JP2002278513A - Electro-optical device - Google Patents

Electro-optical device

Info

Publication number
JP2002278513A
JP2002278513A JP2001079599A JP2001079599A JP2002278513A JP 2002278513 A JP2002278513 A JP 2002278513A JP 2001079599 A JP2001079599 A JP 2001079599A JP 2001079599 A JP2001079599 A JP 2001079599A JP 2002278513 A JP2002278513 A JP 2002278513A
Authority
JP
Japan
Prior art keywords
current
electro
organic
optical
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001079599A
Other languages
Japanese (ja)
Inventor
Masaaki Kabe
正章 加邉
Koji Numao
孝次 沼尾
Nobuyuki Ito
信行 伊藤
Mitsuhiro Mukaidono
充浩 向殿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001079599A priority Critical patent/JP2002278513A/en
Publication of JP2002278513A publication Critical patent/JP2002278513A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing

Abstract

PROBLEM TO BE SOLVED: To correct uneveness in luminance due to deviation in TFT characteristics by measuring the currents that flow in organic EL elements, without providing a current measuring element for each pixel in an active matrix constitution. SOLUTION: In an electro-optical device, active elements and organic EL elements are arranged in a matrix manner, a plurality of current-supplying wires is arranged to supply currents to the organic EL elements and a current- measuring element is provided for each current supplying wire. A scanning voltage is given to one scanning line, prescribed data voltages are supplied to data lines in synchronism with the scanning voltage and current values that flow in the organic EL elements are measured by the current-measuring elements. Then, the scanning voltage is given to the same scanning lien and data signals, which make electro-optical elements in a zero gradation, are supplied to the data lines in synchronism with the scanning voltage. The above drive operations are conducted for each scanning line, and the data voltage to be given to each active element is corrected, based on the obtained current measurement values.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機EL素子等の
電気光学素子を用いた電気光学装置に関する。
The present invention relates to an electro-optical device using an electro-optical element such as an organic EL element.

【0002】[0002]

【従来の技術】有機EL素子は、他に光源を必要とせず
に自ら発光する自発光素子であるため、これをディスプ
レイに応用した場合には、液晶を凌ぐ、高コントラスト
で広視野角が得られる薄型ディスプレイが得られる可能
性を秘めている。
2. Description of the Related Art An organic EL device is a self-luminous device that emits light by itself without the need for a light source. Therefore, when it is applied to a display, it has a higher contrast and a wider viewing angle than liquid crystals. It has the potential to provide a thinner display.

【0003】図1は、一般的な有機EL素子の構造を示
す概略断面図である。ここでは、基板上に陽極2、正孔
注入層3、正孔輸送層4、発光層5、電子輸送層6およ
び陰極7が順に積層されている。そして、両電極2、7
に直流電圧を印加することにより、陽極2からホール
(正孔)が、陰極7から電子が注入される。この2つの
再結合によって、蛍光分子の1重項励起状態が生成さ
れ、その一重項励起分子が基底状態に戻る際に、外部に
光を放出するという一連の過程により、有機EL素子の
発光が得られるという原理である。
FIG. 1 is a schematic sectional view showing the structure of a general organic EL device. Here, an anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, and a cathode 7 are sequentially stacked on a substrate. Then, both electrodes 2, 7
, A hole (hole) is injected from the anode 2 and electrons are injected from the cathode 7. Due to the two recombination, a singlet excited state of the fluorescent molecule is generated, and when the singlet excited molecule returns to the ground state, light is emitted to the outside. The principle is that it can be obtained.

【0004】図2(a)〜図2(c)に、一般的な有機
EL素子の特性を示す。図2(a)は印加電圧と輝度と
の関係を示し、図2(b)は印加電圧と電流との関係を
示し、図2(c)は印加電圧と発光効率との関係を示
す。輝度はある閾値電圧以上になると徐々に増加し、電
流密度もある閾値電圧以上になると徐々に増加する。ま
た、発光効率はある電圧において最大値となる。
FIGS. 2A to 2C show characteristics of a general organic EL element. FIG. 2A shows the relationship between the applied voltage and the luminance, FIG. 2B shows the relationship between the applied voltage and the current, and FIG. 2C shows the relationship between the applied voltage and the luminous efficiency. The luminance gradually increases when the voltage exceeds a certain threshold voltage, and gradually increases when the current density also exceeds a certain threshold voltage. The luminous efficiency has a maximum value at a certain voltage.

【0005】近年では、有機EL素子を用いた単純マト
リクス構成およびアクティブマトリクス構成のディスプ
レイが盛んに開発されている。
In recent years, displays having a simple matrix configuration and an active matrix configuration using organic EL elements have been actively developed.

【0006】図3に、一般的な単純マトリクス構成のデ
ィスプレイの回路構成を示す。ここでは、有機EL素子
がマトリクス状に配置され、走査ドライバに接続された
走査線とデータドライバに接続されたデータ線とが互い
に交差(この例では直交)して設けられている。走査線
は有機EL素子の陰極に接続され、データ線は有機EL
素子の陽極に接続されている。
FIG. 3 shows a circuit configuration of a display having a general simple matrix configuration. Here, the organic EL elements are arranged in a matrix, and scanning lines connected to the scanning driver and data lines connected to the data driver are provided to intersect (orthogonal in this example) with each other. The scanning line is connected to the cathode of the organic EL element, and the data line is connected to the organic EL element.
Connected to the anode of the device.

【0007】この単純マトリクス構成のディスプレイに
おいては、各走査線を選択している期間のみ、それに接
続された有機EL素子が発光する。このため、走査線の
本数が増えてデューティー比が上がると、各走査線を選
択している期間が短くなって各画素の点灯時間が短くな
り、その結果、ディスプレイの輝度減少を招く。これを
回避するため、有機EL素子への印加電圧を増やして各
画素の輝度を上げると、一般的に発光効率は高電圧にな
るほど下がるため、消費電力の増大を招く。
In the display having the simple matrix configuration, the organic EL element connected to each scan line emits light only during a period in which each scan line is selected. Therefore, when the number of scanning lines increases and the duty ratio increases, the period during which each scanning line is selected is shortened, and the lighting time of each pixel is shortened. As a result, the brightness of the display is reduced. If the luminance of each pixel is increased by increasing the voltage applied to the organic EL element in order to avoid this, the luminous efficiency generally decreases as the voltage increases, resulting in an increase in power consumption.

【0008】図4に、一般的なアクティブマトリクス構
成のディスプレイの回路構成を示す。ここでは、マトリ
クス状に有機EL素子とそれを制御するアクティブ素子
とが配置されている。図5に示すように、アクティブ素
子には、nチャンネルTFTであるスイッチングTFT
と、pチャンネルTFTであるドライビングTFTの2
種類が必要である。また、このアクティブ素子に走査電
圧(ゲートを開く信号)を与える走査線およびデータ電
圧(データ信号)を与えるデータ線が互いに交差(この
例では直交)して設けられ、各々走査ドライバおよびデ
ータドライバに接続されている。さらに、有機EL素子
にアクティブ素子を介して電流を供給するための電流供
給線がデータ線に平行に設けられている。
FIG. 4 shows a circuit configuration of a display having a general active matrix configuration. Here, organic EL elements and active elements for controlling the organic EL elements are arranged in a matrix. As shown in FIG. 5, the active element includes a switching TFT which is an n-channel TFT.
And a driving TFT that is a p-channel TFT.
Kind is needed. A scanning line for applying a scanning voltage (a signal for opening a gate) and a data line for applying a data voltage (data signal) to the active element are provided so as to intersect (orthogonal in this example) with each other. It is connected. Further, a current supply line for supplying a current to the organic EL element via the active element is provided in parallel with the data line.

【0009】このアクティブマトリクス構成のディスプ
レイにおいては、走査線からスイッチングTFTのゲー
ト信号が入力され、これと同期してデータ線からデータ
信号に応じた量の電荷がキャパシタに入力される。この
キャパシタに蓄積された電荷量に応じてドライビングT
FTのソース・ドレイン間の抵抗値が決定され、電流供
給線から有機EL素子に電流が供給されて有機EL素子
が発光する。そして、スイッチングTFTが閉じられた
後も、ドライビングTFTを通して電流供給線から有機
EL素子に電流供給されるため、次の走査まで、有機E
L素子を発光させることが可能となる。このため、デュ
ーティー比が上がってもディスプレイの輝度減少を招く
ようなことはなく、低電圧で駆動できるため、低消費電
力化が可能となる。また、この構成の場合、データ線か
らのデータ信号に応じてソース・ドレイン間の抵抗値が
決まり、これにより有機EL素子に供給される電流量が
決まるため、データ信号に応じた輝度が得られ、階調表
示を行うことも可能である。
In the display of the active matrix configuration, a gate signal of the switching TFT is inputted from the scanning line, and in synchronization with the gate signal, an electric charge corresponding to the data signal is inputted from the data line to the capacitor. Driving T depends on the amount of charge stored in this capacitor.
The resistance value between the source and the drain of the FT is determined, and a current is supplied from the current supply line to the organic EL element, so that the organic EL element emits light. Even after the switching TFT is closed, the current is supplied to the organic EL element from the current supply line through the driving TFT.
The L element can emit light. For this reason, even if the duty ratio increases, the luminance of the display does not decrease, and the display can be driven at a low voltage, so that power consumption can be reduced. In this configuration, the resistance between the source and the drain is determined according to the data signal from the data line, and the amount of current supplied to the organic EL element is determined accordingly. It is also possible to perform gradation display.

【0010】このように、アクティブマトリクス構成の
ディスプレイでは、単純マトリクス構成に比べて低消費
電力化を図ることができるため、好ましい。しかしなが
ら、アクティブマトリクス構成では、ドライビングTF
Tの特性ばらつきのため、各画素において有機EL素子
に流れる電流量が異なり、輝度むらが発生するという欠
点があった。
As described above, a display having an active matrix configuration is preferable because power consumption can be reduced as compared with a simple matrix configuration. However, in the active matrix configuration, the driving TF
Due to the characteristic variation of T, the amount of current flowing through the organic EL element in each pixel is different, and there is a disadvantage that uneven brightness occurs.

【0011】これを回避するために、例えば特開平11
−282420号公報では、予め表示データをEL表示
パネルに入力して全画面を点灯させ、そのときの各画素
の輝度を測定し、この測定値の平均値を算出してその差
分をさらに算出し、その差分を補正値として補正情報メ
モリに記憶させる。そして、その補正値を表示データ
(データ信号)に加算器にて加算し、EL表示パネルに
入力することにより、表示ばらつきを補正している。こ
れにより、TFTの特性ばらつきによるEL素子の輝度
むらを補正することができる。
In order to avoid this, for example, Japanese Patent Application Laid-Open
In Japanese Patent Publication No. -282420, display data is input to an EL display panel in advance, the entire screen is turned on, the luminance of each pixel at that time is measured, the average of the measured values is calculated, and the difference is further calculated. The difference is stored in the correction information memory as a correction value. Then, the correction value is added to the display data (data signal) by an adder and input to the EL display panel, thereby correcting the display variation. This makes it possible to correct uneven brightness of the EL element due to variation in TFT characteristics.

【0012】また、有機EL素子は発光時間と共に劣化
し、発光輝度が減少してくるという問題もあった。一般
的に各画素毎の発光頻度は異なるため、発光頻度の多い
画素は次第に暗くなり、発光頻度の少ない画素は変化が
少ないため、輝度むらが発生する。
Further, there is a problem that the organic EL element deteriorates with the light emission time and the light emission luminance decreases. Generally, since the light emission frequency differs for each pixel, pixels having a high light emission frequency gradually become darker, and pixels having a low light emission frequency have little change, so that uneven brightness occurs.

【0013】これを回避するために、例えば特開平10
−254410号公報では、各有機EL素子を所定の電
圧値で駆動したとき、有機EL素子に流れる電流値を計
測し、この電流値をメモリに記憶させる。そして、その
電流値に基づいてデータ信号を演算し、1フレーム期間
内における発光時間を決めている。これにより、有機E
L素子の劣化による輝度むらを補正することができる。
In order to avoid this, for example, Japanese Patent Application Laid-Open
In Japanese Patent Application Publication No. -254410, when each organic EL element is driven at a predetermined voltage value, a current value flowing through the organic EL element is measured, and the current value is stored in a memory. Then, the data signal is calculated based on the current value, and the light emission time within one frame period is determined. Thereby, the organic E
Brightness unevenness due to deterioration of the L element can be corrected.

【0014】さらに、特開2000−187467号公
報では、点灯中の有機EL素子の各画素に流れる電流を
検出する電流検出手段を設けて、検出した電流に応じて
画素の点灯時間または点灯電流を制御している。これに
より、素子のばらつきや劣化による輝度変化を検出する
ことができ、良好な階調制御を行うことができる。
Further, in Japanese Patent Application Laid-Open No. 2000-187467, current detecting means for detecting a current flowing through each pixel of the organic EL element during lighting is provided, and the lighting time or lighting current of the pixel is determined in accordance with the detected current. Controlling. As a result, it is possible to detect a change in luminance due to variation or deterioration of elements, and it is possible to perform good gradation control.

【0015】[0015]

【発明が解決しようとする課題】単純マトリクス構成の
場合、上述したような駆動方法のため、各走査線上の画
素毎に順次発光し、走査が終了した走査線上の各有機E
L素子には電流が流れず、発光しない。このため、特開
2000−187467号公報のように各データ線毎に
電流測定素子が存在すれば、各有機EL素子に流れる電
流を検出することができる。
In the case of a simple matrix configuration, light is emitted sequentially for each pixel on each scanning line, and each organic E on the scanning line after scanning is completed because of the driving method described above.
No current flows through the L element, and no light is emitted. Therefore, if a current measuring element is provided for each data line as in JP-A-2000-187467, the current flowing through each organic EL element can be detected.

【0016】しかし、この技術をアクティブマトリクス
構成に適用するのは、従来では不可能であった。その理
由は、スイッチングTFTの走査が終了した後も、ドラ
イビングTFTを通して有機EL素子に電流が供給され
るため、各電流供給線毎に電流測定素子を設けた場合、
その電流供給線に接続された全ての有機EL素子に流れ
る電流値の総和を測定してしまうからである。
However, it has not been possible in the past to apply this technique to an active matrix configuration. The reason is that the current is supplied to the organic EL element through the driving TFT even after the scanning of the switching TFT is completed. Therefore, when a current measuring element is provided for each current supply line,
This is because the sum of the current values flowing through all the organic EL elements connected to the current supply line is measured.

【0017】このため、各画素の有機EL素子に流れる
電流を測定しようとした場合、特開平10−25441
0号公報のように、各画素毎に電流測定素子を配置する
必要があった。しかし、各画素毎に電流測定素子を配置
すると、開口率の低下を招き、また、各画素の回路構成
も複雑になるため、製造歩留まり減少の要因となる。さ
らに、各画素毎の電流測定素子自体にも特性ばらつきが
あるため、正確な電流検出は不可能である。
For this reason, when an attempt is made to measure the current flowing through the organic EL element of each pixel, see Japanese Patent Application Laid-Open No. 10-25441.
As described in Japanese Patent Publication No. 0, it is necessary to arrange a current measuring element for each pixel. However, arranging a current measuring element for each pixel causes a decrease in aperture ratio and also complicates the circuit configuration of each pixel, which causes a reduction in manufacturing yield. In addition, accurate current detection is impossible because the current measuring element itself for each pixel also has characteristic variations.

【0018】本発明は、このような従来技術の課題を解
決するべくなされたものであり、アクティブマトリクス
構成において、各画素毎に電流測定素子を設けなくて
も、有機EL素子や無機EL素子等の電気光学素子に流
れる電流を測定することができ、TFT特性のばらつき
による輝度むらを補正できる電気光学装置を提供するこ
とを目的とする。
The present invention has been made to solve such problems of the prior art. In an active matrix configuration, an organic EL element, an inorganic EL element, etc. can be provided without providing a current measuring element for each pixel. It is an object of the present invention to provide an electro-optical device capable of measuring a current flowing through the electro-optical element and correcting uneven brightness due to variation in TFT characteristics.

【0019】[0019]

【課題を解決するための手段】本発明の電気光学装置
は、基板上に、アクティブ素子および該アクティブ素子
によって制御される電気光学素子がマトリクス状に配置
されていると共に、該アクティブ素子に走査電圧を与え
る走査線およびデータ電圧を与えるデータ線が該アクテ
ィブ素子の近傍を通って互いに交差するように配置さ
れ、さらに、該電気光学素子に該アクティブ素子を介し
て電流を供給するための複数の電流供給線が配置され、
各電流供給線毎に電流を測定するための電流測定素子が
設けられた電気光学装置において、各電流測定素子によ
って、その電流測定素子が配置された電流供給線に接続
された複数の電気光学素子の各々に流れる電流値を測定
するべく、1本の走査線に走査電圧を与え、そのタイミ
ングと同期して、各データ線に所定のデータ電圧を供給
し、該電流測定素子により該電気光学素子に流れる電流
値を測定するステップと、同一の走査線に再度走査電圧
を与え、そのタイミングと同期して、各データ線に該電
気光学素子を0階調にするデータ信号を供給するステッ
プとを各走査線に対して行って、得られた電流測定値に
基づいて、各電気光学素子に流れる電流が等しくなるよ
うに、各アクティブ素子に与えるデータ電圧を補正し、
そのことにより上記目的が達成される。
According to an electro-optical device of the present invention, an active element and an electro-optical element controlled by the active element are arranged in a matrix on a substrate, and a scanning voltage is applied to the active element. And a plurality of current lines for supplying a current to the electro-optical element via the active element are arranged so as to cross each other through the vicinity of the active element. Supply lines are arranged,
In an electro-optical device provided with a current measuring element for measuring a current for each current supply line, a plurality of electro-optical elements connected to the current supply line where the current measuring element is arranged by each current measuring element In order to measure a current value flowing through each of the scanning lines, a scanning voltage is applied to one scanning line, a predetermined data voltage is supplied to each data line in synchronization with the timing, and the electro-optical element is measured by the current measuring element. Measuring the value of the current flowing to the same scanning line, and supplying a scanning signal to the same scanning line again and supplying a data signal for setting the electro-optical element to 0 gradation to each data line in synchronization with the timing. Performed for each scan line, based on the obtained current measurement value, to correct the data voltage applied to each active element so that the current flowing through each electro-optical element is equal,
Thereby, the above object is achieved.

【0020】上記構成によれば、後述する実施形態1に
示すように、電流測定素子が各電流供給線毎に設けられ
ている構成において、各電気光学素子に流れる電流値を
測定してデータ電圧(データ信号)を補正することが可
能である。
According to the above configuration, as shown in Embodiment 1 described later, in a configuration in which a current measuring element is provided for each current supply line, a current value flowing through each electro-optical element is measured, and a data voltage is measured. (Data signal) can be corrected.

【0021】さらに、前記電流供給線と交差する方向に
前記電気光学素子の輝度値を測定し、得られた輝度測定
値と前記電流測定値とに基づいて、各電気光学素子の輝
度が等しくなるように、前記アクティブ素子に与えるデ
ータ電圧を補正してもよい。
Further, a luminance value of the electro-optical element is measured in a direction intersecting the current supply line, and based on the obtained luminance measured value and the measured current value, the luminance of each electro-optical element becomes equal. As described above, the data voltage applied to the active element may be corrected.

【0022】上記構成によれば、後述する実施形態2に
示すように、電流測定素子自体にばらつきがあっても、
電気光学素子の発光輝度にばらつきが生じるのを防ぐこ
とが可能である。
According to the above configuration, as described in a second embodiment described below, even if the current measuring element itself varies,
It is possible to prevent the emission luminance of the electro-optical element from being varied.

【0023】本発明の電気光学装置は、基板上に、アク
ティブ素子および該アクティブ素子によって制御される
電気光学素子がマトリクス状に配置されていると共に、
該アクティブ素子に走査電圧を与える走査線およびデー
タ電圧を与えるデータ線が該アクティブ素子の近傍を通
って互いに交差するように配置され、さらに、該電気光
学素子に該アクティブ素子を介して電流を供給するため
の複数の電流供給線が配置され、該電流供給線の電流を
測定するために1つの電流測定素子が設けられた電気光
学装置において、該電流測定素子によって複数の電気光
学素子の各々に流れる電流値を測定するべく、1本の走
査線に複数回走査電圧を与え、各回のタイミングと同期
して、各々異なる1本のデータ線に所定のデータ電圧を
供給し、その他のデータ線には該電気光学素子を0階調
にするデータ信号を供給して、該電流測定素子により該
電気光学素子に流れる電流値を測定するステップを各走
査線に対して行って、得られた電流測定値に基づいて、
各電気光学素子に流れる電流が等しくなるように、各ア
クティブ素子に与えるデータ電圧を補正し、そのことに
より上記目的が達成される。
In an electro-optical device according to the present invention, an active element and an electro-optical element controlled by the active element are arranged in a matrix on a substrate.
A scanning line for applying a scanning voltage to the active element and a data line for applying a data voltage are arranged so as to intersect each other through the vicinity of the active element, and further supply current to the electro-optical element via the active element. A plurality of current supply lines for measuring the current of the current supply line, and in the electro-optical device provided with one current measurement element for measuring the current of the current supply line, In order to measure the value of the flowing current, a scanning voltage is applied to one scanning line a plurality of times, and a predetermined data voltage is supplied to one different data line in synchronization with each timing, and the other data lines are supplied with a predetermined data voltage. Performs a step of supplying a data signal for setting the electro-optical element to 0 gradation and measuring a current value flowing through the electro-optical element by the current measuring element for each scanning line. , Based on the current measurements obtained,
The data voltage applied to each active element is corrected so that the current flowing through each electro-optical element becomes equal, thereby achieving the above object.

【0024】上記構成によれば、後述する実施形態3に
示すように、1つの電流測定素子により各電気光学素子
に流れる電流値を測定してデータ電圧(データ信号)を
補正することが可能である。
According to the above configuration, as described in a third embodiment described later, it is possible to correct the data voltage (data signal) by measuring the value of the current flowing through each electro-optical element with one current measuring element. is there.

【0025】本発明の電気光学装置は、基板上に、アク
ティブ素子および該アクティブ素子によって制御される
電気光学素子がマトリクス状に配置されていると共に、
該アクティブ素子に走査電圧を与える走査線およびデー
タ電圧を与えるデータ線が該アクティブ素子の近傍を通
って互いに交差するように配置され、さらに、該電気光
学素子に該アクティブ素子を介して電流を供給するため
の複数の電流供給線が配置され、該電流供給線の電流を
測定するために1つの電流測定素子が設けられた電気光
学装置において、各電流供給線毎に該電気光学素子より
も基板縁側にTFT素子が設けられ、該電流測定素子に
よって複数の電気光学素子の各々に流れる電流値を測定
するべく、1本の走査線に走査電圧を与えると共に各デ
ータ線に所定のデータ電圧を供給し、各電流供給線毎に
設けた前記TFT素子を順次走査することにより、該電
流測定素子により該電気光学素子に流れる電流値を順次
測定するステップを各走査線に対して行って、得られた
電流測定値に基づいて、各電気光学素子に流れる電流が
等しくなるように、各アクティブ素子に与えるデータ電
圧を補正し、そのことにより上記目的が達成される。
According to the electro-optical device of the present invention, an active element and an electro-optical element controlled by the active element are arranged in a matrix on a substrate.
A scanning line for applying a scanning voltage to the active element and a data line for applying a data voltage are arranged so as to intersect each other through the vicinity of the active element, and further supply current to the electro-optical element via the active element. A plurality of current supply lines for measuring the current of the current supply line, and a current measuring element for measuring the current of the current supply line. A TFT element is provided on the edge side, and a scanning voltage is supplied to one scanning line and a predetermined data voltage is supplied to each data line in order to measure a current value flowing through each of the plurality of electro-optical elements by the current measuring element. And sequentially measuring the current value flowing through the electro-optical element by the current measuring element by sequentially scanning the TFT element provided for each current supply line. The data voltage applied to each active element is corrected so that the current flowing through each electro-optical element becomes equal based on the obtained current measurement value for each scanning line, thereby achieving the above object. Is done.

【0026】上記構成によれば、後述する実施形態4に
示すように、1つの電流測定素子により各電気光学素子
に流れる電流値を測定してデータ電圧(データ信号)を
補正することが可能となる。
According to the above configuration, as described in a fourth embodiment described later, it is possible to correct the data voltage (data signal) by measuring the value of the current flowing through each electro-optical element with one current measuring element. Become.

【0027】[0027]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて、図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0028】(実施形態1)図6は、本発明の電気光学
装置の一実施形態である有機ELパネルの構成を説明す
るための回路図である。この有機ELパネルは、基板上
に、アクティブ素子とそれによって制御される有機EL
素子がマトリクス状に配置されている。有機EL素子
は、図1に示したように、基板1上に陽極2、正孔注入
層3、正孔輸送層4、発光層5、電子輸送層6および陰
極7を順に積層して構成されている。また、アクティブ
素子は、図5に示したように、スイッチングTFT、ド
ライビングTFTおよびキャパシタから構成されてい
る。また、アクティブ素子に走査電圧を与える走査線お
よびデータ電圧を与えるデータ線がアクティブ素子の近
傍を通って互いに交差するように配置されている。走査
線は走査ドライバに接続され、データ線はデータドライ
バに接続されている。さらに、電気光学素子にアクティ
ブ素子を介して電流を供給するための複数の電流供給線
が配置されている。
(Embodiment 1) FIG. 6 is a circuit diagram for explaining the configuration of an organic EL panel which is an embodiment of the electro-optical device of the present invention. This organic EL panel comprises an active element and an organic EL controlled by the active element on a substrate.
The elements are arranged in a matrix. As shown in FIG. 1, the organic EL device is formed by sequentially stacking an anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, and a cathode 7 on a substrate 1. ing. The active element is composed of a switching TFT, a driving TFT, and a capacitor as shown in FIG. Further, a scanning line for applying a scanning voltage to the active element and a data line for applying a data voltage are arranged so as to pass through the vicinity of the active element and cross each other. The scanning lines are connected to a scanning driver, and the data lines are connected to a data driver. Further, a plurality of current supply lines for supplying a current to the electro-optical element via the active element are arranged.

【0029】さらに、本実施形態では、各電流供給線毎
に電流を測定するための電流測定素子が設けられてい
る。この電流測定素子としては、例えば図18に示すよ
うな構成のものを用いることができる。電流測定素子に
は、電流測定結果を記憶するためのメモリ素子が接続さ
れ、メモリ素子は、演算素子を介してデータドライバに
接続されている。
Further, in this embodiment, a current measuring element for measuring a current is provided for each current supply line. As the current measuring element, for example, one having a configuration as shown in FIG. 18 can be used. A memory element for storing a current measurement result is connected to the current measuring element, and the memory element is connected to a data driver via an arithmetic element.

【0030】次に、このように構成された有機ELパネ
ルにおいて、TFT特性のばらつきによる有機EL素子
の輝度むらを補正する方法について説明する。まず、各
有機EL素子に流れる電流値を測定する方法について説
明する。まず、第一の走査線に走査電圧を与えて、第一
の走査線上のスイッチングTFTのゲートをオープンに
する。これと同期して、各データ線を通して所定のデー
タ電圧(例えば、電流−輝度特性において輝度を等分割
した場合に相当する電流を実現するための電圧)を入力
する。これにより、ドライビングTFTのゲートがキャ
パシタに蓄積された電荷量に応じてオープンされ、電流
供給線から第一の走査線上の有機EL素子に電流が流れ
込む。このときのドライビングTFTのゲート電圧はデ
ータ電圧とほぼ等しく、それに応じた電流が有機EL素
子に流れる。このときに各有機EL素子に流れる電流量
を電流測定素子によって測定し、測定結果をメモリ素子
に記憶させる。その後、再び第一の走査線に走査電圧を
与えて、第一の走査線上のスイッチングTFTのゲート
をオープンにする。これと同期して、各データ線を通し
て、有機EL素子を0階調とするデータ電圧を入力す
る。これにより、第一の走査線上の有機EL素子に電流
が流れなくなる。
Next, a method of correcting uneven brightness of the organic EL element due to variation in TFT characteristics in the organic EL panel thus configured will be described. First, a method of measuring a current value flowing through each organic EL element will be described. First, a scanning voltage is applied to the first scanning line to open the gate of the switching TFT on the first scanning line. In synchronization with this, a predetermined data voltage (for example, a voltage for realizing a current corresponding to a case where the luminance is equally divided in the current-luminance characteristics) is input through each data line. As a result, the gate of the driving TFT is opened according to the amount of charge stored in the capacitor, and current flows from the current supply line to the organic EL element on the first scanning line. At this time, the gate voltage of the driving TFT is substantially equal to the data voltage, and a current corresponding thereto flows through the organic EL element. At this time, the amount of current flowing through each organic EL element is measured by a current measuring element, and the measurement result is stored in a memory element. Thereafter, a scanning voltage is again applied to the first scanning line to open the gate of the switching TFT on the first scanning line. In synchronization with this, a data voltage for setting the organic EL element to 0 gradation is input through each data line. As a result, no current flows through the organic EL element on the first scanning line.

【0031】以上の走査を順次、他の走査線についても
行っていく。これにより、各有機EL素子に流れる電流
値を全て測定することが可能になる。
The above scanning is sequentially performed on other scanning lines. This makes it possible to measure all the current values flowing through each organic EL element.

【0032】例えば、第一のデータ線上の各有機EL素
子(有機EL(1、1)、有機EL(1、2)、・・
・、有機EL(1、n))に流れる電流量は、電流測定
素子1により測定される。この電流量は、縦軸にlog
(I)(Iは電流量)をとると、図7に示すようにばら
つきがある。これは、ドライビングTFTの特性ばらつ
きによるものである。このように各有機EL素子に流れ
る電流量が異なると、得られる輝度も異なり、輝度むら
が発生する。
For example, each of the organic EL elements on the first data line (organic EL (1, 1), organic EL (1, 2),...)
The amount of current flowing through the organic EL (1, n)) is measured by the current measuring element 1. This current amount is represented by logarithm on the vertical axis.
Taking (I) (I is the amount of current), there is variation as shown in FIG. This is due to variations in the characteristics of the driving TFT. When the amount of current flowing through each organic EL element is different as described above, the obtained luminance is different, and luminance unevenness occurs.

【0033】次に、この電流値ばらつきを補正して、均
一な輝度を得る方法について説明する。一般的なTFT
において、ゲート電圧:Vgateと流れる電流値:log
(I)の関係は、図8に示すようになる。この図8にお
いて、傾いている部分は、
Next, a description will be given of a method of correcting the current value variation to obtain a uniform luminance. General TFT
, A gate voltage: V gate and a flowing current value: log
The relationship (I) is as shown in FIG. In FIG. 8, the inclined portion is

【0034】[0034]

【数1】 (Equation 1)

【0035】で表される直線により定義することができ
る。
Can be defined by a straight line represented by

【0036】TFT素子の特性が異なると、図9に示す
ように、特性に差異が生じる。このため、同一のゲート
電圧を入力しても、流れる電流値にばらつきが生じるの
である。但し、各TFTにおいて、上記式(1)のaに
ついてはほとんど変わらない。また、図6に示したよう
な回路構成においては、ゲート電圧はデータ信号(デー
タ電圧)に等しいと考えられる。
If the characteristics of the TFT elements are different, the characteristics are different as shown in FIG. For this reason, even if the same gate voltage is input, the flowing current value varies. However, in each TFT, a in the above equation (1) hardly changes. In the circuit configuration shown in FIG. 6, the gate voltage is considered to be equal to the data signal (data voltage).

【0037】ここで、説明を簡単にするために、図6に
おける有機EL(1、1)、有機EL(1、2)および
有機EL(1、3)の3つの有機EL素子に流れる電流
値(図7)のみを考え、これを基にして輝度を補正する
方法を考える。これらは、同一のデータ電圧、すなわ
ち、同一のゲート電圧(以下、Vcとする)をドライビ
ングTFTに与えたときに流れた電流値であり、各々l
og(I1)、log(I2)およびlog(I3)とす
る。これを横軸:ゲート電圧(Vgate)、縦軸:電流量
log(I))としてグラフにプロットすると、図10
に示すようになる。TFTの電流特性は、図8に示した
ように分かっているので、図10の各点を通過するよう
にすると、図11に示すようになる。このとき、傾いて
いる部分の直線は、
Here, for the sake of simplicity, current values flowing through three organic EL elements of organic EL (1, 1), organic EL (1, 2) and organic EL (1, 3) in FIG. Considering only (FIG. 7), a method of correcting the luminance based on this is considered. These same data voltage, i.e., the same gate voltage (hereinafter referred to as V c) is a current value flowing when given to driving TFT, respectively l
og (I 1 ), log (I 2 ) and log (I 3 ). When this is plotted on a graph as the horizontal axis: gate voltage (V gate ) and the vertical axis: current amount log (I), FIG.
It becomes as shown in. Since the current characteristics of the TFT are known as shown in FIG. 8, when passing through each point in FIG. 10, the result is as shown in FIG. At this time, the straight line of the inclined part is

【0038】[0038]

【数2】 (Equation 2)

【0039】のように表される。Is represented as follows.

【0040】ここで、図7に示すように、基準の電流値
を有機EL(1、2)に流れる電流と決めて、有機EL
(1、1)および有機EL(1、3)においても有機E
L(1、2)と同一の電流値が流れるゲート電圧を上記
式(2)および上記式(4)から求めると、
Here, as shown in FIG. 7, a reference current value is determined as a current flowing through the organic EL (1, 2), and
(1, 1) and organic EL (1, 3)
When the gate voltage at which the same current value as L (1, 2) flows is obtained from the above equations (2) and (4),

【0041】[0041]

【数3】 (Equation 3)

【0042】となる。このゲート電圧を各々有機EL
(1、1)および有機EL(1、3)のドライビングT
FTに入力すれば、有機EL(1、2)と同一の電流が
流れ、均一な輝度が得られる。なお、aは素子間のばら
つきが少ないため、いずれか一つのTFTで予め測定し
ておくことができる。
Is as follows. This gate voltage is applied to each organic EL
Driving T of (1,1) and organic EL (1,3)
When input to the FT, the same current as that of the organic EL (1, 2) flows, and uniform luminance can be obtained. Since a has little variation between elements, it can be measured in advance with any one of the TFTs.

【0043】このように同一のデータ電圧(ゲート電
圧)をドライビングTFTに与えた場合に、流れる電流
値が異なる場合でも、簡単な演算によりデータ電圧を補
正することにより、有機EL素子に同一の電流を流し
て、均一な輝度を得られるようにすることができる。
When the same data voltage (gate voltage) is applied to the driving TFT as described above, even if the flowing current value is different, the same voltage is applied to the organic EL element by correcting the data voltage by a simple calculation. To make it possible to obtain a uniform luminance.

【0044】他のデータ電圧(ドライビングTFTのゲ
ート電圧)の補正においては、上記電流測定を再び行っ
てもよいが、上記式(2)〜上記式(4)を利用して、
計算により求めることもできる。例えば、有機EL
(1、2)において、ゲート電圧Vc’のとき、流れる
電流は
In the correction of another data voltage (gate voltage of the driving TFT), the above-mentioned current measurement may be performed again, but by using the above equations (2) to (4),
It can also be obtained by calculation. For example, organic EL
In (1, 2), when the gate voltage is V c ′, the flowing current is

【0045】[0045]

【数4】 (Equation 4)

【0046】で表される。有機EL(1、1)および有
機EL(1、3)において、有機EL(1、2)と同一
の電流値が流れるゲート電圧を上記式(1)および上記
式(3)から求めると、
Is represented by In the organic EL (1, 1) and the organic EL (1, 3), the gate voltage at which the same current value as that of the organic EL (1, 2) flows is obtained from the above equations (1) and (3).

【0047】[0047]

【数5】 (Equation 5)

【0048】となる。このゲート電圧を各々有機EL
(1、1)および有機EL(1、3)のドライビングT
FTに入力すれば、有機EL(1、2)と同一の電流が
流れ、均一な輝度が得られる。このように、一旦あるデ
ータ電圧で電流測定を行っておけば、他のデータ電圧に
おける補正も、この電流値に基づいて行うことができ
る。
Is as follows. This gate voltage is applied to each organic EL
Driving T of (1,1) and organic EL (1,3)
When input to the FT, the same current as that of the organic EL (1, 2) flows, and uniform luminance can be obtained. As described above, once the current measurement is performed at a certain data voltage, correction at another data voltage can also be performed based on this current value.

【0049】第一の走査線上の他の有機EL素子、およ
び他の走査線上の有機EL素子においても、簡単な演算
により同一の電流が流れるデータ電圧(ドライビングT
FTのゲート電圧)を決定することができ、これによっ
て均一な輝度を得ることができる。
In the other organic EL elements on the first scanning line and the organic EL elements on the other scanning lines, the data voltage (driving T
FT gate voltage), whereby uniform luminance can be obtained.

【0050】上記電流測定素子により得られた電流測定
結果は、図6に示した結果を記憶するメモリ素子に記憶
され、演算素子によりデータ信号の補正が行われ、補正
されたデータ信号がデータドライバに送られる。以上の
過程により、均一な階調表示を行うことができる。な
お、上述のような輝度補正は、ユーザが使用前や使用中
に適宜行うことができる。
The current measurement result obtained by the current measuring element is stored in a memory element for storing the result shown in FIG. 6, the data signal is corrected by the arithmetic element, and the corrected data signal is transferred to the data driver. Sent to Through the above process, uniform gradation display can be performed. Note that the above-described luminance correction can be appropriately performed by the user before or during use.

【0051】(実施形態2)上記実施形態1において、
データ線に沿った方向の有機EL素子の輝度補正は、各
電流測定素子によって測定される電流値によって行われ
る。よって、各電流測定素子自体にばらつきが無い場合
には、実施形態1で説明した方法により、全ての有機E
Lにおいて均一な輝度を得ることができる。
(Embodiment 2) In Embodiment 1 described above,
The luminance correction of the organic EL element in the direction along the data line is performed based on the current value measured by each current measuring element. Therefore, when there is no variation in each current measuring element itself, all the organic E
In L, uniform brightness can be obtained.

【0052】しかし、電流測定素子が基板に作り込まれ
ている場合には、電流測定素子自体に特性ばらつきがあ
り、測定自体にばらつきが生じているおそれがある。こ
の場合、実施形態1のようにデータ電圧を補正しても、
走査線に沿った方向(電流供給線を横切る方向)におい
て、有機EL素子の輝度が異なる。例えば、有機EL
(1、1)、有機EL(2、1)、・・・、有機EL
(m、1)において、輝度が同一となるようにデータ電
圧を入力しても輝度が異なることになる。
However, when the current measuring element is built in the substrate, the current measuring element itself has characteristic variations, and the measurement itself may vary. In this case, even if the data voltage is corrected as in the first embodiment,
The luminance of the organic EL element differs in a direction along the scanning line (a direction crossing the current supply line). For example, organic EL
(1, 1), organic EL (2, 1),..., Organic EL
In (m, 1), even if a data voltage is input so that the luminance is the same, the luminance will be different.

【0053】この電流測定素子自体の特性ばらつきを補
正するためには、実施形態1のような補正を行って補正
された所定のデータ電圧を入力した後、図12に示すよ
うに、走査線に沿った方向に対して画素の輝度測定を行
う。この輝度測定によって、有機EL(1、1)、有機
EL(2、1)、・・・、有機EL(m、1)の輝度が
例えば図13に示すようになった場合を考える。
In order to correct the characteristic variation of the current measuring element itself, a predetermined data voltage corrected by performing the correction as in the first embodiment is input, and then, as shown in FIG. The luminance of the pixel is measured in the direction along the direction. Consider the case where the luminance of the organic EL (1, 1), the organic EL (2, 1),..., The organic EL (m, 1) becomes as shown in FIG.

【0054】以下では、説明の簡略化のために、有機E
L(1、1)および有機EL(2、1)について考え
る。有機ELの電流−輝度特性は、図14に示すよう
に、ほぼ直線で近似することができる。ここで、有機E
L(1、1)の輝度をK1 、有機EL(2、1)の輝度
2とし、そのときの電流値をIK1、IK2とする。ま
た、この輝度における有機EL(1、1)のドライビン
グTFTのゲート電圧をVK1、有機EL(2、1)のド
ライビングTFTのゲート電圧をVK2とする。この場
合、ゲート電圧と有機ELに流れる電流の関係は図15
に示したようなものになる。
In the following, for simplicity of explanation, the organic E
Consider L (1,1) and organic EL (2,1). The current-luminance characteristics of the organic EL can be approximated by a substantially straight line as shown in FIG. Where organic E
The luminance of L (1, 1) is K 1 , the luminance K 2 of the organic EL (2, 1) is, and the current values at that time are I K1 and I K2 . The gate voltage of the driving TFT of the organic EL (1, 1) at this luminance is V K1 , and the gate voltage of the driving TFT of the organic EL (2, 1) is V K2 . In this case, the relationship between the gate voltage and the current flowing through the organic EL is shown in FIG.
It will be as shown in.

【0055】よって、有機EL(1、1)の輝度レベル
を基準輝度として、上記実施形態1と同様の考え方によ
り、有機EL(1、1)のドライビングTFTのゲート
電圧を
Therefore, by using the luminance level of the organic EL (1, 1) as the reference luminance, the gate voltage of the driving TFT of the organic EL (1, 1) is determined in the same manner as in the first embodiment.

【0056】[0056]

【数6】 (Equation 6)

【0057】にすれば、有機EL(1、1)および有機
EL(2、1)に流れる電流値が一致し、輝度を同じに
することができる。第一のデータ線上の他の有機EL素
子においても、上記と同様に補正を行うことにより、第
二のデータ線上の有機EL素子と同一の輝度が得られ
る。
In this case, the values of the currents flowing through the organic ELs (1, 1) and the organic ELs (2, 1) match, and the luminance can be made the same. The same luminance as that of the organic EL element on the second data line can be obtained by performing the same correction in the other organic EL elements on the first data line.

【0058】このように、電流測定素子自体に特性ばら
つきがあり、走査線に沿った方向において有機EL素子
の発光輝度にばらつきが生じている場合にも、以上のよ
うに補正を行うことにより、均一な輝度を得ることがで
きる。
As described above, even when the characteristics of the current measuring element itself vary and the emission luminance of the organic EL element varies in the direction along the scanning line, the correction is performed as described above. Uniform brightness can be obtained.

【0059】(実施形態3)本実施形態では、図16に
示すように、1つの電流測定素子により各有機EL素子
に流れる電流を測定する例について説明する。この場
合、実施形態1のように、走査線の走査と同期して、全
てのデータ線に所定の電圧を与えたのでは、各々の有機
EL素子に流れる電流を測定することができない。そこ
で、本実施形態では、以下のような手順により有機EL
素子に流れる電流を測定する。
(Embodiment 3) In this embodiment, as shown in FIG. 16, an example in which a current flowing through each organic EL element is measured by one current measuring element will be described. In this case, if a predetermined voltage is applied to all the data lines in synchronization with the scanning of the scanning lines as in the first embodiment, the current flowing through each organic EL element cannot be measured. Therefore, in the present embodiment, the organic EL
Measure the current flowing through the device.

【0060】まず、第一の走査線に走査電圧を与えて、
第一の走査線上のスイッチングTFTのゲートをオープ
ンにする。これと同期して、第一のデータ線に所定のデ
ータ電圧を入力し、それ以外のデータ線には有機EL素
子を0階調とするデータ電圧を入力する。これにより、
有機EL(1、1)に流れる電流を電流測定素子により
測定することができる。その後、再び第一の走査線に走
査電圧を与えて、第一の走査線上のスイッチングTFT
のゲートをオープンにする。これと同期して、第二のデ
ータ線に所定のデータ電圧を入力し、それ以外のデータ
線には有機EL素子を0階調とするデータ電圧を入力す
る。これにより、有機EL(1、2)に流れる電流を電
流測定素子により測定することができる。以上の処理を
順次、他のデータ線にについて繰り返すことにより、第
一の走査線上の各有機EL素子に流れる電流を1つの電
流測定素子により測定することができる。他の走査線上
の各有機EL素子に流れる電流を測定する際には、以上
の処理を順次、他の走査線について行えばよい。これに
より、各有機EL素子に流れる電流値を全て測定するこ
とが可能になる。
First, a scanning voltage is applied to the first scanning line,
The gate of the switching TFT on the first scanning line is opened. In synchronization with this, a predetermined data voltage is input to the first data line, and a data voltage for setting the organic EL element to 0 gradation is input to the other data lines. This allows
The current flowing through the organic EL (1, 1) can be measured by a current measuring element. After that, a scanning voltage is again applied to the first scanning line to switch the switching TFT on the first scanning line.
Open the gate. In synchronization with this, a predetermined data voltage is input to the second data line, and a data voltage for setting the organic EL element to 0 gradation is input to the other data lines. Thus, the current flowing through the organic EL (1, 2) can be measured by the current measuring element. By repeating the above processing for other data lines sequentially, the current flowing through each organic EL element on the first scanning line can be measured by one current measuring element. When measuring the current flowing through each organic EL element on another scanning line, the above processing may be performed on another scanning line in order. This makes it possible to measure all the current values flowing through each organic EL element.

【0061】このようにして得られた各有機EL素子に
流れる電流値をメモリに保存し、これに基づいて上記実
施形態1に示したようにデータ電圧を補正することによ
り、均一な階調表示を得ることができる。
A current value flowing through each organic EL element obtained in this manner is stored in a memory, and based on the current value, the data voltage is corrected as described in the first embodiment, thereby providing a uniform gradation display. Can be obtained.

【0062】(実施形態4)本実施形態では、図17に
示すように、1つの電流測定素子により各有機EL素子
に流れる電流を測定する他の例について説明する。ここ
では、各電流供給線毎にTFT素子が配置されている。
この場合の電流測定方法について、以下に説明する。
(Embodiment 4) In this embodiment, as shown in FIG. 17, another example in which a current flowing through each organic EL element is measured by one current measuring element will be described. Here, a TFT element is arranged for each current supply line.
The method of measuring the current in this case will be described below.

【0063】初期状態においては、各電流供給線に配置
されたTFT素子のゲートは閉じられている。その状態
において、まず、第一の走査線に走査電圧を与えて、第
一の走査線上のスイッチングTFTのゲートをオープン
にし、これと同期して、第一のデータ線に所定のデータ
電圧を入力する。これにより、第一の走査線上のドライ
ビングTFTのゲートはオープンになるが、各電流供給
線に配置されたTFTのゲートが全て閉じられているた
め、第一の走査線上の有機EL素子には電流が流れな
い。次に、第一の電流供給線に配置されたTFTのゲー
トをオープンにする。これにより、有機EL素子(1、
1)のみに電流が流れる。このときの電流を電流測定素
子により測定する。この後、順次第二の電流供給線に配
置されたTFT、第三の電流供給線に配置されたTF
T、・・・とゲートをオープンにし、このときに各有機
EL素子に流れる電流を測定することにより、第一の走
査線上の各有機EL素子に流れる電流値を1つの電流測
定素子により測定することができる。この後、再び第一
の走査線を走査して、各データ線を通して有機EL素子
が0階調となるデータ電圧を入力する。そして、第二の
走査線、第三の走査線、・・・と順次以上の処理を繰り
返すことにより各有機EL素子に流れる電流値を全て測
定することが可能になる。
In the initial state, the gate of the TFT element arranged on each current supply line is closed. In this state, first, a scanning voltage is applied to the first scanning line to open the gate of the switching TFT on the first scanning line, and in synchronization with this, a predetermined data voltage is input to the first data line. I do. As a result, the gate of the driving TFT on the first scanning line is open, but the gates of the TFTs arranged on each current supply line are all closed. Does not flow. Next, the gate of the TFT arranged on the first current supply line is opened. Thereby, the organic EL element (1,
Current flows only in 1). The current at this time is measured by a current measuring element. Thereafter, the TFTs sequentially arranged on the second current supply line and the TFs arranged on the third current supply line
By opening the gates with T,..., And measuring the current flowing through each organic EL element at this time, the current value flowing through each organic EL element on the first scanning line is measured by one current measuring element. be able to. Thereafter, the first scanning line is again scanned, and a data voltage at which the organic EL element has 0 gradation is input through each data line. Then, by repeating the above-described processing sequentially on the second scanning line, the third scanning line,..., It becomes possible to measure all the current values flowing through the respective organic EL elements.

【0064】このようにして得られた各有機EL素子に
流れる電流値をメモリに保存し、これに基づいて上記実
施形態1に示したようにデータ電圧を補正することによ
り、均一な階調表示を得ることができる。
A current value flowing through each organic EL element obtained in this manner is stored in a memory, and based on the current value, the data voltage is corrected as described in the first embodiment, thereby obtaining a uniform gradation display. Can be obtained.

【0065】なお、上記実施形態では、電気光学光学素
子として有機EL素子を用いた電気光学装置の例につい
て説明したが、本発明は、無機EL素子を用いた電気光
学装置に対しても適用可能である。
In the above embodiment, an example of an electro-optical device using an organic EL element as an electro-optical element has been described. However, the present invention is also applicable to an electro-optical device using an inorganic EL element. It is.

【0066】[0066]

【発明の効果】以上詳述したように、本発明によれば、
アクティブマトリクス構成の有機EL素子において、各
電流供給線毎に電流測定素子を設けた場合でも、各有機
EL素子に流れる電流を測定し、この電流値を用いて輝
度ばらつきを補正することができる。さらに、電流測定
素子を1つだけ設けた場合でも、各有機EL素子に流れ
る電流を測定し、この電流値を用いて輝度ばらつきを補
正することができる。従って、各画素毎に電流測定素子
を配置する必要があった従来技術に比べて、開口率を向
上し、回路構成を簡略化して歩留まりを向上させること
ができる。さらに、電流測定素子の特性ばらつきによる
電流測定ばらつきを防いで正確に電流検出を行うことが
できる。
As described in detail above, according to the present invention,
In an organic EL element having an active matrix configuration, even when a current measuring element is provided for each current supply line, the current flowing through each organic EL element can be measured, and the luminance variation can be corrected using this current value. Furthermore, even when only one current measuring element is provided, the current flowing through each organic EL element can be measured, and the luminance value can be corrected using this current value. Therefore, the aperture ratio can be improved, the circuit configuration can be simplified, and the yield can be improved, as compared with the related art in which a current measuring element has to be arranged for each pixel. Furthermore, current measurement can be accurately performed by preventing current measurement variation due to variation in characteristics of the current measurement element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一般的な有機EL素子の構造を示す概略断面図
である。
FIG. 1 is a schematic sectional view showing the structure of a general organic EL element.

【図2】有機EL素子の特性を示すグラフであり、
(a)は印加電圧と輝度との関係を示し、(b)は印加
電圧と電流との関係を示し、(c)は印加電圧と発光効
率との関係を示す。
FIG. 2 is a graph showing characteristics of an organic EL element,
(A) shows the relationship between applied voltage and luminance, (b) shows the relationship between applied voltage and current, and (c) shows the relationship between applied voltage and luminous efficiency.

【図3】一般的な単純マトリクス構成の有機ELパネル
の構成を示す回路図である。
FIG. 3 is a circuit diagram showing a configuration of a general organic EL panel having a simple matrix configuration.

【図4】一般的なアクティブマトリクス構成の有機EL
パネルの構成を示す回路図である。
FIG. 4 is an organic EL having a general active matrix configuration.
FIG. 3 is a circuit diagram showing a configuration of a panel.

【図5】一般的なアクティブマトリクス構成の有機EL
パネルの基本単位を示す詳細図である。
FIG. 5: Organic EL having a general active matrix configuration
FIG. 3 is a detailed view showing a basic unit of the panel.

【図6】実施形態1の有機ELパネルの構成を示す回路
図である。
FIG. 6 is a circuit diagram illustrating a configuration of the organic EL panel according to the first embodiment.

【図7】実施形態1において、電流測定素子により測定
された、各有機EL素子に流れる電流量を示すグラフで
ある。
FIG. 7 is a graph showing the amount of current flowing through each organic EL element measured by a current measuring element in the first embodiment.

【図8】一般的なTFTにおけるゲート電圧と電流量の
関係を示すグラフである。
FIG. 8 is a graph showing a relationship between a gate voltage and a current amount in a general TFT.

【図9】一般的なTFTにおいて、素子特性がばらつい
た場合のゲート電圧と電流量の関係を示すグラフであ
る。
FIG. 9 is a graph showing a relationship between a gate voltage and a current amount in a general TFT when device characteristics vary.

【図10】図6に示した有機EL(1、1)、有機EL
(1、2)および有機EL(1、3)のゲート電圧Vc
における電流量を示すグラフである。
FIG. 10 shows the organic EL (1, 1) and the organic EL shown in FIG.
(1, 2) and gate voltage V c of organic EL (1, 3)
5 is a graph showing the amount of current at.

【図11】図6に示した有機EL(1、1)、有機EL
(1、2)および有機EL(1、3)のドライビングT
FTの特性を示す示すグラフである。
11 shows the organic EL (1, 1) and the organic EL shown in FIG.
Driving T of (1, 2) and organic EL (1, 3)
4 is a graph showing characteristics of FT.

【図12】輝度測定の方法を説明するための図である。FIG. 12 is a diagram for explaining a method of measuring luminance.

【図13】走査線方向に沿った方向の有機ELの輝度ば
らつきを示すグラフである。
FIG. 13 is a graph showing a luminance variation of the organic EL in a direction along a scanning line direction.

【図14】有機ELの電流−輝度特性を示すグラフであ
る。
FIG. 14 is a graph showing current-luminance characteristics of an organic EL.

【図15】図6に示した有機EL(1、1)、(2、
1)のドライビングTFTの特性を示すグラフである。
FIG. 15 shows the organic ELs (1, 1), (2,
It is a graph which shows the characteristic of driving TFT of 1).

【図16】実施形態2の有機ELパネルの構成を示す回
路図である。
FIG. 16 is a circuit diagram illustrating a configuration of an organic EL panel according to a second embodiment.

【図17】実施形態3の有機ELパネルの構成を示す回
路図である。
FIG. 17 is a circuit diagram illustrating a configuration of an organic EL panel according to a third embodiment.

【図18】実施形態で用いる電流測定素子の構成の一例
を示す図である。
FIG. 18 is a diagram illustrating an example of a configuration of a current measuring element used in the embodiment.

【符号の説明】[Explanation of symbols]

1 基板 2 陽極 3 正孔注入層 4 正孔輸送層 5 発光層 6 電子輸送層 7 陰極 Reference Signs List 1 substrate 2 anode 3 hole injection layer 4 hole transport layer 5 light emitting layer 6 electron transport layer 7 cathode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 信行 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 向殿 充浩 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 Fターム(参考) 5C080 AA06 BB05 DD05 EE28 FF11 JJ02 JJ03 JJ05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nobuyuki Ito 22-22, Nagaikecho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (72) Inventor Mitsuhiro Mukodon 22-22, Nagaikecho, Abeno-ku, Osaka-shi, Osaka F-term (for reference) within JAP Corporation 5C080 AA06 BB05 DD05 EE28 FF11 JJ02 JJ03 JJ05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、アクティブ素子および該アク
ティブ素子によって制御される電気光学素子がマトリク
ス状に配置されていると共に、該アクティブ素子に走査
電圧を与える走査線およびデータ電圧を与えるデータ線
が該アクティブ素子の近傍を通って互いに交差するよう
に配置され、さらに、該電気光学素子に該アクティブ素
子を介して電流を供給するための複数の電流供給線が配
置され、各電流供給線毎に電流を測定するための電流測
定素子が設けられた電気光学装置において、 各電流測定素子によって、その電流測定素子が配置され
た電流供給線に接続された複数の電気光学素子の各々に
流れる電流値を測定するべく、 1本の走査線に走査電圧を与え、そのタイミングと同期
して、各データ線に所定のデータ電圧を供給し、該電流
測定素子により該電気光学素子に流れる電流値を測定す
るステップと、同一の走査線に再度走査電圧を与え、そ
のタイミングと同期して、各データ線に該電気光学素子
を0階調にするデータ信号を供給するステップとを各走
査線に対して行って、得られた電流測定値に基づいて、
各電気光学素子に流れる電流が等しくなるように、各ア
クティブ素子に与えるデータ電圧を補正することを特徴
とする電気光学装置。
An active element and an electro-optical element controlled by the active element are arranged in a matrix on a substrate, and a scan line for applying a scan voltage to the active element and a data line for applying a data voltage to the active element are provided. A plurality of current supply lines for supplying a current to the electro-optical element via the active element are arranged so as to pass through the vicinity of the active element and intersect with each other. In an electro-optical device provided with a current measuring element for measuring current, a current value flowing through each of the plurality of electro-optical elements connected to a current supply line in which the current measuring element is arranged by each current measuring element In order to measure the scanning voltage, a scanning voltage is applied to one scanning line, and a predetermined data voltage is supplied to each data line in synchronization with the timing. Measuring a current value flowing through the electro-optical element by a measuring element, and applying a scanning voltage again to the same scanning line, and synchronizing with the timing, data for setting the electro-optical element to 0 gradation on each data line. Applying a signal to each scan line, and based on the obtained current measurement,
An electro-optical device, wherein a data voltage applied to each active element is corrected so that currents flowing through each electro-optical element become equal.
【請求項2】 さらに、前記電流供給線と交差する方向
に前記電気光学素子の輝度値を測定し、得られた輝度測
定値と前記電流測定値とに基づいて、各電気光学素子の
輝度が等しくなるように、前記アクティブ素子に与える
データ電圧を補正することを特徴とする請求項2に記載
の電気光学装置。
2. The method according to claim 1, further comprising: measuring a luminance value of the electro-optical element in a direction intersecting the current supply line, and determining a luminance of each electro-optical element based on the obtained luminance measurement value and the current measurement value. 3. The electro-optical device according to claim 2, wherein a data voltage applied to the active element is corrected so as to be equal.
【請求項3】 基板上に、アクティブ素子および該アク
ティブ素子によって制御される電気光学素子がマトリク
ス状に配置されていると共に、該アクティブ素子に走査
電圧を与える走査線およびデータ電圧を与えるデータ線
が該アクティブ素子の近傍を通って互いに交差するよう
に配置され、さらに、該電気光学素子に該アクティブ素
子を介して電流を供給するための複数の電流供給線が配
置され、該電流供給線の電流を測定するために1つの電
流測定素子が設けられた電気光学装置において、 該電流測定素子によって複数の電気光学素子の各々に流
れる電流値を測定するべく、 1本の走査線に複数回走査電圧を与え、各回のタイミン
グと同期して、各々異なる1本のデータ線に所定のデー
タ電圧を供給し、その他のデータ線には該電気光学素子
を0階調にするデータ信号を供給して、該電流測定素子
により該電気光学素子に流れる電流値を測定するステッ
プを各走査線に対して行って、得られた電流測定値に基
づいて、各電気光学素子に流れる電流が等しくなるよう
に、各アクティブ素子に与えるデータ電圧を補正するこ
とを特徴とする電気光学装置。
3. An active element and an electro-optical element controlled by the active element are arranged in a matrix on a substrate, and a scan line for applying a scan voltage to the active element and a data line for applying a data voltage to the active element are provided. A plurality of current supply lines for supplying a current to the electro-optical element via the active element are arranged so as to pass through the vicinity of the active element and intersect with each other; In the electro-optical device provided with one current measuring element for measuring the current, a current applied to each of the plurality of electro-optical elements is measured by the current measuring element. And a predetermined data voltage is supplied to one different data line in synchronization with the timing of each time, and the electro-optical Supplying a data signal for setting the pixel to 0 gradation, performing a step of measuring a current value flowing through the electro-optical element by the current measuring element for each scanning line, and based on the obtained current measured value. An electro-optical device, wherein a data voltage applied to each active element is corrected so that currents flowing through each electro-optical element become equal.
【請求項4】 基板上に、アクティブ素子および該アク
ティブ素子によって制御される電気光学素子がマトリク
ス状に配置されていると共に、該アクティブ素子に走査
電圧を与える走査線およびデータ電圧を与えるデータ線
が該アクティブ素子の近傍を通って互いに交差するよう
に配置され、さらに、該電気光学素子に該アクティブ素
子を介して電流を供給するための複数の電流供給線が配
置され、該電流供給線の電流を測定するために1つの電
流測定素子が設けられた電気光学装置において、 各電流供給線毎に該電気光学素子よりも基板縁側にTF
T素子が設けられ、 該電流測定素子によって複数の電気光学素子の各々に流
れる電流値を測定するべく、 1本の走査線に走査電圧を与えると共に各データ線に所
定のデータ電圧を供給し、各電流供給線毎に設けた前記
TFT素子を順次走査することにより、該電流測定素子
により該電気光学素子に流れる電流値を順次測定するス
テップを各走査線に対して行って、得られた電流測定値
に基づいて、各電気光学素子に流れる電流が等しくなる
ように、各アクティブ素子に与えるデータ電圧を補正す
ることを特徴とする電気光学装置。
4. An active element and an electro-optical element controlled by the active element are arranged in a matrix on a substrate, and a scan line for applying a scan voltage to the active element and a data line for applying a data voltage to the active element are provided. A plurality of current supply lines for supplying a current to the electro-optical element via the active element are arranged, and a plurality of current supply lines for supplying a current to the electro-optical element through the vicinity of the active element; In the electro-optical device provided with one current measuring element for measuring the TF, the TF is located closer to the edge of the substrate than the electro-optical element for each current supply line.
A T element is provided. In order to measure a current value flowing through each of the plurality of electro-optical elements by the current measuring element, a scanning voltage is applied to one scanning line and a predetermined data voltage is supplied to each data line. By sequentially scanning the TFT elements provided for each current supply line, a step of sequentially measuring a current value flowing through the electro-optical element by the current measuring element is performed for each scanning line. An electro-optical device that corrects a data voltage applied to each active element based on a measured value such that currents flowing through the electro-optical elements become equal.
JP2001079599A 2001-03-19 2001-03-19 Electro-optical device Pending JP2002278513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001079599A JP2002278513A (en) 2001-03-19 2001-03-19 Electro-optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001079599A JP2002278513A (en) 2001-03-19 2001-03-19 Electro-optical device

Publications (1)

Publication Number Publication Date
JP2002278513A true JP2002278513A (en) 2002-09-27

Family

ID=18936014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001079599A Pending JP2002278513A (en) 2001-03-19 2001-03-19 Electro-optical device

Country Status (1)

Country Link
JP (1) JP2002278513A (en)

Cited By (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202836A (en) * 2001-12-28 2003-07-18 Pioneer Electronic Corp Device and method for driving display panel
JP2003202837A (en) * 2001-12-28 2003-07-18 Pioneer Electronic Corp Device and method for driving display panel
US6806497B2 (en) 2002-03-29 2004-10-19 Seiko Epson Corporation Electronic device, method for driving the electronic device, electro-optical device, and electronic equipment
JP2005115144A (en) * 2003-10-09 2005-04-28 Seiko Epson Corp Method for driving pixel circuit, driver circuit electro-optical apparatus, and electronic device
WO2005071649A1 (en) * 2003-12-23 2005-08-04 Thomson Licensing Device for displaying images on an active matrix
JP2005321786A (en) * 2004-05-04 2005-11-17 Au Optronics Corp Organic luminescence display and its color shift compensation method
JP2006502432A (en) * 2002-10-08 2006-01-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescence display device
JP2006085199A (en) * 2003-03-07 2006-03-30 Canon Inc Active matrix display and drive control method thereof
JP2006091850A (en) * 2004-07-22 2006-04-06 Toshiba Matsushita Display Technology Co Ltd El display device and inspecting apparatus of el display panel
JP2006184847A (en) * 2004-12-24 2006-07-13 Samsung Sdi Co Ltd Data integrated circuit, and light-emitting display device using the same, and drive method thereof
JP2006184848A (en) * 2004-12-24 2006-07-13 Samsung Sdi Co Ltd Data integrated circuit, and light-emitting display device using the same, and drive method thereof
JP2006184906A (en) * 2004-12-24 2006-07-13 Samsung Sdi Co Ltd Data integrated circuit, light-emitting display device, and method for driving light-emitting display device
JP2006235608A (en) * 2005-01-28 2006-09-07 Toshiba Matsushita Display Technology Co Ltd El display device and method of driving el display device
FR2886497A1 (en) * 2005-05-24 2006-12-01 Thomson Licensing Sa ACTIVE MATRIX VIDEO IMAGE DISPLAY DEVICE WITH CORRECTION OF NON-UNIFORMITY LUMINANCE
JP2007047721A (en) * 2005-08-10 2007-02-22 Samsung Sdi Co Ltd Data driver, organic light emitting display device using the same, and method of driving the same
JP2007506145A (en) * 2003-09-23 2007-03-15 イグニス イノベーション インコーポレーテッド Circuit and method for driving an array of light emitting pixels
JP2007517245A (en) * 2003-12-10 2007-06-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Video data signal correction
JP2007271840A (en) * 2006-03-31 2007-10-18 Hitachi Displays Ltd Self-luminous display device
WO2007119727A1 (en) 2006-04-13 2007-10-25 Idemitsu Kosan Co., Ltd. Electro-optic device, and tft substrate for current control and method for manufacturing the same
JP2008076757A (en) * 2006-09-21 2008-04-03 Sanyo Electric Co Ltd Electroluminescent display device and method of correcting display fluctuation of the same
JP2008122848A (en) * 2006-11-15 2008-05-29 Casio Comput Co Ltd Display driver, its driving method, display apparatus, and its driving method
JP2008129183A (en) * 2006-11-17 2008-06-05 Sanyo Electric Co Ltd Driving method of electroluminescence display device, and electroluminescence display device
JP2008158222A (en) * 2006-12-22 2008-07-10 Sanyo Electric Co Ltd Electroluminescence display device
JP2008176274A (en) * 2006-12-20 2008-07-31 Eastman Kodak Co Display device
US20080218451A1 (en) * 2007-03-07 2008-09-11 Hitachi Displays, Ltd. Organic electroluminescence display
WO2008108024A1 (en) 2007-03-08 2008-09-12 Sharp Kabushiki Kaisha Display device and its driving method
WO2008149736A1 (en) * 2007-05-30 2008-12-11 Canon Kabushiki Kaisha Active-matrix display and drive method thereof
US7532207B2 (en) 2003-03-07 2009-05-12 Canon Kabushiki Kaisha Drive circuit, display apparatus using drive circuit, and evaluation method of drive circuit
WO2009075129A1 (en) 2007-12-11 2009-06-18 Sharp Kabushiki Kaisha Display device and its manufacturing method
JP2009237200A (en) * 2008-03-27 2009-10-15 Hitachi Displays Ltd Image display device
JP2009265621A (en) * 2008-03-31 2009-11-12 Casio Comput Co Ltd Light-emitting device, display, and method for controlling driving of the light-emitting device
JP2009301037A (en) * 2008-06-11 2009-12-24 Samsung Mobile Display Co Ltd Organic light emitting display and driving method thereof
US7924249B2 (en) 2006-02-10 2011-04-12 Ignis Innovation Inc. Method and system for light emitting device displays
US7978187B2 (en) 2003-09-23 2011-07-12 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US8026876B2 (en) 2006-08-15 2011-09-27 Ignis Innovation Inc. OLED luminance degradation compensation
US8059070B2 (en) 2008-05-28 2011-11-15 Panasonic Corporation Display device, and methods for manufacturing and controlling the display device
US8115707B2 (en) 2004-06-29 2012-02-14 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US8223177B2 (en) 2005-07-06 2012-07-17 Ignis Innovation Inc. Method and system for driving a pixel circuit in an active matrix display
US8228271B2 (en) 2007-05-30 2012-07-24 Canon Kabushiki Kaisha Active-matrix display and drive method thereof
US8259044B2 (en) 2004-12-15 2012-09-04 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US8259098B2 (en) 2008-08-18 2012-09-04 Fujifilm Corporation Display apparatus and drive control method for the same
US8552636B2 (en) 2009-12-01 2013-10-08 Ignis Innovation Inc. High resolution pixel architecture
WO2013161005A1 (en) * 2012-04-24 2013-10-31 パイオニア株式会社 Organic el panel, and method for producing light-emitting device using said organic el panel
US8576217B2 (en) 2011-05-20 2013-11-05 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US8599191B2 (en) 2011-05-20 2013-12-03 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US8659518B2 (en) 2005-01-28 2014-02-25 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US8659511B2 (en) 2005-08-10 2014-02-25 Samsung Display Co., Ltd. Data driver, organic light emitting display device using the same, and method of driving the organic light emitting display device
US8664644B2 (en) 2001-02-16 2014-03-04 Ignis Innovation Inc. Pixel driver circuit and pixel circuit having the pixel driver circuit
US8687024B2 (en) 2007-09-28 2014-04-01 Panasonic Corporation Pixel circuit and display apparatus
US8743096B2 (en) 2006-04-19 2014-06-03 Ignis Innovation, Inc. Stable driving scheme for active matrix displays
US8803417B2 (en) 2009-12-01 2014-08-12 Ignis Innovation Inc. High resolution pixel architecture
US8860636B2 (en) 2005-06-08 2014-10-14 Ignis Innovation Inc. Method and system for driving a light emitting device display
US8901579B2 (en) 2011-08-03 2014-12-02 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US8907991B2 (en) 2010-12-02 2014-12-09 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US8922544B2 (en) 2012-05-23 2014-12-30 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US8994617B2 (en) 2010-03-17 2015-03-31 Ignis Innovation Inc. Lifetime uniformity parameter extraction methods
US9030506B2 (en) 2009-11-12 2015-05-12 Ignis Innovation Inc. Stable fast programming scheme for displays
US9058775B2 (en) 2006-01-09 2015-06-16 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9070775B2 (en) 2011-08-03 2015-06-30 Ignis Innovations Inc. Thin film transistor
US9093028B2 (en) 2009-12-06 2015-07-28 Ignis Innovation Inc. System and methods for power conservation for AMOLED pixel drivers
US9111485B2 (en) 2009-06-16 2015-08-18 Ignis Innovation Inc. Compensation technique for color shift in displays
US9134825B2 (en) 2011-05-17 2015-09-15 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9153172B2 (en) 2004-12-07 2015-10-06 Ignis Innovation Inc. Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage
US9171504B2 (en) 2013-01-14 2015-10-27 Ignis Innovation Inc. Driving scheme for emissive displays providing compensation for driving transistor variations
US9171500B2 (en) 2011-05-20 2015-10-27 Ignis Innovation Inc. System and methods for extraction of parasitic parameters in AMOLED displays
US9190456B2 (en) 2012-04-25 2015-11-17 Ignis Innovation Inc. High resolution display panel with emissive organic layers emitting light of different colors
US9269322B2 (en) 2006-01-09 2016-02-23 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9275579B2 (en) 2004-12-15 2016-03-01 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9280933B2 (en) 2004-12-15 2016-03-08 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9305488B2 (en) 2013-03-14 2016-04-05 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9311859B2 (en) 2009-11-30 2016-04-12 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US9324268B2 (en) 2013-03-15 2016-04-26 Ignis Innovation Inc. Amoled displays with multiple readout circuits
US9336717B2 (en) 2012-12-11 2016-05-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9343006B2 (en) 2012-02-03 2016-05-17 Ignis Innovation Inc. Driving system for active-matrix displays
US9351368B2 (en) 2013-03-08 2016-05-24 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9370075B2 (en) 2008-12-09 2016-06-14 Ignis Innovation Inc. System and method for fast compensation programming of pixels in a display
US9384698B2 (en) 2009-11-30 2016-07-05 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US9430958B2 (en) 2010-02-04 2016-08-30 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9437137B2 (en) 2013-08-12 2016-09-06 Ignis Innovation Inc. Compensation accuracy
US9443471B2 (en) 2012-07-31 2016-09-13 Sharp Kabushiki Kaisha Display device and driving method thereof
US9466240B2 (en) 2011-05-26 2016-10-11 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9489891B2 (en) 2006-01-09 2016-11-08 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
US9530349B2 (en) 2011-05-20 2016-12-27 Ignis Innovations Inc. Charged-based compensation and parameter extraction in AMOLED displays
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9697771B2 (en) 2013-03-08 2017-07-04 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9721505B2 (en) 2013-03-08 2017-08-01 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9741282B2 (en) 2013-12-06 2017-08-22 Ignis Innovation Inc. OLED display system and method
US9747834B2 (en) 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
USRE46561E1 (en) 2008-07-29 2017-09-26 Ignis Innovation Inc. Method and system for driving light emitting display
US9773439B2 (en) 2011-05-27 2017-09-26 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9786209B2 (en) 2009-11-30 2017-10-10 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9830857B2 (en) 2013-01-14 2017-11-28 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9842889B2 (en) 2014-11-28 2017-12-12 Ignis Innovation Inc. High pixel density array architecture
US9867257B2 (en) 2008-04-18 2018-01-09 Ignis Innovation Inc. System and driving method for light emitting device display
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US9881587B2 (en) 2011-05-28 2018-01-30 Ignis Innovation Inc. Systems and methods for operating pixels in a display to mitigate image flicker
US9886899B2 (en) 2011-05-17 2018-02-06 Ignis Innovation Inc. Pixel Circuits for AMOLED displays
US9947293B2 (en) 2015-05-27 2018-04-17 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US9952698B2 (en) 2013-03-15 2018-04-24 Ignis Innovation Inc. Dynamic adjustment of touch resolutions on an AMOLED display
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10019941B2 (en) 2005-09-13 2018-07-10 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
US10078984B2 (en) 2005-02-10 2018-09-18 Ignis Innovation Inc. Driving circuit for current programmed organic light-emitting diode displays
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10102808B2 (en) 2015-10-14 2018-10-16 Ignis Innovation Inc. Systems and methods of multiple color driving
US10134325B2 (en) 2014-12-08 2018-11-20 Ignis Innovation Inc. Integrated display system
US10152915B2 (en) 2015-04-01 2018-12-11 Ignis Innovation Inc. Systems and methods of display brightness adjustment
US10163996B2 (en) 2003-02-24 2018-12-25 Ignis Innovation Inc. Pixel having an organic light emitting diode and method of fabricating the pixel
US10163401B2 (en) 2010-02-04 2018-12-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10176736B2 (en) 2010-02-04 2019-01-08 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10176752B2 (en) 2014-03-24 2019-01-08 Ignis Innovation Inc. Integrated gate driver
US10181282B2 (en) 2015-01-23 2019-01-15 Ignis Innovation Inc. Compensation for color variations in emissive devices
US10192479B2 (en) 2014-04-08 2019-01-29 Ignis Innovation Inc. Display system using system level resources to calculate compensation parameters for a display module in a portable device
US10204540B2 (en) 2015-10-26 2019-02-12 Ignis Innovation Inc. High density pixel pattern
US10235933B2 (en) 2005-04-12 2019-03-19 Ignis Innovation Inc. System and method for compensation of non-uniformities in light emitting device displays
US10242619B2 (en) 2013-03-08 2019-03-26 Ignis Innovation Inc. Pixel circuits for amoled displays
US10311780B2 (en) 2015-05-04 2019-06-04 Ignis Innovation Inc. Systems and methods of optical feedback
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
US10339860B2 (en) 2015-08-07 2019-07-02 Ignis Innovation, Inc. Systems and methods of pixel calibration based on improved reference values
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10410579B2 (en) 2015-07-24 2019-09-10 Ignis Innovation Inc. Systems and methods of hybrid calibration of bias current
US10573231B2 (en) 2010-02-04 2020-02-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10586491B2 (en) 2016-12-06 2020-03-10 Ignis Innovation Inc. Pixel circuits for mitigation of hysteresis
US10657895B2 (en) 2015-07-24 2020-05-19 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10714018B2 (en) 2017-05-17 2020-07-14 Ignis Innovation Inc. System and method for loading image correction data for displays
WO2020218421A1 (en) * 2019-04-26 2020-10-29 Jsr Corporation Method of compensating brightness of display and display
JP2020183968A (en) * 2019-04-26 2020-11-12 Jsr株式会社 Luminance compensation method and display
US10867536B2 (en) 2013-04-22 2020-12-15 Ignis Innovation Inc. Inspection system for OLED display panels
US10971078B2 (en) 2018-02-12 2021-04-06 Ignis Innovation Inc. Pixel measurement through data line
US10997901B2 (en) 2014-02-28 2021-05-04 Ignis Innovation Inc. Display system
US10996258B2 (en) 2009-11-30 2021-05-04 Ignis Innovation Inc. Defect detection and correction of pixel circuits for AMOLED displays
US11025899B2 (en) 2017-08-11 2021-06-01 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices
US11158256B2 (en) 2017-12-06 2021-10-26 Apple Inc. Methods and apparatus for mitigating charge settling and lateral leakage current on organic light-emitting diode displays

Cited By (276)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8664644B2 (en) 2001-02-16 2014-03-04 Ignis Innovation Inc. Pixel driver circuit and pixel circuit having the pixel driver circuit
US8890220B2 (en) 2001-02-16 2014-11-18 Ignis Innovation, Inc. Pixel driver circuit and pixel circuit having control circuit coupled to supply voltage
JP2003202837A (en) * 2001-12-28 2003-07-18 Pioneer Electronic Corp Device and method for driving display panel
JP2003202836A (en) * 2001-12-28 2003-07-18 Pioneer Electronic Corp Device and method for driving display panel
US6806497B2 (en) 2002-03-29 2004-10-19 Seiko Epson Corporation Electronic device, method for driving the electronic device, electro-optical device, and electronic equipment
JP2006502432A (en) * 2002-10-08 2006-01-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescence display device
US10163996B2 (en) 2003-02-24 2018-12-25 Ignis Innovation Inc. Pixel having an organic light emitting diode and method of fabricating the pixel
US8159482B2 (en) 2003-03-07 2012-04-17 Canon Kabushiki Kaisha Drive circuit, display apparatus using drive circuit, and evaluation method of drive circuit
US8154539B2 (en) 2003-03-07 2012-04-10 Canon Kabushiki Kaisha Drive circuit, display apparatus using drive circuit, and evaluation method of drive circuit
JP2006085199A (en) * 2003-03-07 2006-03-30 Canon Inc Active matrix display and drive control method thereof
US7532207B2 (en) 2003-03-07 2009-05-12 Canon Kabushiki Kaisha Drive circuit, display apparatus using drive circuit, and evaluation method of drive circuit
US7978187B2 (en) 2003-09-23 2011-07-12 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US9472139B2 (en) 2003-09-23 2016-10-18 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US8553018B2 (en) 2003-09-23 2013-10-08 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US9852689B2 (en) 2003-09-23 2017-12-26 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
JP2007506145A (en) * 2003-09-23 2007-03-15 イグニス イノベーション インコーポレーテッド Circuit and method for driving an array of light emitting pixels
US10089929B2 (en) 2003-09-23 2018-10-02 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
US8941697B2 (en) 2003-09-23 2015-01-27 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US9472138B2 (en) 2003-09-23 2016-10-18 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
JP4572523B2 (en) * 2003-10-09 2010-11-04 セイコーエプソン株式会社 Pixel circuit driving method, driving circuit, electro-optical device, and electronic apparatus
JP2005115144A (en) * 2003-10-09 2005-04-28 Seiko Epson Corp Method for driving pixel circuit, driver circuit electro-optical apparatus, and electronic device
JP2007517245A (en) * 2003-12-10 2007-06-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Video data signal correction
CN1898719B (en) * 2003-12-23 2010-04-21 汤姆森特许公司 Device for displaying images on an active matrix
US8610651B2 (en) 2003-12-23 2013-12-17 Thomson Licensing Device for displaying images on an active matrix
WO2005071649A1 (en) * 2003-12-23 2005-08-04 Thomson Licensing Device for displaying images on an active matrix
CN100424740C (en) * 2004-05-04 2008-10-08 友达光电股份有限公司 Method for color displacement and compensation of organic illuminated display
JP2005321786A (en) * 2004-05-04 2005-11-17 Au Optronics Corp Organic luminescence display and its color shift compensation method
USRE47257E1 (en) 2004-06-29 2019-02-26 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
USRE45291E1 (en) 2004-06-29 2014-12-16 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US8115707B2 (en) 2004-06-29 2012-02-14 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US8232939B2 (en) 2004-06-29 2012-07-31 Ignis Innovation, Inc. Voltage-programming scheme for current-driven AMOLED displays
JP2006091850A (en) * 2004-07-22 2006-04-06 Toshiba Matsushita Display Technology Co Ltd El display device and inspecting apparatus of el display panel
US9153172B2 (en) 2004-12-07 2015-10-06 Ignis Innovation Inc. Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage
US9741292B2 (en) 2004-12-07 2017-08-22 Ignis Innovation Inc. Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage
US9275579B2 (en) 2004-12-15 2016-03-01 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US8816946B2 (en) 2004-12-15 2014-08-26 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US8259044B2 (en) 2004-12-15 2012-09-04 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US8736524B2 (en) 2004-12-15 2014-05-27 Ignis Innovation, Inc. Method and system for programming, calibrating and driving a light emitting device display
US9280933B2 (en) 2004-12-15 2016-03-08 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10699624B2 (en) 2004-12-15 2020-06-30 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US8994625B2 (en) 2004-12-15 2015-03-31 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US9970964B2 (en) 2004-12-15 2018-05-15 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
JP4535442B2 (en) * 2004-12-24 2010-09-01 三星モバイルディスプレイ株式會社 Data integrated circuit, light emitting display device using the same, and driving method thereof
JP2006184906A (en) * 2004-12-24 2006-07-13 Samsung Sdi Co Ltd Data integrated circuit, light-emitting display device, and method for driving light-emitting display device
JP2006184848A (en) * 2004-12-24 2006-07-13 Samsung Sdi Co Ltd Data integrated circuit, and light-emitting display device using the same, and drive method thereof
JP4535441B2 (en) * 2004-12-24 2010-09-01 三星モバイルディスプレイ株式會社 Data integrated circuit, light emitting display device using the same, and driving method thereof
JP2006184847A (en) * 2004-12-24 2006-07-13 Samsung Sdi Co Ltd Data integrated circuit, and light-emitting display device using the same, and drive method thereof
US8659518B2 (en) 2005-01-28 2014-02-25 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US9728135B2 (en) 2005-01-28 2017-08-08 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
JP2006235608A (en) * 2005-01-28 2006-09-07 Toshiba Matsushita Display Technology Co Ltd El display device and method of driving el display device
US9373645B2 (en) 2005-01-28 2016-06-21 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US10078984B2 (en) 2005-02-10 2018-09-18 Ignis Innovation Inc. Driving circuit for current programmed organic light-emitting diode displays
US10235933B2 (en) 2005-04-12 2019-03-19 Ignis Innovation Inc. System and method for compensation of non-uniformities in light emitting device displays
FR2886497A1 (en) * 2005-05-24 2006-12-01 Thomson Licensing Sa ACTIVE MATRIX VIDEO IMAGE DISPLAY DEVICE WITH CORRECTION OF NON-UNIFORMITY LUMINANCE
US10388221B2 (en) 2005-06-08 2019-08-20 Ignis Innovation Inc. Method and system for driving a light emitting device display
US8860636B2 (en) 2005-06-08 2014-10-14 Ignis Innovation Inc. Method and system for driving a light emitting device display
US9805653B2 (en) 2005-06-08 2017-10-31 Ignis Innovation Inc. Method and system for driving a light emitting device display
US9330598B2 (en) 2005-06-08 2016-05-03 Ignis Innovation Inc. Method and system for driving a light emitting device display
US8223177B2 (en) 2005-07-06 2012-07-17 Ignis Innovation Inc. Method and system for driving a pixel circuit in an active matrix display
US9812065B2 (en) 2005-08-10 2017-11-07 Samsung Display Co., Ltd. Data driver, organic light emitting display device using the same, and method of driving the organic light emitting display device
JP2007047721A (en) * 2005-08-10 2007-02-22 Samsung Sdi Co Ltd Data driver, organic light emitting display device using the same, and method of driving the same
US10192491B2 (en) 2005-08-10 2019-01-29 Samsung Display Co., Ltd. Data driver, organic light emitting display device using the same, and method of driving the organic light emitting display device
US8659511B2 (en) 2005-08-10 2014-02-25 Samsung Display Co., Ltd. Data driver, organic light emitting display device using the same, and method of driving the organic light emitting display device
US10019941B2 (en) 2005-09-13 2018-07-10 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
US9058775B2 (en) 2006-01-09 2015-06-16 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9489891B2 (en) 2006-01-09 2016-11-08 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US10262587B2 (en) 2006-01-09 2019-04-16 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9269322B2 (en) 2006-01-09 2016-02-23 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US10229647B2 (en) 2006-01-09 2019-03-12 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US7924249B2 (en) 2006-02-10 2011-04-12 Ignis Innovation Inc. Method and system for light emitting device displays
JP2007271840A (en) * 2006-03-31 2007-10-18 Hitachi Displays Ltd Self-luminous display device
WO2007119727A1 (en) 2006-04-13 2007-10-25 Idemitsu Kosan Co., Ltd. Electro-optic device, and tft substrate for current control and method for manufacturing the same
US8743096B2 (en) 2006-04-19 2014-06-03 Ignis Innovation, Inc. Stable driving scheme for active matrix displays
US9842544B2 (en) 2006-04-19 2017-12-12 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US10127860B2 (en) 2006-04-19 2018-11-13 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US10453397B2 (en) 2006-04-19 2019-10-22 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US9633597B2 (en) 2006-04-19 2017-04-25 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US10325554B2 (en) 2006-08-15 2019-06-18 Ignis Innovation Inc. OLED luminance degradation compensation
US8026876B2 (en) 2006-08-15 2011-09-27 Ignis Innovation Inc. OLED luminance degradation compensation
US9125278B2 (en) 2006-08-15 2015-09-01 Ignis Innovation Inc. OLED luminance degradation compensation
US9530352B2 (en) 2006-08-15 2016-12-27 Ignis Innovations Inc. OLED luminance degradation compensation
US8581809B2 (en) 2006-08-15 2013-11-12 Ignis Innovation Inc. OLED luminance degradation compensation
US8279143B2 (en) 2006-08-15 2012-10-02 Ignis Innovation Inc. OLED luminance degradation compensation
US8339335B2 (en) 2006-09-21 2012-12-25 Semiconductor Components Industries, Llc Electroluminescence display apparatus and method of correcting display variation for electroluminescence display apparatus
JP2008076757A (en) * 2006-09-21 2008-04-03 Sanyo Electric Co Ltd Electroluminescent display device and method of correcting display fluctuation of the same
JP2008122848A (en) * 2006-11-15 2008-05-29 Casio Comput Co Ltd Display driver, its driving method, display apparatus, and its driving method
JP2008129183A (en) * 2006-11-17 2008-06-05 Sanyo Electric Co Ltd Driving method of electroluminescence display device, and electroluminescence display device
JP2008176274A (en) * 2006-12-20 2008-07-31 Eastman Kodak Co Display device
US8542166B2 (en) 2006-12-22 2013-09-24 Sanyo Semiconductor Co., Ltd. Electroluminescence display apparatus with video signal rewriting
JP2008158222A (en) * 2006-12-22 2008-07-10 Sanyo Electric Co Ltd Electroluminescence display device
US20080218451A1 (en) * 2007-03-07 2008-09-11 Hitachi Displays, Ltd. Organic electroluminescence display
JP2008216874A (en) * 2007-03-07 2008-09-18 Hitachi Displays Ltd Organic el display device
US8847939B2 (en) 2007-03-08 2014-09-30 Sharp Kabushiki Kaisha Method of driving and a driver for a display device including an electric current driving element
US20100045646A1 (en) * 2007-03-08 2010-02-25 Noritaka Kishi Display device and its driving method
EP2369571A1 (en) 2007-03-08 2011-09-28 Sharp Kabushiki Kaisha Display device and its driving method
WO2008108024A1 (en) 2007-03-08 2008-09-12 Sharp Kabushiki Kaisha Display device and its driving method
WO2008149736A1 (en) * 2007-05-30 2008-12-11 Canon Kabushiki Kaisha Active-matrix display and drive method thereof
US8228271B2 (en) 2007-05-30 2012-07-24 Canon Kabushiki Kaisha Active-matrix display and drive method thereof
US8687024B2 (en) 2007-09-28 2014-04-01 Panasonic Corporation Pixel circuit and display apparatus
US8242985B2 (en) 2007-12-11 2012-08-14 Sharp Kabushiki Kaisha Display device and method for manufacturing the same
WO2009075129A1 (en) 2007-12-11 2009-06-18 Sharp Kabushiki Kaisha Display device and its manufacturing method
JP2009237200A (en) * 2008-03-27 2009-10-15 Hitachi Displays Ltd Image display device
JP2009265621A (en) * 2008-03-31 2009-11-12 Casio Comput Co Ltd Light-emitting device, display, and method for controlling driving of the light-emitting device
US9867257B2 (en) 2008-04-18 2018-01-09 Ignis Innovation Inc. System and driving method for light emitting device display
US9877371B2 (en) 2008-04-18 2018-01-23 Ignis Innovations Inc. System and driving method for light emitting device display
US10555398B2 (en) 2008-04-18 2020-02-04 Ignis Innovation Inc. System and driving method for light emitting device display
US8059070B2 (en) 2008-05-28 2011-11-15 Panasonic Corporation Display device, and methods for manufacturing and controlling the display device
JP2009301037A (en) * 2008-06-11 2009-12-24 Samsung Mobile Display Co Ltd Organic light emitting display and driving method thereof
US8405582B2 (en) 2008-06-11 2013-03-26 Samsung Display Co., Ltd. Organic light emitting display and driving method thereof
USRE49389E1 (en) 2008-07-29 2023-01-24 Ignis Innovation Inc. Method and system for driving light emitting display
USRE46561E1 (en) 2008-07-29 2017-09-26 Ignis Innovation Inc. Method and system for driving light emitting display
US8259098B2 (en) 2008-08-18 2012-09-04 Fujifilm Corporation Display apparatus and drive control method for the same
US11030949B2 (en) 2008-12-09 2021-06-08 Ignis Innovation Inc. Systems and method for fast compensation programming of pixels in a display
US9824632B2 (en) 2008-12-09 2017-11-21 Ignis Innovation Inc. Systems and method for fast compensation programming of pixels in a display
US9370075B2 (en) 2008-12-09 2016-06-14 Ignis Innovation Inc. System and method for fast compensation programming of pixels in a display
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
US9418587B2 (en) 2009-06-16 2016-08-16 Ignis Innovation Inc. Compensation technique for color shift in displays
US9117400B2 (en) 2009-06-16 2015-08-25 Ignis Innovation Inc. Compensation technique for color shift in displays
US9111485B2 (en) 2009-06-16 2015-08-18 Ignis Innovation Inc. Compensation technique for color shift in displays
US10553141B2 (en) 2009-06-16 2020-02-04 Ignis Innovation Inc. Compensation technique for color shift in displays
US9030506B2 (en) 2009-11-12 2015-05-12 Ignis Innovation Inc. Stable fast programming scheme for displays
US9818376B2 (en) 2009-11-12 2017-11-14 Ignis Innovation Inc. Stable fast programming scheme for displays
US10685627B2 (en) 2009-11-12 2020-06-16 Ignis Innovation Inc. Stable fast programming scheme for displays
US9311859B2 (en) 2009-11-30 2016-04-12 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US9384698B2 (en) 2009-11-30 2016-07-05 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US10996258B2 (en) 2009-11-30 2021-05-04 Ignis Innovation Inc. Defect detection and correction of pixel circuits for AMOLED displays
US10304390B2 (en) 2009-11-30 2019-05-28 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US10679533B2 (en) 2009-11-30 2020-06-09 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9786209B2 (en) 2009-11-30 2017-10-10 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US10699613B2 (en) 2009-11-30 2020-06-30 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US9059117B2 (en) 2009-12-01 2015-06-16 Ignis Innovation Inc. High resolution pixel architecture
US8803417B2 (en) 2009-12-01 2014-08-12 Ignis Innovation Inc. High resolution pixel architecture
US8552636B2 (en) 2009-12-01 2013-10-08 Ignis Innovation Inc. High resolution pixel architecture
US9093028B2 (en) 2009-12-06 2015-07-28 Ignis Innovation Inc. System and methods for power conservation for AMOLED pixel drivers
US9262965B2 (en) 2009-12-06 2016-02-16 Ignis Innovation Inc. System and methods for power conservation for AMOLED pixel drivers
US11200839B2 (en) 2010-02-04 2021-12-14 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US10163401B2 (en) 2010-02-04 2018-12-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10176736B2 (en) 2010-02-04 2019-01-08 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10395574B2 (en) 2010-02-04 2019-08-27 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10032399B2 (en) 2010-02-04 2018-07-24 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9430958B2 (en) 2010-02-04 2016-08-30 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9773441B2 (en) 2010-02-04 2017-09-26 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10573231B2 (en) 2010-02-04 2020-02-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10971043B2 (en) 2010-02-04 2021-04-06 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US8994617B2 (en) 2010-03-17 2015-03-31 Ignis Innovation Inc. Lifetime uniformity parameter extraction methods
US10460669B2 (en) 2010-12-02 2019-10-29 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US8907991B2 (en) 2010-12-02 2014-12-09 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US9489897B2 (en) 2010-12-02 2016-11-08 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US9997110B2 (en) 2010-12-02 2018-06-12 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US10515585B2 (en) 2011-05-17 2019-12-24 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9886899B2 (en) 2011-05-17 2018-02-06 Ignis Innovation Inc. Pixel Circuits for AMOLED displays
US10249237B2 (en) 2011-05-17 2019-04-02 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9134825B2 (en) 2011-05-17 2015-09-15 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US10032400B2 (en) 2011-05-20 2018-07-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9355584B2 (en) 2011-05-20 2016-05-31 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US8599191B2 (en) 2011-05-20 2013-12-03 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9530349B2 (en) 2011-05-20 2016-12-27 Ignis Innovations Inc. Charged-based compensation and parameter extraction in AMOLED displays
US9093029B2 (en) 2011-05-20 2015-07-28 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9799248B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9589490B2 (en) 2011-05-20 2017-03-07 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US8576217B2 (en) 2011-05-20 2013-11-05 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9171500B2 (en) 2011-05-20 2015-10-27 Ignis Innovation Inc. System and methods for extraction of parasitic parameters in AMOLED displays
US10580337B2 (en) 2011-05-20 2020-03-03 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10475379B2 (en) 2011-05-20 2019-11-12 Ignis Innovation Inc. Charged-based compensation and parameter extraction in AMOLED displays
US10127846B2 (en) 2011-05-20 2018-11-13 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10325537B2 (en) 2011-05-20 2019-06-18 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9466240B2 (en) 2011-05-26 2016-10-11 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9978297B2 (en) 2011-05-26 2018-05-22 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9640112B2 (en) 2011-05-26 2017-05-02 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US10706754B2 (en) 2011-05-26 2020-07-07 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US10417945B2 (en) 2011-05-27 2019-09-17 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US9773439B2 (en) 2011-05-27 2017-09-26 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US9881587B2 (en) 2011-05-28 2018-01-30 Ignis Innovation Inc. Systems and methods for operating pixels in a display to mitigate image flicker
US10290284B2 (en) 2011-05-28 2019-05-14 Ignis Innovation Inc. Systems and methods for operating pixels in a display to mitigate image flicker
US9070775B2 (en) 2011-08-03 2015-06-30 Ignis Innovations Inc. Thin film transistor
US9224954B2 (en) 2011-08-03 2015-12-29 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US8901579B2 (en) 2011-08-03 2014-12-02 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US10380944B2 (en) 2011-11-29 2019-08-13 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US9818806B2 (en) 2011-11-29 2017-11-14 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US10079269B2 (en) 2011-11-29 2018-09-18 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US10453904B2 (en) 2011-11-29 2019-10-22 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US10453394B2 (en) 2012-02-03 2019-10-22 Ignis Innovation Inc. Driving system for active-matrix displays
US9792857B2 (en) 2012-02-03 2017-10-17 Ignis Innovation Inc. Driving system for active-matrix displays
US10043448B2 (en) 2012-02-03 2018-08-07 Ignis Innovation Inc. Driving system for active-matrix displays
US9343006B2 (en) 2012-02-03 2016-05-17 Ignis Innovation Inc. Driving system for active-matrix displays
WO2013161005A1 (en) * 2012-04-24 2013-10-31 パイオニア株式会社 Organic el panel, and method for producing light-emitting device using said organic el panel
JPWO2013161005A1 (en) * 2012-04-24 2015-12-21 パイオニア株式会社 Organic EL panel and light emitting device manufacturing method using the same
USRE48002E1 (en) 2012-04-25 2020-05-19 Ignis Innovation Inc. High resolution display panel with emissive organic layers emitting light of different colors
US9190456B2 (en) 2012-04-25 2015-11-17 Ignis Innovation Inc. High resolution display panel with emissive organic layers emitting light of different colors
US10424245B2 (en) 2012-05-11 2019-09-24 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US9747834B2 (en) 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US8922544B2 (en) 2012-05-23 2014-12-30 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9741279B2 (en) 2012-05-23 2017-08-22 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9368063B2 (en) 2012-05-23 2016-06-14 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US10176738B2 (en) 2012-05-23 2019-01-08 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9536460B2 (en) 2012-05-23 2017-01-03 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9940861B2 (en) 2012-05-23 2018-04-10 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9443471B2 (en) 2012-07-31 2016-09-13 Sharp Kabushiki Kaisha Display device and driving method thereof
US9685114B2 (en) 2012-12-11 2017-06-20 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US11030955B2 (en) 2012-12-11 2021-06-08 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10311790B2 (en) 2012-12-11 2019-06-04 Ignis Innovation Inc. Pixel circuits for amoled displays
US9997106B2 (en) 2012-12-11 2018-06-12 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9978310B2 (en) 2012-12-11 2018-05-22 Ignis Innovation Inc. Pixel circuits for amoled displays
US9336717B2 (en) 2012-12-11 2016-05-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10140925B2 (en) 2012-12-11 2018-11-27 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10847087B2 (en) 2013-01-14 2020-11-24 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9171504B2 (en) 2013-01-14 2015-10-27 Ignis Innovation Inc. Driving scheme for emissive displays providing compensation for driving transistor variations
US11875744B2 (en) 2013-01-14 2024-01-16 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9830857B2 (en) 2013-01-14 2017-11-28 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9721505B2 (en) 2013-03-08 2017-08-01 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10593263B2 (en) 2013-03-08 2020-03-17 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10242619B2 (en) 2013-03-08 2019-03-26 Ignis Innovation Inc. Pixel circuits for amoled displays
US10013915B2 (en) 2013-03-08 2018-07-03 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9351368B2 (en) 2013-03-08 2016-05-24 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9659527B2 (en) 2013-03-08 2017-05-23 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9934725B2 (en) 2013-03-08 2018-04-03 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9697771B2 (en) 2013-03-08 2017-07-04 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9922596B2 (en) 2013-03-08 2018-03-20 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9305488B2 (en) 2013-03-14 2016-04-05 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US10198979B2 (en) 2013-03-14 2019-02-05 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9536465B2 (en) 2013-03-14 2017-01-03 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9818323B2 (en) 2013-03-14 2017-11-14 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9324268B2 (en) 2013-03-15 2016-04-26 Ignis Innovation Inc. Amoled displays with multiple readout circuits
US9721512B2 (en) 2013-03-15 2017-08-01 Ignis Innovation Inc. AMOLED displays with multiple readout circuits
US9952698B2 (en) 2013-03-15 2018-04-24 Ignis Innovation Inc. Dynamic adjustment of touch resolutions on an AMOLED display
US9997107B2 (en) 2013-03-15 2018-06-12 Ignis Innovation Inc. AMOLED displays with multiple readout circuits
US10460660B2 (en) 2013-03-15 2019-10-29 Ingis Innovation Inc. AMOLED displays with multiple readout circuits
US10867536B2 (en) 2013-04-22 2020-12-15 Ignis Innovation Inc. Inspection system for OLED display panels
US10600362B2 (en) 2013-08-12 2020-03-24 Ignis Innovation Inc. Compensation accuracy
US9437137B2 (en) 2013-08-12 2016-09-06 Ignis Innovation Inc. Compensation accuracy
US9990882B2 (en) 2013-08-12 2018-06-05 Ignis Innovation Inc. Compensation accuracy
US10186190B2 (en) 2013-12-06 2019-01-22 Ignis Innovation Inc. Correction for localized phenomena in an image array
US10395585B2 (en) 2013-12-06 2019-08-27 Ignis Innovation Inc. OLED display system and method
US9741282B2 (en) 2013-12-06 2017-08-22 Ignis Innovation Inc. OLED display system and method
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
US9831462B2 (en) 2013-12-25 2017-11-28 Ignis Innovation Inc. Electrode contacts
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
US10439159B2 (en) 2013-12-25 2019-10-08 Ignis Innovation Inc. Electrode contacts
US10997901B2 (en) 2014-02-28 2021-05-04 Ignis Innovation Inc. Display system
US10176752B2 (en) 2014-03-24 2019-01-08 Ignis Innovation Inc. Integrated gate driver
US10192479B2 (en) 2014-04-08 2019-01-29 Ignis Innovation Inc. Display system using system level resources to calculate compensation parameters for a display module in a portable device
US9842889B2 (en) 2014-11-28 2017-12-12 Ignis Innovation Inc. High pixel density array architecture
US10170522B2 (en) 2014-11-28 2019-01-01 Ignis Innovations Inc. High pixel density array architecture
US10134325B2 (en) 2014-12-08 2018-11-20 Ignis Innovation Inc. Integrated display system
US10726761B2 (en) 2014-12-08 2020-07-28 Ignis Innovation Inc. Integrated display system
US10181282B2 (en) 2015-01-23 2019-01-15 Ignis Innovation Inc. Compensation for color variations in emissive devices
US10152915B2 (en) 2015-04-01 2018-12-11 Ignis Innovation Inc. Systems and methods of display brightness adjustment
US10311780B2 (en) 2015-05-04 2019-06-04 Ignis Innovation Inc. Systems and methods of optical feedback
US10403230B2 (en) 2015-05-27 2019-09-03 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US9947293B2 (en) 2015-05-27 2018-04-17 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US10410579B2 (en) 2015-07-24 2019-09-10 Ignis Innovation Inc. Systems and methods of hybrid calibration of bias current
US10657895B2 (en) 2015-07-24 2020-05-19 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10339860B2 (en) 2015-08-07 2019-07-02 Ignis Innovation, Inc. Systems and methods of pixel calibration based on improved reference values
US10102808B2 (en) 2015-10-14 2018-10-16 Ignis Innovation Inc. Systems and methods of multiple color driving
US10446086B2 (en) 2015-10-14 2019-10-15 Ignis Innovation Inc. Systems and methods of multiple color driving
US10204540B2 (en) 2015-10-26 2019-02-12 Ignis Innovation Inc. High density pixel pattern
US10586491B2 (en) 2016-12-06 2020-03-10 Ignis Innovation Inc. Pixel circuits for mitigation of hysteresis
US10714018B2 (en) 2017-05-17 2020-07-14 Ignis Innovation Inc. System and method for loading image correction data for displays
US11025899B2 (en) 2017-08-11 2021-06-01 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices
US11792387B2 (en) 2017-08-11 2023-10-17 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices
US11158256B2 (en) 2017-12-06 2021-10-26 Apple Inc. Methods and apparatus for mitigating charge settling and lateral leakage current on organic light-emitting diode displays
US10971078B2 (en) 2018-02-12 2021-04-06 Ignis Innovation Inc. Pixel measurement through data line
US11847976B2 (en) 2018-02-12 2023-12-19 Ignis Innovation Inc. Pixel measurement through data line
CN113678189A (en) * 2019-04-26 2021-11-19 Jsr株式会社 Method for compensating brightness of display and display
JP2020183968A (en) * 2019-04-26 2020-11-12 Jsr株式会社 Luminance compensation method and display
WO2020218421A1 (en) * 2019-04-26 2020-10-29 Jsr Corporation Method of compensating brightness of display and display

Similar Documents

Publication Publication Date Title
JP2002278513A (en) Electro-optical device
US9501975B2 (en) Organic light emitting display device and driving method thereof
US8896636B2 (en) Test device for display panel and method of testing the same
JP4059537B2 (en) Organic thin film EL display device and driving method thereof
JP5538477B2 (en) Image display device and driving method thereof
US8427513B2 (en) Display device, display device drive method, and computer program
US8063857B2 (en) Image display apparatus
KR101894768B1 (en) An active matrix display and a driving method therof
US9842541B2 (en) Organic light-emitting display panel, organic light-emitting display apparatus, and voltage drop compensating method
US7773059B2 (en) Organic electroluminescent display device and driving method thereof
US20030201955A1 (en) Organic electroluminescent (EL) display device and method for driving the same
JP2003150107A (en) Display device and its driving method
JPH11282420A (en) Electroluminescence display device
KR20160007786A (en) Display device
JP2004038176A (en) Electroluminescence panel and electroluminescence device with same
JPWO2003027999A1 (en) Flat panel display
JP4593868B2 (en) Display device and driving method thereof
US20170018224A1 (en) Apparatus and method for compensating for luminance difference of organic light-emitting display device
JP2005134880A (en) Image display apparatus, driving method thereof, and precharge voltage setting method
JP2005157349A (en) Light-emitting display device and drive method therefor
JP2010015138A (en) Organic electroluminescent light emitting display device and method for driving the same
US11222597B2 (en) Display device and method for controlling same
JP2000187467A (en) Control device for lighting organic el element and its method
US9001099B2 (en) Image display and image display method
JP2001195026A (en) Matrix type display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050401