JP2002278513A - Electro-optical device - Google Patents

Electro-optical device

Info

Publication number
JP2002278513A
JP2002278513A JP2001079599A JP2001079599A JP2002278513A JP 2002278513 A JP2002278513 A JP 2002278513A JP 2001079599 A JP2001079599 A JP 2001079599A JP 2001079599 A JP2001079599 A JP 2001079599A JP 2002278513 A JP2002278513 A JP 2002278513A
Authority
JP
Japan
Prior art keywords
current
electro
element
organic el
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001079599A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ito
Masaaki Kabe
Mitsuhiro Mukaidono
Koji Numao
信行 伊藤
正章 加邉
充浩 向殿
孝次 沼尾
Original Assignee
Sharp Corp
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, シャープ株式会社 filed Critical Sharp Corp
Priority to JP2001079599A priority Critical patent/JP2002278513A/en
Publication of JP2002278513A publication Critical patent/JP2002278513A/en
Application status is Pending legal-status Critical

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing

Abstract

PROBLEM TO BE SOLVED: To correct uneveness in luminance due to deviation in TFT characteristics by measuring the currents that flow in organic EL elements, without providing a current measuring element for each pixel in an active matrix constitution.
SOLUTION: In an electro-optical device, active elements and organic EL elements are arranged in a matrix manner, a plurality of current-supplying wires is arranged to supply currents to the organic EL elements and a current- measuring element is provided for each current supplying wire. A scanning voltage is given to one scanning line, prescribed data voltages are supplied to data lines in synchronism with the scanning voltage and current values that flow in the organic EL elements are measured by the current-measuring elements. Then, the scanning voltage is given to the same scanning lien and data signals, which make electro-optical elements in a zero gradation, are supplied to the data lines in synchronism with the scanning voltage. The above drive operations are conducted for each scanning line, and the data voltage to be given to each active element is corrected, based on the obtained current measurement values.
COPYRIGHT: (C)2002,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、有機EL素子等の電気光学素子を用いた電気光学装置に関する。 The present invention relates to relates to an electro-optical device using an electro-optical device such as organic EL devices.

【0002】 [0002]

【従来の技術】有機EL素子は、他に光源を必要とせずに自ら発光する自発光素子であるため、これをディスプレイに応用した場合には、液晶を凌ぐ、高コントラストで広視野角が得られる薄型ディスプレイが得られる可能性を秘めている。 BACKGROUND ART Organic EL elements are the self-luminous element by itself emission without the need for a light source other, when it is applying this to the display, surpass crystal, obtained wide viewing angle with high contrast a flat-screen display, which is has the potential to be obtained.

【0003】図1は、一般的な有機EL素子の構造を示す概略断面図である。 [0003] Figure 1 is a schematic sectional view showing a structure of a general organic EL device. ここでは、基板上に陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6および陰極7が順に積層されている。 Here, the anode 2, the hole injection layer 3 on the substrate, a hole transport layer 4, light-emitting layer 5, an electron-transporting layer 6 and a cathode 7 are sequentially stacked. そして、両電極2、7 Then, the two electrodes 2 and 7
に直流電圧を印加することにより、陽極2からホール(正孔)が、陰極7から電子が注入される。 By applying a DC voltage to, from the anode 2 hole (holes), electrons are injected from the cathode 7. この2つの再結合によって、蛍光分子の1重項励起状態が生成され、その一重項励起分子が基底状態に戻る際に、外部に光を放出するという一連の過程により、有機EL素子の発光が得られるという原理である。 These two recombination, singlet excited state of the fluorescent molecules is generated, when the singlet excited molecules return to the ground state, through a series of processes that emit light to the outside, the light emission of the organic EL device it is a principle that is obtained.

【0004】図2(a)〜図2(c)に、一般的な有機EL素子の特性を示す。 [0004] FIG. 2 (a) ~ FIG 2 (c), shows the characteristics of a general organic EL device. 図2(a)は印加電圧と輝度との関係を示し、図2(b)は印加電圧と電流との関係を示し、図2(c)は印加電圧と発光効率との関係を示す。 2 (a) shows the relationship between the applied voltage and the brightness, Fig. 2 (b) shows the relationship between the applied voltage and current, FIG. 2 (c) shows the relationship between the applied voltage and luminous efficiency. 輝度はある閾値電圧以上になると徐々に増加し、電流密度もある閾値電圧以上になると徐々に増加する。 Gradually increasing the luminance is equal to or higher than the threshold voltage in increases gradually becomes more than the threshold voltage with current density. また、発光効率はある電圧において最大値となる。 The light-emitting efficiency is maximum at a certain voltage.

【0005】近年では、有機EL素子を用いた単純マトリクス構成およびアクティブマトリクス構成のディスプレイが盛んに開発されている。 [0005] In recent years, a display of a simple matrix configuration and an active matrix configuration using the organic EL device have been actively developed.

【0006】図3に、一般的な単純マトリクス構成のディスプレイの回路構成を示す。 [0006] FIG. 3 shows a circuit configuration of a display of a general simple matrix configuration. ここでは、有機EL素子がマトリクス状に配置され、走査ドライバに接続された走査線とデータドライバに接続されたデータ線とが互いに交差(この例では直交)して設けられている。 Here, the organic EL elements are arranged in a matrix, and data lines connected to a scanning line connected and the data driver to the scan driver is provided to cross each other (orthogonal in this example). 走査線は有機EL素子の陰極に接続され、データ線は有機EL Scanning line is connected to the cathode of the organic EL device, the data lines of the organic EL
素子の陽極に接続されている。 It is connected to the anode of the device.

【0007】この単純マトリクス構成のディスプレイにおいては、各走査線を選択している期間のみ、それに接続された有機EL素子が発光する。 [0007] In the display of the simple matrix configuration, only the period in which the scanning lines are selected and connected to the organic EL element emits light to it. このため、走査線の本数が増えてデューティー比が上がると、各走査線を選択している期間が短くなって各画素の点灯時間が短くなり、その結果、ディスプレイの輝度減少を招く。 Therefore, when the duty ratio is increasing the number of scanning lines increases, lighting time of each pixel period is shorter that selecting each scanning line is shortened, resulting, leading to brightness reduction of the display. これを回避するため、有機EL素子への印加電圧を増やして各画素の輝度を上げると、一般的に発光効率は高電圧になるほど下がるため、消費電力の増大を招く。 To avoid this, when increasing the voltage applied to the organic EL device increases the brightness of each pixel, generally luminous efficiency due to drop as a higher voltage, causing an increase in power consumption.

【0008】図4に、一般的なアクティブマトリクス構成のディスプレイの回路構成を示す。 [0008] FIG. 4 shows a circuit configuration of a display of a general active matrix configuration. ここでは、マトリクス状に有機EL素子とそれを制御するアクティブ素子とが配置されている。 Here, an active element for controlling the organic EL element it in a matrix are arranged. 図5に示すように、アクティブ素子には、nチャンネルTFTであるスイッチングTFT As shown in FIG. 5, the active element is an n-channel TFT switching TFT
と、pチャンネルTFTであるドライビングTFTの2 And, 2 of the driving TFT is a p-channel TFT
種類が必要である。 Type is required. また、このアクティブ素子に走査電圧(ゲートを開く信号)を与える走査線およびデータ電圧(データ信号)を与えるデータ線が互いに交差(この例では直交)して設けられ、各々走査ドライバおよびデータドライバに接続されている。 Further, the active element in the scanning voltage scan lines and the data voltage applied (signal to open the gate) crossing the data line that supplies (data signal) is mutually (orthogonal in this example) and provided, on each scanning driver and data driver It is connected. さらに、有機EL素子にアクティブ素子を介して電流を供給するための電流供給線がデータ線に平行に設けられている。 Further, the current supply line for supplying a current through the active element is provided in parallel with the data lines to the organic EL element.

【0009】このアクティブマトリクス構成のディスプレイにおいては、走査線からスイッチングTFTのゲート信号が入力され、これと同期してデータ線からデータ信号に応じた量の電荷がキャパシタに入力される。 [0009] In the display of the active matrix configuration, the gate signal of the switching TFT from the scanning line is input, which synchronism with the amount of electric charge corresponding to the data signal from the data line is input to the capacitor. このキャパシタに蓄積された電荷量に応じてドライビングT Driving T according to the amount of charge accumulated in the capacitor
FTのソース・ドレイン間の抵抗値が決定され、電流供給線から有機EL素子に電流が供給されて有機EL素子が発光する。 Resistance between the source and drain of the FT is determined, the current to the organic EL element is supplied from the current supply line organic EL element emits light. そして、スイッチングTFTが閉じられた後も、ドライビングTFTを通して電流供給線から有機EL素子に電流供給されるため、次の走査まで、有機E Then, even after the switching TFT is closed, since it is a current supplied to the organic EL element from the current supply line through the driving TFT, until the next scan, the organic E
L素子を発光させることが可能となる。 The L element it is possible to emit light. このため、デューティー比が上がってもディスプレイの輝度減少を招くようなことはなく、低電圧で駆動できるため、低消費電力化が可能となる。 Therefore, never as causing a reduction in luminance of the display even if the duty ratio is increased, because it can drive at a low voltage, and low power consumption. また、この構成の場合、データ線からのデータ信号に応じてソース・ドレイン間の抵抗値が決まり、これにより有機EL素子に供給される電流量が決まるため、データ信号に応じた輝度が得られ、階調表示を行うことも可能である。 Also, in this configuration, determines the resistance between the source and drain in accordance with a data signal from the data line, thereby for the amount of current supplied to the organic EL element is determined, the luminance corresponding to the data signal is obtained it is also possible to perform the gradation display.

【0010】このように、アクティブマトリクス構成のディスプレイでは、単純マトリクス構成に比べて低消費電力化を図ることができるため、好ましい。 [0010] In this manner, in the display of an active matrix structure, which can reduce power consumption as compared with the simple matrix configuration, preferred. しかしながら、アクティブマトリクス構成では、ドライビングTF However, in the active matrix configuration, driving TF
Tの特性ばらつきのため、各画素において有機EL素子に流れる電流量が異なり、輝度むらが発生するという欠点があった。 Because variations in characteristics T, then different amount of current flowing through the organic EL element in each pixel, has a drawback that luminance unevenness occurs.

【0011】これを回避するために、例えば特開平11 In order to avoid this, for example, JP-A-11
−282420号公報では、予め表示データをEL表示パネルに入力して全画面を点灯させ、そのときの各画素の輝度を測定し、この測定値の平均値を算出してその差分をさらに算出し、その差分を補正値として補正情報メモリに記憶させる。 In -282420 discloses, to light the entire screen by entering the pre-display data to the EL display panel, measuring the luminance of each pixel at that time, further calculates the difference by calculating the average value of the measured values , it is stored in the correction information memory the difference as a correction value. そして、その補正値を表示データ(データ信号)に加算器にて加算し、EL表示パネルに入力することにより、表示ばらつきを補正している。 Then, added by the adder to the data display and the correction value (data signals), by inputting to the EL display panel, and corrects the display variation. これにより、TFTの特性ばらつきによるEL素子の輝度むらを補正することができる。 Thus, it is possible to correct the luminance unevenness of the EL element due to the characteristic variation of the TFT.

【0012】また、有機EL素子は発光時間と共に劣化し、発光輝度が減少してくるという問題もあった。 Further, the organic EL element is deteriorated with light emission time, emission luminance is a problem that comes to decrease. 一般的に各画素毎の発光頻度は異なるため、発光頻度の多い画素は次第に暗くなり、発光頻度の少ない画素は変化が少ないため、輝度むらが発生する。 Since In general, the emission frequency of each pixel different, often pixel emission frequency gradually becomes darker, less pixel emission frequency for a small change, luminance unevenness occurs.

【0013】これを回避するために、例えば特開平10 [0013] In order to avoid this, for example, JP-A-10
−254410号公報では、各有機EL素子を所定の電圧値で駆動したとき、有機EL素子に流れる電流値を計測し、この電流値をメモリに記憶させる。 In -254410 discloses, when driving the respective organic EL elements with a predetermined voltage value, the current flowing through the organic EL element was measured, and stores the current value in the memory. そして、その電流値に基づいてデータ信号を演算し、1フレーム期間内における発光時間を決めている。 Then, it calculates a data signal based on the current value, and determines the light emission time in one frame period. これにより、有機E As a result, the organic E
L素子の劣化による輝度むらを補正することができる。 It is possible to correct the luminance non-uniformity due to deterioration of the L elements.

【0014】さらに、特開2000−187467号公報では、点灯中の有機EL素子の各画素に流れる電流を検出する電流検出手段を設けて、検出した電流に応じて画素の点灯時間または点灯電流を制御している。 Furthermore, in JP 2000-187467, by providing a current detection means for detecting a current flowing through each pixel of the organic EL element during lighting, the lighting time or lighting current pixel according to the detected current and it is controlled. これにより、素子のばらつきや劣化による輝度変化を検出することができ、良好な階調制御を行うことができる。 Thus, it is possible to detect the change in luminance due to variation and degradation of the device, it is possible to perform good gradation control.

【0015】 [0015]

【発明が解決しようとする課題】単純マトリクス構成の場合、上述したような駆動方法のため、各走査線上の画素毎に順次発光し、走査が終了した走査線上の各有機E For simple matrix arrangement [0005] Since the driving method as described above, sequentially emit light for each pixel of each scan line, each organic E of the scanning line the scanning is finished
L素子には電流が流れず、発光しない。 No current flows through the L element, does not emit light. このため、特開2000−187467号公報のように各データ線毎に電流測定素子が存在すれば、各有機EL素子に流れる電流を検出することができる。 Therefore, it is possible if there is a current measuring element for each of the data lines as in JP 2000-187467, which detects a current flowing through each organic EL element.

【0016】しかし、この技術をアクティブマトリクス構成に適用するのは、従来では不可能であった。 [0016] However, is to apply to active matrix configuration of this technology, it was not possible with the conventional. その理由は、スイッチングTFTの走査が終了した後も、ドライビングTFTを通して有機EL素子に電流が供給されるため、各電流供給線毎に電流測定素子を設けた場合、 This is because, even after the scanning of the switching TFT is completed, current is supplied to the organic EL element through the driving TFT, the case of providing a current measurement device for each current supply line,
その電流供給線に接続された全ての有機EL素子に流れる電流値の総和を測定してしまうからである。 Because thus measures the sum of the current flowing in all the organic EL elements connected to the current supply line.

【0017】このため、各画素の有機EL素子に流れる電流を測定しようとした場合、特開平10−25441 [0017] When an attempt is made to measure the current flowing Therefore, the organic EL element of each pixel, JP 10-25441
0号公報のように、各画素毎に電流測定素子を配置する必要があった。 As in the 0 JP, it is necessary to arrange the current measuring element for each pixel. しかし、各画素毎に電流測定素子を配置すると、開口率の低下を招き、また、各画素の回路構成も複雑になるため、製造歩留まり減少の要因となる。 However, placing the current measuring element for each pixel, cause a decrease in aperture ratio, also, since the complicated circuit configuration of each pixel becomes a factor in the manufacturing yield decreases. さらに、各画素毎の電流測定素子自体にも特性ばらつきがあるため、正確な電流検出は不可能である。 Furthermore, because of the characteristic variation in the current measuring device itself for each pixel, an accurate current detection impossible.

【0018】本発明は、このような従来技術の課題を解決するべくなされたものであり、アクティブマトリクス構成において、各画素毎に電流測定素子を設けなくても、有機EL素子や無機EL素子等の電気光学素子に流れる電流を測定することができ、TFT特性のばらつきによる輝度むらを補正できる電気光学装置を提供することを目的とする。 [0018] The present invention solve such problems of the conventional art, in an active matrix configuration, without providing a current measuring element for each pixel, an organic EL element or an inorganic EL element or the like it is possible to measure the current flowing in the electro-optical element, and an object thereof is to provide an electro-optical device capable of correcting the luminance unevenness caused by variations in the TFT characteristics.

【0019】 [0019]

【課題を解決するための手段】本発明の電気光学装置は、基板上に、アクティブ素子および該アクティブ素子によって制御される電気光学素子がマトリクス状に配置されていると共に、該アクティブ素子に走査電圧を与える走査線およびデータ電圧を与えるデータ線が該アクティブ素子の近傍を通って互いに交差するように配置され、さらに、該電気光学素子に該アクティブ素子を介して電流を供給するための複数の電流供給線が配置され、 Electro-optical device of the present invention SUMMARY OF THE INVENTION may, on a substrate, the electro-optical element that is controlled by an active element and said active element are arranged in a matrix, the active elements in the scanning voltage scanning lines and providing data line that supplies data voltages are arranged to intersect with each other through the vicinity of the active element, further, a plurality of current for supplying an electric current through the active element in electro-optical element supply lines are arranged,
各電流供給線毎に電流を測定するための電流測定素子が設けられた電気光学装置において、各電流測定素子によって、その電流測定素子が配置された電流供給線に接続された複数の電気光学素子の各々に流れる電流値を測定するべく、1本の走査線に走査電圧を与え、そのタイミングと同期して、各データ線に所定のデータ電圧を供給し、該電流測定素子により該電気光学素子に流れる電流値を測定するステップと、同一の走査線に再度走査電圧を与え、そのタイミングと同期して、各データ線に該電気光学素子を0階調にするデータ信号を供給するステップとを各走査線に対して行って、得られた電流測定値に基づいて、各電気光学素子に流れる電流が等しくなるように、各アクティブ素子に与えるデータ電圧を補正し、 In the electro-optical device current measuring device is provided for measuring the current in each current supply lines, by the current measuring device, connected to a plurality of the electro-optical element to a current supply line to the current measuring elements are arranged in order to measure the current flowing through the respective, given scan voltage to one scanning line, in synchronism with the timing, and supplies a predetermined data voltage to the data lines, the electro-optical element by said current measuring device measuring a current value flowing in, give again scan voltage to the same scanning line, in synchronism with the timing, and providing a data signal to the electro-optical element to 0 gradation to the data lines performed on each scan line, based on the current measurement values ​​obtained, so that the current flowing in the electro-optical elements are equal, correcting the data voltage applied to each active element,
そのことにより上記目的が達成される。 The objects can be achieved.

【0020】上記構成によれば、後述する実施形態1に示すように、電流測定素子が各電流供給線毎に設けられている構成において、各電気光学素子に流れる電流値を測定してデータ電圧(データ信号)を補正することが可能である。 According to the above configuration, as shown in the embodiment 1 described later, in a configuration in which a current measuring element is provided for each current supply line, measured and data voltage value of the current flowing in the electro-optical elements it is possible to correct (data signal).

【0021】さらに、前記電流供給線と交差する方向に前記電気光学素子の輝度値を測定し、得られた輝度測定値と前記電流測定値とに基づいて、各電気光学素子の輝度が等しくなるように、前記アクティブ素子に与えるデータ電圧を補正してもよい。 Furthermore, the measured luminance value of the electro-optical element in a direction intersecting the current supply line, on the basis of the obtained luminance measured value and the current measurement value, the luminance of the electro-optical elements is equal to as described above, the data voltage applied to the active element may be corrected.

【0022】上記構成によれば、後述する実施形態2に示すように、電流測定素子自体にばらつきがあっても、 According to the above construction, as shown in the embodiment 2 described later, even if there are variations in the current measuring element itself,
電気光学素子の発光輝度にばらつきが生じるのを防ぐことが可能である。 It is possible to prevent the variation in emission luminance of the electro-optical element is produced.

【0023】本発明の電気光学装置は、基板上に、アクティブ素子および該アクティブ素子によって制御される電気光学素子がマトリクス状に配置されていると共に、 The electro-optical device of the present invention, on a substrate, the electro-optical elements are arranged in a matrix is ​​controlled by an active element and said active element,
該アクティブ素子に走査電圧を与える走査線およびデータ電圧を与えるデータ線が該アクティブ素子の近傍を通って互いに交差するように配置され、さらに、該電気光学素子に該アクティブ素子を介して電流を供給するための複数の電流供給線が配置され、該電流供給線の電流を測定するために1つの電流測定素子が設けられた電気光学装置において、該電流測定素子によって複数の電気光学素子の各々に流れる電流値を測定するべく、1本の走査線に複数回走査電圧を与え、各回のタイミングと同期して、各々異なる1本のデータ線に所定のデータ電圧を供給し、その他のデータ線には該電気光学素子を0階調にするデータ信号を供給して、該電流測定素子により該電気光学素子に流れる電流値を測定するステップを各走査線に対して行っ Data line that supplies scan lines and the data voltage to be applied to scan voltage to the active element is arranged so as to intersect each other through the vicinity of the active element, further, it supplies a current through the active element in electro-optical element are arranged a plurality of current supply lines for, in the electro-optical device in which one current measuring device is provided for measuring the current of the current supply lines, to each of the plurality of electro-optical elements by said current measuring device in order to measure the current flowing, giving multiple scanning voltage to one scanning line, in synchronism with each time of the timing, and supplies a predetermined data voltage to each different one of the data lines, the other data lines and supplying data signals to the electro-optical element to 0 gradation, performed the step of measuring the current flowing through the electro-optical element by said current measuring element for each scan line 、得られた電流測定値に基づいて、 , Based on the current measurements obtained,
各電気光学素子に流れる電流が等しくなるように、各アクティブ素子に与えるデータ電圧を補正し、そのことにより上記目的が達成される。 As the current flowing in the electro-optical elements are equal, correcting the data voltage applied to each active element, the object can be achieved.

【0024】上記構成によれば、後述する実施形態3に示すように、1つの電流測定素子により各電気光学素子に流れる電流値を測定してデータ電圧(データ信号)を補正することが可能である。 According to the above construction, as shown in the embodiment 3 described later, by measuring the current flowing through one current measurement element to the electro-optical element data voltage (data signal) can be corrected is there.

【0025】本発明の電気光学装置は、基板上に、アクティブ素子および該アクティブ素子によって制御される電気光学素子がマトリクス状に配置されていると共に、 The electro-optical device of the present invention, on a substrate, the electro-optical elements are arranged in a matrix is ​​controlled by an active element and said active element,
該アクティブ素子に走査電圧を与える走査線およびデータ電圧を与えるデータ線が該アクティブ素子の近傍を通って互いに交差するように配置され、さらに、該電気光学素子に該アクティブ素子を介して電流を供給するための複数の電流供給線が配置され、該電流供給線の電流を測定するために1つの電流測定素子が設けられた電気光学装置において、各電流供給線毎に該電気光学素子よりも基板縁側にTFT素子が設けられ、該電流測定素子によって複数の電気光学素子の各々に流れる電流値を測定するべく、1本の走査線に走査電圧を与えると共に各データ線に所定のデータ電圧を供給し、各電流供給線毎に設けた前記TFT素子を順次走査することにより、該電流測定素子により該電気光学素子に流れる電流値を順次測定するステップ Data line that supplies scan lines and the data voltage to be applied to scan voltage to the active element is arranged so as to intersect each other through the vicinity of the active element, further, it supplies a current through the active element in electro-optical element They are arranged a plurality of current supply lines for the substrate in the electro-optical device in which one current measuring device is provided for measuring the current of the current supply line, than the electro-optic element for each current supply line TFT elements are provided in the edge, in order to measure the current value flowing to each of the plurality of electro-optical elements by said current measuring device, supplying a predetermined data voltage to each data line with providing scan voltage to one scanning line step, and by sequentially scanning the TFT element provided for each current supply lines, for sequentially measuring a current flowing through the electro-optical element by said current measuring device 各走査線に対して行って、得られた電流測定値に基づいて、各電気光学素子に流れる電流が等しくなるように、各アクティブ素子に与えるデータ電圧を補正し、そのことにより上記目的が達成される。 Performed on each scan line, based on the obtained current measurement values, so that the current flowing through the electro-optical elements are equal, correcting the data voltage applied to each active element, the object is achieved by the It is.

【0026】上記構成によれば、後述する実施形態4に示すように、1つの電流測定素子により各電気光学素子に流れる電流値を測定してデータ電圧(データ信号)を補正することが可能となる。 According to the above construction, as shown in the embodiment 4 described later, it is possible to correct the value of a current flowing through one current measurement element to the electro-optical elements measured data voltage (data signal) and Become.

【0027】 [0027]

【発明の実施の形態】以下に、本発明の実施の形態について、図面を参照しながら説明する。 The following DETAILED DESCRIPTION OF THE INVENTION] Embodiments of the present invention will be described with reference to the drawings.

【0028】(実施形態1)図6は、本発明の電気光学装置の一実施形態である有機ELパネルの構成を説明するための回路図である。 [0028] (Embodiment 1) FIG. 6 is a circuit diagram for explaining the configuration of an organic EL panel which is an embodiment of an electro-optical device of the present invention. この有機ELパネルは、基板上に、アクティブ素子とそれによって制御される有機EL The organic EL panel has, on a substrate, the organic EL is controlled by it and active element
素子がマトリクス状に配置されている。 Elements are arranged in a matrix. 有機EL素子は、図1に示したように、基板1上に陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6および陰極7を順に積層して構成されている。 The organic EL element, as shown in FIG. 1, an anode 2 on a substrate 1, a hole injection layer 3, hole transport layer 4, light-emitting layer 5, formed by stacking an electron-transporting layer 6 and a cathode 7 sequentially ing. また、アクティブ素子は、図5に示したように、スイッチングTFT、ドライビングTFTおよびキャパシタから構成されている。 Further, the active element, as shown in FIG. 5, the switching TFT, and a driving TFT and a capacitor. また、アクティブ素子に走査電圧を与える走査線およびデータ電圧を与えるデータ線がアクティブ素子の近傍を通って互いに交差するように配置されている。 Further, the data line for providing a scan line and a data voltage to be applied to the scanning voltage to the active element is arranged so as to intersect each other through the vicinity of the active element. 走査線は走査ドライバに接続され、データ線はデータドライバに接続されている。 Scanning line is connected to the scan driver, the data line is connected to the data driver. さらに、電気光学素子にアクティブ素子を介して電流を供給するための複数の電流供給線が配置されている。 Further, a plurality of current supply wire for supplying an electric current through the active element is disposed on the electro-optical element.

【0029】さらに、本実施形態では、各電流供給線毎に電流を測定するための電流測定素子が設けられている。 Furthermore, in the present embodiment, the current measuring element for measuring the current in each current supply lines are provided. この電流測定素子としては、例えば図18に示すような構成のものを用いることができる。 As the current measuring device, it can be used, for example, as shown in FIG. 18 configuration. 電流測定素子には、電流測定結果を記憶するためのメモリ素子が接続され、メモリ素子は、演算素子を介してデータドライバに接続されている。 The current measuring device, a memory device for storing the current measurement are connected, the memory element is connected to the data driver through the operation element.

【0030】次に、このように構成された有機ELパネルにおいて、TFT特性のばらつきによる有機EL素子の輝度むらを補正する方法について説明する。 Next, in the thus-configured organic EL panel, a method for correcting the luminance unevenness of the organic EL element due to variations in the TFT characteristics. まず、各有機EL素子に流れる電流値を測定する方法について説明する。 First, a method for measuring the current flowing through the organic EL element. まず、第一の走査線に走査電圧を与えて、第一の走査線上のスイッチングTFTのゲートをオープンにする。 First, by applying scanning voltage to the first scan lines, to open the gate of the switching TFT of the first scan line. これと同期して、各データ線を通して所定のデータ電圧(例えば、電流−輝度特性において輝度を等分割した場合に相当する電流を実現するための電圧)を入力する。 In synchronization with this, a predetermined data voltage through the data lines (e.g., current - corresponding voltage to achieve the current when equally dividing the luminance in the luminance characteristics) to enter. これにより、ドライビングTFTのゲートがキャパシタに蓄積された電荷量に応じてオープンされ、電流供給線から第一の走査線上の有機EL素子に電流が流れ込む。 Thus, the gate of the driving TFT is opened depending on the amount of charge stored in the capacitor, a current flows from the current supply line to the organic EL device of the first scan line. このときのドライビングTFTのゲート電圧はデータ電圧とほぼ等しく、それに応じた電流が有機EL素子に流れる。 The gate voltage of the driving TFT at this time is approximately equal to the data voltage, a current flows through the organic EL element accordingly. このときに各有機EL素子に流れる電流量を電流測定素子によって測定し、測定結果をメモリ素子に記憶させる。 The amount of current flowing through the organic EL element was measured by the current measuring device at this time, and stores the measurement result in the memory device. その後、再び第一の走査線に走査電圧を与えて、第一の走査線上のスイッチングTFTのゲートをオープンにする。 Then, giving again scan voltage to the first scan lines, to open the gate of the switching TFT of the first scan line. これと同期して、各データ線を通して、有機EL素子を0階調とするデータ電圧を入力する。 In synchronization with this, through each data line, and inputs the data voltage to the organic EL element and the 0 tone. これにより、第一の走査線上の有機EL素子に電流が流れなくなる。 Thus, no current flows to the organic EL device of the first scan line.

【0031】以上の走査を順次、他の走査線についても行っていく。 [0031] The above scanning sequentially, will be performed on the other scan line. これにより、各有機EL素子に流れる電流値を全て測定することが可能になる。 Thus, it becomes possible to measure all of the current flowing through the organic EL element.

【0032】例えば、第一のデータ線上の各有機EL素子(有機EL(1、1)、有機EL(1、2)、・・ [0032] For example, each of the organic EL device of the first data line (organic EL (1, 1), an organic EL (1, 2), · ·
・、有機EL(1、n))に流れる電流量は、電流測定素子1により測定される。 - the amount of current flowing through the organic EL (1, n)) is measured by the current measuring element 1. この電流量は、縦軸にlog The amount of current, log the vertical axis
(I)(Iは電流量)をとると、図7に示すようにばらつきがある。 (I) (I is a current amount) Taking, there are variations, as shown in FIG. これは、ドライビングTFTの特性ばらつきによるものである。 This is due to variations in characteristics of a driving TFT. このように各有機EL素子に流れる電流量が異なると、得られる輝度も異なり、輝度むらが発生する。 If the amount of current flowing in this manner to each organic EL element is different, different also obtained luminance, luminance unevenness occurs.

【0033】次に、この電流値ばらつきを補正して、均一な輝度を得る方法について説明する。 Next, the current value variation is corrected, describes a method of obtaining uniform brightness. 一般的なTFT General TFT
において、ゲート電圧:V gateと流れる電流値:log In the gate voltage: current flowing V Gate: log
(I)の関係は、図8に示すようになる。 Relationship (I) is as shown in FIG. この図8において、傾いている部分は、 In FIG. 8, the portion is inclined, the

【0034】 [0034]

【数1】 [Number 1]

【0035】で表される直線により定義することができる。 It can be defined by a straight line represented by [0035].

【0036】TFT素子の特性が異なると、図9に示すように、特性に差異が生じる。 [0036] When the characteristics of the TFT element is different, as shown in FIG. 9, a difference in characteristics. このため、同一のゲート電圧を入力しても、流れる電流値にばらつきが生じるのである。 Therefore, entering the same gate voltage is the variation in the current flowing occurs. 但し、各TFTにおいて、上記式(1)のaについてはほとんど変わらない。 However, in each TFT, almost unchanged for a in the above formula (1). また、図6に示したような回路構成においては、ゲート電圧はデータ信号(データ電圧)に等しいと考えられる。 Further, in the circuit configuration shown in FIG. 6, the gate voltage is considered to be equal to the data signal (data voltage).

【0037】ここで、説明を簡単にするために、図6における有機EL(1、1)、有機EL(1、2)および有機EL(1、3)の3つの有機EL素子に流れる電流値(図7)のみを考え、これを基にして輝度を補正する方法を考える。 [0037] Here, in order to simplify the description, the organic EL (1, 1) in FIG. 6, an organic EL (1, 2) and an organic value of the current flowing through the three organic EL elements EL (1, 3) (Figure 7) considering only, consider a method for correcting the luminance on the basis of this. これらは、同一のデータ電圧、すなわち、同一のゲート電圧(以下、V cとする)をドライビングTFTに与えたときに流れた電流値であり、各々l These same data voltage, i.e., the same gate voltage (hereinafter referred to as V c) is a current value flowing when given to driving TFT, respectively l
og(I 1 )、log(I 2 )およびlog(I 3 )とする。 og (I 1), and log (I 2) and log (I 3). これを横軸:ゲート電圧(V gate )、縦軸:電流量log(I))としてグラフにプロットすると、図10 This horizontal axis: a gate voltage (V gate), vertical axis: When plotted on a graph as a current amount log (I)), 10
に示すようになる。 As it is shown in. TFTの電流特性は、図8に示したように分かっているので、図10の各点を通過するようにすると、図11に示すようになる。 Current characteristic of the TFT, since known as shown in FIG. 8, when to pass through the respective points in FIG. 10, as shown in FIG. 11. このとき、傾いている部分の直線は、 In this case, straight line is inclined portion,

【0038】 [0038]

【数2】 [Number 2]

【0039】のように表される。 It represented as [0039].

【0040】ここで、図7に示すように、基準の電流値を有機EL(1、2)に流れる電流と決めて、有機EL [0040] Here, as shown in FIG. 7, the reference current value decided that the current flowing through the organic EL (1, 2), the organic EL
(1、1)および有機EL(1、3)においても有機E (1,1) and an organic E also in an organic EL (1, 3)
L(1、2)と同一の電流値が流れるゲート電圧を上記式(2)および上記式(4)から求めると、 When obtaining L the gate voltage the same current flows value (1,2) the formula (2) and from the equation (4),

【0041】 [0041]

【数3】 [Number 3]

【0042】となる。 The [0042]. このゲート電圧を各々有機EL Each organic EL this gate voltage
(1、1)および有機EL(1、3)のドライビングT (1,1) and driving T organic EL (1, 3)
FTに入力すれば、有機EL(1、2)と同一の電流が流れ、均一な輝度が得られる。 If the input to the FT, the same current as organic EL (1, 2) flows, a uniform luminance can be obtained. なお、aは素子間のばらつきが少ないため、いずれか一つのTFTで予め測定しておくことができる。 Incidentally, a can be measured in advance because a small variation between elements, any one of the TFT.

【0043】このように同一のデータ電圧(ゲート電圧)をドライビングTFTに与えた場合に、流れる電流値が異なる場合でも、簡単な演算によりデータ電圧を補正することにより、有機EL素子に同一の電流を流して、均一な輝度を得られるようにすることができる。 [0043] When given in this manner the same data voltage (gate voltage) to the driving TFT, even if the current flowing through different, by correcting the data voltages by a simple operation, the same current to the organic EL device the flowing, can be made to obtain a uniform brightness.

【0044】他のデータ電圧(ドライビングTFTのゲート電圧)の補正においては、上記電流測定を再び行ってもよいが、上記式(2)〜上記式(4)を利用して、 [0044] In the correction of the other data voltage (the gate voltage of the driving TFT), may be again subjected to the above current measurement, but by using the equation (2) to the above equation (4),
計算により求めることもできる。 It can also be obtained by calculation. 例えば、有機EL For example, organic EL
(1、2)において、ゲート電圧V c 'のとき、流れる電流は In (1,2), when the gate voltage V c ', the current flowing through the

【0045】 [0045]

【数4】 [Number 4]

【0046】で表される。 Represented by [0046]. 有機EL(1、1)および有機EL(1、3)において、有機EL(1、2)と同一の電流値が流れるゲート電圧を上記式(1)および上記式(3)から求めると、 In the organic EL (1, 1) and an organic EL (1, 3), when determining the gate voltage the same current flows value organic EL (1, 2) from the above equation (1) and the formula (3),

【0047】 [0047]

【数5】 [Number 5]

【0048】となる。 The [0048]. このゲート電圧を各々有機EL Each organic EL this gate voltage
(1、1)および有機EL(1、3)のドライビングT (1,1) and driving T organic EL (1, 3)
FTに入力すれば、有機EL(1、2)と同一の電流が流れ、均一な輝度が得られる。 If the input to the FT, the same current as organic EL (1, 2) flows, a uniform luminance can be obtained. このように、一旦あるデータ電圧で電流測定を行っておけば、他のデータ電圧における補正も、この電流値に基づいて行うことができる。 Thus, if performing current measurement at once certain data voltage, the correction in the other data voltage can be made based on this current value.

【0049】第一の走査線上の他の有機EL素子、および他の走査線上の有機EL素子においても、簡単な演算により同一の電流が流れるデータ電圧(ドライビングT [0049] Another organic EL device of the first scanning line, and also in the organic EL device of the other scan lines, simple data voltages flowing the same current by the operation (Driving T
FTのゲート電圧)を決定することができ、これによって均一な輝度を得ることができる。 It can determine the gate voltage) of the FT, which makes it possible to obtain uniform luminance.

【0050】上記電流測定素子により得られた電流測定結果は、図6に示した結果を記憶するメモリ素子に記憶され、演算素子によりデータ信号の補正が行われ、補正されたデータ信号がデータドライバに送られる。 The resulting current measurements by the current measuring device, is stored in a memory device for storing the results shown in FIG. 6, the correction of the data signal is performed by the processing elements, the corrected data signal is a data driver It is sent to. 以上の過程により、均一な階調表示を行うことができる。 Through the above process, it is possible to perform uniform gradation display. なお、上述のような輝度補正は、ユーザが使用前や使用中に適宜行うことができる。 Note that the luminance correction as described above may be carried out user properly during use or before use.

【0051】(実施形態2)上記実施形態1において、 [0051] In Embodiment 2 Embodiment 1,
データ線に沿った方向の有機EL素子の輝度補正は、各電流測定素子によって測定される電流値によって行われる。 Luminance correction in the direction of the organic EL element along the data line is performed by a current value measured by the current measuring element. よって、各電流測定素子自体にばらつきが無い場合には、実施形態1で説明した方法により、全ての有機E Therefore, if the variation is not in the current measuring device itself, by the method described in Embodiment 1, all the organic E
Lにおいて均一な輝度を得ることができる。 It is possible to obtain uniform brightness in the L.

【0052】しかし、電流測定素子が基板に作り込まれている場合には、電流測定素子自体に特性ばらつきがあり、測定自体にばらつきが生じているおそれがある。 [0052] However, when the current measuring element is built into the substrate, there is characteristic variation in the current measuring device itself, there is a possibility that variation occurs in the measurement itself. この場合、実施形態1のようにデータ電圧を補正しても、 In this case, it is corrected data voltage as in the embodiment 1,
走査線に沿った方向(電流供給線を横切る方向)において、有機EL素子の輝度が異なる。 In the direction along the scanning lines (direction crossing the electric current supply line), the luminance of the organic EL element is different. 例えば、有機EL For example, organic EL
(1、1)、有機EL(2、1)、・・・、有機EL (1, 1), an organic EL (2,1), ···, an organic EL
(m、1)において、輝度が同一となるようにデータ電圧を入力しても輝度が異なることになる。 (M, 1) in the luminance also becomes the brightness differ by entering the data voltage to be the same.

【0053】この電流測定素子自体の特性ばらつきを補正するためには、実施形態1のような補正を行って補正された所定のデータ電圧を入力した後、図12に示すように、走査線に沿った方向に対して画素の輝度測定を行う。 [0053] In order to correct the variation in characteristics of the current measuring device itself, after entering the predetermined data voltage corrected is corrected by performing such as the embodiment 1, as shown in FIG. 12, the scan line performing luminance measurements of pixels for along the direction. この輝度測定によって、有機EL(1、1)、有機EL(2、1)、・・・、有機EL(m、1)の輝度が例えば図13に示すようになった場合を考える。 This luminance measurement, organic EL (1, 1), an organic EL (2,1), · · ·, consider the case where the luminance of the organic EL (m, 1) becomes as shown in FIG. 13 for example.

【0054】以下では、説明の簡略化のために、有機E [0054] In the following, for simplicity of explanation, the organic E
L(1、1)および有機EL(2、1)について考える。 L (1, 1) and considered organic EL (2,1). 有機ELの電流−輝度特性は、図14に示すように、ほぼ直線で近似することができる。 The organic EL current - luminance characteristics, as shown in FIG. 14, can be approximated by a straight line. ここで、有機E Here, the organic E
L(1、1)の輝度をK 1 、有機EL(2、1)の輝度K 2とし、そのときの電流値をI K1 、I K2とする。 The brightness of the L (1,1) K 1, the luminance K 2 of the organic EL (2,1), the current value at that time and I K1, I K2. また、この輝度における有機EL(1、1)のドライビングTFTのゲート電圧をV K1 、有機EL(2、1)のドライビングTFTのゲート電圧をV K2とする。 Further, the gate voltage of the driving TFT organic EL (1, 1) in the luminance V K1, the gate voltage of the driving TFT organic EL (2,1) and V K2. この場合、ゲート電圧と有機ELに流れる電流の関係は図15 In this case, the relationship between the current flowing in the gate voltage and the organic EL Figure 15
に示したようなものになる。 Something like shown in.

【0055】よって、有機EL(1、1)の輝度レベルを基準輝度として、上記実施形態1と同様の考え方により、有機EL(1、1)のドライビングTFTのゲート電圧を [0055] Therefore, the reference luminance brightness levels of organic EL (1, 1), the same concept as the first embodiment, the gate voltage of the driving TFT organic EL (1, 1)

【0056】 [0056]

【数6】 [6]

【0057】にすれば、有機EL(1、1)および有機EL(2、1)に流れる電流値が一致し、輝度を同じにすることができる。 If the [0057], the value of current flowing through the organic EL (1, 1) and an organic EL (2,1) coincide, it is possible to equalize the luminance. 第一のデータ線上の他の有機EL素子においても、上記と同様に補正を行うことにより、第二のデータ線上の有機EL素子と同一の輝度が得られる。 In other organic EL elements of the first data line, by performing the correction as described above, the same luminance and the organic EL element of the second data line is obtained.

【0058】このように、電流測定素子自体に特性ばらつきがあり、走査線に沿った方向において有機EL素子の発光輝度にばらつきが生じている場合にも、以上のように補正を行うことにより、均一な輝度を得ることができる。 [0058] Thus, there is a characteristic variation in the current measuring device itself, even if variation occurs in the light emission luminance of the organic EL element in the direction along the scan lines, by performing the correction as described above, it is possible to obtain a uniform brightness.

【0059】(実施形態3)本実施形態では、図16に示すように、1つの電流測定素子により各有機EL素子に流れる電流を測定する例について説明する。 [0059] In Embodiment 3 In this embodiment, as shown in FIG. 16, an example of measuring the current flowing through one current measuring device in the organic EL element. この場合、実施形態1のように、走査線の走査と同期して、全てのデータ線に所定の電圧を与えたのでは、各々の有機EL素子に流れる電流を測定することができない。 In this case, as in the embodiment 1, in synchronism with the scanning of the scanning lines, than giving a predetermined voltage to all data lines, it is impossible to measure a current flowing in each of the organic EL element. そこで、本実施形態では、以下のような手順により有機EL Therefore, in this embodiment, the organic EL by the following procedure
素子に流れる電流を測定する。 Measuring the current flowing through the device.

【0060】まず、第一の走査線に走査電圧を与えて、 [0060] First, by applying scanning voltage to the first scan line,
第一の走査線上のスイッチングTFTのゲートをオープンにする。 The gate of the switching TFT of the first scan line to open. これと同期して、第一のデータ線に所定のデータ電圧を入力し、それ以外のデータ線には有機EL素子を0階調とするデータ電圧を入力する。 In synchronization with this, the first data line to input predetermined data voltage, the other data lines for inputting the data voltage to the organic EL element and the 0 tone. これにより、 As a result,
有機EL(1、1)に流れる電流を電流測定素子により測定することができる。 The current flowing through the organic EL (1, 1) can be measured by the current measuring element. その後、再び第一の走査線に走査電圧を与えて、第一の走査線上のスイッチングTFT Then, giving again scan voltage to the first scanning line, the switching TFT of the first scan line
のゲートをオープンにする。 To open the gate. これと同期して、第二のデータ線に所定のデータ電圧を入力し、それ以外のデータ線には有機EL素子を0階調とするデータ電圧を入力する。 In synchronization with this, the second data line to input predetermined data voltage, the other data lines for inputting the data voltage to the organic EL element and the 0 tone. これにより、有機EL(1、2)に流れる電流を電流測定素子により測定することができる。 Thus, it is possible to measure the current flowing through the organic EL (1, 2) by the current measuring element. 以上の処理を順次、他のデータ線にについて繰り返すことにより、第一の走査線上の各有機EL素子に流れる電流を1つの電流測定素子により測定することができる。 The above processing sequence, by repeating the other data lines, the current flowing through each organic EL device of the first scan line can be measured by a single current measuring element. 他の走査線上の各有機EL素子に流れる電流を測定する際には、以上の処理を順次、他の走査線について行えばよい。 When measuring the current flowing through each organic EL element of another scanline, the above described process, may be performed for other scanning lines. これにより、各有機EL素子に流れる電流値を全て測定することが可能になる。 Thus, it becomes possible to measure all of the current flowing through the organic EL element.

【0061】このようにして得られた各有機EL素子に流れる電流値をメモリに保存し、これに基づいて上記実施形態1に示したようにデータ電圧を補正することにより、均一な階調表示を得ることができる。 [0061] By such a current value flowing to each organic EL element thus obtained was stored in the memory, it corrects the data voltage as shown in the first embodiment based on this, a uniform gray scale display it is possible to obtain.

【0062】(実施形態4)本実施形態では、図17に示すように、1つの電流測定素子により各有機EL素子に流れる電流を測定する他の例について説明する。 [0062] In Embodiment 4 This embodiment, as shown in FIG. 17, a description will be given of another example of measuring a current flowing through one current measuring device in the organic EL element. ここでは、各電流供給線毎にTFT素子が配置されている。 Here, TFT elements are arranged in each current supply line.
この場合の電流測定方法について、以下に説明する。 For a method for measuring current in this case it will be described below.

【0063】初期状態においては、各電流供給線に配置されたTFT素子のゲートは閉じられている。 [0063] In the initial state, the gate of the TFT elements disposed in the current supply line is closed. その状態において、まず、第一の走査線に走査電圧を与えて、第一の走査線上のスイッチングTFTのゲートをオープンにし、これと同期して、第一のデータ線に所定のデータ電圧を入力する。 In this state, first, by applying scanning voltage to the first scan line, the gate of the switching TFT of the first scan line in the open, in synchronization with this, inputs predetermined data voltage to the first data line to. これにより、第一の走査線上のドライビングTFTのゲートはオープンになるが、各電流供給線に配置されたTFTのゲートが全て閉じられているため、第一の走査線上の有機EL素子には電流が流れない。 Thus, the gate of the first scan line of the driving TFT becomes an open, since the gate of the TFT arranged in each current supply lines are all closed, the organic EL device of the first scanning line current It does not flow. 次に、第一の電流供給線に配置されたTFTのゲートをオープンにする。 Then, to open the gates of the deployed TFT in a first current supply line. これにより、有機EL素子(1、 Thus, the organic EL device (1,
1)のみに電流が流れる。 1) only to the current flows. このときの電流を電流測定素子により測定する。 The current at this time is measured by a current measuring element. この後、順次第二の電流供給線に配置されたTFT、第三の電流供給線に配置されたTF Thereafter, sequential second current supply line arranged TFT, a third TF disposed current supply line of
T、・・・とゲートをオープンにし、このときに各有機EL素子に流れる電流を測定することにより、第一の走査線上の各有機EL素子に流れる電流値を1つの電流測定素子により測定することができる。 T, the open ... and gate, by measuring the current flowing through each organic EL element at this time, to measure the current flowing through the organic EL elements of the first scanning line by one current measuring device be able to. この後、再び第一の走査線を走査して、各データ線を通して有機EL素子が0階調となるデータ電圧を入力する。 Thereafter, again scanning the first scan line, the organic EL device to input a data voltage becomes zero gradation through each data line. そして、第二の走査線、第三の走査線、・・・と順次以上の処理を繰り返すことにより各有機EL素子に流れる電流値を全て測定することが可能になる。 Then, the second scan line, a third scan line, it becomes possible to measure all of the current flowing through the organic EL element by repeating the sequential above processing,.

【0064】このようにして得られた各有機EL素子に流れる電流値をメモリに保存し、これに基づいて上記実施形態1に示したようにデータ電圧を補正することにより、均一な階調表示を得ることができる。 [0064] By such a current value flowing to each organic EL element thus obtained was stored in the memory, it corrects the data voltage as shown in the first embodiment based on this, a uniform gray scale display it is possible to obtain.

【0065】なお、上記実施形態では、電気光学光学素子として有機EL素子を用いた電気光学装置の例について説明したが、本発明は、無機EL素子を用いた電気光学装置に対しても適用可能である。 [0065] In the above embodiment, an example has been described of the electro-optical device using an organic EL element as an electro-optical-optical device, the present invention can also be applied to an electro-optical device using an inorganic EL element it is.

【0066】 [0066]

【発明の効果】以上詳述したように、本発明によれば、 As described above in detail, according to the present invention,
アクティブマトリクス構成の有機EL素子において、各電流供給線毎に電流測定素子を設けた場合でも、各有機EL素子に流れる電流を測定し、この電流値を用いて輝度ばらつきを補正することができる。 In the organic EL device of the active matrix configuration, even in the case where the current measuring element for each current supply line, the measurement of the current flowing through the organic EL element, it is possible to correct the luminance variation with the current value. さらに、電流測定素子を1つだけ設けた場合でも、各有機EL素子に流れる電流を測定し、この電流値を用いて輝度ばらつきを補正することができる。 Furthermore, it is possible even in the case where the current measuring device is only one, the measurement of the current flowing through the organic EL element, to correct the luminance variation with the current value. 従って、各画素毎に電流測定素子を配置する必要があった従来技術に比べて、開口率を向上し、回路構成を簡略化して歩留まりを向上させることができる。 Therefore, compared to the prior art it was necessary to arrange the current measuring element for each pixel, to improve the aperture ratio, it is possible to improve the yield by simplifying the circuit configuration. さらに、電流測定素子の特性ばらつきによる電流測定ばらつきを防いで正確に電流検出を行うことができる。 Furthermore, it is possible to perform accurate current detection to prevent current measurement variations due to variations in the characteristics of the current measuring element.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】一般的な有機EL素子の構造を示す概略断面図である。 1 is a schematic sectional view showing a structure of a general organic EL device.

【図2】有機EL素子の特性を示すグラフであり、 Figure 2 is a graph showing the characteristics of the organic EL element,
(a)は印加電圧と輝度との関係を示し、(b)は印加電圧と電流との関係を示し、(c)は印加電圧と発光効率との関係を示す。 (A) shows the relationship between the applied voltage and the luminance, (b) shows the relationship between the applied voltage and current, showing the relationship between the luminous efficiency (c) is the applied voltage.

【図3】一般的な単純マトリクス構成の有機ELパネルの構成を示す回路図である。 3 is a circuit diagram showing an organic EL panel of a typical simple matrix arrangement configuration.

【図4】一般的なアクティブマトリクス構成の有機EL [Figure 4] organic EL of general active matrix configuration
パネルの構成を示す回路図である。 It is a circuit diagram showing a configuration of a panel.

【図5】一般的なアクティブマトリクス構成の有機EL [Figure 5] organic EL of general active matrix configuration
パネルの基本単位を示す詳細図である。 The basic unit of the panel is a detailed view showing the.

【図6】実施形態1の有機ELパネルの構成を示す回路図である。 6 is a circuit diagram showing a structure of an organic EL panel of Embodiment 1.

【図7】実施形態1において、電流測定素子により測定された、各有機EL素子に流れる電流量を示すグラフである。 In [7] Embodiment 1 was measured by the current measuring element is a graph showing the amount of current flowing through each organic EL element.

【図8】一般的なTFTにおけるゲート電圧と電流量の関係を示すグラフである。 8 is a graph showing the relation between the gate voltage and the current amount in the general TFT.

【図9】一般的なTFTにおいて、素子特性がばらついた場合のゲート電圧と電流量の関係を示すグラフである。 [9] In a general TFT, it is a graph showing the relation between the gate voltage and the current amount in the case where variations in device characteristics.

【図10】図6に示した有機EL(1、1)、有機EL Organic EL (1, 1) shown in FIG. 10 FIG. 6, the organic EL
(1、2)および有機EL(1、3)のゲート電圧V c (1,2) and the gate voltage V c of the organic EL (1, 3)
における電流量を示すグラフである。 Is a graph showing the amount of current in.

【図11】図6に示した有機EL(1、1)、有機EL Organic EL (1, 1) shown in FIG. 11 FIG. 6, the organic EL
(1、2)および有機EL(1、3)のドライビングT (1,2) and driving T organic EL (1, 3)
FTの特性を示す示すグラフである。 Is a graph showing showing the characteristics of the FT.

【図12】輝度測定の方法を説明するための図である。 12 is a diagram for explaining a method for luminance measurement.

【図13】走査線方向に沿った方向の有機ELの輝度ばらつきを示すグラフである。 13 is a graph showing the luminance variations in the direction of the organic EL along the scan line direction.

【図14】有機ELの電流−輝度特性を示すグラフである。 [14] The organic EL current - is a graph showing the luminance characteristics.

【図15】図6に示した有機EL(1、1)、(2、 Organic EL (1, 1) shown in FIG. 15 FIG. 6, (2,
1)のドライビングTFTの特性を示すグラフである。 1) it is a graph showing characteristics of the driving TFT of.

【図16】実施形態2の有機ELパネルの構成を示す回路図である。 16 is a circuit diagram showing a structure of an organic EL panel according to the second embodiment.

【図17】実施形態3の有機ELパネルの構成を示す回路図である。 17 is a circuit diagram showing a structure of an organic EL panel of Embodiment 3.

【図18】実施形態で用いる電流測定素子の構成の一例を示す図である。 18 is a diagram showing an example of the configuration of a current measuring device used in the embodiment.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 基板 2 陽極 3 正孔注入層 4 正孔輸送層 5 発光層 6 電子輸送層 7 陰極 1 substrate 2 anode 3 hole injection layer 4 hole transport layer 5 light-emitting layer 6 electron transport layer 7 cathode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 信行 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 向殿 充浩 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 Fターム(参考) 5C080 AA06 BB05 DD05 EE28 FF11 JJ02 JJ03 JJ05 ────────────────────────────────────────────────── ─── continued (72) of the front page inventor Nobuyuki Ito Osaka Abeno-ku, Osaka Nagaike-cho, No. 22 No. 22 shi Sharp within Co., Ltd. (72) inventor towards Dear TakashiHiroshi Osaka Abeno-ku, Osaka Nagaike-cho, No. 22 No. 22 Sharp Corporation in the F-term (reference) 5C080 AA06 BB05 DD05 EE28 FF11 JJ02 JJ03 JJ05

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 基板上に、アクティブ素子および該アクティブ素子によって制御される電気光学素子がマトリクス状に配置されていると共に、該アクティブ素子に走査電圧を与える走査線およびデータ電圧を与えるデータ線が該アクティブ素子の近傍を通って互いに交差するように配置され、さらに、該電気光学素子に該アクティブ素子を介して電流を供給するための複数の電流供給線が配置され、各電流供給線毎に電流を測定するための電流測定素子が設けられた電気光学装置において、 各電流測定素子によって、その電流測定素子が配置された電流供給線に接続された複数の電気光学素子の各々に流れる電流値を測定するべく、 1本の走査線に走査電圧を与え、そのタイミングと同期して、各データ線に所定のデータ電圧を供給し、該電 To 1. A substrate, with electro-optical elements controlled by the active element and said active element are arranged in a matrix, the data line for providing a scan line and a data voltage to be applied to scan voltage to the active element through the vicinity of the active element are arranged to intersect with each other, further, a plurality of current supply wire for supplying an electric current through the active element is disposed on the electro-optic element, for each of the current supply line in the electro-optical device current measuring device is provided for measuring the current by the current measuring device, a current value flowing to each of the plurality of electro-optical elements whose current measurement device is connected to the arranged current supply line in order to measure, given the scanning voltage to one scanning line, in synchronism with the timing, and supplies a predetermined data voltage to the data lines, electrical 測定素子により該電気光学素子に流れる電流値を測定するステップと、同一の走査線に再度走査電圧を与え、そのタイミングと同期して、各データ線に該電気光学素子を0階調にするデータ信号を供給するステップとを各走査線に対して行って、得られた電流測定値に基づいて、 Measuring the current flowing through the electro-optical element by the measuring element, provides a scan voltage again to the same scan line, the data in synchronism with the timing, the electro-optical element to 0 gradation to the data lines signal by performing the step of supplying to each scanning line, on the basis of the current measurement values ​​obtained,
    各電気光学素子に流れる電流が等しくなるように、各アクティブ素子に与えるデータ電圧を補正することを特徴とする電気光学装置。 As the current flowing in the electro-optical elements are equal, electro-optical device and correcting the data voltage applied to each active element.
  2. 【請求項2】 さらに、前記電流供給線と交差する方向に前記電気光学素子の輝度値を測定し、得られた輝度測定値と前記電流測定値とに基づいて、各電気光学素子の輝度が等しくなるように、前記アクティブ素子に与えるデータ電圧を補正することを特徴とする請求項2に記載の電気光学装置。 Wherein further, said current measuring a luminance value of the electro-optical element in a direction intersecting the supply line, on the basis of the obtained luminance measured value and the current measurement value, the luminance of the electro-optical element to be equal, the electro-optical device according to claim 2, characterized in that for correcting the data voltage applied to the active element.
  3. 【請求項3】 基板上に、アクティブ素子および該アクティブ素子によって制御される電気光学素子がマトリクス状に配置されていると共に、該アクティブ素子に走査電圧を与える走査線およびデータ電圧を与えるデータ線が該アクティブ素子の近傍を通って互いに交差するように配置され、さらに、該電気光学素子に該アクティブ素子を介して電流を供給するための複数の電流供給線が配置され、該電流供給線の電流を測定するために1つの電流測定素子が設けられた電気光学装置において、 該電流測定素子によって複数の電気光学素子の各々に流れる電流値を測定するべく、 1本の走査線に複数回走査電圧を与え、各回のタイミングと同期して、各々異なる1本のデータ線に所定のデータ電圧を供給し、その他のデータ線には該電気光学 To 3. A substrate, with electro-optical elements controlled by the active element and said active element are arranged in a matrix, the data line for providing a scan line and a data voltage to be applied to scan voltage to the active element through the vicinity of the active element are arranged to intersect with each other, further, the electrical plurality of current supply wire for supplying an electric current through the active element in the optical element is arranged, the current of the current supply line in the electro-optical device in which one current measuring device is provided for measuring the order to measure the current flowing to each of the plurality of electro-optical elements by said current measuring device, multiple scans voltage to one scanning line the given, in synchronization with each round of timing, it supplies a predetermined data voltage to each different one of the data lines, the electro-optic Additional data lines 子を0階調にするデータ信号を供給して、該電流測定素子により該電気光学素子に流れる電流値を測定するステップを各走査線に対して行って、得られた電流測定値に基づいて、各電気光学素子に流れる電流が等しくなるように、各アクティブ素子に与えるデータ電圧を補正することを特徴とする電気光学装置。 And supplying data signals for the child to 0 gradation, the step of measuring the current flowing through the electro-optical element by said current measuring element performed for each scan line, based on the current measurements taken as the current flowing in the electro-optical elements are equal, electro-optical device and correcting the data voltage applied to each active element.
  4. 【請求項4】 基板上に、アクティブ素子および該アクティブ素子によって制御される電気光学素子がマトリクス状に配置されていると共に、該アクティブ素子に走査電圧を与える走査線およびデータ電圧を与えるデータ線が該アクティブ素子の近傍を通って互いに交差するように配置され、さらに、該電気光学素子に該アクティブ素子を介して電流を供給するための複数の電流供給線が配置され、該電流供給線の電流を測定するために1つの電流測定素子が設けられた電気光学装置において、 各電流供給線毎に該電気光学素子よりも基板縁側にTF 4. A substrate, with electro-optical elements controlled by the active element and said active element are arranged in a matrix, the data line for providing a scan line and a data voltage to be applied to scan voltage to the active element through the vicinity of the active element are arranged to intersect with each other, further, the electrical plurality of current supply wire for supplying an electric current through the active element in the optical element is arranged, the current of the current supply line TF in the electro-optical device in which one current measuring device is provided for measuring, the substrate edge than the electro-optical elements for each current supply line
    T素子が設けられ、 該電流測定素子によって複数の電気光学素子の各々に流れる電流値を測定するべく、 1本の走査線に走査電圧を与えると共に各データ線に所定のデータ電圧を供給し、各電流供給線毎に設けた前記TFT素子を順次走査することにより、該電流測定素子により該電気光学素子に流れる電流値を順次測定するステップを各走査線に対して行って、得られた電流測定値に基づいて、各電気光学素子に流れる電流が等しくなるように、各アクティブ素子に与えるデータ電圧を補正することを特徴とする電気光学装置。 T elements are provided in order to measure the current value flowing to each of the plurality of electro-optical elements by said current measuring device, supplying a predetermined data voltage to each data line with providing scan voltage to one scanning line, by sequentially scanning the TFT element provided for each current supply lines, by performing the step of sequentially measuring a current flowing through the electro-optical element by said current measuring device for each scanning line, resulting current based on the measurements, so that the current flowing through the electro-optical elements are equal, electro-optical device and correcting the data voltage applied to each active element.
JP2001079599A 2001-03-19 2001-03-19 Electro-optical device Pending JP2002278513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001079599A JP2002278513A (en) 2001-03-19 2001-03-19 Electro-optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001079599A JP2002278513A (en) 2001-03-19 2001-03-19 Electro-optical device

Publications (1)

Publication Number Publication Date
JP2002278513A true JP2002278513A (en) 2002-09-27

Family

ID=18936014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001079599A Pending JP2002278513A (en) 2001-03-19 2001-03-19 Electro-optical device

Country Status (1)

Country Link
JP (1) JP2002278513A (en)

Cited By (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806497B2 (en) 2002-03-29 2004-10-19 Seiko Epson Corporation Electronic device, method for driving the electronic device, electro-optical device, and electronic equipment
JP2005115144A (en) * 2003-10-09 2005-04-28 Seiko Epson Corp Method for driving pixel circuit, driver circuit electro-optical apparatus, and electronic device
WO2005071649A1 (en) * 2003-12-23 2005-08-04 Thomson Licensing Device for displaying images on an active matrix
JP2005321786A (en) * 2004-05-04 2005-11-17 Au Optronics Corp Organic luminescence display and its color shift compensation method
JP2006502432A (en) * 2002-10-08 2006-01-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィKoninklijke Philips Electronics N.V. Electroluminescent display device
JP2006091850A (en) * 2004-07-22 2006-04-06 Toshiba Matsushita Display Technology Co Ltd El display device and inspecting apparatus of el display panel
JP2006184847A (en) * 2004-12-24 2006-07-13 Samsung Sdi Co Ltd Data integrated circuit, and light-emitting display device using the same, and drive method thereof
JP2006184906A (en) * 2004-12-24 2006-07-13 Samsung Sdi Co Ltd Data integrated circuit, light-emitting display device, and method for driving light-emitting display device
JP2006184848A (en) * 2004-12-24 2006-07-13 Samsung Sdi Co Ltd Data integrated circuit, and light-emitting display device using the same, and drive method thereof
JP2006235608A (en) * 2005-01-28 2006-09-07 Toshiba Matsushita Display Technology Co Ltd El display device and method of driving el display device
FR2886497A1 (en) * 2005-05-24 2006-12-01 Thomson Licensing Sa Device of video image display active matrix-corrected luminance non-uniformities
JP2007047721A (en) * 2005-08-10 2007-02-22 Industry-Univ Cooperation Foundation Hanyang Univ Data driver, organic light emitting display device using the same, and method of driving the same
JP2007506145A (en) * 2003-09-23 2007-03-15 イグニス イノベーション インコーポレーテッドIgnis Innovation Inc. Circuit and method for driving an array of light emitting pixels
JP2007517245A (en) * 2003-12-10 2007-06-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Video data signal correction
JP2007271840A (en) * 2006-03-31 2007-10-18 Hitachi Displays Ltd Self-luminous display device
WO2007119727A1 (en) 2006-04-13 2007-10-25 Idemitsu Kosan Co., Ltd. Electro-optic device, and tft substrate for current control and method for manufacturing the same
JP2008076757A (en) * 2006-09-21 2008-04-03 Sanyo Electric Co Ltd Electroluminescent display device and method of correcting display fluctuation of the same
JP2008122848A (en) * 2006-11-15 2008-05-29 Casio Comput Co Ltd Display driver, its driving method, display apparatus, and its driving method
JP2008129183A (en) * 2006-11-17 2008-06-05 Sanyo Electric Co Ltd Driving method of electroluminescence display device, and electroluminescence display device
JP2008158222A (en) * 2006-12-22 2008-07-10 Sanyo Electric Co Ltd Electroluminescence display device
JP2008176274A (en) * 2006-12-20 2008-07-31 Eastman Kodak Co Display device
US20080218451A1 (en) * 2007-03-07 2008-09-11 Hitachi Displays, Ltd. Organic electroluminescence display
WO2008108024A1 (en) 2007-03-08 2008-09-12 Sharp Kabushiki Kaisha Display device and its driving method
WO2008149736A1 (en) * 2007-05-30 2008-12-11 Canon Kabushiki Kaisha Active-matrix display and drive method thereof
US7532207B2 (en) 2003-03-07 2009-05-12 Canon Kabushiki Kaisha Drive circuit, display apparatus using drive circuit, and evaluation method of drive circuit
WO2009075129A1 (en) 2007-12-11 2009-06-18 Sharp Kabushiki Kaisha Display device and its manufacturing method
JP2009237200A (en) * 2008-03-27 2009-10-15 Hitachi Displays Ltd Image display device
JP2009265621A (en) * 2008-03-31 2009-11-12 Casio Comput Co Ltd Light-emitting device, display, and method for controlling driving of the light-emitting device
JP2009301037A (en) * 2008-06-11 2009-12-24 Samsung Mobile Display Co Ltd Organic light emitting display and driving method thereof
US7924249B2 (en) 2006-02-10 2011-04-12 Ignis Innovation Inc. Method and system for light emitting device displays
US7978187B2 (en) 2003-09-23 2011-07-12 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US8026876B2 (en) 2006-08-15 2011-09-27 Ignis Innovation Inc. OLED luminance degradation compensation
US8059070B2 (en) 2008-05-28 2011-11-15 Panasonic Corporation Display device, and methods for manufacturing and controlling the display device
US8115707B2 (en) 2004-06-29 2012-02-14 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US8223177B2 (en) 2005-07-06 2012-07-17 Ignis Innovation Inc. Method and system for driving a pixel circuit in an active matrix display
US8228271B2 (en) 2007-05-30 2012-07-24 Canon Kabushiki Kaisha Active-matrix display and drive method thereof
US8259098B2 (en) 2008-08-18 2012-09-04 Fujifilm Corporation Display apparatus and drive control method for the same
US8552636B2 (en) 2009-12-01 2013-10-08 Ignis Innovation Inc. High resolution pixel architecture
WO2013161005A1 (en) * 2012-04-24 2013-10-31 パイオニア株式会社 Organic el panel, and method for producing light-emitting device using said organic el panel
US8576217B2 (en) 2011-05-20 2013-11-05 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US8659511B2 (en) 2005-08-10 2014-02-25 Samsung Display Co., Ltd. Data driver, organic light emitting display device using the same, and method of driving the organic light emitting display device
US8687024B2 (en) 2007-09-28 2014-04-01 Panasonic Corporation Pixel circuit and display apparatus
US8860636B2 (en) 2005-06-08 2014-10-14 Ignis Innovation Inc. Method and system for driving a light emitting device display
US8890220B2 (en) 2001-02-16 2014-11-18 Ignis Innovation, Inc. Pixel driver circuit and pixel circuit having control circuit coupled to supply voltage
US8901579B2 (en) 2011-08-03 2014-12-02 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US8907991B2 (en) 2010-12-02 2014-12-09 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US8922544B2 (en) 2012-05-23 2014-12-30 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US8994625B2 (en) 2004-12-15 2015-03-31 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US8994617B2 (en) 2010-03-17 2015-03-31 Ignis Innovation Inc. Lifetime uniformity parameter extraction methods
US9030506B2 (en) 2009-11-12 2015-05-12 Ignis Innovation Inc. Stable fast programming scheme for displays
US9058775B2 (en) 2006-01-09 2015-06-16 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9059117B2 (en) 2009-12-01 2015-06-16 Ignis Innovation Inc. High resolution pixel architecture
US9070775B2 (en) 2011-08-03 2015-06-30 Ignis Innovations Inc. Thin film transistor
US9093028B2 (en) 2009-12-06 2015-07-28 Ignis Innovation Inc. System and methods for power conservation for AMOLED pixel drivers
US9111485B2 (en) 2009-06-16 2015-08-18 Ignis Innovation Inc. Compensation technique for color shift in displays
US9134825B2 (en) 2011-05-17 2015-09-15 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9153172B2 (en) 2004-12-07 2015-10-06 Ignis Innovation Inc. Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage
US9171504B2 (en) 2013-01-14 2015-10-27 Ignis Innovation Inc. Driving scheme for emissive displays providing compensation for driving transistor variations
US9171500B2 (en) 2011-05-20 2015-10-27 Ignis Innovation Inc. System and methods for extraction of parasitic parameters in AMOLED displays
US9190456B2 (en) 2012-04-25 2015-11-17 Ignis Innovation Inc. High resolution display panel with emissive organic layers emitting light of different colors
US9269322B2 (en) 2006-01-09 2016-02-23 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9275579B2 (en) 2004-12-15 2016-03-01 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9280933B2 (en) 2004-12-15 2016-03-08 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9305488B2 (en) 2013-03-14 2016-04-05 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9311859B2 (en) 2009-11-30 2016-04-12 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US9324268B2 (en) 2013-03-15 2016-04-26 Ignis Innovation Inc. Amoled displays with multiple readout circuits
US9336717B2 (en) 2012-12-11 2016-05-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9343006B2 (en) 2012-02-03 2016-05-17 Ignis Innovation Inc. Driving system for active-matrix displays
US9351368B2 (en) 2013-03-08 2016-05-24 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9370075B2 (en) 2008-12-09 2016-06-14 Ignis Innovation Inc. System and method for fast compensation programming of pixels in a display
US9373645B2 (en) 2005-01-28 2016-06-21 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US9384698B2 (en) 2009-11-30 2016-07-05 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US9430958B2 (en) 2010-02-04 2016-08-30 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9437137B2 (en) 2013-08-12 2016-09-06 Ignis Innovation Inc. Compensation accuracy
US9443471B2 (en) 2012-07-31 2016-09-13 Sharp Kabushiki Kaisha Display device and driving method thereof
US9466240B2 (en) 2011-05-26 2016-10-11 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9489891B2 (en) 2006-01-09 2016-11-08 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
US9530349B2 (en) 2011-05-20 2016-12-27 Ignis Innovations Inc. Charged-based compensation and parameter extraction in AMOLED displays
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9633597B2 (en) 2006-04-19 2017-04-25 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US9697771B2 (en) 2013-03-08 2017-07-04 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9721505B2 (en) 2013-03-08 2017-08-01 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9741282B2 (en) 2013-12-06 2017-08-22 Ignis Innovation Inc. OLED display system and method
US9747834B2 (en) 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
USRE46561E1 (en) 2008-07-29 2017-09-26 Ignis Innovation Inc. Method and system for driving light emitting display
US9773439B2 (en) 2011-05-27 2017-09-26 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9786209B2 (en) 2009-11-30 2017-10-10 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9830857B2 (en) 2013-01-14 2017-11-28 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9842889B2 (en) 2014-11-28 2017-12-12 Ignis Innovation Inc. High pixel density array architecture
US9867257B2 (en) 2008-04-18 2018-01-09 Ignis Innovation Inc. System and driving method for light emitting device display
US9881587B2 (en) 2011-05-28 2018-01-30 Ignis Innovation Inc. Systems and methods for operating pixels in a display to mitigate image flicker
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US9886899B2 (en) 2011-05-17 2018-02-06 Ignis Innovation Inc. Pixel Circuits for AMOLED displays
US9947293B2 (en) 2015-05-27 2018-04-17 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US9952698B2 (en) 2013-03-15 2018-04-24 Ignis Innovation Inc. Dynamic adjustment of touch resolutions on an AMOLED display
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10019941B2 (en) 2005-09-13 2018-07-10 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
US10078984B2 (en) 2005-02-10 2018-09-18 Ignis Innovation Inc. Driving circuit for current programmed organic light-emitting diode displays
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10102808B2 (en) 2015-10-14 2018-10-16 Ignis Innovation Inc. Systems and methods of multiple color driving
US10134325B2 (en) 2014-12-08 2018-11-20 Ignis Innovation Inc. Integrated display system
US10152915B2 (en) 2015-04-01 2018-12-11 Ignis Innovation Inc. Systems and methods of display brightness adjustment
US10163401B2 (en) 2010-02-04 2018-12-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10163996B2 (en) 2003-02-24 2018-12-25 Ignis Innovation Inc. Pixel having an organic light emitting diode and method of fabricating the pixel
US10176752B2 (en) 2014-03-24 2019-01-08 Ignis Innovation Inc. Integrated gate driver
US10176736B2 (en) 2010-02-04 2019-01-08 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10181282B2 (en) 2015-01-23 2019-01-15 Ignis Innovation Inc. Compensation for color variations in emissive devices
US10192479B2 (en) 2014-04-08 2019-01-29 Ignis Innovation Inc. Display system using system level resources to calculate compensation parameters for a display module in a portable device
US10204540B2 (en) 2015-10-26 2019-02-12 Ignis Innovation Inc. High density pixel pattern
US10235933B2 (en) 2005-04-12 2019-03-19 Ignis Innovation Inc. System and method for compensation of non-uniformities in light emitting device displays
US10242619B2 (en) 2013-03-08 2019-03-26 Ignis Innovation Inc. Pixel circuits for amoled displays
US10311780B2 (en) 2015-05-04 2019-06-04 Ignis Innovation Inc. Systems and methods of optical feedback
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
US10339860B2 (en) 2015-08-07 2019-07-02 Ignis Innovation, Inc. Systems and methods of pixel calibration based on improved reference values
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10410579B2 (en) 2015-07-24 2019-09-10 Ignis Innovation Inc. Systems and methods of hybrid calibration of bias current

Cited By (220)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8890220B2 (en) 2001-02-16 2014-11-18 Ignis Innovation, Inc. Pixel driver circuit and pixel circuit having control circuit coupled to supply voltage
US6806497B2 (en) 2002-03-29 2004-10-19 Seiko Epson Corporation Electronic device, method for driving the electronic device, electro-optical device, and electronic equipment
JP2006502432A (en) * 2002-10-08 2006-01-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィKoninklijke Philips Electronics N.V. Electroluminescent display device
US10163996B2 (en) 2003-02-24 2018-12-25 Ignis Innovation Inc. Pixel having an organic light emitting diode and method of fabricating the pixel
US8154539B2 (en) 2003-03-07 2012-04-10 Canon Kabushiki Kaisha Drive circuit, display apparatus using drive circuit, and evaluation method of drive circuit
US8159482B2 (en) 2003-03-07 2012-04-17 Canon Kabushiki Kaisha Drive circuit, display apparatus using drive circuit, and evaluation method of drive circuit
US7532207B2 (en) 2003-03-07 2009-05-12 Canon Kabushiki Kaisha Drive circuit, display apparatus using drive circuit, and evaluation method of drive circuit
US8941697B2 (en) 2003-09-23 2015-01-27 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US8553018B2 (en) 2003-09-23 2013-10-08 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US7978187B2 (en) 2003-09-23 2011-07-12 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US9472138B2 (en) 2003-09-23 2016-10-18 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
US9472139B2 (en) 2003-09-23 2016-10-18 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US9852689B2 (en) 2003-09-23 2017-12-26 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
JP2007506145A (en) * 2003-09-23 2007-03-15 イグニス イノベーション インコーポレーテッドIgnis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US10089929B2 (en) 2003-09-23 2018-10-02 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
JP2005115144A (en) * 2003-10-09 2005-04-28 Seiko Epson Corp Method for driving pixel circuit, driver circuit electro-optical apparatus, and electronic device
JP4572523B2 (en) * 2003-10-09 2010-11-04 セイコーエプソン株式会社 Method of driving the pixel circuit, the driving circuit, an electro-optical device and electronic apparatus
JP2007517245A (en) * 2003-12-10 2007-06-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Video data signal correction
US8610651B2 (en) 2003-12-23 2013-12-17 Thomson Licensing Device for displaying images on an active matrix
WO2005071649A1 (en) * 2003-12-23 2005-08-04 Thomson Licensing Device for displaying images on an active matrix
JP2005321786A (en) * 2004-05-04 2005-11-17 Au Optronics Corp Organic luminescence display and its color shift compensation method
USRE45291E1 (en) 2004-06-29 2014-12-16 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US8115707B2 (en) 2004-06-29 2012-02-14 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US8232939B2 (en) 2004-06-29 2012-07-31 Ignis Innovation, Inc. Voltage-programming scheme for current-driven AMOLED displays
USRE47257E1 (en) 2004-06-29 2019-02-26 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
JP2006091850A (en) * 2004-07-22 2006-04-06 Toshiba Matsushita Display Technology Co Ltd El display device and inspecting apparatus of el display panel
US9741292B2 (en) 2004-12-07 2017-08-22 Ignis Innovation Inc. Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage
US9153172B2 (en) 2004-12-07 2015-10-06 Ignis Innovation Inc. Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US9280933B2 (en) 2004-12-15 2016-03-08 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9275579B2 (en) 2004-12-15 2016-03-01 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9970964B2 (en) 2004-12-15 2018-05-15 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US8994625B2 (en) 2004-12-15 2015-03-31 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
JP4535442B2 (en) * 2004-12-24 2010-09-01 三星モバイルディスプレイ株式會社 Data integrated circuits and light-emitting display device and a driving method using the same
JP4535441B2 (en) * 2004-12-24 2010-09-01 三星モバイルディスプレイ株式會社 Data integrated circuits and light-emitting display device and a driving method using the same
JP2006184848A (en) * 2004-12-24 2006-07-13 Samsung Sdi Co Ltd Data integrated circuit, and light-emitting display device using the same, and drive method thereof
JP2006184906A (en) * 2004-12-24 2006-07-13 Samsung Sdi Co Ltd Data integrated circuit, light-emitting display device, and method for driving light-emitting display device
JP2006184847A (en) * 2004-12-24 2006-07-13 Samsung Sdi Co Ltd Data integrated circuit, and light-emitting display device using the same, and drive method thereof
JP2006235608A (en) * 2005-01-28 2006-09-07 Toshiba Matsushita Display Technology Co Ltd El display device and method of driving el display device
US9728135B2 (en) 2005-01-28 2017-08-08 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US9373645B2 (en) 2005-01-28 2016-06-21 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US10078984B2 (en) 2005-02-10 2018-09-18 Ignis Innovation Inc. Driving circuit for current programmed organic light-emitting diode displays
US10235933B2 (en) 2005-04-12 2019-03-19 Ignis Innovation Inc. System and method for compensation of non-uniformities in light emitting device displays
FR2886497A1 (en) * 2005-05-24 2006-12-01 Thomson Licensing Sa Device of video image display active matrix-corrected luminance non-uniformities
US8860636B2 (en) 2005-06-08 2014-10-14 Ignis Innovation Inc. Method and system for driving a light emitting device display
US9805653B2 (en) 2005-06-08 2017-10-31 Ignis Innovation Inc. Method and system for driving a light emitting device display
US9330598B2 (en) 2005-06-08 2016-05-03 Ignis Innovation Inc. Method and system for driving a light emitting device display
US10388221B2 (en) 2005-06-08 2019-08-20 Ignis Innovation Inc. Method and system for driving a light emitting device display
US8223177B2 (en) 2005-07-06 2012-07-17 Ignis Innovation Inc. Method and system for driving a pixel circuit in an active matrix display
US9812065B2 (en) 2005-08-10 2017-11-07 Samsung Display Co., Ltd. Data driver, organic light emitting display device using the same, and method of driving the organic light emitting display device
US8659511B2 (en) 2005-08-10 2014-02-25 Samsung Display Co., Ltd. Data driver, organic light emitting display device using the same, and method of driving the organic light emitting display device
JP2007047721A (en) * 2005-08-10 2007-02-22 Industry-Univ Cooperation Foundation Hanyang Univ Data driver, organic light emitting display device using the same, and method of driving the same
US10192491B2 (en) 2005-08-10 2019-01-29 Samsung Display Co., Ltd. Data driver, organic light emitting display device using the same, and method of driving the organic light emitting display device
US10019941B2 (en) 2005-09-13 2018-07-10 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
US9269322B2 (en) 2006-01-09 2016-02-23 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US10229647B2 (en) 2006-01-09 2019-03-12 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US10262587B2 (en) 2006-01-09 2019-04-16 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9489891B2 (en) 2006-01-09 2016-11-08 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9058775B2 (en) 2006-01-09 2015-06-16 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US7924249B2 (en) 2006-02-10 2011-04-12 Ignis Innovation Inc. Method and system for light emitting device displays
JP2007271840A (en) * 2006-03-31 2007-10-18 Hitachi Displays Ltd Self-luminous display device
WO2007119727A1 (en) 2006-04-13 2007-10-25 Idemitsu Kosan Co., Ltd. Electro-optic device, and tft substrate for current control and method for manufacturing the same
US9633597B2 (en) 2006-04-19 2017-04-25 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US9842544B2 (en) 2006-04-19 2017-12-12 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US10127860B2 (en) 2006-04-19 2018-11-13 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US8581809B2 (en) 2006-08-15 2013-11-12 Ignis Innovation Inc. OLED luminance degradation compensation
US9530352B2 (en) 2006-08-15 2016-12-27 Ignis Innovations Inc. OLED luminance degradation compensation
US8026876B2 (en) 2006-08-15 2011-09-27 Ignis Innovation Inc. OLED luminance degradation compensation
US9125278B2 (en) 2006-08-15 2015-09-01 Ignis Innovation Inc. OLED luminance degradation compensation
US10325554B2 (en) 2006-08-15 2019-06-18 Ignis Innovation Inc. OLED luminance degradation compensation
US8279143B2 (en) 2006-08-15 2012-10-02 Ignis Innovation Inc. OLED luminance degradation compensation
JP2008076757A (en) * 2006-09-21 2008-04-03 Sanyo Electric Co Ltd Electroluminescent display device and method of correcting display fluctuation of the same
US8339335B2 (en) 2006-09-21 2012-12-25 Semiconductor Components Industries, Llc Electroluminescence display apparatus and method of correcting display variation for electroluminescence display apparatus
JP2008122848A (en) * 2006-11-15 2008-05-29 Casio Comput Co Ltd Display driver, its driving method, display apparatus, and its driving method
JP2008129183A (en) * 2006-11-17 2008-06-05 Sanyo Electric Co Ltd Driving method of electroluminescence display device, and electroluminescence display device
JP2008176274A (en) * 2006-12-20 2008-07-31 Eastman Kodak Co Display device
JP2008158222A (en) * 2006-12-22 2008-07-10 Sanyo Electric Co Ltd Electroluminescence display device
US8542166B2 (en) 2006-12-22 2013-09-24 Sanyo Semiconductor Co., Ltd. Electroluminescence display apparatus with video signal rewriting
JP2008216874A (en) * 2007-03-07 2008-09-18 Hitachi Displays Ltd Organic el display device
US20080218451A1 (en) * 2007-03-07 2008-09-11 Hitachi Displays, Ltd. Organic electroluminescence display
EP2369571A1 (en) 2007-03-08 2011-09-28 Sharp Kabushiki Kaisha Display device and its driving method
WO2008108024A1 (en) 2007-03-08 2008-09-12 Sharp Kabushiki Kaisha Display device and its driving method
US8847939B2 (en) 2007-03-08 2014-09-30 Sharp Kabushiki Kaisha Method of driving and a driver for a display device including an electric current driving element
US20100045646A1 (en) * 2007-03-08 2010-02-25 Noritaka Kishi Display device and its driving method
US8228271B2 (en) 2007-05-30 2012-07-24 Canon Kabushiki Kaisha Active-matrix display and drive method thereof
WO2008149736A1 (en) * 2007-05-30 2008-12-11 Canon Kabushiki Kaisha Active-matrix display and drive method thereof
US8687024B2 (en) 2007-09-28 2014-04-01 Panasonic Corporation Pixel circuit and display apparatus
WO2009075129A1 (en) 2007-12-11 2009-06-18 Sharp Kabushiki Kaisha Display device and its manufacturing method
US8242985B2 (en) 2007-12-11 2012-08-14 Sharp Kabushiki Kaisha Display device and method for manufacturing the same
JP2009237200A (en) * 2008-03-27 2009-10-15 Hitachi Displays Ltd Image display device
JP2009265621A (en) * 2008-03-31 2009-11-12 Casio Comput Co Ltd Light-emitting device, display, and method for controlling driving of the light-emitting device
US9877371B2 (en) 2008-04-18 2018-01-23 Ignis Innovations Inc. System and driving method for light emitting device display
US9867257B2 (en) 2008-04-18 2018-01-09 Ignis Innovation Inc. System and driving method for light emitting device display
US8059070B2 (en) 2008-05-28 2011-11-15 Panasonic Corporation Display device, and methods for manufacturing and controlling the display device
JP2009301037A (en) * 2008-06-11 2009-12-24 Samsung Mobile Display Co Ltd Organic light emitting display and driving method thereof
US8405582B2 (en) 2008-06-11 2013-03-26 Samsung Display Co., Ltd. Organic light emitting display and driving method thereof
USRE46561E1 (en) 2008-07-29 2017-09-26 Ignis Innovation Inc. Method and system for driving light emitting display
US8259098B2 (en) 2008-08-18 2012-09-04 Fujifilm Corporation Display apparatus and drive control method for the same
US9824632B2 (en) 2008-12-09 2017-11-21 Ignis Innovation Inc. Systems and method for fast compensation programming of pixels in a display
US9370075B2 (en) 2008-12-09 2016-06-14 Ignis Innovation Inc. System and method for fast compensation programming of pixels in a display
US9418587B2 (en) 2009-06-16 2016-08-16 Ignis Innovation Inc. Compensation technique for color shift in displays
US9117400B2 (en) 2009-06-16 2015-08-25 Ignis Innovation Inc. Compensation technique for color shift in displays
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
US9111485B2 (en) 2009-06-16 2015-08-18 Ignis Innovation Inc. Compensation technique for color shift in displays
US9030506B2 (en) 2009-11-12 2015-05-12 Ignis Innovation Inc. Stable fast programming scheme for displays
US9818376B2 (en) 2009-11-12 2017-11-14 Ignis Innovation Inc. Stable fast programming scheme for displays
US9384698B2 (en) 2009-11-30 2016-07-05 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9311859B2 (en) 2009-11-30 2016-04-12 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US10304390B2 (en) 2009-11-30 2019-05-28 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9786209B2 (en) 2009-11-30 2017-10-10 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9059117B2 (en) 2009-12-01 2015-06-16 Ignis Innovation Inc. High resolution pixel architecture
US8552636B2 (en) 2009-12-01 2013-10-08 Ignis Innovation Inc. High resolution pixel architecture
US9262965B2 (en) 2009-12-06 2016-02-16 Ignis Innovation Inc. System and methods for power conservation for AMOLED pixel drivers
US9093028B2 (en) 2009-12-06 2015-07-28 Ignis Innovation Inc. System and methods for power conservation for AMOLED pixel drivers
US9773441B2 (en) 2010-02-04 2017-09-26 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10176736B2 (en) 2010-02-04 2019-01-08 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10032399B2 (en) 2010-02-04 2018-07-24 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US10163401B2 (en) 2010-02-04 2018-12-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9430958B2 (en) 2010-02-04 2016-08-30 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10395574B2 (en) 2010-02-04 2019-08-27 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US8994617B2 (en) 2010-03-17 2015-03-31 Ignis Innovation Inc. Lifetime uniformity parameter extraction methods
US9489897B2 (en) 2010-12-02 2016-11-08 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US8907991B2 (en) 2010-12-02 2014-12-09 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US9997110B2 (en) 2010-12-02 2018-06-12 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US10249237B2 (en) 2011-05-17 2019-04-02 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9886899B2 (en) 2011-05-17 2018-02-06 Ignis Innovation Inc. Pixel Circuits for AMOLED displays
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9134825B2 (en) 2011-05-17 2015-09-15 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9171500B2 (en) 2011-05-20 2015-10-27 Ignis Innovation Inc. System and methods for extraction of parasitic parameters in AMOLED displays
US10127846B2 (en) 2011-05-20 2018-11-13 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10032400B2 (en) 2011-05-20 2018-07-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9093029B2 (en) 2011-05-20 2015-07-28 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9355584B2 (en) 2011-05-20 2016-05-31 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US8576217B2 (en) 2011-05-20 2013-11-05 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9589490B2 (en) 2011-05-20 2017-03-07 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9530349B2 (en) 2011-05-20 2016-12-27 Ignis Innovations Inc. Charged-based compensation and parameter extraction in AMOLED displays
US10325537B2 (en) 2011-05-20 2019-06-18 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9799248B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9978297B2 (en) 2011-05-26 2018-05-22 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9466240B2 (en) 2011-05-26 2016-10-11 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9640112B2 (en) 2011-05-26 2017-05-02 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9773439B2 (en) 2011-05-27 2017-09-26 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US10417945B2 (en) 2011-05-27 2019-09-17 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US9881587B2 (en) 2011-05-28 2018-01-30 Ignis Innovation Inc. Systems and methods for operating pixels in a display to mitigate image flicker
US10290284B2 (en) 2011-05-28 2019-05-14 Ignis Innovation Inc. Systems and methods for operating pixels in a display to mitigate image flicker
US8901579B2 (en) 2011-08-03 2014-12-02 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US9224954B2 (en) 2011-08-03 2015-12-29 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US9070775B2 (en) 2011-08-03 2015-06-30 Ignis Innovations Inc. Thin film transistor
US10079269B2 (en) 2011-11-29 2018-09-18 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US9818806B2 (en) 2011-11-29 2017-11-14 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US10380944B2 (en) 2011-11-29 2019-08-13 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US9792857B2 (en) 2012-02-03 2017-10-17 Ignis Innovation Inc. Driving system for active-matrix displays
US9343006B2 (en) 2012-02-03 2016-05-17 Ignis Innovation Inc. Driving system for active-matrix displays
US10043448B2 (en) 2012-02-03 2018-08-07 Ignis Innovation Inc. Driving system for active-matrix displays
JPWO2013161005A1 (en) * 2012-04-24 2015-12-21 パイオニア株式会社 Organic EL panel and light emitting device manufacturing method using the same
WO2013161005A1 (en) * 2012-04-24 2013-10-31 パイオニア株式会社 Organic el panel, and method for producing light-emitting device using said organic el panel
US9190456B2 (en) 2012-04-25 2015-11-17 Ignis Innovation Inc. High resolution display panel with emissive organic layers emitting light of different colors
US9747834B2 (en) 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US10424245B2 (en) 2012-05-11 2019-09-24 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US10176738B2 (en) 2012-05-23 2019-01-08 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9368063B2 (en) 2012-05-23 2016-06-14 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9741279B2 (en) 2012-05-23 2017-08-22 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US8922544B2 (en) 2012-05-23 2014-12-30 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9940861B2 (en) 2012-05-23 2018-04-10 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9536460B2 (en) 2012-05-23 2017-01-03 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9443471B2 (en) 2012-07-31 2016-09-13 Sharp Kabushiki Kaisha Display device and driving method thereof
US10311790B2 (en) 2012-12-11 2019-06-04 Ignis Innovation Inc. Pixel circuits for amoled displays
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9997106B2 (en) 2012-12-11 2018-06-12 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10140925B2 (en) 2012-12-11 2018-11-27 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9685114B2 (en) 2012-12-11 2017-06-20 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9978310B2 (en) 2012-12-11 2018-05-22 Ignis Innovation Inc. Pixel circuits for amoled displays
US9336717B2 (en) 2012-12-11 2016-05-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9830857B2 (en) 2013-01-14 2017-11-28 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9171504B2 (en) 2013-01-14 2015-10-27 Ignis Innovation Inc. Driving scheme for emissive displays providing compensation for driving transistor variations
US9659527B2 (en) 2013-03-08 2017-05-23 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10013915B2 (en) 2013-03-08 2018-07-03 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9697771B2 (en) 2013-03-08 2017-07-04 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10242619B2 (en) 2013-03-08 2019-03-26 Ignis Innovation Inc. Pixel circuits for amoled displays
US9721505B2 (en) 2013-03-08 2017-08-01 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9934725B2 (en) 2013-03-08 2018-04-03 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9922596B2 (en) 2013-03-08 2018-03-20 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9351368B2 (en) 2013-03-08 2016-05-24 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10198979B2 (en) 2013-03-14 2019-02-05 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9818323B2 (en) 2013-03-14 2017-11-14 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9536465B2 (en) 2013-03-14 2017-01-03 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9305488B2 (en) 2013-03-14 2016-04-05 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9721512B2 (en) 2013-03-15 2017-08-01 Ignis Innovation Inc. AMOLED displays with multiple readout circuits
US9997107B2 (en) 2013-03-15 2018-06-12 Ignis Innovation Inc. AMOLED displays with multiple readout circuits
US9952698B2 (en) 2013-03-15 2018-04-24 Ignis Innovation Inc. Dynamic adjustment of touch resolutions on an AMOLED display
US9324268B2 (en) 2013-03-15 2016-04-26 Ignis Innovation Inc. Amoled displays with multiple readout circuits
US9990882B2 (en) 2013-08-12 2018-06-05 Ignis Innovation Inc. Compensation accuracy
US9437137B2 (en) 2013-08-12 2016-09-06 Ignis Innovation Inc. Compensation accuracy
US9741282B2 (en) 2013-12-06 2017-08-22 Ignis Innovation Inc. OLED display system and method
US10395585B2 (en) 2013-12-06 2019-08-27 Ignis Innovation Inc. OLED display system and method
US10186190B2 (en) 2013-12-06 2019-01-22 Ignis Innovation Inc. Correction for localized phenomena in an image array
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
US9831462B2 (en) 2013-12-25 2017-11-28 Ignis Innovation Inc. Electrode contacts
US10176752B2 (en) 2014-03-24 2019-01-08 Ignis Innovation Inc. Integrated gate driver
US10192479B2 (en) 2014-04-08 2019-01-29 Ignis Innovation Inc. Display system using system level resources to calculate compensation parameters for a display module in a portable device
US9842889B2 (en) 2014-11-28 2017-12-12 Ignis Innovation Inc. High pixel density array architecture
US10170522B2 (en) 2014-11-28 2019-01-01 Ignis Innovations Inc. High pixel density array architecture
US10134325B2 (en) 2014-12-08 2018-11-20 Ignis Innovation Inc. Integrated display system
US10181282B2 (en) 2015-01-23 2019-01-15 Ignis Innovation Inc. Compensation for color variations in emissive devices
US10152915B2 (en) 2015-04-01 2018-12-11 Ignis Innovation Inc. Systems and methods of display brightness adjustment
US10311780B2 (en) 2015-05-04 2019-06-04 Ignis Innovation Inc. Systems and methods of optical feedback
US10403230B2 (en) 2015-05-27 2019-09-03 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US9947293B2 (en) 2015-05-27 2018-04-17 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10410579B2 (en) 2015-07-24 2019-09-10 Ignis Innovation Inc. Systems and methods of hybrid calibration of bias current
US10339860B2 (en) 2015-08-07 2019-07-02 Ignis Innovation, Inc. Systems and methods of pixel calibration based on improved reference values
US10102808B2 (en) 2015-10-14 2018-10-16 Ignis Innovation Inc. Systems and methods of multiple color driving
US10204540B2 (en) 2015-10-26 2019-02-12 Ignis Innovation Inc. High density pixel pattern

Similar Documents

Publication Publication Date Title
US7710367B2 (en) Organic light emitting display and method of driving the same
JP5761776B2 (en) Organic light emitting display device and driving method thereof
JP4593740B2 (en) Display device
US7187354B2 (en) Organic electroluminescent display and driving method thereof
KR101202040B1 (en) Organic light emitting diode display and driving method thereof
CN100487774C (en) Electro-luminescence display device and driving method thereof
JP4059537B2 (en) The organic thin film el display and a driving method thereof
JP5535627B2 (en) Method and display for compensating for pixel luminance degradation
US6847172B2 (en) Pixel driving circuit system and method for electroluminescent display
CN101452668B (en) Organic light emitting display and method of driving the same
JP4114216B2 (en) Display device and a driving method thereof
US7224332B2 (en) Method of aging compensation in an OLED display
JP4197476B2 (en) Emitting display and a driving method and pixel circuit
CN101430862B (en) Driving apparatus for organic electro-luminescence display device
US7471267B2 (en) Display panel, light emitting display using the display panel, and driving method thereof
US7139008B2 (en) Display method and display apparatus
KR101147427B1 (en) Organic light emitting display and driving method thereof
JP4170384B2 (en) Self-luminous display device
CN100472595C (en) Method of improving the output uniformity of a display device
CN1249658C (en) Display device
US20080252223A1 (en) Organic EL Display Device
AU2008254180B2 (en) Display device, display device drive method, and computer program
CN1212597C (en) Display and its drive method
US20070164937A1 (en) Display device and control method thereof
KR100442731B1 (en) Display apparatus with luminance adjustment function

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050401