JP2002322389A - Manufacturing method for multifunctional ceramic coating film-forming material curable at low temperature and forming method for multifunctional ceramic coating film curable at low temperature - Google Patents

Manufacturing method for multifunctional ceramic coating film-forming material curable at low temperature and forming method for multifunctional ceramic coating film curable at low temperature

Info

Publication number
JP2002322389A
JP2002322389A JP2001165850A JP2001165850A JP2002322389A JP 2002322389 A JP2002322389 A JP 2002322389A JP 2001165850 A JP2001165850 A JP 2001165850A JP 2001165850 A JP2001165850 A JP 2001165850A JP 2002322389 A JP2002322389 A JP 2002322389A
Authority
JP
Japan
Prior art keywords
weight
parts
temperature
coating material
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001165850A
Other languages
Japanese (ja)
Inventor
Sumio Tanabe
澄生 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001165850A priority Critical patent/JP2002322389A/en
Publication of JP2002322389A publication Critical patent/JP2002322389A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a ceramic coating film-forming material curable at a low temperature, excellent in adhesive strength, heat resistance, chemical resistance, abrasion resistance, durability, water repellency, and the like, capable of decreasing an environmental pollution material and affording a high radiation ratio of far-infrared ray and insulation property and also excellent in bending characteristic. SOLUTION: The multifunctional ceramic coating film-forming material curable at a low temperature is obtained by preparing a mixture solution obtained by adding boric acid, calcium metasilicate, sumectite, kaolin, laponite, ceramics such as magnetite and an oxidized metal to an alkaline silicate, and by mixing therewith a solution obtained by adding a solution of a lithium compound to a solution obtained by reacting an alkali silicate and metal silicon and the like and by adding silicon oxide, titanium dioxide, porcelain fine powder, zirconium oxide, noncrystalline silica oxide or hydrophobic noncrystalline silica oxide to the above mixed solution. The ceramic coating film- forming material is coated to materials except plastics and dried and formed at temperatures suitable for purposes of its use and between a room temperature and 250 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、低温度硬化型多機能性
セラミック塗膜材の製造方法及び低温度硬化型多機能性
セラミック塗膜の形成方法に関し、プラスチックを除く
すべての材料に強固な接着をして大気汚染物質や悪臭、
アルデヒドなどのシックハウス症候群の削減や除去の効
果が著しく、油性マジック等の汚れが水で除去可能にし
て、さらには多彩色の塗膜材として室温から低温度加熱
によって塗膜が形成されて、180°屈曲性を発現する
高強度、耐摩耗性、防蝕性、耐久性、耐熱性、耐汚染性
と耐水性、撥水性、耐酸性、耐アルカリ性に富むなど、
多くの有用な諸物性を発現するとともに、無公害にして
廉価で製造・使用ができることを特徴とする低温度硬化
型多機能性セラミック塗膜材の製造方法及び低温度硬化
型多機能性セラミック塗膜の形成方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low-temperature-curable multifunctional ceramic coating material and a method for forming a low-temperature-curable multifunctional ceramic coating material, and to a method for hardening all materials except plastics. Air pollutants and stench,
The effect of reducing or removing sick house syndrome such as aldehydes is remarkable, so that dirt such as oily magic can be removed with water, and a coating film is formed as a multicolored coating material by heating from room temperature to a low temperature. ° High flexural strength, abrasion resistance, corrosion resistance, durability, heat resistance, contamination resistance and water resistance, water repellency, acid resistance, alkali resistance, etc.
A method for producing a low-temperature-curable multifunctional ceramic coating material and a low-temperature-curable multifunctional ceramic coating material, which exhibit many useful physical properties and can be produced and used at low cost without causing pollution. The present invention relates to a method for forming a film.

【0002】[0002]

【従来の技術】(1)従来の有機塗料は製造時や塗装時
に有機溶媒による作業者への健康被害や工事現場周辺で
の塗料の飛散や臭気などによる被害が多く発生し、かつ
引火性が強くて火災の誘発や火災の際に有毒ガスが発生
して人畜に大きな被害をもたらすなどの問題が多い。し
かも塗膜の表面硬度が小さく、屈曲性、耐汚染性、耐酸
性、耐アルカリ性に劣り、紫外線による劣化や油性マジ
ックなどによる汚れの除去ができないなどの欠陥が多
い。これら物性の欠陥を防止するためには一部では琺瑯
や陶磁器用釉薬などが使用されてきたが、これらの釉薬
は800℃以上の高温焼成のために多消費エネルギー型
にして基板材料も限定されるし、さらには施釉装置や焼
成装置等の設備費も高価であり、循環型経済社会の塗膜
材とはいい難い。
2. Description of the Related Art (1) Conventional organic paints suffer from health damage to workers due to organic solvents at the time of manufacture and painting, and damage due to paint splashing and odors around construction sites, and are flammable. There are many problems such as being strong, causing a fire, and generating toxic gas during a fire, causing serious damage to humans and livestock. In addition, there are many defects such as low surface hardness of the coating film, poor flexibility, stain resistance, acid resistance, and alkali resistance, and the inability to remove stains due to deterioration by ultraviolet rays and oily magic. In order to prevent these physical defects, enamels and glazes for ceramics have been used in some cases. However, these glazes are high energy consumption type for firing at a high temperature of 800 ° C or more, and the substrate material is limited. In addition, the cost of equipment such as glazing equipment and firing equipment is also expensive, and it is difficult to say that it is a coating material for a recycling-based economic society.

【0003】(2)珪酸塩混合物である釉薬や琺瑯は、
一般的に均質で非晶質、等方性で光に対して透過性をも
つ物質である。このような釉薬の溶融温度は、600℃
から2000℃の温度範囲で、これに対応する化学組成
が系列的に示されている。しかも低火度釉の温度は60
0℃が最低温度であり、そのときの化学成分には一般的
に酸化鉛を含有する組成となっており、鉛化合物の有害
性が問題となる。このように、600℃以下のセラミッ
ク塗膜材の製造や使用方法の技術は未だ開発されていな
いし、ましてや300℃付近以下でのセラミック塗膜材
の製造や塗膜の形成方法は未だに開発されていないのが
現状である。
(2) Glazes and enamels, which are silicate mixtures,
Generally, it is a homogeneous, amorphous, isotropic, and light-transmissive substance. The melting temperature of such glaze is 600 ° C
In the temperature range from to 2000 ° C., the corresponding chemical compositions are shown in series. Moreover, the temperature of the low fire glaze is 60
0 ° C. is the minimum temperature, and the chemical component at that time generally has a composition containing lead oxide, and the toxicity of the lead compound becomes a problem. As described above, the technology of manufacturing and using a ceramic coating material at a temperature of 600 ° C. or less has not yet been developed, and even more, the method of producing a ceramic coating material at a temperature of around 300 ° C. or less and a method of forming a coating film have not yet been developed. There is no present.

【0004】(3)一般的な電気絶縁性コート剤として
は、従来からエポキシ樹脂などに絶縁用無機粉体を混合
して被覆するか、窯業関係でいわれる薄い均質な珪酸塩
混合物である釉薬を表面に溶着させるか、或いは金属表
面にガラス状に固化する物質である琺瑯質を形成させる
か等々の方法により電気絶縁体を構成する。これらの中
でエポキシ樹脂の形成温度は200℃以下であるが、有
機高分子材料を使用した絶縁用保護膜は絶縁抵抗が小さ
く、耐久性、耐熱性などにも弱点が多く、かつ作業性や
労働衛生上にも問題が多い。一方、釉薬によるものは電
気絶縁性や耐久性などの諸物性は良好であるが、溶着温
度が800〜1200℃前後で形成されるために被接着
材料の耐熱性などの問題もあり、製造目的に合致する条
件は極めて限られている。その上に高温焼成によるエネ
ルギーの多消費、焼成炉設置費用の高負担、環境への負
荷の増大となって熱公害として環境に重大な影響をもた
らす。
[0004] (3) As a general electric insulating coating agent, an epoxy resin or the like is mixed with an inorganic inorganic powder for insulation, or a glaze which is a thin homogeneous silicate mixture referred to in the ceramic industry is used. Is formed on the surface of the metal or by forming an enamel which is a substance which solidifies into a glass on the metal surface. Among these, the formation temperature of the epoxy resin is 200 ° C. or less. However, an insulating protective film using an organic polymer material has low insulation resistance, and has many weaknesses in durability, heat resistance, etc. There are many problems in occupational health. On the other hand, glazes have good physical properties such as electric insulation and durability, but have a problem such as heat resistance of the material to be bonded because they are formed at a welding temperature of about 800 to 1200 ° C. Are very limited. In addition, high-temperature firing consumes a lot of energy, increases the cost of installing a firing furnace, and increases the load on the environment, resulting in significant environmental impact as heat pollution.

【0005】(4)近年になって低温度の釉薬が希求さ
れるようになり、スミセラム、アロンセラミック、HE
S、セラミカ、サーメテルやTSBなどのコート剤が市
販されたが、通常はシリコーン樹脂を原料としたシリカ
とフッ素樹脂の複合物である無機質コート剤であること
が多い。これらを加熱温度からみれば、450℃以上の
加熱を必要とする金属アルコキシド−高純度二酸化珪素
薄膜形成コート剤、200℃加熱のCRM無機質防錆コ
ート剤やシラノールとシロキサンの混合物としてリキッ
ドセラミックスなどがある。これらはいずれも無機質塗
料の範躊に入り、いずれも有機塗料の物性の範囲内にあ
るものが多い。これらの中で無機コーテング剤として金
属アルコキシドをベースとしたアルカリ金属を含まない
一液性のコーテング剤も市販され、その例示としては電
気絶縁性が1000MQ以上にして耐熱性1000℃、
1500℃といわれているが、被接着材へのコーテング
に際してしばしば剥離する状態が起こり塗膜形成が困難
である。一方、無機塗料としてNASA開発になる、珪
酸カリウムに酸化金属類を配合し、オルソ燐酸アルミニ
ウムを添加して燐酸カリウム−珪酸系による化合物を1
50℃、60分の乾燥により塗膜形成したものがあると
いわれているが、使用されている例や特性が明らかでな
い。
(4) In recent years, low-temperature glazes have been demanded, and Sumiceram, Aron Ceramic, HE
Coating agents such as S, ceramics, cermetel, and TSB are commercially available, but are usually inorganic coating agents that are usually a composite of silica and fluororesin made from a silicone resin. Considering these from the heating temperature, metal alkoxide-high-purity silicon dioxide thin film forming coating agent that requires heating at 450 ° C. or higher, CRM inorganic rust preventive coating agent heated at 200 ° C., and liquid ceramics as a mixture of silanol and siloxane, etc. is there. All of these fall into the category of inorganic paints, and many of them fall within the range of physical properties of organic paints. Among these, a one-part coating agent containing no alkali metal based on a metal alkoxide as an inorganic coating agent is also commercially available. Examples thereof include an electric insulation of 1,000 MQ or more and heat resistance of 1000 ° C.
Although it is said that the temperature is 1500 ° C., a state of peeling often occurs during coating on a material to be bonded, and it is difficult to form a coating film. On the other hand, a metal oxide is added to potassium silicate, which is developed by NASA as an inorganic paint, and aluminum orthophosphate is added to form a potassium phosphate-silicic acid compound.
It is said that there is a film formed by drying at 50 ° C. for 60 minutes, but the examples and characteristics used are not clear.

【0006】(5)近時、二酸化チタン光触媒の高機能
化と環境浄化への応用が盛んに行われている。これに使
用する二酸化チタンは、二酸化チタンを諸材料にコーテ
ングする接着剤の未開発により、チタンのアルコキシド
からチタニアゾルをつくりデイッピング法によりガラス
基板等にコーテングした後に乾燥、焼成を繰り返すか、
ゾル−ゲル法に基づいて二酸化チタンの多孔質ペレット
を調整して使用している。これらの方法では加熱により
アナタース型二酸化チタンからルチール型二酸化チタン
への転移による光触媒効果の減少という物性変化ととも
に、塗膜形成の方法が使用材料の種類や形状と大きさな
どの選択範囲を限定し、多量生産と塗膜の均一化はもと
より製造の複雑化と製品が高価格となって普及が限定さ
れる。このことは、室温をとらえて放射する遠赤外線放
射セラミック素材による省エネルギーにして効率が良く
て環境に優しいセラミック塗膜材の開発が皆無であるこ
とに起因しているのと同様である。すなわち、これらの
原因は適切な無機塗膜材・接着剤が開発されていないこ
とに起因する。これに対して、近年になって新しい低温
加熱型の塗料が市販されるようになったが、いずれも無
機系塗料にして、溶媒はアルコールなどの低分子有機物
質を使用している。これらの市販品の中からいくつかの
無機質塗料を試験した結果、市場で要求されている使用
上の便利さに加えて良好な物性を発現するという目的を
達成せず、しかも高価格であるためにいずれの塗料も不
十分さをまぬがれない。すなわち、高温度処理によらな
ければ接着強度や耐久性等が発現されないという弱点と
高価格のために、特殊な用途方面への使用は別としても
一般的な塗装関係にあっては、従来製品の有機塗料に回
帰している傾向にあるともいわれている。これらのこと
は要するに、多機能にして多目的に適合する無機塗膜材
が希求されながらも未だに開発の域に達していないこと
に起因しているのが現状であるといえよう。
(5) In recent years, titanium dioxide photocatalysts have been actively used to enhance their functions and to purify the environment. Titanium dioxide used for this, due to the undeveloped adhesive that coats titanium dioxide on various materials, creates titania sol from titanium alkoxide, coats it on a glass substrate etc. by dipping method, then repeats drying and firing,
A titanium dioxide porous pellet is prepared and used based on a sol-gel method. In these methods, the physical properties such as the reduction of the photocatalytic effect due to the transition from anatase-type titanium dioxide to rutile-type titanium dioxide by heating, and the method of forming the coating film limits the selection range such as the type, shape and size of the materials used. In addition to mass production and uniform coatings, the complexity of production and the high price of products limit their spread. This is similar to the fact that there is no development of an efficient and environmentally friendly ceramic coating material that saves energy by using a far-infrared radiation ceramic material that emits light at room temperature. That is, these causes are due to the fact that a suitable inorganic coating material and adhesive have not been developed. On the other hand, in recent years, new low-temperature heating-type paints have come to be marketed, but all of them are inorganic paints, and a solvent is a low molecular organic substance such as alcohol. As a result of testing several inorganic coatings from among these commercial products, it was not possible to achieve the purpose of expressing good physical properties in addition to the convenience in use required in the market, and it was expensive. None of the paints is inadequate. In other words, due to the weakness that adhesive strength and durability are not exhibited unless high temperature treatment is applied and the high price, conventional coatings are not used for general coatings, apart from use in special applications. It is said that there is a tendency to return to organic paints. In short, these facts can be said to be attributable to the fact that inorganic coating materials that are multifunctional and suitable for various purposes have been demanded but have not yet reached the level of development.

【0007】[0007]

【発明が解決しようとする課題】(1)これら無機質系
の塗料の欠陥を解決するために新しく開発するセラミッ
ク塗膜材は、有機物質を含有せず、溶媒は水の配合比に
よって塗膜材の固液比の調合と粘性の調整が可能な機序
のもとで、常温から100℃付近の温度において反応生
成物をつくり、プラスチック以外の材料に通常の方法に
よって容易に塗膜形成が可能にして、塗膜形成を行った
後に常温から110℃付近で乾燥するか又は使用目的に
応じて250℃付近まで加熱すれば、耐熱性、耐薬品
性、耐摩耗性、耐久性等や環境汚染物質の削減に寄与
し、室温或いは低温加熱によって高い遠赤外線放射によ
って省エネルギーにして環境汚染のない暖房が可能とな
り、さらには高い電気絶縁性が発現し、塗膜は180°
屈曲性が可能であるなどの優れた特性を具備する室温及
び/又は低温度硬化型多機能性セラミック塗膜材の製造
方法と塗膜の形成方法を開発する。本技術は、従来型の
有機ポリマーやオリゴマー等の有機高分子樹脂や水性塗
料といわれるアルコール等を含有する有機塗料や無機質
塗料とは基本的に異なり、有機物の配合は行わず、また
一般の陶磁器の釉薬のように高温度焼成を行わずに室温
から250℃付近までの低温度でセラミック薄膜を形成
させて、前述に示す多機能的物性を発現する低温度硬化
型多機能性セラミック塗膜材を開発する。
(1) The ceramic coating material newly developed to solve these defects of the inorganic paint does not contain an organic substance, and the solvent is a coating material depending on the mixing ratio of water. A reaction product is produced at a temperature from room temperature to around 100 ° C under a mechanism that can adjust the solid-liquid ratio and adjust the viscosity of the mixture, and a coating film can be easily formed on materials other than plastics by ordinary methods. After forming the coating film, if it is dried from room temperature to around 110 ° C. or heated to around 250 ° C. according to the purpose of use, heat resistance, chemical resistance, abrasion resistance, durability, etc., and environmental pollution It contributes to the reduction of substances, heating at room temperature or low temperature makes it possible to save energy with high far-infrared radiation and saves energy without environmental pollution.
A method for producing a room-temperature and / or low-temperature curable multifunctional ceramic coating material having excellent properties such as flexibility and a method for forming a coating film are developed. This technology is fundamentally different from conventional organic and inorganic paints containing organic polymers such as organic polymers and oligomers, and water-based paints such as alcohols. Low temperature hardening type multifunctional ceramic coating material which forms ceramic thin film at low temperature from room temperature to around 250 ℃ without high temperature firing like glaze Develop.

【0008】(2)開発するセラミック塗膜材は、アル
カリシリケートを主体として酸化金属類やセラミック微
粉末等を配合することにより、網目修飾とガラス形成が
行われて強固な塗膜形成が可能となり、また塗膜面と被
塗膜材料の間に新しい塗膜組成を有する化合物が形成さ
れて低温度加熱により、さらに強固な接着と諸物性が付
与される低温度硬化型多機能性セラミック塗膜材の製造
方法と低温度硬化型多機能性セラミック塗膜の形成方法
を開発する。
(2) The ceramic coating material to be developed is made of alkali silicate as a main component, mixed with metal oxides, ceramic fine powder, etc., so that the network modification and glass formation are performed, and a strong coating film can be formed. A low-temperature-curing multifunctional ceramic coating that forms a compound with a new coating composition between the coating surface and the material to be coated, and provides even stronger adhesion and various physical properties by low-temperature heating We will develop a method for manufacturing materials and a method for forming low-temperature-curable multifunctional ceramic coatings.

【0009】(3)開発するセラミック塗膜材の主原料
は、先端産業から多量に廃棄される未利用な素材を全面
的に活用し、副原料も窯業業界からの廃棄処分となる素
材を用いるなどの方法により、通常の有機塗料や無機質
塗料の価格より廉価にして、従来の塗装工法と技術が全
面的に使用可能にして、接着強度が大きくて表面硬度の
高い省エネルギーにして無公害な低温度硬化型多機能性
セラミック塗膜材の製造方法と低温度硬化型多機能性セ
ラミック塗膜の形成方法を開発する。
[0009] (3) The main raw material of the ceramic coating material to be developed fully utilizes the unused material that is discarded in a large amount from the advanced industry, and the auxiliary raw material is a material that is disposed of by the ceramic industry. In this way, it is possible to lower the price of ordinary organic and inorganic paints, make the conventional coating method and technology fully usable, and to save energy with high adhesive strength and high surface hardness. We will develop a method for producing a thermosetting multifunctional ceramic coating and a method for forming a low-temperature curing multifunctional ceramic coating.

【0010】[0010]

【課題を解決するための手段及び方法】本発明は前記の
問題点の解決と課題の達成をすべく鋭意研究を重ねた結
果、これらの欠陥のすべてを解決するセラミック塗膜材
を開発した。すなわち、製造と使用が容易にして簡便、
基板はプラスチック以外のすべての材料が使用可能にし
て、室温から250℃の温度範囲において強い接着力を
有し、基礎塗膜材や透明性塗膜材に酸化金属或いはセラ
ミック微粉末等の各種材料を配合することにより大気中
や水中の汚染物質の削減や高い遠赤外線放射、或いは電
気絶縁性などの諸物性が発現される多機能性セラミック
塗膜材が製造可能になる。また、これらのセラミック塗
膜材の保存期間は長く、かつ価格は従来の塗料の三分の
一以下である。しかも従来の有機塗料や無機質塗料とは
異なり、有機溶媒を一切使用せずに溶媒は水のみである
ために、セラミック塗膜材製造時及び屋内外で行う塗装
作業や塗膜材の乾燥や加熱時などの蒸発物は水分のみで
あるため無臭であり、さらには飛散物や容器の汚れは水
や温水で洗えば簡単に溶解する無公害にして回収とリサ
イクルが可能な産業廃棄物の再利用による環境型経済社
会に相応しい新しいセラミック塗膜材を開発した。すな
わち本発明は、下記の構成からなる低温度硬化型多機能
性セラミック塗膜材の製造方法と低温度硬化型多機能性
セラミック塗膜の形成方法である。
The present invention has been intensively studied to solve the above problems and achieve the objects, and as a result, has developed a ceramic coating material which can solve all of these defects. That is, easy to manufacture and use,
All materials except plastic can be used for the substrate, and it has strong adhesive strength in the temperature range from room temperature to 250 ° C. Various materials such as metal oxide or ceramic fine powder are used for the base coating material and the transparent coating material. By blending, it is possible to produce a multifunctional ceramic coating material that exhibits various physical properties such as reduction of pollutants in the air and water, high far-infrared radiation, and electrical insulation. In addition, the shelf life of these ceramic coating materials is long, and the price is less than one third of conventional paints. In addition, unlike conventional organic and inorganic paints, no organic solvent is used and only water is used. Recycling of industrial waste that can be easily collected and recycled by dissolving it easily without dissolving by washing with water or hot water, evaporates from time, etc. are odorless because only moisture is contained in the evaporates. Has developed a new ceramic coating material suitable for an environmental economy and society. That is, the present invention provides a method for producing a low-temperature-curable multifunctional ceramic coating material having the following constitution and a method for forming a low-temperature-curable multifunctional ceramic coating film.

【0011】 すなわち本発明に係る低温度硬化型多機
能性セラミック塗膜材の製造法は、(1)珪酸アルカリ
(珪酸ナトリウム或いは珪酸ナトリウムと珪酸カリウム
の両者)の100重量部を溶解した溶液(好ましくは、
珪酸ナトリウム1号にあっては温水50重量部前後)に
硼酸3〜1重量部の溶解液(好ましくは、温水30重量
部)を添加した後、水酸化アルミニウム、メタ珪酸カル
シウム、アルミン酸ナトリウム、スメクタイト、カオリ
ン、ラポナイトの3種以上をそれぞれ3〜1重量部加え
(好ましくは、温水を15重量部)、必要に応じて酸化
亜鉛を3〜2重量部を加えて懸濁液をつくる第1工程
と、珪酸アルカリ700〜300重量部(好ましくは、
珪酸ナトリウム1号にあっては、その100重量部に対
して温水500〜400重量部)に対して金属シリコン
微粉末50〜30重量部、アルミニウム微粉末5〜1重
量部を加えて常温から100℃の範囲で得られる反応溶
液にリチウム化合物の10〜0.5重量部を添加して反
応溶液をつくる第2工程において、第1工程で得られた
溶液の60〜30重量部に対して第2工程で得られた溶
液の70〜40重量部を混合した後、この混合溶液に二
酸化珪素、陶器或いは磁器の微粉末、酸化ジルコニウ
ム、二酸化チタン、磁鉄鉱微粉末の1種類以上の80〜
20重量部を加えて混練する第3工程と、第3工程で得
られた混合溶液を被塗膜材料に塗布した後、室温から2
50℃前後の温度範囲で乾燥、加熱して硬化させる第4
工程よりなることを特徴とする低温度硬化型多機能性セ
ラミック塗膜材の製造方法と低温度硬化型多機能性セラ
ミック塗膜の形成方法を開発した。
That is, the method for producing a low-temperature-curable multifunctional ceramic coating material according to the present invention comprises the steps of (1) dissolving 100 parts by weight of alkali silicate (sodium silicate or both sodium silicate and potassium silicate) ( Preferably,
After adding a solution (preferably 30 parts by weight of hot water) of 3 to 1 part by weight of boric acid to 50 parts by weight of warm water in the case of sodium silicate No. 1, aluminum hydroxide, calcium metasilicate, sodium aluminate, First, a suspension is prepared by adding 3 to 1 part by weight of each of three or more types of smectite, kaolin, and laponite (preferably, 15 parts by weight of hot water) and, if necessary, 3 to 2 parts by weight of zinc oxide. And 700 to 300 parts by weight of alkali silicate (preferably,
In the case of sodium silicate No. 1, 50 to 30 parts by weight of metal silicon fine powder and 5 to 1 part by weight of aluminum fine powder are added to 100 parts by weight of warm water to 500 to 400 parts by weight, In the second step of adding 10 to 0.5 parts by weight of the lithium compound to the reaction solution obtained in the range of 0 ° C. to form a reaction solution, the second step is performed with respect to 60 to 30 parts by weight of the solution obtained in the first step. After mixing 70 to 40 parts by weight of the solution obtained in the two steps, the mixed solution is mixed with at least one of 80 to 90% of one or more of silicon dioxide, ceramic or porcelain fine powder, zirconium oxide, titanium dioxide, and magnetite fine powder.
A third step of adding and kneading 20 parts by weight, and after applying the mixed solution obtained in the third step to the material to be coated, from room temperature to 2
Drying at a temperature range of about 50 ° C, heating and curing.
A method for producing a low-temperature-curable multifunctional ceramic coating material and a method for forming a low-temperature-curable multifunctional ceramic coating film, which are characterized by comprising steps, were developed.

【0012】(2)珪酸アルカリ700〜300重量部
を溶解した水溶液に対して金属シリコン微粉末50〜3
0重量部と、必要に応じてアルミニウム微粉末5〜1重
量部を加えて常温から100℃の範囲で得られる反応溶
液の100重量部に対して、必要に応じてリチウム化合
物の10〜0.5重量部を添加してつくる水溶液に、親
水性非晶質二酸化珪素の微粉末8〜1%を溶解してつく
る透明性塗膜材の第1工程と、珪酸アルカリの100重
量部を溶解した水溶液に硼酸3〜1重量部の溶解液を添
加した後、水酸化アルミニウム、メタ珪酸カルシウム、
アルミン酸ナトリウム、スメクタイト、カオリン、ラポ
ナイトの3種以上をそれぞれ3〜1重量部加え、必要に
応じて酸化亜鉛を3〜2重量部を加えて懸濁液をつくる
第2工程と、第1工程で得られた透明性塗膜材の80〜
40重量部と第2工程で得られた懸濁液の60〜20重
量部を混合した混合溶液に二酸化珪素、陶器或いは磁器
の微粉末、酸化ジルコニウム、二酸化チタン、磁鉄鉱微
粉末の1種以上を80〜20重量部を加え、さらに疎水
性非晶質二酸化珪素化合物の6〜1重量部を加えて混練
して混合溶液をつくる第3工程と、第3工程で得られる
低温度硬化型多機能性塗膜材を被塗膜材料に塗布した
後、室温及び/又は210℃の温度範囲で乾燥、加熱し
て硬化させる第4工程よりなることを特徴とする室温及
び/又は低温加熱硬化型にして撥水性を有する低温度硬
化型多機能性セラミック塗膜材の製造方法及び低温硬化
型多機能性セラミック塗膜の形成方法を開発した。
(2) Metal silicon fine powder 50 to 3 is added to an aqueous solution in which 700 to 300 parts by weight of alkali silicate is dissolved.
0 parts by weight and, if necessary, 5 to 1 parts by weight of aluminum fine powder to 100 parts by weight of the reaction solution obtained in the range from room temperature to 100 ° C. The first step of a transparent coating material prepared by dissolving 8 to 1% of fine powder of hydrophilic amorphous silicon dioxide in an aqueous solution prepared by adding 5 parts by weight, and 100 parts by weight of alkali silicate were dissolved. After adding a solution of 3 to 1 part by weight of boric acid to the aqueous solution, aluminum hydroxide, calcium metasilicate,
A second step of adding 3 to 1 part by weight of each of three or more of sodium aluminate, smectite, kaolin, and laponite, and adding 3 to 2 parts by weight of zinc oxide as needed to form a suspension, and a first step 80 ~ of the transparent coating material obtained in
A mixed solution obtained by mixing 40 parts by weight and 60 to 20 parts by weight of the suspension obtained in the second step is mixed with at least one of silicon dioxide, fine powder of ceramics or porcelain, zirconium oxide, titanium dioxide, and fine powder of magnetite. A third step of adding 80 to 20 parts by weight and further adding 6 to 1 part by weight of a hydrophobic amorphous silicon dioxide compound and kneading to form a mixed solution; A fourth step of drying, heating and curing at room temperature and / or a temperature range of 210 ° C. after applying the non-conductive coating material to the material to be coated. A method for producing a low-temperature-curable multifunctional ceramic coating having water repellency and a method for forming a low-temperature-curable multifunctional ceramic coating have been developed.

【0013】次に本発明に用いる各配合材相互の反応等
の作用機序の概要について述べる。 (1)珪酸ナトリウム水溶液は、珪酸と酸化ナトリウム
の比が2以上になるにつれてコロイド性が大きくなる。
また、珪酸と珪酸ナトリウムの比が1より小さいときに
は珪酸はモノ珪酸として存在し、これより大きい比を持
つ場合にはポリ珪酸が存在するし、珪酸と酸化ナトリウ
ムの比が3以下の比較的希薄な珪酸ナトリウム水溶液で
は、水素イオン濃度が10.5以上ではモノ珪酸イオン
として存在するだろう。これらの状態を珪酸ナトリウム
水溶液中の珪酸陰イオンの分布についてみれば、Na/
Si比が小さくなるにつれてSiO,Si,S
10の量が減少しポリ珪酸の量が多くなる。ま
た、モノ珪酸の濃度が高い溶液では、溶液の水素イオン
濃度を変えて放置するとゲル化する。したがってゲル化
までの時間は珪酸の重合の早さを示す一つの尺度とみな
すことができよう。一方、ゲル化する珪酸の限界濃度は
水素イオン濃度が7付近で最低で、珪酸ナトリウムと珪
酸カリウム溶液では多少異なるが、アルカリ側にゆくに
つれて急激に増大する。さらに温度の影響については、
高温では非晶質シリカの溶解度が大きいのでモノ珪酸イ
オンの過飽和度が小さくなり、ポリ珪酸粒子の成長の早
さは温度とともに早くなる。一方、珪酸の濃度が高くて
ゲル化する場合は、温度上昇とともにゲル化時間は短く
なるが、水素イオン濃度が10.5付近以上では温度の
上昇によりゲル化時間は長くなるが、それ以下の水素イ
オン濃度ではゲル化時間は短くなる。このように珪酸ア
ルカリ水溶液は濃度や温度によって多様な形態をとり、
重合過程や共存塩の影響を含めて十分には解明されてい
ないのが現状であろう。
Next, an outline of an action mechanism such as a reaction between the respective components used in the present invention will be described. (1) The aqueous sodium silicate solution becomes more colloidal as the ratio of silicic acid to sodium oxide becomes 2 or more.
When the ratio of silicic acid to sodium silicate is less than 1, silicic acid exists as monosilicic acid, and when the ratio is higher than this, polysilicic acid exists, and the ratio of silicic acid to sodium oxide is relatively less than 3. In an aqueous sodium silicate solution, if the hydrogen ion concentration is 10.5 or more, it will exist as monosilicate ions. Looking at these states with respect to the distribution of the silicate anion in the aqueous sodium silicate solution, Na /
As the Si ratio decreases, SiO 4 , Si 2 O 7 , S
The amount of i 3 O 10 decreases and the amount of polysilicic acid increases. In addition, a solution having a high concentration of monosilicic acid gels when the solution is left at a different hydrogen ion concentration. Therefore, the time to gelation could be regarded as a measure of the speed of polymerization of silicic acid. On the other hand, the critical concentration of gelling silicic acid is the lowest when the hydrogen ion concentration is around 7, and slightly differs between sodium silicate and potassium silicate solutions, but increases sharply toward the alkali side. For the effect of temperature,
At high temperatures, the solubility of amorphous silica is high, so the degree of supersaturation of monosilicate ions decreases, and the growth rate of polysilicate particles increases with temperature. On the other hand, when gelation occurs due to a high concentration of silicic acid, the gelation time decreases as the temperature increases, but when the hydrogen ion concentration is around 10.5 or higher, the gelation time increases with the increase in temperature, but the gelation time decreases below that. The gelation time becomes shorter at the hydrogen ion concentration. In this way, the alkali silicate aqueous solution takes various forms depending on the concentration and temperature,
At present, it may not be fully understood including the effects of the polymerization process and coexisting salts.

【0014】(2)請求項1及び請求項2における珪酸
アルカリ水溶液に硼酸の水溶液を添加する工程におい
て、硼酸の水溶液の濃度が低いときにはモノ珪酸の重合
の早さはあまり影響せず、ゾルの状態にある。したがっ
て珪酸アルカリが珪酸ナトリウム1号である場合には、
その100重量部に対して温水50重量部の添加により
水素イオン濃度が10.5前後におけるモノ珪酸イオン
の存在において、水酸化アルミニウム、メタ珪酸カルシ
ウム、アルミン酸ナトリウム、スメクタイト、カオリ
ン、ラポナイトの3種以上をそれぞれ3〜1重量部加
え、必要に応じて酸化亜鉛を3〜2重量部を加えて懸濁
液をつくることにより、接着性と表面硬度等の増加が発
現される。この際に添加する水酸化アルミニウム、アル
ミン酸ナトリウムは硬化剤に、メタ珪酸カルシウム、カ
オリンは骨材としての塗膜物性の発現に寄与する。一
方、スメクタイト、ラポナイトは水中に分散させること
により珪酸アルカリ水溶液の置換可能なアルカリイオン
が水和されコロイド分散となる。これらの配合材は希薄
溶液中では、表面負荷電が小さな端部電荷よりかなり大
きいため粒子間で反発が起こり粘度増加は起こらない。
この分散状態はゾルであり、セラミック塗膜材の製造で
はこの状態のものをつくり、このような溶液の希釈状態
における粘度調整には必要に応じてカオリンを配合す
る。これら配合材相互の配合比率は実験において決定さ
れるが、その配合比率は請求項1に掲げるとおりであ
る。またスメクタイト、ラポナイトは水中には分散する
が有機溶媒中には分散しない。多量のイオン性有機化合
物が存在する場合にはフロキュレーションが起こる可能
性があるため有機界面活性剤等の使用は望ましくない。
このことは、水中でのみ分散が起こる前に置換可能カチ
オンの会合が起こるからである。これら配合材の架橋構
造は粘性増大による沈降を遅くするというよりも、むし
ろ沈降を防ぐ優れた懸濁安定特性を生ずるし、この架橋
は増粘作用をも生み出す。この粘性に関しても塗膜形成
方法による適切な粘度範囲を設定し、配合材の適正な配
合比率は請求項1及び請求項2の範囲内で充分に達成さ
れる。すなわち、この塗膜の乾燥、加熱による物性発現
に適切に働く配合材や硬化剤とコロイド状ゾルの形成及
び粘度調整のための作用機序と量的比率の確立は実験の
結果、いずれの配合材においても珪酸アルカリ100重
量部に対して配合材は3〜1重量部の範囲が適切であ
る。また酸化亜鉛は中・高温度で加熱する必要がある場
合に、珪酸塩との強固な架橋により硬化体を生成させる
ために添加する。一般に、酸化亜鉛の分子式はZnOと
示させているが、ZnO1+δであるために、酸素に対
して亜鉛がδだけ余分に存在しているが、それが結晶格
子上の酸素原子の欠陥によるものか格子間に亜鉛原子が
過剰に入り込むためなのかは明らかでないにしても、橋
かけ的作用としての網目修飾成分の役割を加熱とともに
行っていることが塗膜形成の実験結果から明らかになっ
ている。これらに実験結果から、塗膜形成成分の量的範
囲は以上の実験結果から選択したものである。
(2) In the step of adding the aqueous solution of boric acid to the aqueous solution of alkali silicate according to claims 1 and 2, when the concentration of the aqueous solution of boric acid is low, the speed of polymerization of monosilicic acid is not affected so much. In state. Therefore, when the alkali silicate is sodium silicate No. 1,
With the addition of 50 parts by weight of warm water to 100 parts by weight, the presence of monosilicate ions at a hydrogen ion concentration of about 10.5, aluminum hydroxide, calcium metasilicate, sodium aluminate, smectite, kaolin, and laponite By adding 3 to 1 part by weight of each of the above and, if necessary, adding 3 to 2 parts by weight of zinc oxide to form a suspension, an increase in adhesiveness and surface hardness is exhibited. The aluminum hydroxide and sodium aluminate added at this time contribute to the curing agent, and calcium metasilicate and kaolin contribute to the development of the physical properties of the coating film as the aggregate. On the other hand, by dispersing smectite and laponite in water, the replaceable alkali ions of the aqueous alkali silicate solution are hydrated to form colloidal dispersion. In these dilute materials, the repulsion between the particles does not occur and the viscosity does not increase in a dilute solution because the surface charge is much larger than the small end charge.
This dispersed state is a sol, and this state is produced in the production of a ceramic coating material, and kaolin is blended as necessary to adjust the viscosity in such a diluted state of the solution. The mixing ratio of these compounding materials is determined by experiments, and the mixing ratio is as described in claim 1. Smectite and laponite disperse in water but do not disperse in organic solvents. When a large amount of an ionic organic compound is present, flocculation may occur, so the use of an organic surfactant or the like is not desirable.
This is because the dissociable cation association occurs before dispersion occurs only in water. The crosslinked structure of these compounds results in excellent suspension stability properties that prevent sedimentation, rather than slowing down sedimentation due to increased viscosity, and this crosslinking also creates a thickening effect. With respect to this viscosity, an appropriate viscosity range is set according to the coating film forming method, and an appropriate mixing ratio of the compounding material is sufficiently achieved within the scope of claims 1 and 2. In other words, as a result of experiments, it was found that the mechanism of action and the quantitative ratio for the formation of a compounding material and a curing agent and a colloidal sol, and for the adjustment of the viscosity, which were properly applied to the development of physical properties by drying and heating of this coating film, were determined as a result of the experiment. In the material, the range of 3 to 1 part by weight of the compounding material is appropriate for 100 parts by weight of the alkali silicate. Zinc oxide is added in order to form a cured product by strong crosslinking with silicate when heating at a medium / high temperature is required. Generally, the molecular formula of zinc oxide is ZnO, but zinc oxide is ZnO 1 + δ , so that zinc is extra by δ with respect to oxygen, but this is also due to the defect of oxygen atoms on the crystal lattice. Although it is not clear whether zinc atoms are excessively interspersed between lattices, it is clear from the experimental results of coating film formation that the role of the network modifying component as a bridging effect is performed together with heating. I have. From these experimental results, the quantitative range of the film-forming components was selected from the above experimental results.

【0015】(3)珪酸アルカリとして珪酸ナトリウム
と珪酸カリウムを使用する場合において、珪酸アルカリ
が珪酸ナトリウムのみの場合には珪酸ナトリウムの50
0〜300重量部が使用され、珪酸ナトリウムと珪酸カ
リウムの配合にあっては珪酸ナトリウム100重量部に
対して珪酸カリウム500〜300重量部が使用され
る。すなわち、この重量比率は5〜3:0重量部及び
1:5〜3の範囲にある。これに対して金属シリコン微
粉末は50〜30重量部、アルミニウム微粉末は5〜1
重量部の範囲を配合して得られる反応溶液に、リチウム
化合物の10〜0.5重量部を配合して塗膜溶液をつく
る。ここで珪酸アルカリ水溶液と金属シリコンの反応に
ついて述べる。すなわち金属シリコンのすべての形態の
ものは珪酸アルカリ水溶液と反応して溶ける。これは金
属シリコンがアルカリ水溶液と反応してSiO 4−
びSi(OH)という反応によってOHの触媒作用に
より水に溶けるのである。このような珪酸四面体やシラ
ノール基に対して架橋反応を行わせるリチウムイオン及
び第1工程でつくられた懸濁液の硬化剤としての水酸化
アルミニウムや酸化亜鉛の配合及びその後の乾燥、加熱
による重縮合によって、強固な珪酸ゲルを被塗膜材料に
形成させる。同時に、基礎塗膜材に配合される二酸化珪
素、磁器の微粉末、酸化ジルコニウム、二酸化チタンや
磁鉄鉱微粉末が塗膜形成時に塗膜の表面層に存在するこ
とによって、耐久性、汚染物の削減、高い電気絶縁特性
や遠赤外線放射率も発現されて強固な塗膜が形成され
る。これらの結果から塗膜材の配合範囲は、多くの実験
結果から一定範囲を選択した数値である。
(3) In the case where sodium silicate and potassium silicate are used as the alkali silicate, when the sodium silicate is only sodium silicate, 50% of sodium silicate is used.
0 to 300 parts by weight is used. In the case of mixing sodium silicate and potassium silicate, 500 to 300 parts by weight of potassium silicate is used for 100 parts by weight of sodium silicate. That is, the weight ratio is in the range of 5-3: 0 parts by weight and 1: 5-3. On the other hand, 50 to 30 parts by weight of the metal silicon fine powder and 5 to 1 part by weight of the aluminum fine powder are used.
A coating solution is prepared by blending 10 to 0.5 parts by weight of a lithium compound with a reaction solution obtained by blending a range of parts by weight. Here, the reaction between the aqueous alkali silicate solution and metallic silicon will be described. That is, all forms of metallic silicon react with and dissolve in the aqueous alkali silicate solution. This is because metallic silicon reacts with an alkaline aqueous solution and dissolves in water by the catalysis of OH by the reaction of SiO 4 4- and Si (OH). The lithium ion for causing a cross-linking reaction to such a silicate tetrahedron or silanol group and aluminum hydroxide or zinc oxide as a curing agent for the suspension produced in the first step are blended and then dried and heated. By the polycondensation, a strong silica gel is formed on the material to be coated. At the same time, silicon dioxide, fine powder of porcelain, zirconium oxide, titanium dioxide and magnetite fine powder mixed in the base coating material are present in the surface layer of the coating when forming the coating, thereby reducing durability and contaminants. In addition, high electrical insulation characteristics and far-infrared emissivity are also exhibited, and a strong coating film is formed. From these results, the blending range of the coating film material is a numerical value in which a certain range is selected from many experimental results.

【0016】(4)珪酸アルカリに対して金属シリコン
微粉末とアルミニウム微粉末を加えて反応溶液をつくる
工程は、金属シリコンとアルミニウム微粉末のいずれも
アルカリに溶解して珪酸に富むAl−Siのアルカリ塩
のゾルを形成する。この水溶液にリチウム化合物を溶解
したゾル状の基礎塗膜材は、ナトリウムやカリウムより
も若干イオン半径の小さいリチウムの存在のために、被
塗膜材料にこの基礎塗膜材を塗布して加熱すれば、加熱
によりゲル状のガラス形成物のアルミニウムと網目修飾
物としてのリチウムがガラス化に寄与して、耐久性を有
する塗膜形成が可能となる。その際のリチウム化合物の
添加量は、実験によって珪酸アルカリの100重量部に
対して10〜0.5重量部の範囲、例えば水酸化リチウ
ムの場合は10〜3重量部、炭酸リチウムは1〜0.5
重量部の配合が適切であると判断される。
(4) The step of adding a metal silicon fine powder and an aluminum fine powder to an alkali silicate to form a reaction solution comprises dissolving both the metal silicon and the aluminum fine powder in an alkali to form a silica-rich Al-Si. Form a sol of alkali salt. The sol-like basic coating material in which a lithium compound is dissolved in this aqueous solution is heated by applying the basic coating material to the material to be coated due to the presence of lithium having an ion radius slightly smaller than that of sodium or potassium. For example, aluminum as a gel-like glass-forming product and lithium as a network modifier contribute to vitrification by heating, and a durable coating film can be formed. According to experiments, the amount of the lithium compound added is in the range of 10 to 0.5 parts by weight based on 100 parts by weight of the alkali silicate, for example, 10 to 3 parts by weight in the case of lithium hydroxide, and 1 to 0 part by weight of lithium carbonate. .5
It is determined that the blending of parts by weight is appropriate.

【0017】(5)請求項1及び請求項2に使用する二
酸化珪素の粒径は塗膜材中の二酸化珪素の含有量を増加
させて電気絶縁特性を向上するために、0.2ミクロン
以下のものを選択し、精磁器の粉砕微粒子の粒径は2ミ
クロン以下とする。この結果、電気絶縁特性に大きく寄
与する配合材は微細で球形を有する二酸化珪素が望まし
いと指向される。すなわち、この測定結果から配合比率
の範囲は基礎塗膜材100重量部に対して二酸化珪素の
配合率を70〜50重量部が適切である。ただし精磁器
の微粉末を配合する場合には、その粒度が2ミクロン以
下にして、二酸化珪素の配合比率の40〜20%程度が
好ましい。
(5) The particle size of the silicon dioxide used in the first and second aspects is 0.2 μm or less in order to increase the content of the silicon dioxide in the coating material and improve the electrical insulation properties. Is selected, and the particle size of the crushed fine particles of the porcelain is 2 microns or less. As a result, it is desired that the compounded material which greatly contributes to the electric insulation property is desirably fine and spherical silicon dioxide. That is, from the measurement results, it is appropriate that the compounding ratio of silicon dioxide is 70 to 50 parts by weight based on 100 parts by weight of the base coating material. However, when the fine powder of the fine porcelain is mixed, the particle size is preferably set to 2 microns or less, and the mixing ratio of silicon dioxide is preferably about 40 to 20%.

【0018】(6)非晶質二酸化珪素を添加して溶液中
のシリカゾルを増加させるためには水溶液の水素イオン
濃度は10以上が望ましく、この場合に溶解度が急に増
加し珪酸イオンが生成する。したがって、この微細な非
晶質二酸化珪素の8〜1%を配合して透明性塗膜材と
し、さらにはこの透明性塗膜材に各種の酸化金属やセラ
ミック微粉末等を混合して二酸化珪素を多く含有する懸
濁液をつくり、優れた物性を有する低温度硬化型多機能
性セラミック塗膜材を製造する。
(6) In order to increase the amount of silica sol in the solution by adding amorphous silicon dioxide, the hydrogen ion concentration of the aqueous solution is desirably 10 or more. In this case, the solubility rapidly increases and silicate ions are generated. . Therefore, 8 to 1% of this fine amorphous silicon dioxide is blended to form a transparent coating material, and further, various kinds of metal oxides and ceramic fine powders are mixed with the transparent coating material to form silicon dioxide. To produce a low-temperature-curable multifunctional ceramic coating material with excellent physical properties.

【0019】(7)十分に厚い塗膜の形成方法は、請求
項1の第1工程で得られた懸濁液と第2工程で得られた
反応溶液の混合溶液である基礎塗膜材に二酸化珪素、陶
器或いは磁器の微粉末、酸化ジルコニウム、二酸化チタ
ン、磁鉄絋微粉末の1種類以上の適合量を加えた混合溶
液、即ち第1工程で得られた懸濁液と第2工程で得られ
た混合溶液を被塗膜素材に塗布して100℃前後で充分
に乾燥した後、その乾燥面に再度この混合溶液を塗布す
る操作を数度に亘って繰り返した後、160〜250℃
の間の所定の温度で加熱すれば100ミクロン前後の膜
厚の強固な塗膜の形成が可能となる。この場合に懸濁液
が接着するためには、前段の塗膜面の表面エネルギーが
再度又は再々度にわたって塗布し乾燥したときの表面エ
ネルギーよりも小さいことによって接着が可能になる。
したがって塗布ごとに乾燥を繰り返して充分に乾燥した
表面に混合溶液を塗布する操作を行う。この場合に、塗
膜の表面エネルギーの差異を有する塗膜材を塗布する操
作を行う。そのためには、第2工程で得られた反応溶液
に混合する配合材の種類と添加量の適切な選択を考慮す
る必要がある。このようにして、厚い塗膜が要求される
場合、重ね掛けをする塗膜材の塗膜の表面エネルギー
は、下層より上層にわたるにつれて表面エネルギーが小
さい塗膜材を数種類つくって、順次に塗布して塗膜の形
成を行うことが望まれる。この場合には塗膜の表面硬度
は一回掛けの場合よりも回を重ねるごとにその硬度は小
さくなる。しかし、このようにして塗膜を形成すれば1
00ミクロン前後の厚い塗膜の形成が可能となる。
(7) The method for forming a sufficiently thick coating film is based on the base coating material which is a mixed solution of the suspension obtained in the first step and the reaction solution obtained in the second step. A mixed solution containing at least one compatible amount of silicon dioxide, ceramic or porcelain fine powder, zirconium oxide, titanium dioxide, and magnetic iron fine powder, ie, the suspension obtained in the first step and the mixed solution in the second step. After applying the obtained mixed solution to the material to be coated and drying it sufficiently at around 100 ° C., the operation of applying the mixed solution again to the dried surface is repeated several times,
If the film is heated at a predetermined temperature during this period, a strong film having a thickness of about 100 microns can be formed. In this case, in order for the suspension to adhere, it is possible to adhere because the surface energy of the coating film surface of the former stage is again or again less than the surface energy when applied and dried.
Therefore, the operation of applying the mixed solution to the sufficiently dried surface by repeating the drying for each application is performed. In this case, an operation of applying a coating material having a difference in surface energy of the coating film is performed. For that purpose, it is necessary to consider the appropriate selection of the type and the amount of the compounding material to be mixed with the reaction solution obtained in the second step. In this way, when a thick coating is required, the surface energy of the coating material of the coating material to be overlaid is made several types of coating materials having a small surface energy as it extends from the lower layer to the upper layer, and is sequentially applied. It is desired to form a coating film. In this case, the surface hardness of the coating film decreases as the number of times of application increases, as compared with the case where the coating is applied once. However, if a coating film is formed in this way, 1
It is possible to form a thick coating film of about 00 microns.

【0020】(7)請求項2における充分に厚い塗膜の
形成に関する処理方法は、請求項2の第1工程で得られ
た透明性塗膜材に配合する配合材の種類と配合比率を適
切に選択して異なる塗膜材を数種類つくり、それぞれの
塗膜材に第2工程で得られた懸濁液の適量を混合して、
それらの異なる混合溶液を塗布するごとに乾燥を繰り返
えし行った後、210℃付近までの間の所定の温度で加
熱すれば、良好な撥水性と諸物性を具備する数10〜1
00ミクロン前後の膜厚の表面塗膜を任意に形成するこ
とが可能となる。
(7) In the processing method for forming a sufficiently thick coating film according to claim 2, the type and the mixing ratio of the compounding materials to be mixed with the transparent coating film material obtained in the first step of claim 2 are appropriately adjusted. To make several kinds of different coating materials, mix each coating material with the appropriate amount of the suspension obtained in the second step,
After repeating the drying each time these different mixed solutions are applied, and heating at a predetermined temperature up to around 210 ° C., several tens to one having good water repellency and various physical properties are obtained.
It is possible to arbitrarily form a surface coating film having a thickness of about 00 microns.

【0021】(8)厚い表面塗膜の形成は、請求項2に
おける第1工程で得られた透明性塗膜材に、第2工程で
得られた懸濁液の適量を混合し、さらにこの懸濁液に疎
水性二酸化珪素化合物を加えて混練してつくる第3工程
の混合溶液を、目的に応じた塗膜の物性を発現させるた
めには第2工程で添加する配合材の種類と配合比率の適
切な選択いかんにかかり、このようにしてつくられた数
種類の塗膜材を被塗膜材料に塗膜として形成させ、この
塗膜が充分には乾燥しない間に重ね掛けを行う膜厚の形
成方法が選択されるが、この塗膜材による重ね掛けによ
って撥水性の優れた塗膜と100ミクロン前後の膜厚
を、常温及び/又は210℃付近までの任意な温度加熱
により形成させることができる。
(8) To form a thick surface coating film, an appropriate amount of the suspension obtained in the second step is mixed with the transparent coating material obtained in the first step in claim 2, and In order to express the physical properties of the coating film according to the purpose of the mixed solution prepared in the third step by adding and kneading the hydrophobic silicon dioxide compound to the suspension, the type and compounding of the compounding material added in the second step Depending on the appropriate selection of the ratio, several types of coating materials thus formed are formed as coating films on the material to be coated, and the film thickness is to be applied while the coating film is not sufficiently dried. The method of forming the film is selected, and a film having excellent water repellency and a film thickness of about 100 μm are formed by layering with the film material by heating at room temperature and / or any temperature up to around 210 ° C. Can be.

【0022】ここで、以上の本発明の構成に係る各数値
範囲の限定理由について説明するが、低温度硬化型多機
能性セラミック塗膜材の配合材の配合比率は相互に関連
を有するもので、厳密な配合比率の限定をすることは難
しい。(1)一般に請求項1の第1工程において、珪酸
アルカリがJIS1号珪酸ナトリウムの場合には、珪酸
ナトリウム1号の100重量部に対して加温をした脱イ
オン水の60〜40重量部を注加して加水分解をおこな
った水溶液をつくり、この水溶液に硼酸3〜1重量部に
温水40〜30重量部を注加した溶解液を加えて珪酸の
ゾル化を行う。この場合に、JIS1号珪酸ナトリウム
に対して加温をした脱イオン水の注加量が少ない場合に
は、硼酸の溶解液を加えた場合に充分な珪酸のゾル化が
できにくく、珪酸ナトリウム1号に対して加温した脱イ
オン水の注加量が多い場合には、最終的に被塗膜材料へ
の接着強度が低下する原因となる。このようにしてつく
った水溶液に配合する各種の配合材の量はそれぞれに3
〜1重量部で、この懸濁液の粘度(CP)は700〜
1,300程度の範囲にあって、これら懸濁液は刷毛塗
りやスプレーによる塗膜形成に適することが確認でき
た。この場合に、各種の配合材の量がこれよりも多い場
合には懸濁液の粘度が高くて塗膜形成が困難で、しかも
塗膜にしばしばひび割れを発生するなどの欠陥が発生す
る。一方、各種の配合材の量がこれよりも少ない場合に
は乾燥後の塗膜にひび割れを生じるとともに表面硬度が
低下する。したがって配合する各種の配合材の量は、適
切な配合比率の範囲が存在することがわかる。請求項1
及び請求項2に示したこれら配合材の量的関係は、実験
を重ねた結果の総合的な判断によるものである。
Here, the reasons for limiting the respective numerical ranges according to the constitution of the present invention will be described. However, the compounding ratios of the compounding materials of the low-temperature curing type multifunctional ceramic coating material are mutually related. However, it is difficult to strictly limit the mixing ratio. (1) Generally, in the first step of claim 1, when the alkali silicate is JIS No. 1 sodium silicate, 60 to 40 parts by weight of deionized water heated with respect to 100 parts by weight of sodium silicate 1 is added. A hydrolyzed aqueous solution is prepared by pouring, and a solution obtained by pouring 40 to 30 parts by weight of warm water into 3 to 1 part by weight of boric acid is added to the aqueous solution to form a sol of silicic acid. In this case, if the amount of deionized water heated to JIS No. 1 sodium silicate is small, it is difficult to form a sufficient sol of silicic acid when a solution of boric acid is added. If a large amount of deionized water is added to the material, the adhesive strength to the material to be coated is eventually reduced. The amount of each compounding material to be added to the aqueous solution thus prepared is 3
-1 part by weight, the viscosity (CP) of this suspension is 700-
In the range of about 1,300, it was confirmed that these suspensions were suitable for coating by brushing or spraying. In this case, if the amount of each compounding material is larger than this, the viscosity of the suspension is so high that it is difficult to form a coating film, and moreover, the coating film often has defects such as cracks. On the other hand, when the amount of each compounding material is smaller than this, cracks occur in the dried coating film and the surface hardness decreases. Therefore, it can be seen that the amounts of various compounding materials to be compounded have an appropriate compounding ratio range. Claim 1
The quantitative relationship of these compounded materials shown in claim 2 is based on comprehensive judgment of the results of repeated experiments.

【0023】(2)第2工程において、珪酸アルカリ
が、珪酸ナトリウム1号であり、その重量比率が5〜3
重量部の場合及び珪酸ナトリウム1号と珪酸カリウム溶
液の場合にあっては重量比率が1:3に対して温水50
0〜400重量部を添加した溶液に対して金属シリコン
微粉末50〜30重量部を加えてつくった反応溶液の比
重は1.01〜1.05の範囲であり、リチウム化合物
を配合し溶解するに適切な濃度である。この珪酸ナトリ
ウム1号の重量比率が5〜3より少ない場合は金属シリ
コン微粉末の量に対して未反応なシリコンが残り、多い
場合には溶液中に多量の水酸化ナトリウムが存在するた
めに塗膜材は湿気に対して溶解が起こる。したがって、
珪酸アルカリと金属シリコンの配合比率はこの範囲に規
定されるものであり、これらの配合材の配合比率と量的
関係は、最終的には実験結果の総合的な判断によるもの
である。
(2) In the second step, the alkali silicate is sodium silicate No. 1, and its weight ratio is 5 to 3
In the case of parts by weight and in the case of sodium silicate No. 1 and potassium silicate solution, the weight ratio is 1: 3 and 50 parts of hot water is used.
The specific gravity of the reaction solution prepared by adding 50 to 30 parts by weight of the metal silicon fine powder to the solution to which 0 to 400 parts by weight is added is in the range of 1.01 to 1.05, and the lithium compound is blended and dissolved. It is a suitable concentration. When the weight ratio of the sodium silicate No. 1 is less than 5 to 3, unreacted silicon remains with respect to the amount of the metal silicon fine powder, and when the weight ratio is large, a large amount of sodium hydroxide exists in the solution, so that the coating is performed. The film material dissolves in moisture. Therefore,
The compounding ratio of the alkali silicate and the metal silicon is defined in this range, and the compounding ratio and the quantitative relationship of these compounding materials are ultimately determined by comprehensive judgment of the experimental results.

【0024】(3)請求項2における珪酸アルカリと金
属シリコン微粉末の反応に際して、必要に応じてアルミ
ニウム微粉末を加えた後にリチウム化合物を配合してつ
くる水溶液に、親水性非晶質二酸化珪素の微粉末8〜1
%を配合し溶解して透明性塗膜材をつくる。この親水性
非晶質二酸化珪素の微粉末の配合比率がこの数値範囲よ
りも少ない場合には、透明性塗膜材の珪酸ゾルが少ない
ために塗膜の乾燥速度と塗膜の表面硬度が小さくなり、
この範囲よりも多くなれば透明性塗膜材の水素イオン濃
度が低下してゾル化しなくなる。このような透明性塗膜
材の配合比率と量的関係は、最終的には実験結果の総合
的な判断によるものである。
(3) In the reaction of the alkali silicate and the metal silicon fine powder according to claim 2, a hydrophilic amorphous silicon dioxide is added to an aqueous solution prepared by adding a fine aluminum powder, if necessary, and then compounding a lithium compound. 8-1 fine powder
% And dissolved to form a transparent coating material. When the compounding ratio of the fine powder of the hydrophilic amorphous silicon dioxide is smaller than this numerical range, the drying speed of the coating film and the surface hardness of the coating film are small because the silicate sol of the transparent coating material is small. Become
If it exceeds this range, the hydrogen ion concentration of the transparent coating material decreases, and the material does not form a sol. Such a mixing ratio and a quantitative relationship of the transparent coating material are ultimately based on a comprehensive judgment of the experimental results.

【0025】(4)請求項2において、その第2工程で
得られた懸濁液に疎水性非晶質二酸化珪素化合物の微粉
末6〜1重量部を加えて混練するか、或いは第1工程で
得られた透明性塗膜材に各種の配合材を加え、さらに疎
水性非晶質二酸化珪素化合物の6〜1重量部を加えて混
練してつくる塗膜の物性は、常温硬化型にして大きな撥
水性と高い表面硬度を発現する。この際に疎水性非晶質
二酸化珪素化合物の配合比率が1より小さい場合は充分
な撥水性が発現されず、配合比率が6より大きい場合に
は粘性が大きくなって、第2工程で得られた懸濁液や透
明性塗膜材に各種の配合材を加えた混合溶液は通常の混
練装置や攪拌装置では混合・混練はできない。しかも、
このようにしてつくれば、塗膜材は塊状を呈して塗膜形
成が不可能となる。このように配合材の配合比率と量的
関係は、最終的には実験結果の総合的な判断によるもの
である。
(4) The method according to claim 2, wherein 6 to 1 parts by weight of a fine powder of a hydrophobic amorphous silicon dioxide compound is added to the suspension obtained in the second step and kneaded, or Various properties are added to the transparent coating material obtained in the above, and further 6 to 1 parts by weight of a hydrophobic amorphous silicon dioxide compound is added and kneaded, and the physical properties of the coating film are set to a room temperature curing type. Exhibits high water repellency and high surface hardness. At this time, if the blending ratio of the hydrophobic amorphous silicon dioxide compound is smaller than 1, sufficient water repellency is not exhibited, and if the blending ratio is larger than 6, the viscosity increases, and the viscosity is increased in the second step. A mixed solution obtained by adding various compounding materials to a suspension or a transparent coating material cannot be mixed and kneaded with a usual kneading apparatus or stirring apparatus. Moreover,
If it forms in this way, a coating material will show a lump and a coating film formation will be impossible. As described above, the mixing ratio and the quantitative relationship of the compounding materials are finally based on comprehensive judgment of the experimental results.

【0026】(3)請求項1及び請求項2に掲げる配合
材の配合比率は、適切な粘性と比重の範囲を確保し、塗
膜形成の際に一般的な塗膜形成装置で塗膜の形成が可能
にして、常温及び/又は低温度で硬化して目的とする塗
膜物性を発現する範囲を選定した数値範囲である。これ
らの各数値範囲の限定については、そもそも低温度硬化
型多機能性セラミック塗膜材の各配合材の配合比率が相
互に関連を有するもので、厳密な配合比率の限定を規定
することは難しいが、このような配合材の配合比率と量
的関係は、最終的には多くの実験結果から総合的に判断
したものであり、この範囲以下でも、また以上でも簡便
にして安定的な製造法と塗膜の形成が困難となる。この
ように、適切な配合によってつくられた塗膜材は、常温
及び/又は低温度加熱により一定の高い物性を確保し、
しかも製品価格が既製の塗料の三分の一程度の低価格と
なる無公害にして省エネルギー、環境の負荷が極めて小
さい多機能性セラミック塗膜材は見あたらない。
(3) The compounding ratio of the compounding materials set forth in claims 1 and 2 is such that an appropriate viscosity and specific gravity range are ensured, and the coating film is formed by a general coating film forming apparatus when forming the coating film. This is a numerical range in which a range in which the film can be formed and cured at room temperature and / or low temperature to exhibit the desired coating film physical properties is selected. Regarding the limitation of each of these numerical ranges, the blending ratio of each blended material of the low-temperature curing type multifunctional ceramic coating material is originally related to each other, and it is difficult to strictly define the strict blending ratio. However, the compounding ratio and the quantitative relationship of such compounding materials were ultimately comprehensively determined from many experimental results. And the formation of a coating film becomes difficult. In this way, the coating material made by proper blending ensures certain high physical properties by heating at room temperature and / or low temperature,
In addition, there is no multi-functional ceramic coating material which is pollution-free, energy-saving and has a very low environmental load, in which the product price is as low as one-third of the price of ready-made paints.

【0027】[0027]

【実施例】次に本発明に係る低温度硬化型多機能性セラ
ミック塗膜材の製造方法及び塗膜の形成方法について、
実施例によって具体的に説明する。 実施例1:珪酸ナトリウムの100重量部を溶解した水
溶液に硼酸2重量部の溶解液を添加した後、水酸化アル
ミニウム、スメクタイト、カオリンの3種をそれぞれ1
重量部加えて懸濁液をつくる第1工程と、珪酸ナトリウ
ム200重量部と珪酸カリウム300重量部に対して金
属シリコン微粉末40重量部、アルミニウム微粉末3重
量部を加えて常温から100℃の範囲で得られる反応溶
液をつくり、この反応溶液100重量部に、水酸化リチ
ウムの3重量部を添加してつくる水溶液の第2工程にお
いて、第1工程で得られた溶液の50重量部に対して第
2工程で得られた溶液の50重量部を混合した後、この
混合溶液を基礎塗膜材として、この基礎塗膜材に二酸化
珪素50重量部と酸化ジルコニウム微粉末50重量部を
加えて混練する第3工程と、第3工程で得られた混合溶
液を被塗膜材料にスプレーガンで塗布して乾燥を行った
後、250℃の温度で10分間加熱する第4工程におい
て塗膜を形成させ、塗膜の諸物性を測定した。この結果
は表1に示す。
Next, a method for producing a low-temperature curing type multifunctional ceramic coating material and a method for forming a coating film according to the present invention will be described.
This will be specifically described with reference to examples. Example 1 A solution of 2 parts by weight of boric acid was added to an aqueous solution in which 100 parts by weight of sodium silicate had been dissolved, and then aluminum hydroxide, smectite, and kaolin were added in 1 part each.
A first step of preparing a suspension by adding parts by weight, and adding 40 parts by weight of metal silicon fine powder and 3 parts by weight of aluminum fine powder to 200 parts by weight of sodium silicate and 300 parts by weight of potassium silicate, and adding the mixture to a temperature of from room temperature to 100 ° C. In the second step of the aqueous solution prepared by adding 3 parts by weight of lithium hydroxide to 100 parts by weight of the reaction solution obtained in the above range, 50 parts by weight of the solution obtained in the first step is added. After mixing 50 parts by weight of the solution obtained in the second step, the mixed solution was used as a base coating material, and 50 parts by weight of silicon dioxide and 50 parts by weight of zirconium oxide fine powder were added to the base coating material. In the third step of kneading, and after applying the mixed solution obtained in the third step to the material to be coated with a spray gun and drying, the coating is applied in the fourth step of heating at 250 ° C. for 10 minutes. Let it form The physical properties of the coating film was measured. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】実施例2:珪酸ナトリウムの100重量部
を溶解した水溶液に硼酸2重量部の溶解液を添加した
後、水酸化アルミニウム、メタ珪酸カルシウム、スメク
タイト、カオリンの4種をそれぞれ2重量部加えて懸濁
液をつくる第1工程と、珪酸ナトリウム300重量部と
珪酸カリウム200重量部に対して金属シリコン微粉末
30重量部を加えて常温から100℃の範囲で得られる
反応溶液をつくり、この反応溶液100重量部に、リチ
ウム化合物の3重量部を添加した反応溶液をつくる第2
工程において、第1工程で得られた溶液の300重量部
に対して第2工程で得られた溶液の700重量部を混合
した後、この混合溶液の100重量部に対して0.2ミ
クロン以下の球形を有する二酸化珪素の60重量部を混
合して得られる塗膜材を被塗膜材料にスプレーガンで塗
布して膜厚を20ミクロン程度に調整し乾燥を行った
後、180℃の温度で10分間加熱して塗膜を形成さ
せ、電気絶縁抵抗と塗膜の諸物性を測定した。この結果
は表2に示す。
Example 2 A solution of 2 parts by weight of boric acid was added to an aqueous solution in which 100 parts by weight of sodium silicate was dissolved, and then 2 parts by weight of each of aluminum hydroxide, calcium metasilicate, smectite, and kaolin were added. A first step of preparing a suspension by adding 30 parts by weight of metal silicon fine powder to 300 parts by weight of sodium silicate and 200 parts by weight of potassium silicate to form a reaction solution obtained in a temperature range from room temperature to 100 ° C. A second reaction solution is prepared by adding 3 parts by weight of a lithium compound to 100 parts by weight of the reaction solution.
In the step, after mixing 700 parts by weight of the solution obtained in the second step with 300 parts by weight of the solution obtained in the first step, 0.2 μm or less is mixed with 100 parts by weight of the mixed solution. A coating material obtained by mixing 60 parts by weight of silicon dioxide having a spherical shape is applied to a material to be coated with a spray gun, the film thickness is adjusted to about 20 μm, and drying is performed. For 10 minutes to form a coating film, and the electrical insulation resistance and various physical properties of the coating film were measured. The results are shown in Table 2.

【0030】[0030]

【表2】 [Table 2]

【0031】実施例3:珪酸ナトリウム300重量部と
珪酸カリウム300重量部に対して金属シリコン微粉末
40重量部、アルミニウム微粉末3重量部を加えて常温
から100℃の範囲で得られる反応溶液をつくり、この
反応溶液100重量部に水酸化リチウムの3重量部を添
加してつくる水溶液に、親水性非晶質二酸化珪素の微粉
末2%を溶解してつくる透明性塗膜材の第1工程と、珪
酸ナトリウムの100重量部を溶解した水溶液に硼酸2
重量部の溶解液を添加した後、水酸化アルミニウム、ア
ルミン酸ナトリウム、スメクタイト、カオリンの4種を
それぞれ1重量部加えて懸濁液をつくる第2工程と、第
1工程で得られた透明性塗膜材の60重量部と第2工程
で得られた懸濁液の40重量部を混合した混合溶液にア
ナタース型二酸化チタンの微粒子を50〜20重量部を
加えて塗膜材をつくり、こうして得られた低温度硬化型
セラミック塗膜材を被塗膜材料にスプレーガンで塗布し
て膜厚を10ミクロン程度に調整して乾燥を行った後、
210℃の温度で10分間加熱して塗膜を形成させた後
に光触媒作用として、アセトアルデヒドの削減率及び一
酸化窒素の削減率を測定した。この結果は表3及び表4
に示す。
Example 3 40 parts by weight of metal silicon fine powder and 3 parts by weight of aluminum fine powder were added to 300 parts by weight of sodium silicate and 300 parts by weight of potassium silicate, and a reaction solution obtained in a temperature range from room temperature to 100 ° C. was obtained. First step of transparent coating material made by dissolving 2% of fine powder of hydrophilic amorphous silicon dioxide in an aqueous solution made by adding 3 parts by weight of lithium hydroxide to 100 parts by weight of this reaction solution And boric acid 2 in an aqueous solution in which 100 parts by weight of sodium silicate are dissolved.
After the addition of 1 part by weight of the solution, 1 part by weight of each of aluminum hydroxide, sodium aluminate, smectite and kaolin is added to form a suspension, and the transparency obtained in the first step is obtained. To a mixed solution obtained by mixing 60 parts by weight of the coating material and 40 parts by weight of the suspension obtained in the second step, 50 to 20 parts by weight of fine particles of anatase-type titanium dioxide were added to form a coating material. After applying the obtained low temperature curing type ceramic coating material to the material to be coated with a spray gun, adjusting the film thickness to about 10 μm, and performing drying,
After heating at 210 ° C. for 10 minutes to form a coating film, the reduction rate of acetaldehyde and the reduction rate of nitric oxide were measured as photocatalysis. The results are shown in Tables 3 and 4.
Shown in

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】実施例4:珪酸ナトリウムの100重量部
を溶解した水溶液に硼酸2重量部の溶解液を添加した
後、水酸化アルミニウム、メタ珪酸カルシウム、スメク
タイト、カオリンの4種をそれぞれ2重量部加えて懸濁
液をつくる第1工程と、珪酸ナトリウム300重量部と
珪酸カリウム200重量部に対して金属シリコン微粉末
30重量部を加えて常温から100℃の範囲で得られる
反応溶液をつくり、この反応溶液100重量部に、水酸
化リチウムの3重量部を配合した反応溶液をつくる第2
工程において、第1工程で得られた溶液の300重量部
に対して第2工程で得られた溶液の700重量部を混合
した後、この混合溶液の100重量に対して陶器の微粉
末の50%と磁鉄鉱微粉末の20%を混合して得られる
塗膜材を被塗膜材料にスプレーガンで膜厚30ミクロン
程度に塗布し乾燥を行った後、180℃の温度で10分
間加熱して塗膜形成した後、遠赤外線放射体の放射率を
加熱温度500℃において完全黒体と比較測定した。こ
の結果は図1及び図2に示す。
Example 4 After a solution of 2 parts by weight of boric acid was added to an aqueous solution in which 100 parts by weight of sodium silicate was dissolved, 2 parts by weight of each of aluminum hydroxide, calcium metasilicate, smectite, and kaolin were added. A first step of preparing a suspension by adding 30 parts by weight of metal silicon fine powder to 300 parts by weight of sodium silicate and 200 parts by weight of potassium silicate to form a reaction solution obtained in a temperature range from room temperature to 100 ° C. A second reaction solution is prepared by mixing 3 parts by weight of lithium hydroxide with 100 parts by weight of the reaction solution.
In the step, 700 parts by weight of the solution obtained in the second step is mixed with 300 parts by weight of the solution obtained in the first step, and 50 parts of the fine ceramic powder is mixed with 100 parts by weight of the mixed solution. % And 20% of the magnetite fine powder are applied to the material to be coated with a spray gun to a film thickness of about 30 μm and dried, and then heated at a temperature of 180 ° C. for 10 minutes. After forming the coating, the emissivity of the far-infrared radiator was measured at a heating temperature of 500 ° C. in comparison with a perfect black body. The results are shown in FIGS.

【0035】実施例5:第1工程において、珪酸ナトリ
ウム100重量部に対して温水20重量部と珪酸カリウ
ム500重量部に金属シリコン微粉末40重量部と、ア
ルミニウム微粉末2重量部を加えて常温から100℃の
範囲で反応溶液をつくる。この反応溶液100重量部に
対して、水酸化リチウムの3重量部を添加して水溶液を
つくり、さらに、この水溶液に親水性非晶質二酸化珪素
の微粉末2%を溶解して透明性塗膜材つくる。一方、第
2工程では、珪酸ナトリウムの100重量部を溶解した
水溶液に硼酸2重量部の溶解液をつくり、この溶解液に
水酸化アルミニウム、アルミン酸ナトリウム、カオリン
の3種類の配合材をそれぞれ1重量部加えて懸濁液をつ
くる。次に第3工程として、第1工程で得られた透明性
塗膜材の70重量部と第2工程で得られた懸濁液の30
重量部を混合して混合溶液をつくり、この混合溶液に酸
化ジルコニウム粉末の40重量部を加え、さらに疎水性
非晶質二酸化珪素化合物の3重量部を添加し混練して混
合溶液をつくる。この第3工程で得られた塗膜材を被塗
膜材料にスプレーによって塗布した後、室温で乾燥し硬
化させて撥水性を有する常温硬化型の塗膜の形成を行っ
た。この結果は表5に掲げる。
Example 5: In the first step, 20 parts by weight of warm water and 500 parts by weight of potassium silicate, 40 parts by weight of metal silicon fine powder and 2 parts by weight of aluminum fine powder were added to 100 parts by weight of sodium silicate, A reaction solution is prepared at a temperature in the range from to 100 ° C. To 100 parts by weight of this reaction solution, 3 parts by weight of lithium hydroxide was added to form an aqueous solution, and 2% of hydrophilic amorphous silicon dioxide fine powder was dissolved in this aqueous solution to form a transparent coating film. Make wood. On the other hand, in the second step, a solution of 2 parts by weight of boric acid was prepared in an aqueous solution in which 100 parts by weight of sodium silicate was dissolved, and three kinds of compounding materials of aluminum hydroxide, sodium aluminate, and kaolin were added to the solution. Add suspension by weight. Next, as a third step, 70 parts by weight of the transparent coating material obtained in the first step and 30 parts of the suspension obtained in the second step are used.
Parts by weight are mixed to form a mixed solution. To this mixed solution, 40 parts by weight of zirconium oxide powder is added, and 3 parts by weight of a hydrophobic amorphous silicon dioxide compound is further added and kneaded to form a mixed solution. The coating material obtained in the third step was applied to the material to be coated by spraying, and then dried and cured at room temperature to form a water-repellent, room temperature-curable coating film. The results are shown in Table 5.

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【発明の効果】以上の実施例で説明をしたように、本発
明によれば下記のごとき優れた効果に加えて、低価格に
して無公害、かつ産業廃棄物を原料とする循環型社会形
成推進に寄与する新しい低温度硬化型多機能性セラミッ
ク塗膜材の製造方法及び低温度硬化型多機能性セラミッ
ク塗膜の形成方法を開発した。すなわち、(1)従来の
有機塗料は健康被害や引火性が強くて火災の誘発や火災
の際に有毒ガスが発生して人畜に大きな被害をもたらす
などの問題が多い。しかも塗膜の表面硬度が小さく、屈
曲性、耐汚染性、耐酸性、耐アルカリ性が劣り、劣化
性、汚染性などの欠陥が多い。これらを防止するため
に、琺瑯や陶磁器用釉薬などが使用されてきたが、80
0℃以上の高温焼成のために多消費エネルギー型にして
基板材料が限定される。さらには施釉装置や焼成装置等
の設備費が高価であり、循環型経済社会の塗膜材とは言
い難い。一方、従来から電気絶縁体材料は有機高分子や
有機無機複合材が使用されているが、塗膜形成操作や性
能及び価格の面でも難点が多い。これらのすべての欠陥
を解消するために低温度硬化型セラミック塗膜材を開発
した結果、実施例1、実施例2、実施例5、に示すよう
に、一般の塗料の表面硬度が鉛筆強度で6〜8程度であ
るのに対して、本開発になる塗膜の表面硬度はモース1
〜5前後と高硬度であり、しかも約5ミクロン以下では
180°の屈曲性が発現される。さらに、この塗膜形成
にあっては最高加熱温度250℃、所定温度における保
持時間10〜20分前後の低温度加熱で充分であり、使
用目的によっては常温乾燥によって撥水性、耐久性など
の高い諸物性の発現が得られる。このように、従来から
使用されてきた有機高分子塗料や有機無機複合材系の塗
料を根本から変革する無公害にして省エネルギー、撥水
性にして耐久性を有し、しかも従来の有機塗料価格の三
分の一を下回る低価格で供給可能な、低温度硬化型多機
能性セラミック塗膜材の製造方法及び低温度硬化型多機
能性セラミック塗膜の形成方法を開発した。
As described in the above embodiments, according to the present invention, in addition to the following excellent effects, a low-cost, non-polluting and recycling-based society using industrial waste as a raw material is formed. A new method for producing a low-temperature-curable multifunctional ceramic coating material and a method for forming a low-temperature-curable multifunctional ceramic coating film that contribute to propulsion have been developed. That is, (1) the conventional organic paint has many problems such as causing health damage and inflammability, causing a fire, and generating toxic gas at the time of the fire, causing serious damage to humans and livestock. In addition, the surface hardness of the coating film is small, the flexibility, the stain resistance, the acid resistance and the alkali resistance are poor, and there are many defects such as deterioration and contamination. To prevent these, enamel and ceramic glaze have been used.
The substrate material is limited to a high energy consumption type for firing at a high temperature of 0 ° C. or higher. Furthermore, equipment costs such as a glaze apparatus and a baking apparatus are expensive, and it is hard to say that this is a coating material for a recycling-based economic society. On the other hand, an organic polymer or an organic-inorganic composite material has been used as an electric insulator material, but there are many difficulties in terms of a coating film forming operation, performance, and cost. As a result of developing a low-temperature-curable ceramic coating material to eliminate all of these defects, as shown in Examples 1, 2, and 5, the surface hardness of general paints was reduced by pencil strength. The surface hardness of the coating film developed according to the present invention is about
The hardness is as high as about 5 and 180 degrees or less is exhibited at about 5 microns or less. Further, in this coating film formation, low temperature heating of a maximum heating temperature of 250 ° C. and a holding time at a predetermined temperature of about 10 to 20 minutes is sufficient, and depending on the purpose of use, high water repellency, durability and the like are obtained by drying at room temperature. Expression of various physical properties can be obtained. In this way, organic polymer paints and organic-inorganic composite paints, which have been used in the past, are fundamentally revolutionized. They are pollution-free, energy-saving, water-repellent, and durable. We have developed a method for producing a low-temperature-curable multifunctional ceramic coating material and a method for forming a low-temperature-curable multifunctional ceramic coating material that can be supplied at a price lower than one-third.

【0038】(2)二酸化チタン光触媒の高機能化と環
境浄化への応用が盛んに行われようとしている。これに
使用する二酸化チタンを諸材料にコーテングする際に
は、チタンゾルの加熱による接着のために性能が低下
し、さらに素材の種類や形状・大きさ等の選択範囲が狭
く、多量生産と均一化はもとより製造の複雑化と高価格
により普及が限定されている。表3及び表4に掲げるよ
うに、これらの隘路を取り除き通常の塗膜の形成方法に
よってシックハウス症候群の除去や大気汚染物質の削減
が短時間にして高効率に処理可能にして、しかも従来の
チタニアゾルの価格の十分の一以下で販売可能な二酸化
チタンによる光触媒セラミック塗膜材とその塗膜の形成
方法を開発した。
(2) The application of titanium dioxide photocatalysts to high functionality and environmental purification is being actively pursued. When coating titanium dioxide for various materials, the performance is reduced due to the adhesion of titanium sol by heating, and the selection range of material type, shape, size, etc. is narrow, and mass production and uniformity In addition, the spread is limited due to the complexity of manufacturing and high price. As shown in Tables 3 and 4, these bottlenecks are eliminated and the removal of sick house syndrome and the reduction of air pollutants can be performed in a short time with high efficiency by the usual coating film forming method. We have developed a photocatalytic ceramic coating material of titanium dioxide and a method of forming the coating film, which can be sold for less than one tenth of the price of the product.

【0039】(3)今日では省エネルギーにして環境に
負荷をかけない常温や低温度硬化型遠赤外線放射セラミ
ック体は開発されていない。すなわち、これらの原因は
適切な無機塗膜材・接着剤が開発されていないことに起
因する。近年になって新しい低温加熱の塗料が市販され
るようになっているが、いずれも無機質系の塗料にし
て、溶媒はアルコールなどの低分子有機物質を使用して
いる。これら市販品の中からいくつかの無機質塗料とい
われる塗料をテストした結果、市場で要求されている使
用上の簡便さに加えて高度な物性を発現するという目的
からは遠く、しかも高価格であり、いずれの塗料も不十
分なものである。したがって、接着強度や耐久性・耐熱
性等が劣る弱点と高価格のために、今日では高温処理に
よるセラミックを素材とした溶着による遠赤外線放射体
が一般的である。このことは要するに、多機能にして多
目的に適合する無機塗膜材が希求されながらも未だに開
発の域に達していないことに起因しているのが現状であ
るといえよう。本開発になる赤外線放射セラミック体の
物性は実施例4と図1及び図2に掲げるように、放射率
は0.9以上であり現在使用されている遠赤外線放射セ
ラミックの放射率0.8と比較すれば格段に高効率であ
り、すべての波長域で安定した放射率を発現しているこ
とが明らかである。しかも、この放射体はプラスチック
材料を除き任意な形状と大きさを有するすべての素材に
塗膜を形成させることが可能であり、塗膜の形成温度は
常温乾燥或いは250℃付近までの加熱で塗膜の厚さは
30ミクロン以下で形成、製造した後に、使用温度は8
00℃前後までの加熱に耐えて高い放射率を発現する新
しい遠赤外線放射セラミック塗膜材であり、その価格は
1kg当たり2000円程度にして、常温乾燥でも商品
として可能な「セラミック塗料」である。
(3) At present, no room temperature or low temperature hardening type far-infrared radiation ceramic body which saves energy and does not burden the environment has been developed. That is, these causes are due to the fact that a suitable inorganic coating material and adhesive have not been developed. In recent years, new low-temperature heating paints have been marketed, but all of them are inorganic paints and use low molecular organic substances such as alcohols as solvents. As a result of testing some of these commercially available paints called inorganic paints, it is far from the purpose of expressing advanced physical properties in addition to the ease of use required in the market, and it is expensive. However, all of the paints are insufficient. Therefore, far-infrared radiators are generally used today by welding using ceramics obtained by high-temperature treatment because of their weaknesses such as poor adhesive strength, durability and heat resistance and high price. In short, this can be said to be attributable to the fact that, despite the demand for a multifunctional and multipurpose inorganic coating material, it has not yet reached the level of development. As shown in Example 4 and FIGS. 1 and 2, the emissivity of the infrared emitting ceramic body to be developed is 0.9 or more, and the emissivity of the far infrared emitting ceramic currently used is 0.8. By comparison, it is clear that the efficiency is remarkably high and a stable emissivity is exhibited in all wavelength ranges. In addition, this radiator can form a coating on any material having an arbitrary shape and size except for a plastic material, and the coating is formed by drying at room temperature or heating to around 250 ° C. After forming and manufacturing the film with a thickness of 30 μm or less, the operating temperature is 8 μm.
This is a new far-infrared radiation ceramic coating material that can withstand heating up to around 00 ° C and develops a high emissivity. .

【0040】(3)主要な原料は、先端産業から排出さ
れる金属シリコンと陶磁器の廃棄物である。本開発にな
る低温度硬化型多機能性セラミック塗膜材は、これらの
廃棄物の全面的有効的な利活用技術であり、しかも塗膜
材に使用する溶媒は水であるために、省資源、省エネル
ギーにして無公害な生産品であり、新しい21世紀型の
循環型経済社会に対して新しい産業の創出にも連動する
ものである。
(3) Main raw materials are metallic silicon and ceramic waste discharged from advanced industries. The low-temperature-curable multifunctional ceramic coating material developed in this study is a technology that makes full use of these wastes, and the solvent used for the coating material is water, which saves resources. It is an energy-saving and pollution-free product that is linked to the creation of a new industry in the new 21st century recycling-oriented economy.

【0041】(4)塗膜形成にあたっては、通常の有機
塗料の施工法と施工機械・器具がそのまま使用可能であ
り、溶媒が水であるために製造・施工の際に無臭であり
施工場所を選ばない環境に優しい低温度硬化型多機能性
セラミック塗膜材である。
(4) In forming a coating film, a usual method for applying an organic paint and a working machine / equipment can be used as they are, and since the solvent is water, it is odorless at the time of manufacturing and working, so that a working place is required. It is an environmentally friendly low temperature curing type multifunctional ceramic coating material that can be selected.

【0042】(5)この低温度硬化型多機能性セラミッ
ク塗膜材は、塗膜厚さを平均30ミクロンとした場合、
塗膜可能面積は少なくとも塗膜材1kg当り4〜5m
の塗膜形成が可能にして、この塗膜形成の実行面積は塗
膜形成時の飛散塗料量を含むものである。一方、これら
各種の塗膜材の平均価格は、従来から市販されている有
機塗料や接着剤の価格の三分の一以下と極めて廉価であ
り、これらの塗膜材の安全保存期間は1ケ年以上が保証
される。また塗膜材の保存や使用容器はプラスチック容
器にして、再使用にあたっては水や温水で洗浄すれば容
易に洗浄されるために何回でも容器のリユースが可能で
あるなど、循環型経済社会にもっとも適した商品であろ
う。
(5) This low-temperature-curable multifunctional ceramic coating material has an average coating thickness of 30 microns.
At least 4-5 m 2 per kg of coating material
The formation area of this coating film includes the amount of scattered paint at the time of forming the coating film. On the other hand, the average price of these various coating materials is extremely lower than one-third of the price of conventionally available organic paints and adhesives, and the safe storage period of these coating materials is one month. Years or more are guaranteed. In addition, the container for storing and using the coating material is made of plastic, and when reused, it can be easily washed by washing with water or hot water, so the container can be reused any number of times. It will be the most suitable product.

【0043】[0043]

【図面の簡単な説明】[Brief description of the drawings]

【図1】基礎塗膜材にシャモットを配合した2種類の塗
膜の遠赤外線放射率の図である。(実施例4)
FIG. 1 is a diagram of far-infrared emissivity of two types of coating films in which chamotte is blended with a base coating material. (Example 4)

【図2】基礎塗膜材にシャモットと磁鉄鉱微粉末を配合
した2種類の塗膜の遠赤外線放射率の図である。(実施
例4)
FIG. 2 is a diagram of far-infrared emissivity of two types of coating films in which chamotte and magnetite fine powder are blended into a base coating material. (Example 4)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B05D 7/24 303 B05D 7/24 303B 303C 303D C09D 5/16 C09D 5/16 Fターム(参考) 4D075 BB21Z BB24Z BB26Z CA02 CA03 CA13 CA18 CA34 CA36 CA44 EA06 EA10 EA19 EB01 EB02 EB05 EC01 EC02 EC05 4J038 AA011 HA061 HA171 HA211 HA241 HA431 HA451 HA471 HA521 HA551 HA561 NA03 NA04 NA05 NA07 NA11 NA14 PA19 PC03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B05D 7/24 303 B05D 7/24 303B 303C 303D C09D 5/16 C09D 5/16 F term (Reference) 4D075 BB21Z BB24Z BB26Z CA02 CA03 CA13 CA18 CA34 CA36 CA44 EA06 EA10 EA19 EB01 EB02 EB05 EC01 EC02 EC05 4J038 AA011 HA061 HA171 HA211 HA241 HA431 HA451 HA471 HA521 HA551 HA561 NA03 NA04 NA05 NA07 NA11 NA14 PA19 PC03

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 珪酸アルカリの100重量部を溶解した
水溶液に硼酸3〜1重量部の溶解液を添加した後、水酸
化アルミニウム、メタ珪酸カルシウム、アルミン酸ナト
リウム、スメクタイト、カオリン、ラポナイトのうちの
3種以上をそれぞれ3〜1重量部加え、必要に応じて酸
化亜鉛を3〜2重量部を加えて懸濁液をつくる第1工程
と、珪酸アルカリ700〜300重量部を溶解した水溶
液に対して金属シリコン微粉末50〜30重量部と、必
要に応じてアルミニウム微粉末5〜1重量部を加えて常
温から摂氏100度の範囲で得られる反応溶液の100
重量部に対して、必要に応じてリチウム化合物の10〜
0.5重量部を添加してつくる水溶液の第2工程におい
て、第1工程で得られた溶液の60〜30重量部に対し
て第2工程で得られた溶液の70〜40重量部を混合
し、この混合溶液を基礎塗膜材として、この基礎塗膜材
に二酸化珪素、陶器或いは磁器の微粉末、酸化ジルコニ
ウム、二酸化チタン、磁鉄鉱微粉末の1種類以上を80
〜20重量部加えて混合する第3工程と、第3工程で得
られる混合溶液を被塗膜材料に塗布した後、室温から摂
氏250度の温度範囲で乾燥、加熱して硬化させる第4
工程よりなることを特徴とする低温度硬化型多機能性セ
ラミック塗膜材の製造方法及び低温度硬化型多機能性セ
ラミック塗膜の形成方法。
1. A solution of 3 to 1 part by weight of boric acid is added to an aqueous solution in which 100 parts by weight of alkali silicate is dissolved, and then aluminum hydroxide, calcium metasilicate, sodium aluminate, smectite, kaolin and laponite are added. A first step of adding 3 to 1 part by weight of each of three or more types and, if necessary, adding 3 to 2 parts by weight of zinc oxide to form a suspension; and an aqueous solution in which 700 to 300 parts by weight of an alkali silicate is dissolved. 50 to 30 parts by weight of a metal silicon fine powder and, if necessary, 5 to 1 part by weight of an aluminum fine powder to obtain 100 parts of a reaction solution obtained in a temperature range from room temperature to 100 degrees Celsius.
If necessary, 10 to 10 parts by weight of lithium compound
In the second step of the aqueous solution prepared by adding 0.5 parts by weight, 70 to 40 parts by weight of the solution obtained in the second step are mixed with 60 to 30 parts by weight of the solution obtained in the first step. The mixed solution is used as a base coating material, and at least one of silicon dioxide, fine powder of ceramic or porcelain, zirconium oxide, titanium dioxide, and magnetite fine powder is added to the base coating material.
A third step of adding and mixing by 20 to 20 parts by weight, and a fourth step of applying the mixed solution obtained in the third step to the material to be coated, drying and heating at room temperature to a temperature of 250 degrees Celsius to cure.
A method for producing a low-temperature-curable multifunctional ceramic coating film and a method for forming a low-temperature-curable multifunctional ceramic coating film, comprising:
【請求項2】 珪酸アルカリ700〜300重量部を溶
解した水溶液に対して金属シリコン微粉末50〜30重
量部と、必要に応じてアルミニウム微粉末5〜1重量部
を加えて常温から摂氏100度の範囲で得られる反応溶
液の100重量部に対して、必要に応じてリチウム化合
物の10〜0.5重量部を添加してつくる水溶液に、親
水性非晶質二酸化珪素の微粉末8〜1%を溶解してつく
る透明性塗膜材の第1工程と、珪酸アルカリの100重
量部を溶解した水溶液に硼酸3〜1重量部の溶解液を添
加した後、水酸化アルミニウム、メタ珪酸カルシウム、
アルミン酸ナトリウム、スメクタイト、カオリン、ラポ
ナイトの3種以上をそれぞれ3〜1重量部加え、必要に
応じて酸化亜鉛を3〜2重量部を加えて懸濁液をつくる
第2工程と、第1工程で得られた透明性塗膜材の80〜
40重量部と第2工程で得られた懸濁液の60〜20重
量部を混合した混合溶液に二酸化珪素、陶器或いは磁器
の微粉末、酸化ジルコニウム、二酸化チタン、磁鉄鉱微
粉末の1種類以上を80〜20重量部を加え、さらに疎
水性非晶質二酸化珪素化合物微粉末の6〜1重量部を加
えて混練して混合溶液をつくる第3工程と、第3工程で
得られる低温度硬化型多機能性塗膜材を被塗膜材料に塗
布した後、室温から摂氏210度の温度範囲で乾燥、加
熱して硬化させる第4工程よりなることを特徴とする撥
水性を有する低温度硬化型多機能性セラミック塗膜材の
製造方法及び低温度硬化型多機能性セラミック塗膜の形
成方法。
2. An aqueous solution in which 700 to 300 parts by weight of an alkali silicate is dissolved, 50 to 30 parts by weight of metal silicon fine powder and, if necessary, 5 to 1 part by weight of aluminum fine powder are added, and the temperature is changed from room temperature to 100 ° C. An aqueous solution prepared by adding 10 to 0.5 parts by weight of a lithium compound to 100 parts by weight of the reaction solution obtained in % Of a transparent coating material produced by dissolving 3 parts by weight of boric acid in an aqueous solution of 100 parts by weight of alkali silicate, and then adding aluminum hydroxide, calcium metasilicate,
A second step of adding 3 to 1 part by weight of each of three or more of sodium aluminate, smectite, kaolin, and laponite, and adding 3 to 2 parts by weight of zinc oxide as needed to form a suspension, and a first step 80 ~ of the transparent coating material obtained in
One or more types of silicon dioxide, ceramic or porcelain fine powder, zirconium oxide, titanium dioxide, and magnetite fine powder are added to a mixed solution obtained by mixing 40 parts by weight and 60 to 20 parts by weight of the suspension obtained in the second step. A third step of adding 80 to 20 parts by weight, further adding 6 to 1 part by weight of a hydrophobic amorphous silicon dioxide compound fine powder and kneading to form a mixed solution, and a low-temperature curing type obtained in the third step A low-temperature curing type having water repellency, which comprises a fourth step of applying the multifunctional coating material to the material to be coated, drying and heating at room temperature to 210 degrees Celsius and curing. A method for producing a multifunctional ceramic coating material and a method for forming a low-temperature curing type multifunctional ceramic coating film.
【請求項3】 珪酸アルカリは、珪酸ナトリウム或いは
珪酸ナトリウムと珪酸カリウムの両者であり、珪酸ナト
リウムと珪酸カリウムの場合にあってはそれらの重量比
率は5〜3:0重量部又は1:5〜3重量部であること
を特徴とする請求項1及び請求項2の低温度硬化型多機
能性セラミック塗膜材の製造方法。
3. The alkali silicate is sodium silicate or both sodium silicate and potassium silicate. In the case of sodium silicate and potassium silicate, their weight ratio is 5 to 3: 0 parts by weight or 1: 5 to 5 parts by weight. 3. The method according to claim 1, wherein the amount is 3 parts by weight.
【請求項4】 リチウム化合物が、水酸化リチウム或い
は炭酸リチウム又は水酸化リチウムと炭酸リチウムの両
者であることを特徴とする請求項1及び請求項2の低温
度硬化型多機能性セラミック塗膜材の製造方法。
4. The low-temperature-curable multifunctional ceramic coating material according to claim 1, wherein the lithium compound is lithium hydroxide or lithium carbonate or both lithium hydroxide and lithium carbonate. Manufacturing method.
【請求項5】 陶器の微粉末はできるだけ鉄化合物を多
く含有するシャモットであり、磁器の微粉末は精磁器の
組成よりなるシェルベンであって、それらの粒度は望ま
しくは2ミクロン以下の粒径を有することを特徴とする
請求項1及び請求項2の低温度硬化型多機能性セラミッ
ク塗膜材の製造方法。
5. The ceramic fine powder is a chamotte containing as much iron compound as possible, and the porcelain fine powder is a shelven having a composition of a fine porcelain, and their particle size is preferably less than 2 microns. 3. The method for producing a low-temperature-curable multifunctional ceramic coating material according to claim 1 or claim 2.
【請求項6】 有害物等の削減・防臭・殺菌等を目的し
て基礎塗膜材に配合する二酸化チタンの結晶形は、その
大部分がアナタース型の微粒子であり、塗膜材が紫外線
を防御する目的をもって使用される場合の二酸化チタン
の結晶形は、大部分がルチール型であることを特徴とす
る請求項1及び請求項2の低温度硬化型多機能性セラミ
ック塗膜材の製造方法。
6. The crystal form of titanium dioxide to be blended with a basic coating material for the purpose of reducing harmful substances, deodorizing, sterilizing, etc. is mostly anatase-type fine particles, and the coating material emits ultraviolet rays. 3. The method for producing a low-temperature-curable multifunctional ceramic coating material according to claim 1, wherein the crystal form of the titanium dioxide when used for the purpose of protection is mostly rutile. .
【請求項7】 親水性二酸化珪素の微粉末にあっては、
平均粒径が数十ナノメートル前後の大きさであり、さら
に非晶質で高い分散性を有し、側鎖に水酸基を有するこ
とを特徴とする請求項2の低温度硬化型多機能性セラミ
ック塗膜材の製造方法。
7. In the fine powder of hydrophilic silicon dioxide,
3. The low-temperature-curable multifunctional ceramic according to claim 2, wherein the average particle size is about several tens of nanometers, and further, it is amorphous, has high dispersibility, and has a hydroxyl group in a side chain. Manufacturing method of coating material.
【請求項8】 疎水性二酸化珪素化合物の微粉末は数十
ナノメートル前後の平均粒径を有し、かつ側鎖にアルキ
ル基を有しており、その側鎖のアルキル基は通常はメチ
ル基を有することを特徴とする請求項2の低温度硬化型
多機能性セラミック塗膜材の製造方法。
8. The fine powder of the hydrophobic silicon dioxide compound has an average particle size of about several tens of nanometers and has an alkyl group in a side chain, and the alkyl group in the side chain is usually a methyl group. 3. The method for producing a low-temperature-curable multifunctional ceramic coating material according to claim 2, comprising:
【請求項9】 充分に厚い塗膜の形成方法は、多機能性
セラミック塗膜材を通常の方法で被塗膜材料に塗布して
十分に乾燥した後、再度このセラミック塗膜材を塗膜面
に塗布する操作を数度にわたって繰り返し形成させた
後、充分に乾燥、加熱して100ミクロン前後の塗膜の
厚さが得られることを特徴とする請求項1の低温度硬化
型多機能性セラミック塗膜の形成方法。
9. A method for forming a sufficiently thick coating film is to apply a multifunctional ceramic coating material to a material to be coated by an ordinary method, dry the coating material sufficiently, and then apply the ceramic coating material again. 2. The low-temperature-curing multifunctional composition according to claim 1, wherein after a coating operation on the surface is repeated several times, the coating is dried and heated sufficiently to obtain a coating thickness of about 100 microns. A method for forming a ceramic coating.
【請求項10】 疎水性二酸化珪素化合物を含有するセ
ラミック塗膜材に関して、充分に厚い塗膜の形成方法は
通常の方法で被塗膜材料に数十ミクロン程度の厚さに塗
膜を形成させた後、十分には乾燥しない間に再度数十ミ
クロンの厚さの塗膜を繰り返し形成させた後、乾燥、加
熱して100ミクロン前後の塗膜の厚さが得られること
を特徴とする請求項2の疎水性二酸化珪素化合物を含有
する低温度硬化型多機能性セラミック塗膜の形成方法。
10. With respect to a ceramic coating material containing a hydrophobic silicon dioxide compound, a method for forming a sufficiently thick coating film is to form a coating film on a material to be coated to a thickness of several tens of microns by an ordinary method. After repeatedly forming a coating film having a thickness of several tens of microns again while not drying sufficiently, drying and heating to obtain a coating film thickness of about 100 microns. Item 10. A method for forming a low-temperature curing type multifunctional ceramic coating film containing the hydrophobic silicon dioxide compound according to item 2.
【請求項11】 充分に厚い塗膜の形成方法は、請求項
1の低温度硬化型多機能性セラミック塗膜材を繰り返し
形成し充分に乾燥させた後に、請求項2の撥水性を有す
る疎水性二酸化珪素化合物を配合した低温度硬化型多機
能性セラミック塗膜材をその表面に塗布した後、室温乾
燥及び/又は210℃前後で加熱して100ミクロン前
後の塗膜の厚さが得られることを特徴とする請求項1及
び請求項2の低温度硬化型多機能性セラミック塗膜の形
成方法。
11. A method of forming a sufficiently thick coating film according to claim 1, wherein the low-temperature-curable multifunctional ceramic coating material according to claim 1 is repeatedly formed and dried sufficiently, and then the water-repellent hydrophobic film according to claim 2 is formed. After coating a low-temperature-curable multifunctional ceramic coating material containing a conductive silicon dioxide compound on the surface, the coating is dried at room temperature and / or heated at about 210 ° C. to obtain a coating thickness of about 100 μm. The method for forming a low-temperature-curable multifunctional ceramic coating film according to claim 1 or 2, wherein:
JP2001165850A 2001-04-24 2001-04-24 Manufacturing method for multifunctional ceramic coating film-forming material curable at low temperature and forming method for multifunctional ceramic coating film curable at low temperature Pending JP2002322389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001165850A JP2002322389A (en) 2001-04-24 2001-04-24 Manufacturing method for multifunctional ceramic coating film-forming material curable at low temperature and forming method for multifunctional ceramic coating film curable at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001165850A JP2002322389A (en) 2001-04-24 2001-04-24 Manufacturing method for multifunctional ceramic coating film-forming material curable at low temperature and forming method for multifunctional ceramic coating film curable at low temperature

Publications (1)

Publication Number Publication Date
JP2002322389A true JP2002322389A (en) 2002-11-08

Family

ID=19008473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001165850A Pending JP2002322389A (en) 2001-04-24 2001-04-24 Manufacturing method for multifunctional ceramic coating film-forming material curable at low temperature and forming method for multifunctional ceramic coating film curable at low temperature

Country Status (1)

Country Link
JP (1) JP2002322389A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003080744A1 (en) * 2002-03-27 2003-10-02 Sumitomo Osaka Cement Co., Ltd. Hydrophilic film, process for producing the same and paint for formation of hydrophilic film
KR100640042B1 (en) 2005-01-07 2006-10-31 김동오 Composition for construction structure finish member containing a ceramic and a kaolin that radiating an anion and a far infrared rays
KR101115022B1 (en) * 2009-12-23 2012-03-06 주식회사 구산구산 Method for ceramic coating of surface of steel and coating material
CN103224740A (en) * 2013-04-12 2013-07-31 山东电力建设第二工程公司 Magnetic absorption liquid plastic locomotive surface covering film
CN103426562A (en) * 2012-05-15 2013-12-04 中国石油天然气股份有限公司 Method for preparing superfine CaSiO3 conductive powder in micro-composite mode
KR101431148B1 (en) * 2014-04-11 2014-08-19 주식회사 씨엔피인더스트리 Method of preparing ceramic coating material for low temperature sintering and coated product using the same
CN107805315A (en) * 2017-10-17 2018-03-16 深圳市夸克纳米材料有限公司 A kind of plastics after plastic processing methods and processing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003080744A1 (en) * 2002-03-27 2003-10-02 Sumitomo Osaka Cement Co., Ltd. Hydrophilic film, process for producing the same and paint for formation of hydrophilic film
US8404307B2 (en) 2002-03-27 2013-03-26 Sumitomo Osaka Cement Co., Ltd. Hydrophilic film, process for producing same, and coating material for forming hydrophilic film
KR100640042B1 (en) 2005-01-07 2006-10-31 김동오 Composition for construction structure finish member containing a ceramic and a kaolin that radiating an anion and a far infrared rays
KR101115022B1 (en) * 2009-12-23 2012-03-06 주식회사 구산구산 Method for ceramic coating of surface of steel and coating material
CN103426562A (en) * 2012-05-15 2013-12-04 中国石油天然气股份有限公司 Method for preparing superfine CaSiO3 conductive powder in micro-composite mode
CN103224740A (en) * 2013-04-12 2013-07-31 山东电力建设第二工程公司 Magnetic absorption liquid plastic locomotive surface covering film
KR101431148B1 (en) * 2014-04-11 2014-08-19 주식회사 씨엔피인더스트리 Method of preparing ceramic coating material for low temperature sintering and coated product using the same
CN107805315A (en) * 2017-10-17 2018-03-16 深圳市夸克纳米材料有限公司 A kind of plastics after plastic processing methods and processing

Similar Documents

Publication Publication Date Title
TWI780203B (en) Coating liquid, coating film manufacturing method and coating film
WO2007097284A1 (en) Uniformly dispersed photocatalyst coating liquid, method for producing same, and photocatalytically active composite material obtained by using same
WO2008044521A1 (en) Polymeric composition comprising metal alkoxide condensation product, organic silane compound and boron compound
CN101649131A (en) Composite nano-coating, preparation method and application thereof
CN104817858A (en) Preparation method of antifog and self-cleaning nanomaterial
KR101291894B1 (en) The Composition of Thermal Barrier Paint and the Manufacturing Method of Thereof
CN107076876A (en) Low reflectance coating, glass plate, glass substrate and photoelectric conversion device
TW201922961A (en) Coating liquid, method for manufacturing coating film, and coating film
TWI787318B (en) Coating liquid, manufacturing method of coating film, and coating film
CN1235990C (en) High-temperature far infrared paint and preparing method thereof
Shi et al. Bioinspired lotus-like self-illuminous coating
JP4854599B2 (en) Coating method and article
JP2002322389A (en) Manufacturing method for multifunctional ceramic coating film-forming material curable at low temperature and forming method for multifunctional ceramic coating film curable at low temperature
CN104448965A (en) Preparation method of super-weatherable silicate system inorganic coating with self-cleaning function
WO2016121404A1 (en) Glass plate provided with low-reflection coating, method for manufacturing substrate provided with low-reflection coating, and coating liquid for forming low-reflection coating for substrate provided with low-reflection coating
JP4038200B2 (en) Manufacturing method of coating agent and coating method using the coating agent
JPH06116512A (en) Production of low-temperature curable inorganic coating agent and method for forming low-temperature curable inorganic coating layer
JP2007161770A (en) Coating fluid for forming hydrophilic film, its manufacturing method, hydrophilic film and method of forming hydrophilic film
JPWO2019202635A1 (en) Method for suppressing corrosion under heat insulating material and paste for suppressing corrosion under heat insulating material
JP2021080157A (en) Manufacturing method of structure having super water repellent surface
JP2001040287A (en) Antimicrobial coating film and substrate with the same
JPWO2014132915A1 (en) Porous article and method for producing the same
CN100506702C (en) Titanium oxide sol, thin film, and processes for producing these
KR100486455B1 (en) Liquid Seramic of coting composition
CN105838151A (en) Preparation method of superhydrophilic coating based on monoatomic-layer titanium oxide nano sheeting