張橋
15を得ることができる。
On the other hand, when an existing cable-stayed bridge is to be subjected to seismic reinforcement, the bridge girder 2, the pier 4, and the support members 6 (6a, 6
b, 6c), for the existing cable-stayed bridge provided with the main tower 8 and the cable 10, the brackets 16 and 17 described above are provided so as to protrude on both sides in the bridge width direction above the pier 4, and In addition, the brackets 16 and 17 are connected by the auxiliary cable 22.
Are connected to the top mounting portions 20a and 21a provided on both sides of the top of the main tower 8, and these auxiliary cables 22 are provided so as to be symmetrical in the bridge width direction. At this time, when the earthquake occurs, the auxiliary cable 22 is excessively loosened and the auxiliary cable 2
A predetermined tension is applied in advance so as not to lose the constraint caused by the second member. Thus, the cable-stayed bridge 15 reinforced with earthquake resistance can be obtained.

【0014】一方、ブラケット及び補助ケーブルが設け
られていない従来構造の斜張橋では、地震により主塔8
が橋幅方向に振動すると、主塔8の振動に連動して橋桁
2の両端部が交互に浮上がりと押下がりの動作を繰返
し、主塔8の基部8aに大きな応力が発生したり、橋桁
2と橋脚4との間に設けられた支承部材6(特に、支承
部材6b,6c)に大きな反力が発生する。このため、
斜張橋の破壊、倒壊及び接近構造物への接触等の影響が
危惧される。しかしながら、上述した本実施形態による
斜張橋15においては、地震が発生して主塔8が橋幅方
向に振動しても、補助ケーブル22には、過度にゆるん
で拘束が失われないように予め所定の張力が付与されて
いるため、主塔8の揺れや橋桁2の両端部の浮上がりと
押下がりの動作が抑制され、主塔8の基部8aに発生す
る応力や支承部材6、特に、両側の支承部材6b、6c
に発生する反力等が大幅に低減される。
On the other hand, in a cable-stayed bridge having a conventional structure without a bracket and an auxiliary cable, the main tower 8 is not affected by an earthquake.
Vibrates in the bridge width direction, the both ends of the bridge girder 2 alternately lift and lower alternately in conjunction with the vibration of the main tower 8, and a large stress is generated in the base 8 a of the main tower 8. A large reaction force is generated in the support member 6 (particularly, the support members 6b and 6c) provided between the bridge 2 and the pier 4. For this reason,
It is feared that the cable-stayed bridge will be destroyed, collapsed, and come into contact with nearby structures. However, in the cable-stayed bridge 15 according to the present embodiment, even if an earthquake occurs and the main tower 8 vibrates in the bridge width direction, the auxiliary cable 22 is not excessively loosened so that the restraint is not lost. Since a predetermined tension is applied in advance, the swinging of the main tower 8 and the lifting and lowering operations of the both ends of the bridge girder 2 are suppressed, and the stress generated at the base 8a of the main tower 8 and the bearing member 6, especially , Bearing members 6b, 6c on both sides
The reaction force or the like generated in the above is greatly reduced.

【0015】次に、図5を参照して、本発明の第2実施
形態を説明する。なお、図5において、図4に示す構成
と同一部分には同一符号を付し、それらの説明は省略す
る。この第2実施形態が適用される斜張橋25は、上述
した第1実施形態の構造に加えて、第2補助ケーブル2
8を設けるようにしたものである。この第2補助ケーブ
ル28は、ブラケット16、17の先端取付部16a,
17aと、主塔8の中間取付部30a,31aとを接続
するように車幅方向においてそれぞれ対称に設けられて
いる。なお、この第2補助ケーブル28に対しても、地
震が発生したときに過度なゆるみが生じて第2補助ケー
ブル28による拘束が失われないように、予め所定の張
力が付与されている。
Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 5, the same components as those shown in FIG. 4 are denoted by the same reference numerals, and the description thereof will be omitted. The cable-stayed bridge 25 to which the second embodiment is applied includes a second auxiliary cable 2 in addition to the structure of the above-described first embodiment.
8 is provided. The second auxiliary cable 28 is connected to the front end mounting portions 16a of the brackets 16 and 17,
17a and the intermediate mounting portions 30a and 31a of the main tower 8 are provided symmetrically in the vehicle width direction so as to be connected to each other. A predetermined tension is also applied to the second auxiliary cable 28 in advance so that the second auxiliary cable 28 is not loosened excessively when an earthquake occurs and the restraint by the second auxiliary cable 28 is not lost.

【0016】次に第2実施形態の作用を説明する。この
ように構成された第2実施形態の斜張橋25の耐震構造
において、上述した第1実施形態における作用効果を奏
することは当然であるが、それ以外に、予め所定の張力
が付与された2組の補助ケーブル22,28により、主
塔8とブラケット16,17がそれぞれ対称に接続され
ているため、より大きな耐震効果を得ることができる。
さらに、2組の補助ケーブル22,28を使用している
ため、これらに付与できる張力の幅が広くなり、設計の
自由度が広がるという効果もある。なお、第2補助ケー
ブル28においては、要求される耐震性能に応じて、取
付部30a,31aの位置を変えたり、本数(組数)を
増やすようにしてもよい。
Next, the operation of the second embodiment will be described. In the earthquake-resistant structure of the cable-stayed bridge 25 of the second embodiment configured as described above, it is natural that the operation and effect of the above-described first embodiment can be obtained. In addition, a predetermined tension is applied in advance. Since the main tower 8 and the brackets 16 and 17 are symmetrically connected to each other by the two sets of auxiliary cables 22 and 28, a greater seismic effect can be obtained.
Furthermore, since two sets of auxiliary cables 22 and 28 are used, the width of the tension that can be applied to these auxiliary cables 22 and 28 is widened, and there is an effect that the degree of freedom in design is widened. In the second auxiliary cable 28, the positions of the attachment portions 30a and 31a may be changed or the number (the number of sets) may be increased in accordance with the required earthquake resistance.

【0017】次に、図6を参照して、本発明の第3実施
形態を説明する。なお、図6において、図4(第1実施
形態)に示す構成と同一部分には同一符号を付し、それ
らの説明は省略する。この第3実施形態が適用される斜
張橋32は、上述した第1実施形態(図4参照)の構造
に加えて、第3補助ケーブル34を設けるようにしたも
のである。この第3補助ケーブル34は、ブラケット1
6、17の先端の下側に位置する先端取付部16b,1
7bと、橋脚4のブラケット16,17の下方に位置す
る取付部36a,37aとを接続するように橋幅方向に
おいてそれぞれ対称に設けられている。なお、この第3
補助ケーブル34に対しても、地震が発生したときに過
度なゆるみが生じて第3補助ケーブル34による拘束が
失われないように、予め所定の張力が付与されている。
Next, a third embodiment of the present invention will be described with reference to FIG. In FIG. 6, the same components as those shown in FIG. 4 (first embodiment) are denoted by the same reference numerals, and description thereof will be omitted. The cable stayed bridge 32 to which the third embodiment is applied has a structure in which a third auxiliary cable 34 is provided in addition to the structure of the above-described first embodiment (see FIG. 4). The third auxiliary cable 34 is connected to the bracket 1
Tip attachment portions 16b, 1 located below the tips of 6, 17
7b are provided symmetrically in the bridge width direction so as to connect the mounting portions 36a, 37a located below the brackets 16, 17 of the pier 4. Note that this third
A predetermined tension is also applied to the auxiliary cable 34 in advance so that excessive loosening does not occur when an earthquake occurs and the restraint by the third auxiliary cable 34 is not lost.

【0018】次に第3実施形態の作用を説明する。この
ように構成された第3実施形態の斜張橋32の耐震構造
においては、上述した第1実施形態における作用効果を
奏する。さらに、第3実施形態の斜張橋32において
は、地震が発生したときに、補助ケーブル22が受けた
力を、第3補助ケーブル34により釣り合わせて、減少
させることができるので、ブラケット16,17の基部
16c、17cに生じる応力値(応答値)を小さくする
ことができる。その結果、本実施形態によれば、ブラケ
ット16,17の構造を小さくすることができ、コスト
が低減される。なお、本実施形態においても、第3補強
ケーブル34については、要求される耐震性能に応じ
て、取付部36a,37aの位置を変えたり、本数(組
数)を増やすようにしてもよい。
Next, the operation of the third embodiment will be described. In the earthquake-resistant structure of the cable-stayed bridge 32 of the third embodiment configured as described above, the operation and effect of the first embodiment described above are exerted. Furthermore, in the cable stayed bridge 32 of the third embodiment, when an earthquake occurs, the force received by the auxiliary cable 22 can be reduced by balancing with the third auxiliary cable 34. The stress value (response value) generated in the bases 16c, 17c of the 17 can be reduced. As a result, according to the present embodiment, the structure of the brackets 16 and 17 can be reduced, and the cost is reduced. In the present embodiment, as for the third reinforcing cable 34, the positions of the mounting portions 36a and 37a may be changed or the number (the number of sets) of the third reinforcing cable 34 may be increased according to the required seismic performance.

【0019】次に、図7を参照して、本発明の第4実施
形態を説明する。この第4実施形態は、図5に示す第2
実施形態と、図6に示す第3実施形態とを、組み合せた
実施形態であり、そのため、図5及び図6に示す構成と
同一部分には同一符号を付し、それらの説明は省略す
る。この第4実施形態が適用される斜張橋38は、上述
した、ブラケット16,17、補強ケーブル22、第2
補強ケーブル28、さらに、第3補強ケーブル34を備
えている。これらの各補強ケーブル22,28,34に
は、上述したように、地震が発生したときに過度なゆる
みが生じてケーブルによる拘束が失われないように、予
め所定の張力が付与されている。
Next, a fourth embodiment of the present invention will be described with reference to FIG. This fourth embodiment is similar to the second embodiment shown in FIG.
This is an embodiment in which the embodiment and the third embodiment shown in FIG. 6 are combined. Therefore, the same parts as those shown in FIGS. 5 and 6 are denoted by the same reference numerals, and their description is omitted. The cable stayed bridge 38 to which the fourth embodiment is applied includes the brackets 16 and 17, the reinforcing cable 22, and the second
A reinforcing cable 28 and a third reinforcing cable 34 are provided. As described above, a predetermined tension is applied to each of the reinforcing cables 22, 28, and 34 so that excessive loosening does not occur when an earthquake occurs and the cables are not restrained.

【0020】なお、ここでは、本発明の実施形態とし
て、斜張橋の例を説明したが、本発明は、斜張橋に限定
されず、他の種類の吊り橋にも適用可能である。
Although an example of a cable-stayed bridge has been described as an embodiment of the present invention, the present invention is not limited to a cable-stayed bridge, but can be applied to other types of suspension bridges.

【0021】[0021]

【発明の効果】以上説明したように本発明の吊り橋の耐
震構造によれば、新設の吊り橋及び既設の吊橋の耐震性
能を容易に向上させることができる。また、本発明の吊
り橋の耐震補強方法においても、同様に、吊り橋の耐震
性能を容易に向上させることができる。
As described above, according to the earthquake-resistant structure of the suspension bridge of the present invention, the seismic performance of the new suspension bridge and the existing suspension bridge can be easily improved. Also, in the seismic retrofitting method of the suspension bridge of the present invention, similarly, the seismic performance of the suspension bridge can be easily improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の斜張橋の一般的な構造を示す概略正面図
である。
FIG. 1 is a schematic front view showing a general structure of a conventional cable stayed bridge.

【図2】図1に示す斜張橋の従来の支持構造を示す拡大
正面図である。
FIG. 2 is an enlarged front view showing a conventional support structure of the cable stayed bridge shown in FIG.

【図3】本発明の第1実施形態の斜張橋の耐震構造を示
す概略正面図である。
FIG. 3 is a schematic front view showing an earthquake-resistant structure of the cable-stayed bridge according to the first embodiment of the present invention.

【図4】図3のIV−IV線に沿って見た拡大側面図で
ある。
FIG. 4 is an enlarged side view taken along the line IV-IV in FIG. 3;

【図5】本発明の第2実施形態の斜張橋の耐震構造を示
す側面図である。
FIG. 5 is a side view showing an earthquake-resistant structure of a cable-stayed bridge according to a second embodiment of the present invention.

【図6】本発明の第3実施形態の斜張橋の耐震構造を示
す側面図である。
FIG. 6 is a side view showing an earthquake-resistant structure of a cable-stayed bridge according to a third embodiment of the present invention.

【図7】本発明の第4実施形態の斜張橋の耐震構造を示
す側面図である。
FIG. 7 is a side view showing an earthquake-resistant structure of a cable-stayed bridge according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

15,25,32,38 斜張橋 2 橋桁 4 橋脚 6 支承部材 8 主塔 10 ケーブル 16,17 ブラケット 16a,17a 先端取付部 20a,21a 頂部取付部 22 補助ケーブル 28 第2補助ケーブル 30a,31a 中間取付部 34 第3補助ケーブル 15, 25, 32, 38 Cable-stayed bridge 2 Bridge girder 4 Bridge pier 6 Support member 8 Main tower 10 Cable 16, 17 Bracket 16a, 17a Tip mounting part 20a, 21a Top mounting part 22 Auxiliary cable 28 Second auxiliary cable 30a, 31a Intermediate Mounting part 34 Third auxiliary cable

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 幸一 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 明神 久也 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島研究所内 Fターム(参考) 2D059 AA41 BB06 BB08 GG05  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Koichi Inoue 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Inside the Hiroshima Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Hisaya Myojin 4-chome Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture No. 6-22 Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory F-term (reference) 2D059 AA41 BB06 BB08 GG05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 橋脚により支承部材を介して橋桁を支持
し、この橋桁上の橋脚に対応した部分に主塔を設けこの
主塔がケーブルを介して上記橋桁を吊り下げる吊り橋の
耐震構造であって、 上記橋脚の上部に橋幅方向の両側にそれぞれ突出して設
けられた第1及び第2のブラケットと、 これらの第1及び第2のブラケットと上記主塔の上部と
をそれぞれ接続し且つ橋幅方向においてほぼ対称に設け
られると共に予め所定の張力が付与された少なくとも1
組の補助ケーブルと、を有することを特徴とする吊り橋
の耐震構造。
The bridge girder is supported by a bridge pier via a support member, and a main tower is provided at a portion corresponding to the pier on the bridge girder, and the main tower has an earthquake-resistant structure of a suspension bridge for suspending the bridge girder via a cable. A first and a second bracket protrudingly provided on both sides in the bridge width direction above the pier; connecting the first and second brackets to the upper part of the main tower, respectively; At least one of which is provided substantially symmetrically in the width direction and is given a predetermined tension in advance.
A suspension bridge having a pair of auxiliary cables.
【請求項2】 更に、上記第1及び第2のブラケットと
上記主塔の中間部とをそれぞれ接続し且つ橋幅方向にお
いてほぼ対称に設けられると共に予め所定の張力が付与
された少なくとも1組の第2の補助ケーブルを有する請
求項1記載の吊り橋の耐震構造。
Further, at least one pair of the first and second brackets and the intermediate portion of the main tower, which are respectively provided and are provided substantially symmetrically in a bridge width direction and are given a predetermined tension in advance. The earthquake-resistant structure of the suspension bridge according to claim 1, further comprising a second auxiliary cable.
【請求項3】 更に、上記第1及び第2のブラケットと
上記橋脚とをそれぞれ接続し且つ橋幅方向においてほぼ
対称に設けられると共に予め所定の張力が付与された少
なくとも1組の第3の補助ケーブルを有する請求項1又
は請求項2に記載の吊り橋の耐震構造。
Further, at least one set of a third auxiliary member which connects the first and second brackets to the pier and is provided substantially symmetrically in the bridge width direction and is given a predetermined tension in advance. The earthquake-resistant structure of the suspension bridge according to claim 1 or 2, further comprising a cable.
【請求項4】 橋脚により支承部材を介して橋桁を支持
し、この橋桁上の橋脚に対応した部分に主塔を設けこの
主塔がケーブルを介して上記橋桁を吊り下げる吊り橋の
耐震補強方法であって、 上記橋脚の上部に橋幅方向の両側にそれぞれ突出する第
1及び第2のブラケットを設ける工程と、 これらの第1及び第2のブラケットと上記主塔の上部と
をそれぞれ接続する予め所定の張力が付与された少なく
とも1組の補助ケーブルを橋幅方向においてほぼ対称に
設ける工程と、を有することを特徴とする吊り橋の耐震
補強方法。
4. A seismic reinforcement method for a suspension bridge in which a bridge girder is supported by a bridge pier via a bearing member, and a main tower is provided at a portion corresponding to the pier on the bridge girder, and the main tower suspends the bridge girder via a cable. A step of providing first and second brackets projecting on both sides in the bridge width direction above the pier, respectively, and connecting these first and second brackets to the upper part of the main tower in advance. Providing at least one set of auxiliary cables to which a predetermined tension is applied, substantially symmetrically in the bridge width direction.
JP2001125329A 2001-04-24 2001-04-24 Seismic structure of suspension bridge and seismic reinforcement method Expired - Fee Related JP4362020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001125329A JP4362020B2 (en) 2001-04-24 2001-04-24 Seismic structure of suspension bridge and seismic reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001125329A JP4362020B2 (en) 2001-04-24 2001-04-24 Seismic structure of suspension bridge and seismic reinforcement method

Publications (2)

Publication Number Publication Date
JP2002322611A true JP2002322611A (en) 2002-11-08
JP4362020B2 JP4362020B2 (en) 2009-11-11

Family

ID=18974571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001125329A Expired - Fee Related JP4362020B2 (en) 2001-04-24 2001-04-24 Seismic structure of suspension bridge and seismic reinforcement method

Country Status (1)

Country Link
JP (1) JP4362020B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392422A (en) * 2011-11-26 2012-03-28 广州大学 Reinforcement structure of single-cable-plane cable-stayed bridge
CN102505625A (en) * 2011-12-19 2012-06-20 同济大学 Limiting method for preventing main tower system of stayed-cable bridge of floating system from being damaged through arranging stay wire below beam end
CN103422422A (en) * 2013-08-30 2013-12-04 东南大学 Multi-pylon cable-stayed bridge supporting system with function of inhibiting longitudinal seismic response and working method
CN103437276A (en) * 2013-08-30 2013-12-11 东南大学 Multi-tower cable-stayed bridge capable of reducing buffeting reaction caused by main girder and bridge tower wind
CN103603263A (en) * 2013-11-25 2014-02-26 中铁第一勘察设计院集团有限公司 Partially cable-stayed railway bridge with prestressed concrete channel girder
CN103696356A (en) * 2013-12-16 2014-04-02 中交公路规划设计院有限公司 Multi-tower diagonal cable bridge provided with double-row support system
CN104594180A (en) * 2015-01-15 2015-05-06 中交公路长大桥建设国家工程研究中心有限公司 Multi-tower continuous span cable-stayed bridge
CN105064211A (en) * 2015-08-05 2015-11-18 武船重型工程股份有限公司 Jig frame matched with steel pylon, and using method of jig frame
CN105735146A (en) * 2016-03-11 2016-07-06 广东省长大公路工程有限公司 Different-cable construction method for led cable hanging basket of concrete cable-stayed bridge
CN108166379A (en) * 2018-02-24 2018-06-15 山东省交通规划设计院 Suitable for the changeable type transverse direction wind resisting structure and method of cable-stayed bridge, suspension bridge
CN109024319A (en) * 2018-09-21 2018-12-18 湖北省交通规划设计院股份有限公司 A kind of the low-pylon cable-stayed bridge ruggedized construction and construction method of double width continuous rigid frame bridge
CN110055876A (en) * 2019-01-21 2019-07-26 苏交科集团股份有限公司 Single pylon cable stayed bridge three-dimensional subtracts vibration-isolating system
CN114232488A (en) * 2021-12-15 2022-03-25 中交路桥建设有限公司 Method for erecting main beam of large-span cable-stayed bridge

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392422B (en) * 2011-11-26 2013-04-24 广州大学 Reinforcement structure of single-cable-plane cable-stayed bridge
CN102392422A (en) * 2011-11-26 2012-03-28 广州大学 Reinforcement structure of single-cable-plane cable-stayed bridge
CN102505625A (en) * 2011-12-19 2012-06-20 同济大学 Limiting method for preventing main tower system of stayed-cable bridge of floating system from being damaged through arranging stay wire below beam end
CN103422422A (en) * 2013-08-30 2013-12-04 东南大学 Multi-pylon cable-stayed bridge supporting system with function of inhibiting longitudinal seismic response and working method
CN103437276A (en) * 2013-08-30 2013-12-11 东南大学 Multi-tower cable-stayed bridge capable of reducing buffeting reaction caused by main girder and bridge tower wind
CN103603263A (en) * 2013-11-25 2014-02-26 中铁第一勘察设计院集团有限公司 Partially cable-stayed railway bridge with prestressed concrete channel girder
CN103696356A (en) * 2013-12-16 2014-04-02 中交公路规划设计院有限公司 Multi-tower diagonal cable bridge provided with double-row support system
CN104594180B (en) * 2015-01-15 2016-04-13 中交公路长大桥建设国家工程研究中心有限公司 A kind of multi-tower continuous across cable stayed bridge
CN104594180A (en) * 2015-01-15 2015-05-06 中交公路长大桥建设国家工程研究中心有限公司 Multi-tower continuous span cable-stayed bridge
CN105064211A (en) * 2015-08-05 2015-11-18 武船重型工程股份有限公司 Jig frame matched with steel pylon, and using method of jig frame
CN105735146A (en) * 2016-03-11 2016-07-06 广东省长大公路工程有限公司 Different-cable construction method for led cable hanging basket of concrete cable-stayed bridge
CN108166379A (en) * 2018-02-24 2018-06-15 山东省交通规划设计院 Suitable for the changeable type transverse direction wind resisting structure and method of cable-stayed bridge, suspension bridge
CN109024319A (en) * 2018-09-21 2018-12-18 湖北省交通规划设计院股份有限公司 A kind of the low-pylon cable-stayed bridge ruggedized construction and construction method of double width continuous rigid frame bridge
CN109024319B (en) * 2018-09-21 2023-12-15 湖北省交通规划设计院股份有限公司 Low-tower cable-stayed bridge reinforcing structure of double-amplitude continuous rigid frame bridge and construction method
CN110055876A (en) * 2019-01-21 2019-07-26 苏交科集团股份有限公司 Single pylon cable stayed bridge three-dimensional subtracts vibration-isolating system
CN114232488A (en) * 2021-12-15 2022-03-25 中交路桥建设有限公司 Method for erecting main beam of large-span cable-stayed bridge
CN114232488B (en) * 2021-12-15 2023-11-28 中交路桥建设有限公司 Method for erecting main girder of large-span cable-stayed bridge

Also Published As

Publication number Publication date
JP4362020B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP2002322611A (en) Earthquake-proof structure of suspension bridge and earthquake-proof and reinforcing method
JP3867037B2 (en) Reinforcement structure and reinforcement method for existing structures
JPH04228707A (en) Bridge equipped with deck and two or more towers, and constructing method therefor
JP3476198B2 (en) Suspension method of bridge girder in suspension bridge
JPH09137412A (en) Bridge reinforcing structure of viaduct
JPH0849215A (en) Cable structure of suspension bridge
JP4057953B2 (en) Bridge and its construction method
JPH10183530A (en) Reinforcing method for bridge
JP2005139670A (en) Arch bridge
JPH07216820A (en) Arched bridge
JP2001040616A (en) Bridge falling preventive apparatus
JP3746486B2 (en) How to prevent a fallen bridge
JPH0693603A (en) Beam structure by use of inverted arched member and slantingly extended structure and arched member thereof
JPH1129908A (en) Vibration control method of suspension bridge girder, and the suspension bridge
JP2002146719A (en) Continuous concrete arch construction for viaduct
JP2003293323A (en) Reinforcement structure of continuous girder bridge
JP2006070614A (en) Reinforcing structure of steel girder bridge
JP4368044B2 (en) Anti-vibration structure of viaduct
JPH1171712A (en) Cable stayed bridge
JPH01214608A (en) Damping method for vortex excitation caused in bridge main tower
JP2001254313A (en) Cable vibration control structure
KR102194606B1 (en) Anchorless Assembly Bracket System for Bridge Maintenance and Inspection
JPH07207619A (en) Main tower of long bridge provided with laterally extended beam and side cable
CN214005445U (en) Variable cross-section arch box girder bottom die
KR100542046B1 (en) Method for Reinforcing Concrete Beam by Continuously Tensioning External Tendon and Supporting Device for such Method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060809

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060911

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060911

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20071227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090814

R150 Certificate of patent or registration of utility model

Ref document number: 4362020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees