JP2002294371A - Ti-Ni-Cu SHAPE MEMORY ALLOY - Google Patents

Ti-Ni-Cu SHAPE MEMORY ALLOY

Info

Publication number
JP2002294371A
JP2002294371A JP2001094369A JP2001094369A JP2002294371A JP 2002294371 A JP2002294371 A JP 2002294371A JP 2001094369 A JP2001094369 A JP 2001094369A JP 2001094369 A JP2001094369 A JP 2001094369A JP 2002294371 A JP2002294371 A JP 2002294371A
Authority
JP
Japan
Prior art keywords
shape memory
alloy
memory alloy
temperature
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001094369A
Other languages
Japanese (ja)
Other versions
JP4222444B2 (en
Inventor
Shuichi Miyazaki
修一 宮崎
Setsuo Kajiwara
節夫 梶原
Takehiko Kikuchi
武丕児 菊池
Kazuyuki Ogawa
一行 小川
Kotaro Yamazaki
光太郎 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Japan Science and Technology Corp filed Critical National Institute for Materials Science
Priority to JP2001094369A priority Critical patent/JP4222444B2/en
Publication of JP2002294371A publication Critical patent/JP2002294371A/en
Application granted granted Critical
Publication of JP4222444B2 publication Critical patent/JP4222444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide shape memory alloy having excellent shape memory characteristics, extended permissible composition range and high practicality. SOLUTION: The Ti-Ni-Cu shape memory alloy has a composition consisting of, by atom, 51-55% Ti, 35-45% Ni and 4-10% Cu. This alloy has shape memory characteristics of 3-5% shape recovery strain at 1-1.5 GPa maximum load stress and superelasticity of about 3% recovery strain at 800 MPa maximum load stress.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、Ti−N
i−Cu系形状記憶合金に関するものである。さらに詳
しくは、この出願の発明は、医薬機器、マイクロマシ
ン、バイオテクノロジー、情報通信、精密光学機器等の
諸分野において、マイクロアクチュエータ等として有用
な、新しいTi−Ni−Cuの形状記憶合金に関するも
のである。
BACKGROUND OF THE INVENTION The invention of this application is based on Ti-N
It relates to an i-Cu based shape memory alloy. More specifically, the invention of this application relates to a new Ti-Ni-Cu shape memory alloy that is useful as a microactuator in various fields such as medical equipment, micromachines, biotechnology, information communication, and precision optical equipment. is there.

【0002】[0002]

【従来の技術と発明の課題】Ti−Ni基形状記憶合金
薄膜は、10年程前にはじめてスパッタリングによる作
製に成功して以来マイクロアクチュエータの有望な材料
とみなされてきた。しかし、その実用化に当たっては二
つの大きな問題があった。一つは材料の信頼性の面から
のもので、使用中に予想していない大きな負荷がかか
り、材料がもはやその形状記憶特性を示さなくなってし
まうという問題である。もう一つは、組成の制御がきわ
めて困難であるということであった。実際、従来の技術
による形状記憶合金の薄膜では、最大形状回復力が約5
00MPaにとどまり、原子組成の許容範囲は0.1%
にすぎないという大きな制約があった。
2. Description of the Related Art Ti-Ni-based shape memory alloy thin films have been regarded as a promising material for microactuators since they were first successfully produced by sputtering about ten years ago. However, there were two major problems in putting it to practical use. One is from the point of view of the reliability of the material, which is a problem in which an unexpectedly large load is applied during use and the material no longer exhibits its shape memory property. Another was that the composition was very difficult to control. In fact, a conventional shape memory alloy thin film has a maximum shape recovery force of about 5
Only at 00MPa, atomic composition tolerance is 0.1%
There was a big restriction that only.

【0003】このような状況において、梶原らによっ
て、1996年になって、Ti過剰のTi−Ni合金を
非晶質状態から結晶化温度(Tc)付近の温度にまで直
接加熱すると整合板状析出物(非平衡相、体心正方格
子)が生じ、形状記憶合金特性を大きく向上させ、原子
組成の許容範囲を拡げることが見出された。
Under these circumstances, Kajiwara et al., In 1996, directly heated a Ti-excessive Ti—Ni alloy from an amorphous state to a temperature near the crystallization temperature (Tc). (Non-equilibrium phase, body-centered tetragonal lattice) have been found to greatly improve shape memory alloy properties and extend the allowable range of atomic composition.

【0004】そこで、この出願の発明は、このような梶
原らの知見を踏まえ、さらに形状記憶合金としての特性
とその実用性の検討を進めることによって、マイクロア
クチュエータ等として実用的に有用な、形状記憶特性は
もとより、超弾性特性等にも優れ新しい形状記憶合金を
提供することを課題としている。
Accordingly, the invention of this application is based on the findings of Kajiwara et al. And further studies on the characteristics as a shape memory alloy and the practicality of the shape memory alloy. An object of the present invention is to provide a new shape memory alloy which is excellent not only in memory characteristics but also in superelastic characteristics and the like.

【0005】[0005]

【課題を解決するための手段】この出願の発明は、前記
の課題を解決するものとして、第1には、不可避的不純
物を除いて実質的にTi,NiおよびCuによって構成
された合金であって、最大負荷応力が1〜1.5GPa
の範囲で形状回復歪みが3〜5%の形状記憶特性を有
し、超弾性特性が、最大負荷応力800MPaで回復歪
み約3%であることを特徴とするTi−Ni−Cu系形
状記憶合金を提供する。
Means for Solving the Problems The invention of the present application solves the above-mentioned problems. First, it is an alloy substantially composed of Ti, Ni and Cu excluding unavoidable impurities. And the maximum load stress is 1 to 1.5 GPa
Wherein the shape-recovery strain has a shape memory property of 3 to 5% in the range of, and the superelastic property is about 3% of the recovery strain at a maximum load stress of 800 MPa. I will provide a.

【0006】また、この出願の発明は、第2には、合金
組成が、原子%(at%)として、Ti:51〜55、
Ni:35〜45、Cu:4〜10であることを特徴と
する前記のTi−Ni−Cu系形状記憶合金を提供し、
第3には、形状記憶特性の発現温度が、200K〜36
0Kの範囲であることを特徴とする前記のTi−Ni−
Cu系形状記憶合金を、第4には、非晶質状態から結晶
化温度付近に加熱されて10分〜10時間保持されるこ
とにより形成されたことを特徴とする前記いずれかのT
i−Ni−Cu系形状記憶合金を提供する。
Second, the invention of this application is based on the assumption that the alloy composition is expressed as atomic% (at%) of Ti: 51 to 55;
Ni: 35 to 45, and Cu: 4 to 10 The Ti-Ni-Cu-based shape memory alloy is provided,
Third, the temperature at which the shape memory property is developed is 200K to 36K.
0K, wherein the Ti-Ni-
Fourthly, the Cu-based shape memory alloy is formed by being heated from an amorphous state to a temperature near a crystallization temperature and held for 10 minutes to 10 hours.
Provided is an i-Ni-Cu-based shape memory alloy.

【0007】[0007]

【発明の実施の形態】この出願の発明は前記のとおりの
特徴をもつものであるが、以下にその実施の形態につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the features as described above, and embodiments thereof will be described below.

【0008】なによりも、この出願の発明が提供する形
状記憶合金は、Ti−Ni−Cuの三元系の合金とし
て、1〜1.5GPaの最大負荷応力でも形状記憶特性
が損なわれず、また、最大形状回復力が800MPaの
超弾性特性を示すというこれまでに知られていない画期
的なものである。また、これらの特性を示す合金の組成
についても、原子%として、前記のとおりの比率とし
て、許容範囲はたとえば4〜10%にまで拡大し、この
点においても画期的なものである。
[0008] Above all, the shape memory alloy provided by the invention of this application is a ternary alloy of Ti-Ni-Cu, whose shape memory characteristics are not impaired even at a maximum load stress of 1 to 1.5 GPa. , A super-elastic characteristic having a maximum shape recovery force of 800 MPa, which has not been known so far. Also, regarding the composition of the alloy exhibiting these characteristics, the allowable range is expanded to, for example, 4 to 10% as the above-described ratio in terms of atomic%, and this point is also epoch-making.

【0009】以上のような顕著な特徴のあるこの出願の
発明の形状記憶合金は、スパッタリング方法のように気
相堆積法によって薄膜として製造することもできるし、
溶製法によってバルクやリボン等として製造することも
できる。ただ、いずれの方法においても、好適には、非
晶質状態から約750Kの結晶化温度(Tc)付近に加
熱して10分〜10時間保持することにより形成するこ
とが望ましい。
[0009] The shape memory alloy of the invention of the present application having the remarkable features as described above can be manufactured as a thin film by a vapor deposition method like a sputtering method.
It can also be manufactured as a bulk or ribbon by the melting method. However, in any method, it is preferable to form by heating from an amorphous state to a crystallization temperature (Tc) of about 750 K and holding for 10 minutes to 10 hours.

【0010】結晶化温度(Tc)付近との規定は、72
0K〜780Kの範囲を目途として考慮することができ
る。このような温度での熱処理によって、Ti過剰のT
i−Ni合金について梶原らが見出したと同様の、整合
板状析出物(非平衡相、体心正方格子)が生じることに
なる。この析出物の存在が、この発明の形状記憶合金の
優れた特性を可能にすると考えられる。
[0010] The regulation near the crystallization temperature (Tc) is 72
A range of 0K to 780K can be considered as a target. By the heat treatment at such a temperature, Ti excess T
A matching plate-like precipitate (non-equilibrium phase, body-centered square lattice) similar to that found by Kajiwara et al. for the i-Ni alloy will be produced. It is believed that the presence of this precipitate enables the excellent properties of the shape memory alloy of the present invention.

【0011】この出願の発明の形状記憶合金について
は、形状記憶特性の発現温度が200K〜360Kの範
囲であるものも提供される。室温以上の温度でも形状記
憶特性が示されることになる。
[0011] The shape memory alloy of the invention of the present application is also provided with a shape memory characteristic developing temperature in the range of 200K to 360K. Shape memory characteristics will be exhibited even at temperatures above room temperature.

【0012】そこで以下に実施例を示し、さらに詳しく
説明する。もちろん、以下の例によって発明が限定され
ることはない。
An embodiment will be described below and described in more detail. Of course, the invention is not limited by the following examples.

【0013】[0013]

【実施例】1)i−43.0Ni−6.2Cu(at.
%)合金薄膜(厚さ約7μm)、Ti=50.8at.
%試料作製はスパッタリング法による。スパッタリング
条件は以下のとおりとした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS 1) i-43.0Ni-6.2Cu (at.
%) Alloy thin film (thickness: about 7 μm), Ti = 50.8 at.
The% sample is prepared by a sputtering method. The sputtering conditions were as follows.

【0014】1)スパッタ方式:高周波マグネトロンス
パッタ方式 2)ターゲット:Ti−Ni合金の上にTiとCuのチ
ップをのせる。
1) Sputtering method: high-frequency magnetron sputtering method 2) Target: Ti and Cu chips are placed on a Ti-Ni alloy.

【0015】3)真空度、導入ガスとその分圧:導入ガ
スはAr、ガス導入前の真空度=2×10-5Pa,Ar
ガス分圧=6×10-1Pa 4)スパッタ投入電力:500W スパッタ膜作製時の状態は非晶質でこれを698Kで一
時間加熱する。なお、Tc=748Kである。この熱処
理により厚さ0.5−1.5nmの板状 整合析出物
(非平衡相、体心正方格子(bct))が母相(B2構
造)の{100}面上に生成する。これらの極薄板状析
出物は、20−40nmの大きさの結晶領域(ナノサイ
ズ領域)の界面をつくるように分布する。図1(a),
(b),(c)には、以上の熱処理により結晶化した合
金薄膜試料について、試験温度、270K、296K、
320Kにおける応力−歪み曲線を示す。試験温度27
0Kおよび296Kの場合は、最大負荷応力約1GPa
までの負荷が可能でしかもそのとき生じる約5%の歪み
は373K(100℃)に加熱することにより、完全に
回復する。試験温度320K(図1(c))の場合は、
1.1GPaの負荷で約6%伸び、除荷のみにより5%
の歪みが回復する。残りの歪み1%は373Kに加熱す
ることにより完全に回復する。図2には、同じ試料をそ
の破壊応力を測定する目的で引っ張り試験をしたもので
あるが、この図2にみられるように、いずれの試験温度
でも試験機の限界まで破壊しなかった。最高の負荷応力
は1180MPaであった。
3) Degree of vacuum, introduced gas and its partial pressure: Ar gas introduced, degree of vacuum before gas introduction = 2 × 10 −5 Pa, Ar
Gas partial pressure = 6 × 10 −1 Pa 4) Sputtering power: 500 W The state at the time of forming the sputtered film is amorphous, which is heated at 698 K for one hour. Note that Tc = 748K. By this heat treatment, plate-like aligned precipitates (non-equilibrium phase, body-centered square lattice (bct)) having a thickness of 0.5 to 1.5 nm are formed on the {100} plane of the parent phase (B2 structure). These ultrathin plate-like precipitates are distributed so as to form an interface of a crystal region (nano-size region) having a size of 20 to 40 nm. FIG. 1 (a),
(B) and (c) show the test temperature of the alloy thin film sample crystallized by the above heat treatment at 270K, 296K,
3 shows a stress-strain curve at 320K. Test temperature 27
In the case of 0K and 296K, the maximum load stress is about 1 GPa.
Up to a load of up to 5%, and the resulting strain of about 5% is completely recovered by heating to 373K (100 ° C). In the case of a test temperature of 320 K (FIG. 1C),
Approximately 6% growth with 1.1 GPa load, 5% with unloading only
The distortion recovers. The remaining strain of 1% is completely recovered by heating to 373K. FIG. 2 shows the same sample subjected to a tensile test for the purpose of measuring its breaking stress. As can be seen from FIG. 2, the sample did not break to the limit of the tester at any test temperature. The highest applied stress was 1180 MPa.

【0016】2)Ti−40.0Ni−5.7Cu合金
薄膜(厚さ約7μm)、Ti=54.3at.% 試料作製はスパッタリング法による。スパッタ膜作製時
の状態は非晶質でこれを723Kで一時間加熱する。な
お、Tc=754Kである。このときの内部組織は前記
1)場合と同じである。図3は上記の試料の270K、
297Kおよび320Kでの応力−歪み曲線である(太
線)。この図3から負荷応力が1270−1560MP
aに達しても塑性変形による降伏現象も現れず、破壊も
しないことがわかる。参考のためにTi−43.0Ni
−6.2Cu合金薄膜の場合の引っ張り試験の例を示す
(細線)。これは、図2と同一の熱処理条件、引っ張り
試験条件であるが、ほぼ同一の結果が得られ試験結果の
再現性の良さを示している。また、この図3には、47
3Kでの両試料の応力−歪み曲線を示してある。この温
度では応力誘起マルテンサイトは起こらないためにこの
曲線は母相の機械的特性を示したものといえるが、この
曲線から母相の降伏応力はそれぞれ1510MPa(T
i−40.0Ni−5.7Cu)と1150MPa(T
i−43.0Ni−6.2Cu)ということがわかる。
また、破壊応力はそれぞれ1750MPaと1380M
Paであり、この材料がいかに安定した機械特性を持っ
ているかを示している。なお、図2にもTi−43.0
Ni−6.2Cu合金の場合の母相の機械的特性(47
3Kでの引っ張り試験)を示した。
2) Ti-40.0Ni-5.7Cu alloy thin film (thickness: about 7 μm), Ti = 54.3 at. % The sample was prepared by a sputtering method. The state at the time of forming the sputtered film is amorphous and is heated at 723 K for one hour. Note that Tc = 754K. The internal structure at this time is the same as in the above 1). FIG. 3 shows the above sample at 270K,
It is a stress-strain curve at 297K and 320K (thick line). From FIG. 3, the applied stress is 1270-1560MP.
It can be seen that no yield phenomenon occurs due to plastic deformation even at a, and no destruction occurs. Ti-43.0Ni for reference
An example of a tensile test in the case of a -6.2Cu alloy thin film is shown (thin line). This is the same heat treatment condition and tensile test condition as in FIG. 2, but almost the same result is obtained, indicating good reproducibility of the test result. In addition, FIG.
The stress-strain curves of both samples at 3K are shown. Since stress-induced martensite does not occur at this temperature, it can be said that this curve shows the mechanical properties of the matrix. From this curve, the yield stress of the matrix is 1510 MPa (T
i-40.0Ni-5.7Cu) and 1150MPa (T
i-43.0Ni-6.2Cu).
The breaking stress was 1750 MPa and 1380 M, respectively.
Pa, indicating how stable this material has mechanical properties. FIG. 2 also shows Ti-43.0.
Mechanical properties of the parent phase in the case of Ni-6.2Cu alloy (47
Tensile test at 3K).

【0017】3)Ti−37.0Ni−9.5Cu合金
薄膜(厚さ約7μm)、Ti=53.5at.% 試料作製はスパッタリング法による。スパッタ膜作製時
の状態は非晶質でこれを748Kで一時間加熱する。こ
の場合のTc=743Kである。このときの内部組織は
前記の1)、2)場合と少し異なって板状整合析出物は
5−10nmの間隔で均一に分布している。図4は26
6−359Kの温度範囲の応力−歪み曲線で、310K
以上では安定した超弾性特性を示すことがわかる。特
に、359Kでは最大形状回復力800MPa、回復歪
み3%と極めてすぐれた超弾性特性を示している。
3) Ti-37.0Ni-9.5Cu alloy thin film (thickness: about 7 μm), Ti = 53.5 at. % The sample was prepared by a sputtering method. The sputtered film is in an amorphous state when it is heated at 748K for one hour. In this case, Tc = 743K. The internal structure at this time is slightly different from the cases 1) and 2) above, and the plate-like matched precipitates are uniformly distributed at intervals of 5 to 10 nm. FIG.
The stress-strain curve in the temperature range of 6-359K is 310K.
From the above, it can be seen that stable superelastic properties are exhibited. In particular, at 359K, the maximum shape recovery force was 800 MPa, and the recovery strain was 3%, showing extremely excellent superelastic properties.

【0018】なお、結晶化温度(Tc)付近での低温熱
処理の場合、上記1)−2)の場合と3)の場合は、板
状整合析出物の現れ方が前者はナノ結晶状の界面を構成
するように分布するが、後者は均一分布しており、板状
整合析出物の分布の仕方が異る。しかし、1)−2)の
場合でも加熱温度をTc付近にすれば板状整合析出物は
均一分布し、逆に3)の場合もTcよりも50Kほど低
い温度にて加熱すれば、板状整合析出物はナノ結晶状の
界面を構成するように生成する。形状記憶特性は両者と
もほぼ同じであるが、降伏応力や破壊応力は均一分布の
方がやや劣る。また、以上の実施例はスパッタ薄膜合金
について示したが、バルク試料についても非晶質のTi
−Ni−Cu合金ならば、同様な熱処理により板状整合
析出物をつくることができ、前記実施例のような形状記
憶特性をもたらすことができる。
In the case of the low-temperature heat treatment near the crystallization temperature (Tc), in the above cases 1) -2) and 3), the appearance of the plate-like matched precipitates is based on the nanocrystalline interface. , But the latter is uniformly distributed, and the distribution of the plate-like matched precipitates is different. However, even in the cases 1) and 2), if the heating temperature is set to around Tc, the plate-shaped matched precipitates are uniformly distributed. Conversely, in the case of 3), if the heating is performed at a temperature about 50K lower than the Tc, Matched precipitates are formed to form a nanocrystalline interface. Although both have substantially the same shape memory characteristics, the uniform distribution of the yield stress and the breaking stress is slightly inferior. Further, although the above embodiment has shown the sputtered thin film alloy, the amorphous Ti
In the case of a -Ni-Cu alloy, a plate-like matched precipitate can be formed by the same heat treatment, and the shape memory characteristics as in the above-described embodiment can be provided.

【0019】[0019]

【発明の効果】以上詳しく説明したとおり、この出願の
発明によって、Ti−Ni−Cu系形状記憶合金はその
形状記憶特性を全く損なわずに負荷し得る最大応力が従
来技術によるものの2−3倍にもなる。このため、器具
の機械的安全性を最優先する医療器具などに利用される
度合いが著しく増える。また、組成の許容範囲が、従来
技術によるTi−Ni基形状記憶合金より、一桁以上大
きいため合金作製がきわめて容易であり、スパッタリン
グによって薄膜をつくる場合もさして困難を伴わない。
このことは、製造コストを下げることができることを意
味し、工業的に利用される範囲を格段に広げることにな
る。
As described above in detail, according to the invention of this application, the maximum stress that can be applied to a Ti-Ni-Cu based shape memory alloy without impairing its shape memory characteristics is 2-3 times that of the prior art. Also. For this reason, the degree of use for a medical device or the like in which the mechanical safety of the device is the highest priority is significantly increased. Further, since the allowable range of the composition is larger than that of the conventional Ti-Ni-based shape memory alloy by one digit or more, it is extremely easy to prepare the alloy, and even when a thin film is formed by sputtering, there is no difficulty.
This means that the manufacturing cost can be reduced, and the range of industrial use is greatly expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)(b)(c)は、270K,296K,
320Kにおける実施例1)試料の応力−歪み曲線図で
ある。
1 (a), (b) and (c) show 270K, 296K,
It is a stress-strain curve figure of Example 1) sample at 320K.

【図2】実施例1)試料の引っ張り試験の結果を例示し
た図である。
FIG. 2 is a diagram exemplifying the results of a tensile test of a sample (Example 1).

【図3】270K,297,320Kでの実施例2)試
料の応力−歪み曲線図である。
FIG. 3 is a stress-strain curve diagram of a sample of Example 2) samples at 270K, 297, and 320K.

【図4】266K−359Kでの実施例3)試料の応力
−歪み曲線図である。
FIG. 4 is a graph showing a stress-strain curve of an example 3) sample at 266K-359K.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 630 C22F 1/00 630L 682 682 691 691B 691C C22K 1:00 C22K 1:00 (72)発明者 梶原 節夫 茨城県つくば市天久保1−10−12 グラン ドヒルズ1−405 (72)発明者 菊池 武丕児 茨城県稲敷郡美浦村大字花見塚809 (72)発明者 小川 一行 千葉県野田市二ツ塚461−35 (72)発明者 山崎 光太郎 茨城県つくば市花畑1−2−9 ゴールド ビレッジI−206──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 630 C22F 1/00 630L 682 682 691 691B 691C C22K 1:00 C22K 1:00 (72) Invention Person Setsuo Kajiwara 1-10-12 Amakubo, Tsukuba City, Ibaraki Prefecture 1-405, Grand Hills 1-405 (72) Inventor Takeshi Kikuchi, 809 Hanamizuka, Oura, Miura Village, Inashiki-gun, Ibaraki Prefecture (72) Inventor Kazuyuki Ogawa, Futatsuka, Noda-shi, Chiba 461-35 (72) Inventor Kotaro Yamazaki 1-2-9 Hanahata, Tsukuba City, Ibaraki Prefecture Gold Village I-206

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 不可避的不純物を除いて実質的にTi,
NiおよびCuによって構成された合金であって、最大
負荷応力が1〜1.5GPaの範囲で形状回復歪みが3
〜5%の形状記憶特性を有し、超弾性特性が、最大負荷
応力800MPaで回復歪み約3%であることを特徴と
するTi−Ni−Cu系形状記憶合金。
1. Except for unavoidable impurities, substantially Ti,
An alloy composed of Ni and Cu, having a maximum load stress of 1 to 1.5 GPa and a shape recovery strain of 3
A Ti-Ni-Cu based shape memory alloy having a shape memory property of about 5% and a superelastic property of about 3% recovery strain at a maximum load stress of 800 MPa.
【請求項2】 合金組成が、原子%(at%)として、
Ti:51〜55、Ni:35〜45、Cu:4〜10
であることを特徴とする請求項1のTi−Ni−Cu系
形状記憶合金。
2. The method according to claim 1, wherein the alloy composition is expressed as atomic% (at%).
Ti: 51 to 55, Ni: 35 to 45, Cu: 4 to 10
The Ti-Ni-Cu-based shape memory alloy according to claim 1, wherein
【請求項3】 形状記憶特性の発現温度が、200K〜
360Kの範囲であることを特徴とする請求項1または
2のTi−Ni−Cu系形状記憶合金。
3. The temperature at which the shape memory characteristic is developed is 200K or more.
The Ti-Ni-Cu based shape memory alloy according to claim 1 or 2, wherein the range is 360K.
【請求項4】 非晶質状態から結晶化温度付近に加熱さ
れて10分〜10時間保持されることにより形成された
ことを特徴とする請求項1ないし3のいずれかのTi−
Ni−Cu系形状記憶合金。
4. The Ti— alloy according to claim 1, wherein the Ti— alloy is formed by heating from an amorphous state to a temperature near a crystallization temperature and holding for 10 minutes to 10 hours.
Ni-Cu shape memory alloy.
JP2001094369A 2001-03-28 2001-03-28 Ti-Ni-Cu-based shape memory alloy Expired - Fee Related JP4222444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001094369A JP4222444B2 (en) 2001-03-28 2001-03-28 Ti-Ni-Cu-based shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001094369A JP4222444B2 (en) 2001-03-28 2001-03-28 Ti-Ni-Cu-based shape memory alloy

Publications (2)

Publication Number Publication Date
JP2002294371A true JP2002294371A (en) 2002-10-09
JP4222444B2 JP4222444B2 (en) 2009-02-12

Family

ID=18948578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001094369A Expired - Fee Related JP4222444B2 (en) 2001-03-28 2001-03-28 Ti-Ni-Cu-based shape memory alloy

Country Status (1)

Country Link
JP (1) JP4222444B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6945045B2 (en) 2001-10-01 2005-09-20 Minolta Co., Ltd. Driving apparatus
WO2007108180A1 (en) 2006-03-20 2007-09-27 University Of Tsukuba High-temperature shape memory alloy, actuator and motor
WO2007108178A1 (en) 2006-03-17 2007-09-27 University Of Tsukuba Titanium-tantalum shape memory alloy, actuator, and engine
WO2008142980A1 (en) * 2007-05-11 2008-11-27 National Institute For Materials Science Two-direction shape-memory alloy thin film actuator and method for manufacturing shape-memory alloy thin film used in the actuator
CN115896498A (en) * 2022-11-22 2023-04-04 西安交通大学 High-phase-change circulation stability Ti-Ni-Cu shape memory alloy plate and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101908962B1 (en) * 2013-12-27 2018-12-10 서울대학교 산학협력단 Manufacturing method for work hardenable metallic glass matrix composite

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6945045B2 (en) 2001-10-01 2005-09-20 Minolta Co., Ltd. Driving apparatus
WO2007108178A1 (en) 2006-03-17 2007-09-27 University Of Tsukuba Titanium-tantalum shape memory alloy, actuator, and engine
EP2339041A1 (en) 2006-03-17 2011-06-29 University of Tsukuba Actuator and engine
US8007604B2 (en) 2006-03-17 2011-08-30 University Of Tsukuba Titanium-tantalum base shape memory alloys, actuator and engine
WO2007108180A1 (en) 2006-03-20 2007-09-27 University Of Tsukuba High-temperature shape memory alloy, actuator and motor
WO2008142980A1 (en) * 2007-05-11 2008-11-27 National Institute For Materials Science Two-direction shape-memory alloy thin film actuator and method for manufacturing shape-memory alloy thin film used in the actuator
JPWO2008142980A1 (en) * 2007-05-11 2010-08-05 独立行政法人物質・材料研究機構 Bidirectional shape memory alloy thin film actuator and method of manufacturing shape memory alloy thin film used therefor
JP2012184777A (en) * 2007-05-11 2012-09-27 National Institute For Materials Science Bidirectional shape memory alloy thin-film actuator and fabricating method of shape memory alloy thin-film used in the same
CN115896498A (en) * 2022-11-22 2023-04-04 西安交通大学 High-phase-change circulation stability Ti-Ni-Cu shape memory alloy plate and preparation method thereof
CN115896498B (en) * 2022-11-22 2024-03-05 西安交通大学 Ti-Ni-Cu shape memory alloy plate with high phase-change cycle stability and preparation method thereof

Also Published As

Publication number Publication date
JP4222444B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
Busch et al. Shape‐memory properties in Ni‐Ti sputter‐deposited film
JP2899682B2 (en) Ti-Ni based shape memory alloy and method for producing the same
Miyazaki et al. Development of shape memory alloys
JPH0525933B2 (en)
WO1996039547A2 (en) Multiple source deposition of shape-memory alloy thin films
Mehrabi et al. Microstructure, mechanical and functional properties of NiTi-based shape memory ribbons
Xu et al. Ni–Mn–Ga high-temperature shape memory alloys
WO2001021852A1 (en) A METHOD FOR PRODUCING NiTiHf ALLOY FILMS BY SPUTTERING
Grummon et al. Progress on sputter-deposited thermotractive titanium-nickel films
Ishida et al. Microstructure and mechanical properties of sputter-deposited Ti-Ni alloy thin films
JP2002294371A (en) Ti-Ni-Cu SHAPE MEMORY ALLOY
JP4859171B2 (en) Ti-Ni-Cu ternary shape memory alloy and manufacturing method thereof
Shelyakov et al. Two-way shape memory effect in rapidly-quenched high-copper TiNiCu alloys deformed in the martensitic state
Grummon et al. Stress in Sputtered Films of Near‐Equiatomic TiNiX on (100) Si: Intrinsic and Extrinsic Stresses and Their Modification by Thermally Activated Mechanisms
Matsunaga et al. High strength Ti–Ni-based shape memory thin films
JPS6210291B2 (en)
JPS5818427B2 (en) Method for producing metal articles with repeated shape memory
JP5131728B2 (en) High strength Ti-Ni-Cu shape memory alloy and manufacturing method thereof
JP3947788B2 (en) Ti-Zr-Ni high temperature shape memory alloy thin film and method for producing the same
JP2001279356A (en) Ni-Mn-Ga SERIES SHAPE MEMORY ALLOY AND ITS PRODUCTION METHOD
Meng et al. Microstructure and shape memory behavior of Ti–Nb shape Memory alloy thin film
US20060076091A1 (en) Shape memory alloy with ductility and a making process of the same
Matsunaga et al. Internal structures and shape memory properties of sputter-deposited thin films of a Ti–Ni–Cu alloy
US20030168334A1 (en) High temperature shape memory alloy thin film
Gong et al. Structures and defects induced during annealing of sputtered near‐equiatomic NiTi shape memory thin films

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees