JP2002316008A - Chemical substance separator - Google Patents

Chemical substance separator

Info

Publication number
JP2002316008A
JP2002316008A JP2001120457A JP2001120457A JP2002316008A JP 2002316008 A JP2002316008 A JP 2002316008A JP 2001120457 A JP2001120457 A JP 2001120457A JP 2001120457 A JP2001120457 A JP 2001120457A JP 2002316008 A JP2002316008 A JP 2002316008A
Authority
JP
Japan
Prior art keywords
blood
chemical substance
plasma
blood cell
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001120457A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nagaoka
嘉浩 長岡
Yuji Miyahara
裕二 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001120457A priority Critical patent/JP2002316008A/en
Publication of JP2002316008A publication Critical patent/JP2002316008A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)
  • External Artificial Organs (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a chemical substance separator which separates a chemical substance from raw liquid containing the chemical substance, prevents the clogging of a separating means such as filter and enables the miniaturization of a device. SOLUTION: A separating wall 25 which is provided with fine grooves 26 is arranged in contact with a blood cell concentrating passage 22 to which blood is supplied and a blood plasma passage 21 which is in contact with the blood cell concentrating passage 22 is disposed via the separating wall 25. A blood cell storage part 32 which is closed is disposed on the downstream side of the blood cell concentrating passage 22 via a valve 52 for blood cell and a blood plasma storage part 31 which is closed likewise is disposed on the downstream side of the blood plasma passage 21 via a valve 51 for blood plasma. A section (suction part) which is communicated with respective gas phase parts of the blood plasma storage part 31 and the blood cell storage part 32 is disposed, a suction pump 4 of which the sucking side is connected with the suction part is disposed, the suction pump 4 is operated and, in such a state, the valve 51 for blood plasma and the valve for blood cell are periodically opened and closed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体中の化学物
質、たとえば血液中の赤血球や白血球等の血球成分を分
離するための化学物質分離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical substance separating apparatus for separating chemical substances in a liquid, for example, blood cell components such as red blood cells and white blood cells in blood.

【0002】[0002]

【従来の技術】液体中の化学物質を分離する装置、たと
えば血液試料から赤血球や白血球等の血球成分を除去す
る装置としては、遠心力で比重の大きい血球成分を分離
する遠心分離機が知られている。一方フィルターを通す
ことでサイズの大きな血球成分を分離除去する方法も考
案されている。フィルターを用いた分離装置としては、
特開平5−196620号公報記載の血清・血漿分離器
具がある。この装置は、分離フィルターに血液試料を透
過させるもので、遠心分離機等の大型の分離装置なしで
血清や血漿成分を分離するものである。
2. Description of the Related Art As a device for separating chemical substances in a liquid, for example, a device for removing blood cell components such as red blood cells and white blood cells from a blood sample, a centrifugal separator for separating blood cell components having a large specific gravity by centrifugal force is known. ing. On the other hand, a method of separating and removing large blood cell components by passing through a filter has also been devised. As a separation device using a filter,
There is a serum / plasma separation device described in JP-A-5-196620. This device allows a blood sample to permeate through a separation filter, and separates serum and plasma components without a large separation device such as a centrifuge.

【0003】また、特開平3−257366号公報記載
の血液回路及びこれを用いた血液測定装置及び血液測定
方法には、各血液成分に適合した形状或いは大きさの微
細な溝を形成した回路基板が開示されている。
A blood circuit, a blood measuring apparatus and a blood measuring method using the blood circuit described in Japanese Patent Application Laid-Open No. 3-257366 are disclosed in Japanese Patent Application Laid-Open No. 3-257366. Is disclosed.

【0004】[0004]

【発明が解決しようとする課題】特開平5−19662
0号公報記載の血清・血漿分離器具では、セルロース繊
維やガラス繊維等の繊維素材を主体とする分離フィルタ
ーに血液試料を透過させて、血漿や血清成分を分離しよ
うとしている。しかしこの分離フィルターは、血球成分
がフィルターの隙間を徐々に塞ぎ目詰まりするため、取
扱う血液量を増やすためには、フィルターを大型にする
必要があった。このように特開平5−196620号公
報記載の血清・血漿分離器具では、全血が分離フィルタ
ーを透過する際の目詰まりを防止することが課題であ
る。
Problems to be Solved by the Invention
In the serum / plasma separation device described in Japanese Patent Publication No. 0, a blood sample is permeated through a separation filter mainly composed of a fiber material such as cellulose fiber or glass fiber to separate plasma and serum components. However, in this separation filter, the blood cell component gradually closes and clogs the gap between the filters. Therefore, in order to increase the amount of blood to be handled, the filter needs to be large. As described above, the serum / plasma separation device described in Japanese Patent Application Laid-Open No. 5-196620 has a problem to prevent clogging when whole blood passes through the separation filter.

【0005】また、特開平3−257366号公報記載
の血液回路及びこれを用いた血液測定装置及び血液測定
方法には、赤血球、白血球或いは血小板の何れかの大き
さと形状に合わせた微細な溝を基盤上に形成している
が、血液試料を溝に流入させる際の目詰まりを防止する
方法については開示されていない。
[0005] Further, the blood circuit, the blood measuring apparatus and the blood measuring method using the blood circuit described in Japanese Patent Application Laid-Open No. Hei 3-257366 have fine grooves adapted to the size and shape of any of red blood cells, white blood cells or platelets. Although it is formed on a substrate, it does not disclose a method for preventing clogging when a blood sample flows into a groove.

【0006】本発明の目的は、化学物質を含む原液から
化学物質を分離する化学物質分離装置において、フィル
タ等の分離手段の目詰まりを防止して装置の小型化を可
能とすることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a chemical substance separating apparatus for separating a chemical substance from a stock solution containing the chemical substance, thereby preventing the separation means such as a filter from being clogged, thereby making the apparatus compact.

【0007】[0007]

【課題を解決するための手段】フィルタ等の分離手段の
目詰まりの発生を完全に防止することは、フィルタ等の
分離手段の機能が、分離しようとする化学物質を捕捉し
て通過を妨げる点にある以上、困難である。発明者等
は、目詰まりが広い範囲に広がる前に、発生した目詰ま
りを頻繁に解消することにより、フィルタ等の分離手段
の分離の効率を高い値に維持して、装置の小型化を図っ
た。目詰まりを解消するには、分離手段に捕捉された化
学物質を分離手段から解放してやればよい。発明者等
は、化学物質を分離手段から解放するには、分離手段の
下流側から上流側、つまり化学物質が捕捉されている側
に向かって圧力を加えればよいことに着目し、本発明に
至った。
To completely prevent clogging of a separating means such as a filter is to prevent a function of the separating means such as a filter from catching a chemical substance to be separated and hindering passage thereof. It is difficult because there is. The inventors tried to reduce the size of the apparatus by maintaining the efficiency of separation of the separation means such as a filter at a high value by frequently eliminating the generated clogging before the clogging spreads over a wide range. Was. In order to eliminate the clogging, the chemical substance captured by the separating means may be released from the separating means. The inventors have noted that in order to release the chemical substance from the separation means, it is only necessary to apply pressure from the downstream side of the separation means to the upstream side, that is, to the side where the chemical substance is captured, and the present invention Reached.

【0008】すなわち、上記課題を達成する本発明の第
1の手段は、化学物質を含む原液が通流される濃縮流路
と、この濃縮流路に接して配置され、分離しようとする
化学物質が通過できない大きさの開口を備えて前記原液
から前記化学物質を分離する分離手段と、前記分離手段
を介して前記濃縮流路に接するように形成され、前記分
離手段を通過した処理液体が流れる処理液体流路と、前
記処理液体流路の圧力を断続的に前記濃縮流路の圧力よ
りも高くしたり低くしたりする差圧発生手段と、を有し
てなる化学物質分離装置である。
[0008] That is, a first means of the present invention for achieving the above object comprises a concentration channel through which a stock solution containing a chemical substance flows, and a chemical substance arranged in contact with the concentration channel to be separated. A separating means for separating the chemical substance from the undiluted solution having an opening of a size that cannot pass therethrough; and a process in which the processing liquid flowing through the separating means is formed so as to be in contact with the concentration channel via the separating means. A chemical substance separation device comprising: a liquid flow path; and a pressure difference generating means for intermittently increasing or decreasing the pressure of the processing liquid flow path from the concentration flow path.

【0009】上記課題を達成する本発明の第2の手段
は、前記第1の手段において、前記濃縮流路に連通し、
化学物質が濃縮された濃縮液体を取出す濃縮液体取り出
し手段を設けたことを特徴とする。
A second means of the present invention for achieving the above object is the first means, wherein the first means communicates with the concentration channel.
A concentrated liquid take-out means for taking out a concentrated liquid in which a chemical substance is concentrated is provided.

【0010】上記課題を達成する本発明の第3の手段
は、前記第1または第2の手段において、前記差圧発生
手段は、前記濃縮流路の圧力を低下させるものであるこ
とを特徴とする。
[0010] A third means of the present invention for achieving the above object is that, in the first or second means, the differential pressure generating means reduces the pressure in the concentration channel. I do.

【0011】上記課題を達成する本発明の第4の手段
は、前記第1または第2の手段において、前記差圧発生
手段は、前記濃縮流路及び前記処理液体流路にそれぞれ
独立に圧力を加えるものであることを特徴とする。
[0011] A fourth means of the present invention for achieving the above object is the first or second means, wherein the differential pressure generating means independently applies pressure to the concentration channel and the processing liquid channel. It is characterized by adding.

【0012】上記課題を達成する本発明の第5の手段
は、前記第4の手段において、前記濃縮流路及び前記処
理液体流路の差圧を検知する圧力検知手段と、この圧力
検知手段の出力に基づいて前記差圧発生手段の動作を制
御する制御手段と、を設けたことを特徴とする。
According to a fifth aspect of the present invention, there is provided a pressure sensor for detecting a pressure difference between the concentration flow path and the processing liquid flow path in the fourth means. Control means for controlling the operation of the differential pressure generating means based on the output.

【0013】上記課題を達成する本発明の第6の手段
は、前記第4または第5の手段において、前記差圧発生
手段が、処理液体流路を加圧する加圧手段を含んでいる
ことを特徴とする。
A sixth means of the present invention for achieving the above object is that, in the fourth or fifth means, the differential pressure generating means includes a pressurizing means for pressurizing the processing liquid flow path. Features.

【0014】前記第6の手段において、前記加圧手段
は、処理液体流路に、処理液体に添加する液体を供給す
る添加物供給手段を兼ねたものとしてもよい。
In the sixth means, the pressurizing means may also serve as an additive supply means for supplying a liquid to be added to the processing liquid to the processing liquid flow path.

【0015】上記各手段において、前記原液として血液
を供給し、供給された血液から血球を分離して処理液体
として血漿を取出すようにしてもよい。この場合、化学
物質分離装置は、血液処理装置として機能することにな
る。
In each of the above means, blood may be supplied as the stock solution, blood cells may be separated from the supplied blood, and plasma may be taken out as a processing liquid. In this case, the chemical substance separating device functions as a blood processing device.

【0016】上記各手段によれば、前記処理液体流路側
の圧力が断続的に濃縮流路側の圧力よりも高くなったり
低くなったりするので、分離手段に捕捉され目詰まりの
原因となった化学物質は、処理液体流路側の圧力が濃縮
流路側の圧力よりも高くなったときに前記濃縮流路側に
脱離され、濃縮流路を、濃縮された原液とともに下流側
に流れる。差圧発生手段により、断続的にこの動作が行
なわれるので、分離手段が目詰まりする範囲、時間が小
さくなり、分離手段の分離効率を高い値に維持すること
ができるから、分離手段を大きくしなくて済み、装置の
小型化が可能になる。
According to each of the above means, the pressure on the processing liquid flow path side intermittently becomes higher or lower than the pressure on the concentration flow path side. When the pressure on the processing liquid flow path side becomes higher than the pressure on the concentration flow path side, the substance is released to the concentration flow path side, and flows through the concentration flow path to the downstream side together with the concentrated stock solution. Since this operation is performed intermittently by the differential pressure generating means, the range and time during which the separating means is clogged is reduced, and the separating efficiency of the separating means can be maintained at a high value. It is not necessary, and the size of the device can be reduced.

【0017】[0017]

【発明の実施の形態】図1〜図2を参照して、本発明に
係る分離装置の第1の実施の形態を説明する。本実施の
形態は、本発明を原液としての血液から化学物質である
血球成分を除去する化学物質分離装置、すなわち血液処
理装置に適用した例である。図1に本実施の形態の血液
処理装置の全体構成を、図2に、図1に示す血液分離デ
バイスの詳細を、それぞれ示す。図1の(a)は血液処
理装置の上面図、図1の(b)は、図1の(a)の部分
断面図で、A−A線、B−B線矢視部を断面図示したも
のである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a separation apparatus according to the present invention will be described with reference to FIGS. The present embodiment is an example in which the present invention is applied to a chemical substance separating apparatus for removing a blood cell component, which is a chemical substance, from blood as a stock solution, that is, a blood processing apparatus. FIG. 1 shows the overall configuration of the blood processing apparatus of the present embodiment, and FIG. 2 shows the details of the blood separation device shown in FIG. 1A is a top view of the blood processing apparatus, and FIG. 1B is a partial cross-sectional view of FIG. 1A, in which a cross section taken along line AA and line BB is illustrated. Things.

【0018】図1に示す血液処理装置は、血液を貯える
血液貯蔵部1と、血液貯蔵部1に血液注入口11を介し
て接続された血液分離デバイス2と、血液分離デバイス
2に、血球用バルブ52を介装した濃縮流体取出し手段
である血球排出流路62と血漿用バルブ51を介装した
血漿排出流路61とで接続された密閉容器である貯蔵部
3と、貯蔵部3に吸引流路7で接続された吸引ポンプ4
と、を含んで構成されている。
The blood processing apparatus shown in FIG. 1 has a blood storage unit 1 for storing blood, a blood separation device 2 connected to the blood storage unit 1 via a blood inlet 11, a blood separation device 2, The storage unit 3 which is a closed container connected by a blood cell discharge channel 62 which is a concentrated fluid removing means provided with a valve 52 and a plasma discharge channel 61 provided with a plasma valve 51, and suction into the storage unit 3 Suction pump 4 connected by flow path 7
And is configured.

【0019】吸引ポンプ4と血漿用バルブ51と血球用
バルブ52とで、差圧発生手段が構成されている。
The suction pump 4, the plasma valve 51, and the blood cell valve 52 constitute a differential pressure generating means.

【0020】血液分離デバイス2は、図2に示すよう
に、長方形の箱型の容器で、長手方向の一端の上面に前
記血液貯蔵部1に連通する血液注入口11が設けられて
いる。長手方向の他方の端部の底面に血漿排出口23が
設けられ、この血漿排出口23よりも血液注入口11側
の底面に血球排出口24が設けられている。血液分離デ
バイス2の内部は、分離手段である分離壁25により、
前記血液注入口11と血球排出口24を含む濃縮流路で
ある血球濃縮流路22と、前記血漿排出口23を含む処
理液体流路である血漿流路21に分けられている。前記
血漿排出流路61は血漿排出口23に、前記血球排出流
路62は血球排出口24に、それぞれ接続されている。
つまり、血漿流路21は、分離壁25を介して血球濃縮
流路22に接している。
As shown in FIG. 2, the blood separation device 2 is a rectangular box-shaped container, and has a blood injection port 11 communicating with the blood storage unit 1 on the upper surface of one end in the longitudinal direction. A plasma outlet 23 is provided on the bottom surface at the other end in the longitudinal direction, and a blood cell outlet 24 is provided on the bottom surface closer to the blood inlet 11 than the plasma outlet 23. The inside of the blood separation device 2 is separated by a separation wall 25 as separation means.
It is divided into a blood cell concentration channel 22 which is a concentration channel including the blood inlet 11 and the blood cell outlet 24, and a plasma channel 21 which is a processing liquid channel including the plasma outlet 23. The plasma discharge channel 61 is connected to the plasma outlet 23, and the blood cell discharge channel 62 is connected to the blood cell outlet 24.
That is, the plasma channel 21 is in contact with the blood cell enrichment channel 22 via the separation wall 25.

【0021】分離壁25は、血液注入口11が設けられ
ている側で間隔が広く、血球排出口24側に近づくにつ
れて間隔が狭くなるV形をなして配置された部分と、V
形の一番狭い部分(血球流路27)に接続され前記血球
排出口24を含む四角形の区画を形成する部分とからな
っている。分離壁25の前記V形をなして配置された部
分は、壁面に血球成分が通過できない大きさの開口(微
細溝26)を多数備えている。微細溝26は血球成分が
通過できない寸法に加工されており、その幅方向或いは
高さ方向の大きさは、分離壁25に沿って、数μm以
内、望ましくは2μm以内がよい。血液分離デバイス2
をシリコンで作る場合、多数の微細溝26を等間隔にエ
ッチングで加工すればよい。或いは、加工したシリコン
基盤を鋳型にした樹脂成形も可能である。
The separation wall 25 has a V-shaped portion having a wide interval on the side where the blood inlet 11 is provided and a narrow interval as approaching the blood cell outlet 24.
It is connected to the narrowest part (blood cell flow path 27) of the shape and forms a rectangular section including the blood cell outlet 24. The V-shaped portion of the separation wall 25 has a large number of openings (micro-grooves 26) on its wall surface that cannot pass blood cell components. The fine groove 26 is processed to a size that does not allow blood cell components to pass therethrough, and its size in the width direction or the height direction is preferably within several μm, preferably within 2 μm along the separation wall 25. Blood separation device 2
Is made of silicon, a large number of fine grooves 26 may be etched at regular intervals. Alternatively, resin molding using the processed silicon substrate as a mold is also possible.

【0022】貯蔵部3は、内部が天井面に達しない壁に
よって三つの区画(血漿貯蔵部31、血球貯蔵部32及
び吸引部33)に区画され、血漿貯蔵部31の底面に前
記血漿排出流路61が接続され、血球貯蔵部32の底面
に前記血球排出流路62が接続されている。また、前記
吸引流路7は吸引部33の壁面(貯蔵部3の外周壁)に
接続されている。
The storage section 3 is divided into three sections (plasma storage section 31, blood cell storage section 32, and suction section 33) by walls that do not reach the ceiling surface. The blood cell discharge channel 62 is connected to the bottom of the blood cell storage unit 32. Further, the suction channel 7 is connected to the wall surface of the suction unit 33 (the outer peripheral wall of the storage unit 3).

【0023】以下、本実施の形態の動作を説明する。採
血された血液は、血液貯蔵部1に貯蔵された後、吸引ポ
ンプ4により吸引され、血液注入口11を通って血球濃
縮流路22へ流入する。血球濃縮流路22に流入した血
液は、血球用バルブ52が開かれると、血球流路27を
通り、血球排出口24、血球排出流路62を経て貯蔵部
3内の血球貯蔵部32に流入し、貯蔵される。一方、血
漿用バルブ51が開かれたときは、血漿のみが分離壁2
5の微細溝26を通って血漿流路21に流れ込み、血漿
排出口23、血漿排出流路61を経て、貯蔵部3内の血
漿貯蔵部31に流入し、貯蔵される。
The operation of this embodiment will be described below. The collected blood is stored in the blood storage unit 1, then sucked by the suction pump 4, and flows into the blood cell concentration channel 22 through the blood inlet 11. When the blood cell valve 52 is opened, the blood that has flowed into the blood cell enrichment flow path 22 flows through the blood cell flow path 27, flows through the blood cell discharge port 24 and the blood cell discharge flow path 62, and flows into the blood cell storage section 32 in the storage section 3. And stored. On the other hand, when the plasma valve 51 is opened, only the plasma
5 through the microchannel 26, flows into the plasma channel 21, passes through the plasma outlet 23 and the plasma outlet channel 61, flows into the plasma storage unit 31 in the storage unit 3, and is stored.

【0024】血球成分は微細溝26を通過できないた
め、血漿用バルブ51が開かれたとき、血漿のみが分離
壁25の微細溝26を通って血漿流路21に流れ込む
が、血球成分が微細溝26を塞いでしまい、しだいに血
漿も流れることができなくなる。
Since the blood cell component cannot pass through the fine groove 26, when the plasma valve 51 is opened, only the plasma flows into the plasma channel 21 through the fine groove 26 of the separation wall 25, but the blood cell component 26 will be blocked, and plasma will not be able to flow gradually.

【0025】このような微細溝26の血球成分による目
詰まりを防止するため、吸引ポンプ4を運転した状態
で、図3に示すようなタイミングで血漿用バルブ51及
び血球用バルブ52を開閉する。すなわち血漿用バルブ
51が開のとき血球用バルブ52は閉で、逆に血球用バ
ルブ52が開のときは血漿用バルブ51は閉である。こ
の状態を繰り返すと、微細溝26の血球成分による目詰
まりを防止でき、かつ血漿のみを取り出すことができ
る。すなわち、血漿用バルブ51が開で血球用バルブ5
2が閉のとき、図4の(a)に示すように、血漿流路2
1の圧力が血球濃縮流路22の圧力よりも低くなり、血
漿のみが微細溝26を通って血漿流路21に流れ込む。
In order to prevent the fine grooves 26 from being clogged by blood cell components, the plasma valve 51 and the blood cell valve 52 are opened and closed at the timing shown in FIG. 3 with the suction pump 4 operating. That is, when the plasma valve 51 is open, the blood cell valve 52 is closed, and when the blood cell valve 52 is open, the plasma valve 51 is closed. By repeating this state, it is possible to prevent clogging of the fine grooves 26 with blood cell components, and to take out only plasma. That is, when the plasma valve 51 is opened and the blood cell valve 5 is opened.
2 is closed, as shown in FIG.
1 becomes lower than the pressure in the blood cell concentration channel 22, and only the plasma flows into the plasma channel 21 through the fine groove 26.

【0026】しかし、時間が経つと、血球成分が徐々に
微細溝26を塞ぐため微細溝26を血漿が流れ難くなる
(図4の(b))。そこで、血漿用バルブ51を開いて
から所定時間経過後、血漿用バルブ51を閉じ血球用バ
ルブ52を開くと、血球流路27、血球濃縮流路22の
圧力が血漿流路21の圧力よりも低くなり、血液は血球
濃縮流路22を血球流路27へと流れ、微細溝26を塞
いだ血球も微細溝26から脱離されて一緒に流れる(図
4の(c))。
However, as time passes, the blood cell component gradually closes the fine groove 26, so that it becomes difficult for the plasma to flow through the fine groove 26 (FIG. 4B). Therefore, after a predetermined time has elapsed since the plasma valve 51 was opened, the plasma valve 51 was closed and the blood cell valve 52 was opened, and the pressure in the blood cell flow path 27 and the blood cell concentration flow path 22 was higher than the pressure in the plasma flow path 21. The blood flow becomes low, the blood flows through the blood cell enrichment flow path 22 to the blood cell flow path 27, and the blood cells that have closed the fine grooves 26 are also detached from the fine grooves 26 and flow together (FIG. 4C).

【0027】このようなバルブの開閉動作を連続して行
うことで、血液分離デバイス2に、血球濃縮流路22の
圧力が血漿流路21の圧力よりも低くなる圧力変動を断
続的に生じさせる。この結果、微細溝26を塞いだ血球
は微細溝26から脱離されて血球流路27へと流れるの
で、分離効率を低下させることなく、連続的に血球を分
離し血漿のみを取り出すことができる。
By continuously performing such opening and closing operations of the valve, the blood separation device 2 intermittently generates a pressure fluctuation in which the pressure of the blood cell enrichment channel 22 becomes lower than the pressure of the plasma channel 21. . As a result, the blood cells closing the fine grooves 26 are detached from the fine grooves 26 and flow to the blood cell flow path 27, so that the blood cells can be continuously separated and only the plasma can be taken out without lowering the separation efficiency. .

【0028】なお、血漿流路21に流れ出すのは微細溝
26を通過した血漿のみであり、血球濃縮流路22中央
部の血漿成分は血球と一緒に、血球成分が濃縮された血
液となって、血球流路27を経て下流側(血球貯蔵部3
2)に流れてしまう。そこで図2に示すように血球濃縮
流路22を徐々に狭くし、たとえば微細溝26を通過し
て血漿流路21に流出した血漿の量だけ血球濃縮流路2
2の流路断面積を低減しておく。このように血球濃縮流
路22を狭くすることで、血球濃縮流路22内側の血漿
成分が微細溝26から血漿流路21に流れ出しやすくな
る。この結果、血球濃縮流路22に供給された血液は、
そのなかの血球成分が濃縮された状態で血球流路27へ
と流れていく。
It is to be noted that only the plasma that has passed through the fine groove 26 flows out to the plasma flow channel 21, and the plasma component in the central portion of the blood cell concentration channel 22 becomes blood in which the blood cell component is concentrated together with the blood cells. Through the blood cell flow path 27 (the blood cell storage unit 3).
It flows to 2). Therefore, as shown in FIG. 2, the blood cell enrichment flow path 22 is gradually narrowed, and the blood cell enrichment flow path 2 is reduced by the amount of the plasma which has flowed into the plasma flow path 21 through the fine groove 26, for example.
The cross-sectional area of the channel 2 is reduced. By thus narrowing the blood cell concentration channel 22, the plasma components inside the blood cell concentration channel 22 can easily flow out of the fine groove 26 into the plasma channel 21. As a result, the blood supplied to the blood cell enrichment channel 22
The blood cell component therein flows into the blood cell channel 27 in a concentrated state.

【0029】このように血球濃縮流路22の流路断面積
を上流側、すなわち血液注入口11に近い側から血球排
出口24に近づくにつれて小さくすることで、血漿の血
漿流路への分離効率を高めることができる。
As described above, by reducing the cross-sectional area of the blood cell enrichment channel 22 from the upstream side, that is, from the side close to the blood inlet 11 to the blood cell outlet 24, the efficiency of separating plasma into the plasma channel is improved. Can be increased.

【0030】血漿用バルブ51及び血球用バルブ52の
開閉動作は図3に示すタイミングに限定するものではな
い。例えば図5に示すように、常に血球用バルブ52を
開にしておき、或いはバルブを設けずに常に血球濃縮流
路22内で血液を流した状態で、血漿用バルブ51を周
期的に開閉させてもよい。またこのとき、血漿用バルブ
51の開閉時間の比は、血球濃度に対応して、血球濃度
が高い時には血漿用バルブ51の開時間が短くなる方向
に変えることが望ましい。
The opening and closing operations of the plasma valve 51 and the blood cell valve 52 are not limited to the timing shown in FIG. For example, as shown in FIG. 5, the plasma valve 51 is periodically opened and closed while the blood cell valve 52 is kept open or the blood is always flown in the blood cell concentration channel 22 without providing a valve. You may. At this time, it is desirable to change the ratio of the open / close time of the plasma valve 51 to the direction in which the open time of the plasma valve 51 becomes shorter when the blood cell concentration is high, corresponding to the blood cell concentration.

【0031】また、上記実施の形態では、吸引ポンプ
4、具体的には吸引流路7は吸引部33の壁面下部に接
続されているが、壁面上部や、天井面に接続してもよ
い。吸引流路7を天井面に接続した場合、吸引部33を
設けなくともよい。
In the above embodiment, the suction pump 4, specifically, the suction flow path 7 is connected to the lower part of the wall of the suction part 33, but may be connected to the upper part of the wall or the ceiling. When the suction channel 7 is connected to the ceiling surface, the suction section 33 may not be provided.

【0032】本実施の形態によれば、血液を流しながら
微細溝で血球を除去し、かつ微細溝の目詰まりを防止で
きるので、血液処理装置の小型化が可能となる。
According to the present embodiment, since blood cells can be removed by the fine grooves while flowing blood and clogging of the fine grooves can be prevented, the blood processing apparatus can be downsized.

【0033】本発明の第2の実施の形態を図6を参照し
て説明する。本実施の形態は、血漿に試薬を添加する場
合に好適な装置であり、図6にその全体構成を示す。図
示の血液処理装置は、前記第1の実施の形態と同様な構
成の血液分離デバイス2を備えており、血液分離デバイ
ス2の下部に、貯蔵部3が一体化して形成されている。
A second embodiment of the present invention will be described with reference to FIG. This embodiment is an apparatus suitable for adding a reagent to plasma, and FIG. 6 shows the entire configuration. The illustrated blood processing apparatus includes a blood separation device 2 having the same configuration as that of the first embodiment, and a storage unit 3 is integrally formed below the blood separation device 2.

【0034】貯蔵部3は、血液分離デバイス2の血球排
出口24の下方に、血球排出口24に連通して形成され
た血球貯蔵部32と、血液分離デバイス2の血漿排出口
23の下方に、血漿排出口23に連通して形成された血
漿貯蔵部31と、で形成され、第1の実施の形態におけ
る吸引部33は設けられていない。その代わり、血漿貯
蔵部31と血球貯蔵部32のそれぞれの気相部に、圧力
検知手段を兼ねた血漿貯蔵部圧力調節器141、血球貯
蔵部圧力調節器142が、設けられている。各圧力調節
器は、各貯蔵部の圧力をモニタしながら、設定値以上の
圧力になった場合各圧力調節器内蔵のバルブを開いて血
漿貯蔵部31(血漿流路21)あるいは血球貯蔵部32
(血球濃縮流路22)の圧力を調節する。
The storage section 3 has a blood cell storage section 32 formed below the blood cell discharge port 24 of the blood separation device 2 in communication with the blood cell discharge port 24 and a blood cell storage section 32 formed below the blood cell discharge port 23 of the blood separation device 2. , And a plasma storage unit 31 formed in communication with the plasma outlet 23, and the suction unit 33 in the first embodiment is not provided. Instead, a plasma storage section pressure regulator 141 and a blood cell storage section pressure regulator 142 that also serve as pressure detecting means are provided in the respective gas phase portions of the plasma storage section 31 and the blood cell storage section 32. Each pressure regulator monitors the pressure in each storage unit, and when the pressure exceeds a set value, opens a valve built in each pressure regulator and opens the plasma storage unit 31 (plasma flow path 21) or the blood cell storage unit 32.
(The blood cell concentration channel 22) is adjusted in pressure.

【0035】また、血液分離デバイス2の血球濃縮流路
22の血液注入口11には、血液供給流路121を介し
て血液供給ポンプ101が接続され、血液供給流路12
1には、血液供給バルブ111が介装されている。血液
分離デバイス2の血漿流路21の上流端に近い位置の上
面両側(前記V形の血球濃縮流路22の両側になる位置
の血漿流路21)には試薬供給流路122が接続され、
試薬供給流路122は上流側で合流して1本になってい
る。試薬供給流路122の上流端には試薬供給バルブ1
12を介して試薬供給ポンプ102が接続されている。
供給する試薬は、本発明の血液処理装置で処理した血漿
をどのように使用するかに依存する。例えば、血漿中の
蛋白成分等を検査する場合には、試薬として純水やpH
調整用の緩衝液を用いてもよく、ウイルス等の核酸を抽
出する場合は蛋白変性剤等を用いてもよい。
A blood supply pump 101 is connected to the blood inlet 11 of the blood cell enrichment flow path 22 of the blood separation device 2 via a blood supply flow path 121.
1 is provided with a blood supply valve 111. Reagent supply channels 122 are connected to both sides of the upper surface of the blood separation device 2 near the upstream end of the plasma channel 21 (the plasma channels 21 at both sides of the V-shaped blood cell enrichment channel 22),
The reagent supply channels 122 merge into one at the upstream side. The reagent supply valve 1 is provided at the upstream end of the reagent supply flow path 122.
A reagent supply pump 102 is connected via 12.
The reagent to be supplied depends on how the plasma processed by the blood processing apparatus of the present invention is used. For example, when testing protein components in plasma, pure water or pH
A buffer for adjustment may be used, and when nucleic acids such as viruses are extracted, a protein denaturing agent or the like may be used.

【0036】本実施の形態においては、試薬供給ポンプ
102、試薬供給バルブ112、血液供給ポンプ10
1、及び血液供給バルブ111で差圧発生手段が構成さ
れている。試薬供給ポンプ102は、血漿流路21に試
薬を供給すると共に血漿流路21を加圧する加圧手段を
兼ねている。
In the present embodiment, the reagent supply pump 102, the reagent supply valve 112, the blood supply pump 10
1, and the blood supply valve 111 constitute a differential pressure generating means. The reagent supply pump 102 also serves as a pressurizing unit that supplies a reagent to the plasma channel 21 and pressurizes the plasma channel 21.

【0037】さらに、血漿貯蔵部圧力調節器141、血
球貯蔵部圧力調節器142、試薬供給ポンプ102、血
液供給ポンプ101、血液供給バルブ111及び試薬供
給バルブ112を制御する制御手段としてコントローラ
150が設けられている。
Further, a controller 150 is provided as control means for controlling the plasma storage unit pressure regulator 141, the blood cell storage unit pressure regulator 142, the reagent supply pump 102, the blood supply pump 101, the blood supply valve 111, and the reagent supply valve 112. Have been.

【0038】以下、本実施の形態の動作を説明する。血
液供給バルブ111が開のとき、血液は血液供給ポンプ
101により血液供給流路121を通って血液注入口1
1から血液分離デバイス2内の血球濃縮流路22へと注
入される。一方、試薬供給バルブ112が開のとき、試
薬は試薬供給ポンプ102により試薬供給流路122を
通って血液分離デバイス2内の血漿流路21へと注入さ
れる。
The operation of this embodiment will be described below. When the blood supply valve 111 is opened, the blood is supplied by the blood supply pump 101 through the blood supply flow path 121 to the blood inlet 1.
1 is injected into the blood cell concentration channel 22 in the blood separation device 2. On the other hand, when the reagent supply valve 112 is open, the reagent is injected by the reagent supply pump 102 through the reagent supply channel 122 into the plasma channel 21 in the blood separation device 2.

【0039】血液分離デバイス2の内部は前記図2の例
と同じで、血球以外の血漿成分のみが分離壁25の微細
溝26を通って血漿流路21に流れ込み、更に血漿排出
口23を通り、貯蔵部3内の血漿貯蔵部31に貯蔵され
る。一方微細溝26を通過しなかった血液は血球濃縮流
路22を流れ、血球流路27、血球排出口24を経て、
貯蔵部3内の血球貯蔵部32に貯蔵される。
The inside of the blood separation device 2 is the same as that of the example shown in FIG. Are stored in the plasma storage unit 31 in the storage unit 3. On the other hand, the blood that has not passed through the fine groove 26 flows through the blood cell concentration channel 22, passes through the blood cell channel 27 and the blood cell outlet 24,
It is stored in the blood cell storage unit 32 in the storage unit 3.

【0040】血球成分は微細溝26を通過できないが血
漿と一緒に微細溝26近傍まで流れ、時間が経つと微細
溝26を塞いでしまい、しだいに血漿も微細溝26を通
過して流れることができなくなる。このような微細溝2
6の血球成分による目詰まりを防止するため、図7或い
は図8に示すようなタイミングで血液供給バルブ111
及び試薬供給バルブ112をコントローラ150により
予め定められたタイミングで開閉する。
The blood cell component cannot pass through the fine groove 26, but flows along with the plasma to the vicinity of the fine groove 26, and after a lapse of time, closes the fine groove 26, and the plasma may gradually flow through the fine groove 26. become unable. Such a fine groove 2
In order to prevent clogging due to the blood cell component 6 in FIG.
The controller 150 opens and closes the reagent supply valve 112 at a predetermined timing.

【0041】図7においては、血液供給バルブ111は
開に保持され、血液は血液供給ポンプ101に加圧され
て血液注入口11から血球濃縮流路22へと連続的に注
入される。血球濃縮流路22の圧力は血液供給ポンプ1
01に加圧されて血漿流路21及び血球流路27より高
くなる。このため、血液中の血漿成分のうち分離壁25
近傍のものは微細溝26から血漿流路21に流出し、血
球を含むその他の血液は血球流路27へと流れていく
が、血球のうち分離壁25近傍のものは血漿とともに微
細溝26へと流れ、微細溝26をしだいに塞いでしま
う。そこで試薬供給バルブ112を開にし、試薬供給ポ
ンプ102で加圧された試薬を血漿流路21に送り込む
ことで血漿流路21側の圧力を高める。血漿流路21側
の圧力を高めることで、微細溝26を塞いでいる血球を
血球濃縮流路22側へ押出し、血球濃縮流路22へと流
して、微細溝26の目詰まりを防ぐことができる。
In FIG. 7, the blood supply valve 111 is kept open, and the blood is pressurized by the blood supply pump 101 and is continuously injected from the blood inlet 11 into the blood cell concentration channel 22. The pressure of the blood cell enrichment channel 22 is determined by the blood supply pump 1
01 and becomes higher than the plasma channel 21 and the blood cell channel 27. Therefore, the separation wall 25 of the blood plasma components
The nearby blood flows out of the microchannel 26 into the plasma channel 21 and the other blood including blood cells flows into the blood cell channel 27, while the blood cells near the separation wall 25 flow into the microchannel 26 together with the plasma. And gradually closes the fine groove 26. Therefore, the reagent supply valve 112 is opened, and the reagent pressurized by the reagent supply pump 102 is sent to the plasma flow path 21 to increase the pressure on the plasma flow path 21 side. By increasing the pressure on the plasma flow path 21 side, the blood cells closing the fine grooves 26 are pushed out to the blood cell concentration flow paths 22 and flow to the blood cell concentration paths 22 to prevent the fine grooves 26 from being clogged. it can.

【0042】血液分離デバイス2、貯蔵部3はいずれも
密閉されている。したがって、血液供給ポンプ101、
試薬供給ポンプ102による加圧を続けると、血液分離
デバイス2、貯蔵部3の圧力がしだいに上昇してくるか
ら、血漿貯蔵部圧力調節器141、血球貯蔵部圧力調節
器142により、適宜、圧力を低下させる。
The blood separation device 2 and the storage unit 3 are both sealed. Therefore, blood supply pump 101,
When the pressurization by the reagent supply pump 102 is continued, the pressures of the blood separation device 2 and the storage unit 3 gradually increase. Therefore, the pressure is appropriately adjusted by the plasma storage unit pressure regulator 141 and the blood cell storage unit pressure regulator 142. Lower.

【0043】尚、図7では、試薬供給バルブ112を周
期的に開閉させることにより血漿流路21に圧力脈動を
発生させ、微細溝26を塞いでいる或いは微細溝26近
傍の血球を振動させて、微細溝26に詰まった血球が外
れやすくなるようにしてある。
In FIG. 7, a pressure pulsation is generated in the plasma flow path 21 by periodically opening and closing the reagent supply valve 112 to vibrate the microchannel 26 or vibrate blood cells in the vicinity of the microchannel 26. The blood cells clogged in the fine grooves 26 are easily detached.

【0044】図8においては、試薬供給バルブ112を
周期的に開閉させる点は図7の場合と同じであるが、さ
らに血液供給バルブ111を周期的に閉にしている。こ
うすることにより、血球濃縮流路22に対して血漿流路
21の圧力を高くし、微細溝26を塞いでいる血球が外
れやすくしている。
In FIG. 8, the point that the reagent supply valve 112 is opened and closed periodically is the same as in FIG. 7, but the blood supply valve 111 is closed periodically. By doing so, the pressure of the plasma flow channel 21 with respect to the blood cell concentration flow channel 22 is increased, and the blood cells closing the fine grooves 26 are easily released.

【0045】血液供給バルブ111を閉にするタイミン
グを決定するためには、微細溝26の目詰まりの状態を
検知することが望ましい。前記血漿貯蔵部圧力調節器1
41、血球貯蔵部圧力調節器142は、各貯蔵部の圧力
をモニタしながら、設定値以上の圧力になった場合各圧
力調節器内蔵のバルブを開いて圧力を調節する。各圧力
調節器でモニタした圧力の信号は、コントローラ150
で制御信号に変換され、血液供給バルブ111或いは試
薬供給バルブ112の開閉動作を制御する。例えば血漿
貯蔵部31の圧力があまり増加せず血球貯蔵部32の圧
力が急に増加する場合には、微細溝26が目詰まりして
血漿が血漿流路21に流れていないことになるので、血
液供給バルブ111を閉に、試薬供給バルブ112を開
にして、目詰まりを解消する。
In order to determine the timing for closing the blood supply valve 111, it is desirable to detect the state of clogging of the fine groove 26. The plasma storage unit pressure regulator 1
41. The blood cell storage unit pressure regulator 142 monitors the pressure of each storage unit and adjusts the pressure by opening a valve built in each pressure regulator when the pressure exceeds a set value. The pressure signal monitored by each pressure regulator is sent to the controller 150.
To control the opening and closing operation of the blood supply valve 111 or the reagent supply valve 112. For example, when the pressure in the blood plasma storage unit 31 does not increase so much and the pressure in the blood cell storage unit 32 suddenly increases, the fine grooves 26 are clogged and the plasma does not flow into the plasma flow channel 21. The blood supply valve 111 is closed and the reagent supply valve 112 is opened to eliminate clogging.

【0046】尚、特に試薬を供給する必要がない場合に
は、試薬供給バルブ112の開閉を利用せずに血漿流路
21の圧力を変化させてもよい。すなわち図9に示す本
発明の第3の実施の形態のように、前記第3の実施の形
態における試薬供給ポンプ102、試薬供給バルブ11
2及び試薬供給流路122に代えて、血漿流路21を加
圧する差圧発生手段として加圧源130を設け、この加
圧源130で血漿流路21に周期的な圧力を加えてもよ
い。加圧源130としては、圧電素子等で分離デバイス
の壁面を振動させてもよく、或いはシリンジポンプで血
漿流路21内に緩衝液等を出し入れしてもよい。本実施
の形態においても、図示されていないコントローラによ
り、加圧源130、血漿貯蔵部圧力調節器141、血球
貯蔵部圧力調節器142及び血液供給バルブ111の動
作を制御するのが望ましい。
When it is not particularly necessary to supply the reagent, the pressure of the plasma flow path 21 may be changed without using the opening and closing of the reagent supply valve 112. That is, as in the third embodiment of the present invention shown in FIG. 9, the reagent supply pump 102 and the reagent supply valve 11 in the third embodiment are different.
In place of the reagent supply channel 122 and the reagent supply channel 122, a pressure source 130 may be provided as a pressure difference generating means for pressurizing the plasma channel 21, and the pressure source 130 may apply a periodic pressure to the plasma channel 21. . As the pressurizing source 130, a wall surface of the separation device may be vibrated by a piezoelectric element or the like, or a buffer or the like may be taken in and out of the plasma flow path 21 by a syringe pump. Also in the present embodiment, it is desirable to control the operations of the pressurizing source 130, the plasma storage unit pressure regulator 141, the blood cell storage unit pressure regulator 142, and the blood supply valve 111 by a controller (not shown).

【0047】本実施の形態によっても、血液を流しなが
ら微細溝で血球を除去しかつ微細溝の目詰まりを防止で
きるので、血液処理装置の小型化が可能となる。
According to the present embodiment, the blood cells can be removed by the fine grooves while flowing the blood, and the clogging of the fine grooves can be prevented, so that the blood processing apparatus can be downsized.

【0048】上記各実施の形態は、血液から血球成分を
分離する血液処理装置に本発明を適用した例であるが、
血液に限らず、液体中の特定の大きさより大きい化学物
質を分離除去する分離装置であれば、本発明を適用する
ことが可能である。
Each of the above embodiments is an example in which the present invention is applied to a blood processing apparatus for separating blood cell components from blood.
The present invention can be applied to any separation device that separates and removes not only blood but also a chemical substance larger than a specific size in a liquid.

【0049】また、上記各実施の形態では、分離壁25
に形成された微細溝26により血球成分を分離するが、
微細溝26を備えた分離壁でなく、網目を備えたフィル
タ様のものを用いて分離するようにしても差し支えな
い。
In each of the above embodiments, the separation wall 25
The blood cell component is separated by the fine groove 26 formed in
Instead of using a separation wall provided with the fine grooves 26, a filter having a mesh may be used for separation.

【0050】[0050]

【発明の効果】本発明によれば、液体中の化学物質をフ
ィルタを用いて除去する場合のフィルタの目詰まりを、
流路内圧の変化で防止できるので、液体を連続的に流し
ながら化学物質を分離することができ、分離装置の小型
化が可能となる。
According to the present invention, when a chemical substance in a liquid is removed using a filter, clogging of the filter is prevented.
Since it can be prevented by a change in the internal pressure of the flow path, the chemical substance can be separated while continuously flowing the liquid, and the size of the separation device can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の全体構成を示す平
面図及び断面図である。
FIGS. 1A and 1B are a plan view and a cross-sectional view, respectively, showing an entire configuration of a first embodiment of the present invention.

【図2】図1に示す実施の形態の部分の詳細を示す斜視
図である。
FIG. 2 is a perspective view showing details of a part of the embodiment shown in FIG. 1;

【図3】図1に示す実施の形態におけるバルブ開閉動作
のタイミングの例を示す説明図である。
FIG. 3 is an explanatory diagram showing an example of a timing of a valve opening / closing operation in the embodiment shown in FIG. 1;

【図4】図1に示す実施の形態の動作を説明する斜視図
である。
FIG. 4 is a perspective view for explaining the operation of the embodiment shown in FIG. 1;

【図5】図1に示す実施の形態におけるバルブ開閉動作
のタイミングの他の例を示す説明図である。
FIG. 5 is an explanatory diagram showing another example of the timing of the valve opening / closing operation in the embodiment shown in FIG. 1;

【図6】本発明の第2の実施の形態の全体構成を示す平
面図及び断面図である。
FIG. 6 is a plan view and a cross-sectional view illustrating an entire configuration of a second embodiment of the present invention.

【図7】図6に示す実施の形態におけるバルブ開閉動作
のタイミングの例を示す説明図である。
FIG. 7 is an explanatory diagram showing an example of a timing of a valve opening / closing operation in the embodiment shown in FIG. 6;

【図8】図6に示す実施の形態におけるバルブ開閉動作
のタイミングの他の例を示す説明図である。
FIG. 8 is an explanatory diagram showing another example of the timing of the valve opening and closing operation in the embodiment shown in FIG. 6;

【図9】本発明の第3の実施の形態の全体構成を示す平
面図及び断面図である。
FIG. 9 is a plan view and a cross-sectional view illustrating an entire configuration of a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 血液貯蔵部 2 血液分離デバイス 3 貯蔵部 4 吸引ポンプ 21 血漿流路 22 血球濃縮流路 25 分離壁 26 微細溝 101 血液供給ポンプ 102 試薬供給ポンプ 130 加圧源 141 血漿貯蔵部圧力調節器 142 血球貯蔵部圧力調節器 150 コントローラ DESCRIPTION OF SYMBOLS 1 Blood storage part 2 Blood separation device 3 Storage part 4 Suction pump 21 Plasma flow path 22 Blood cell concentration flow path 25 Separation wall 26 Micro-groove 101 Blood supply pump 102 Reagent supply pump 130 Pressurization source 141 Plasma storage part pressure regulator 142 Blood cell Reservoir pressure controller 150 Controller

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 29/60 G01N 33/48 H 29/62 B01D 35/02 Z 29/66 29/36 Z 35/16 29/38 580B G01N 1/28 580C 33/48 G01N 1/28 J B01D 29/38 510Z 520A Fターム(参考) 2G045 AA01 CA25 HB02 2G052 AA30 AD06 AD26 BA22 CA11 CA19 EA01 EA17 HC25 HC40 JA01 JA11 4C077 AA12 BB02 DD11 DD13 EE01 HH03 HH13 JJ03 JJ13 JJ25 KK21 KK23 NN02 NN03 4D064 AA29 BQ01 BQ08 DC02 DC05 DC09 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) B01D 29/60 G01N 33/48 H 29/62 B01D 35/02 Z 29/66 29/36 Z 35/16 29/38 580B G01N 1/28 580C 33/48 G01N 1/28 J B01D 29/38 510Z 520A F-term (reference) 2G045 AA01 CA25 HB02 2G052 AA30 AD06 AD26 BA22 CA11 CA19 EA01 EA17 HC25 HC40 JA01 DD11C12 DD13 EE01 HH03 HH13 JJ03 JJ13 JJ25 KK21 KK23 NN02 NN03 4D064 AA29 BQ01 BQ08 DC02 DC05 DC09

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 化学物質を含む原液が通流される濃縮流
路と、分離しようとする化学物質が通過できない大きさ
の開口を備えて前記原液から前記化学物質を分離する分
離手段と、前記分離手段を介して前記濃縮流路に接する
ように形成され、前記分離手段を通過した処理液体が流
れる処理液体流路と、前記処理液体流路の圧力を断続的
に前記濃縮流路の圧力よりも高くしたり低くしたりする
差圧発生手段と、を有してなる化学物質分離装置。
1. A concentrating channel through which a stock solution containing a chemical substance flows, an opening having a size through which the chemical substance to be separated cannot pass, and separation means for separating the chemical substance from the stock solution; A processing liquid flow path formed so as to be in contact with the concentration flow path through the means, and through which the processing liquid having passed through the separation means flows, the pressure of the processing liquid flow path intermittently being higher than the pressure of the concentration flow path. A chemical substance separation device comprising: a differential pressure generating means for increasing or decreasing the pressure.
【請求項2】 請求項1記載の化学物質分離装置におい
て、前記濃縮流路に連通し、化学物質が濃縮された濃縮
液体を取出す濃縮液体取り出し手段を設けたことを特徴
とする化学物質分離装置。
2. The chemical substance separating apparatus according to claim 1, further comprising a concentrated liquid extracting means communicating with the concentration flow path and extracting a concentrated liquid in which the chemical substance is concentrated. .
【請求項3】 請求項1または2に記載の化学物質分離
装置において、前記差圧発生手段は、前記濃縮流路の圧
力を低下させるものであることを特徴とする化学物質分
離装置。
3. The chemical substance separating apparatus according to claim 1, wherein said differential pressure generating means reduces the pressure in said concentration channel.
【請求項4】 請求項1または2に記載の化学物質分離
装置において、前記差圧発生手段は、前記濃縮流路及び
前記処理液体流路にそれぞれ独立に圧力を加えるもので
あることを特徴とする化学物質分離装置。
4. The chemical substance separation device according to claim 1, wherein the differential pressure generating means applies pressure independently to the concentration channel and the processing liquid channel. Chemical separation equipment.
【請求項5】 請求項4記載の化学物質分離装置におい
て、前記濃縮流路及び前記処理液体流路の差圧を検知す
る圧力検知手段と、この圧力検知手段の出力に基づいて
前記差圧発生手段の動作のタイミングを制御する制御手
段と、を設けたことを特徴とする化学物質分離装置。
5. The chemical substance separation apparatus according to claim 4, wherein said pressure detecting means detects a pressure difference between said concentration channel and said processing liquid channel, and said pressure difference is generated based on an output of said pressure detecting means. Control means for controlling the operation timing of the means.
【請求項6】 請求項4または5に記載の化学物質分離
装置において、前記差圧発生手段が、処理液体流路を加
圧する加圧手段を含んでいることを特徴とする化学物質
分離装置。
6. The chemical substance separating apparatus according to claim 4, wherein said differential pressure generating means includes a pressurizing means for pressurizing a processing liquid flow path.
【請求項7】 請求項6に記載の化学物質分離装置にお
いて、前記加圧手段は、処理液体流路に、処理液体に添
加する液体を供給する添加物供給手段を兼ねていること
を特徴とする化学物質分離装置。
7. The chemical substance separating apparatus according to claim 6, wherein the pressurizing means also serves as an additive supply means for supplying a liquid to be added to the processing liquid to the processing liquid flow path. Chemical separation equipment.
【請求項8】 請求項1〜7のうちのいずれか1項に記
載の化学物質分離装置において、前記原液が血液であ
り、分離される化学物質が血球であり、処理液体が血漿
であることを特徴とする化学物質分離装置。
8. The chemical substance separation device according to claim 1, wherein the undiluted solution is blood, the separated chemical substance is blood cells, and the processing liquid is plasma. A chemical substance separation device characterized by the above-mentioned.
JP2001120457A 2001-04-19 2001-04-19 Chemical substance separator Pending JP2002316008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001120457A JP2002316008A (en) 2001-04-19 2001-04-19 Chemical substance separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001120457A JP2002316008A (en) 2001-04-19 2001-04-19 Chemical substance separator

Publications (1)

Publication Number Publication Date
JP2002316008A true JP2002316008A (en) 2002-10-29

Family

ID=18970486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001120457A Pending JP2002316008A (en) 2001-04-19 2001-04-19 Chemical substance separator

Country Status (1)

Country Link
JP (1) JP2002316008A (en)

Similar Documents

Publication Publication Date Title
US20050145497A1 (en) Implementation of microfluidic components in a microfluidic system
US8069991B2 (en) System and method for liquid filtration with reduced hold-up volume
JP4092085B2 (en) Lower drainage for filtration membrane
CN111315861B (en) System for cell enrichment using cross-flow filtration
US11619615B2 (en) Field flow fractionation device
US20150041395A1 (en) Micro flow filtration system and flow filtration method
ATE503539T1 (en) METHOD AND DEVICE FOR SEPARATING AND REMOVING GAS BUBBLES FROM LIQUIDS
US7527740B2 (en) Method and separating module for the separation of particles from a dispersion, in particular of blood corpuscles from blood
JP2002316008A (en) Chemical substance separator
JP2008200566A (en) Field flow fractionation apparatus
JP4587215B2 (en) Component separation mechanism and component separation method
US10682611B2 (en) System and method for controlling outlet flow of a device for separating cellular suspensions
JP2685119B2 (en) Cell fractionation method and cell fractionation device
JP2005074309A5 (en)
JP2000237502A (en) Method and device for separating water and oil
US20210060491A1 (en) Tangential flow filtration (tff) system and disposable tff unit that includes an integrated pump apparatus
US20200249208A1 (en) Cleaning method of field-flow-fractionation apparatus
JP7173004B2 (en) Fluidic device and method for separating substances to be separated
JP5229665B2 (en) Plasma or serum separation method and plasma or serum separation device
JP2021179320A (en) Particle collection device and particle size distribution measurement method
JPH10332568A (en) Particle counting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060418