JP2002273741A - Carbon nano-tube composite molded object and method for manufacturing the same - Google Patents

Carbon nano-tube composite molded object and method for manufacturing the same

Info

Publication number
JP2002273741A
JP2002273741A JP2001074244A JP2001074244A JP2002273741A JP 2002273741 A JP2002273741 A JP 2002273741A JP 2001074244 A JP2001074244 A JP 2001074244A JP 2001074244 A JP2001074244 A JP 2001074244A JP 2002273741 A JP2002273741 A JP 2002273741A
Authority
JP
Japan
Prior art keywords
carbon nanotubes
matrix
carbon nanotube
carbon nano
nanotube composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001074244A
Other languages
Japanese (ja)
Other versions
JP4697829B2 (en
Inventor
Hiroki Ago
Masayuki Hida
Youzou Kakudate
Toru Kimura
Satoru Oshima
Kunio Uchida
Hiroyuki Yokoi
Morio Yumura
邦夫 内田
浩樹 吾郷
哲 大嶋
木村  亨
裕之 横井
守雄 湯村
洋三 角舘
雅之 飛田
Original Assignee
National Institute Of Advanced Industrial & Technology
Polymatech Co Ltd
ポリマテック株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial & Technology, Polymatech Co Ltd, ポリマテック株式会社, 独立行政法人産業技術総合研究所 filed Critical National Institute Of Advanced Industrial & Technology
Priority to JP2001074244A priority Critical patent/JP4697829B2/en
Publication of JP2002273741A publication Critical patent/JP2002273741A/en
Application granted granted Critical
Publication of JP4697829B2 publication Critical patent/JP4697829B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/605Making or treating the green body or pre-form in a magnetic field
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Abstract

PROBLEM TO BE SOLVED: To provide a carbon nano-tube composite molded object capable of developing excellent anisotropic function not obtained heretofore with respect to properties such as electrical properties, thermal properties mechanical properties or the like, and a method for manufacturing the same. SOLUTION: The carbon nano-tube composite molded object 5 is molded in such a state that carbon nano-tubes 6 are arranged in a matrix in a definite direction to be compounded with the matrix. As the matrix, at least one kind of an organic polymer selected from a thermoplastic resin, a curable resin, rubber and a thermoplastic elastomer is preferable. The composite molded object 5 is manufactured by injecting a composition, wherein the carbon nano- tubes 6 are contained in the matrix, in the molding recessed part of a mold and applying a magnetic field to the composition in a difinite direction by a magnet to arrange the carbon nano-tubes 6 in the definite direction to solidify the composition.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、カーボンナノチューブがマトリックス中で一定方向に配列し、電気的性質、熱的性質、機械的性質等の性質について異方性機能を発揮することができ、電子部品、熱伝導性材料、高強度材料などとして利用することができるカーボンナノチューブ複合成形体及びその製造方法に関するものである。 The present invention relates, the carbon nanotubes are aligned in a certain direction in the matrix, electrical properties, thermal properties, it is possible to exhibit the anisotropy function of the nature of mechanical properties, electronic parts, those thermally conductive material, about the carbon nanotube composite compacts and a method of manufacturing the same can be used as such as a high strength material.

【0002】 [0002]

【従来の技術】従来より、カーボンナノチューブ及びその製造方法については、特開平5−125619号公報、特開平7−216660号公報などで開示されている。 Conventionally, the carbon nanotubes and a manufacturing method thereof, JP-A-5-125619 and JP disclosed in such Japanese Unexamined 7-216660 JP. それらの公報によれば、カーボンナノチューブの特異的機能を生かし、電子放出素子、水素貯蔵、薄膜電池、プローブ、マイクロマシン、半導体超集積回路、導電性材料、熱伝導性材料、高強度高弾性材料などの多くの興味深い用途開発が活発に検討されている。 According to those publications, taking advantage of the specific functions of the carbon nanotubes, the electron-emitting devices, hydrogen storage, thin film batteries, probes, micromachines, semiconductor ultrafine integrated circuit, conductive material, thermally conductive material, high strength and high elastic material such as many interesting applications development have been studied so far.

【0003】 [0003]

【発明が解決しようとする課題】しかしながら、従来のカーボンナノチューブを樹脂やゴム、金属、セラミックスなどのマトリックスに配合した組成物を固化して得られるカーボンナノチューブ複合成形体は、カーボンナノチューブがマトリックス中でランダムな向きに分散していたものが主であった。 [SUMMARY OF THE INVENTION However, the conventional carbon nanotubes resin or rubber, a metal matrix and solidifying the composition obtained by blending the carbon nanotube composite molded product obtained, such as ceramics, carbon nanotubes in the matrix those that had been distributed to random orientation was the main. 従って、得られる機械的性質、 Therefore, the resulting mechanical properties,
電気伝導性、電子放出特性などの機能もランダムに、すなわちいずれの方向でも同一の機能を有する等方的な材料であった。 Electrical conductivity, the function random like electron emission characteristics, i.e. in either direction was isotropic materials having the same functions.

【0004】一方、マトリックス中にカーボンナノチューブを含む組成物を、流動場やせん断場で成形したり、 On the other hand, a composition containing carbon nanotubes in the matrix, or molded in the flow field or a shear field,
組成物を引き延ばす方法等によってカーボンナノチューブを流れ方向に配列させることは可能である。 It is possible to arrange in the flow direction of the carbon nanotube by a method such as stretching the composition. ところが、カーボンナノチューブを流動方向に配列させる方法では、板状の成形体の厚み方向にカーボンナノチューブを配列させることは不可能であり、必ずしも任意の方向にカーボンナノチューブの配列を制御させることはできなかった。 However, in the method of arranging carbon nanotubes in the flow direction, it is impossible to arrange the carbon nanotubes in the thickness direction of the plate-shaped body, it can not always be controlled array of carbon nanotubes in any direction It was.

【0005】さらに、特開平11−194134号公報及び特開平10−265208号公報には、基体上に配列された鉄、コバルト、ニッケル等の触媒分子から、気相中でカーボンナノチューブを一定方向に成長させる製造方法が提唱されている。 [0005] Further, JP-A-11-194134 and JP-A No. 10-265208, iron arranged on the substrate, cobalt, the catalyst molecules such as nickel, carbon nanotubes in a certain direction in the gas phase manufacturing method for growing have been proposed. ところが、この方法を用いてカーボンナノチューブを平面基板上に一定方向に配列させた場合には、平面に対して垂直方向にカーボンナノチューブが配列した複合成形体しか得られない。 However, when the carbon nanotubes using this method are arranged in a predetermined direction on a plane substrate, obtained only a composite molded article of carbon nanotubes are arranged in a direction perpendicular to the plane. 従って、 Therefore,
任意形状のカーボンナノチューブ複合成形体を製造することは困難であった。 It has been difficult to produce a carbon nanotube composite molding of arbitrary shape.

【0006】本発明は上記従来技術に存在する問題点に着目してなされたものである。 [0006] The present invention has been made in view of the problems existing in the prior art. その目的とするところは、電気的性質、熱的性質、機械的性質などの性質について、従来では得られなかった優れた異方性機能を発揮することができるカーボンナノチューブ複合成形体及びその製造方法を提供することにある。 And has an object, electrical properties, thermal properties, mechanical about the nature of such properties, the carbon nanotube composite compacts and a method of manufacturing the same can exhibit excellent anisotropic features which can not be obtained by conventional It is to provide a.

【0007】 [0007]

【課題を解決するための手段】すなわち、請求項1に記載の発明のカーボンナノチューブ複合成形体は、マトリックス中にカーボンナノチューブが一定方向に配列されて複合された状態で成形されていることを特徴とするものである。 Means for Solving the Problems That is, the carbon nanotube composite molding of the invention described in claim 1, characterized in that it is molded in a state where carbon nanotubes are combined is arranged in a fixed direction in the matrix it is an.

【0008】請求項2に記載の発明のカーボンナノチューブ複合成形体は、請求項1に記載の発明において、マトリックスが、熱可塑性樹脂、硬化性樹脂、ゴム及び熱可塑性エラストマーから選ばれる少なくとも1種の有機高分子であることを特徴とするものである。 [0008] Carbon nanotube composite molding of the invention described in claim 2 is the invention according to claim 1, the matrix is ​​a thermoplastic resin, curable resin, at least one selected from rubber and thermoplastic elastomers it is characterized in that it is an organic polymer.

【0009】請求項3に記載の発明のカーボンナノチューブ複合成形体の製造方法は、マトリックス中にカーボンナノチューブを含有する組成物に磁場を印加させてカーボンナノチューブを一定方向に配列させた状態で、固化させて成形することを特徴とするものである。 The preparation method of a carbon nanotube composite molding of the invention described in claim 3, the composition containing carbon nanotubes in the matrix by applying a magnetic field in a state of being arranged carbon nanotubes in a certain direction, solidification it is characterized in that shaping by.

【0010】請求項4に記載の発明のカーボンナノチューブ複合成形体の製造方法は、請求項3に記載の発明において、マトリックスが、熱可塑性樹脂、硬化性樹脂、 [0010] method of manufacturing the carbon nanotube composite molding of the invention described in claim 4 is the invention according to claim 3, the matrix is ​​a thermoplastic resin, curable resin,
ゴム及び熱可塑性エラストマーから選ばれる少なくとも1種の有機高分子であることを特徴とするものである。 It is characterized in that at least one organic polymer selected from rubber and thermoplastic elastomers.

【0011】従って、カーボンナノチューブを任意の一定方向に配列させたカーボンナノチューブ複合成形体は、カーボンナノチューブ特有の電気的性質、熱的性質、機械的性質などの性質について、方向により発揮される機能又はその程度が異なる異方性を有する複合成形体となる。 Accordingly, the carbon nanotube composite formed body is arranged carbon nanotubes any given direction, the electrical properties of the specific carbon nanotubes, the thermal properties, the properties such as mechanical properties, features or exerted by the direction its degree is a composite molded article having a different anisotropy.

【0012】例えば、電気的性質に関しては、導電性材料として、特定の方向に電気伝導性が高く、かつ、一定方向に配列されていない場合と比較してカーボンナノチューブの添加量はより少なくて高い電気伝導性を発現することができる。 [0012] For example, with respect to electrical properties, as a conductive material, high electrical conductivity in a certain direction, and the addition amount of the carbon nanotubes as compared to the case where not arranged in a predetermined direction is higher less it can express electrical conductivity. また、カーボンナノチューブの電子放出特性はナノチューブの末端部からの電子放出が最も効率が良いと考えられ、一定方向に配列されていない場合と比較して複合成形体の端面により多くのカーボンナノチューブの末端部分を配置することが可能である。 The electron emission properties of carbon nanotubes emission of electrons from the distal end of the nanotube considered the most efficient, most of the carbon nanotube ends by an end surface of the composite compact as compared with the case of not arranged in a predetermined direction it is possible to place the parts.

【0013】熱的性質に関しては、例えば板状成形体の厚み方向にカーボンナノチューブを配列させた場合、配列に対して平行方向の熱伝導率と直角方向の熱伝導率とでは差異が生じる。 [0013] With respect to thermal properties, for example, when obtained by arranging carbon nanotubes in the thickness direction of the plate-shaped molded body, a difference occurs in the direction parallel to the thermal conductivity perpendicular to the direction of the thermal conductivity with respect to sequence. すなわち、カーボンナノチューブ自体は、軸方向の熱伝導率の方が軸に垂直方向の熱伝導率よりも大きいために、板状成形体の厚み方向の熱伝導率の方が大きくなり、異方性材料となる。 That is, the carbon nanotubes themselves, in order towards the axial thermal conductivity greater than the thermal conductivity in the direction perpendicular to the axis becomes larger in the thermal conductivity in the thickness direction of the plate-shaped molded product, anisotropic the material. なお、この場合、カーボンナノチューブはグラファイト化させて熱伝導率をさらに向上させる方が好ましい。 In this case, the carbon nanotubes it is preferable to further improve the thermal conductivity by graphitization.

【0014】機械的性質に関しては、例えば、板状成形体の厚み方向と垂直な一方向にカーボンナノチューブを配列させると、弾性率の異方性が生じ、それ以外の方向よりも引張り強度、耐屈曲強度等が向上する。 [0014] With respect to mechanical properties, for example, when aligning the carbon nanotubes in one direction perpendicular to the thickness direction of the plate-shaped molded body, cause anisotropy of the elastic modulus, tensile than the other directions strength, resistance the bending strength and the like can be improved.

【0015】その他、磁気的性質、線膨張係数、誘電的性質、電波吸収特性などにおいても異方性を発現することができ、制振材や、電波吸収体などの様々な用途で用いることができる。 [0015] Other, magnetic properties, linear expansion coefficient, dielectric properties, it can also be expressed anisotropy in radio wave absorption characteristics, and damping material, can be used in various applications such as electromagnetic wave absorber it can.

【0016】 [0016]

【発明の実施の形態】以下、本発明の実施形態について詳細に説明する。 DETAILED DESCRIPTION OF THE INVENTION Hereinafter, embodiments of the present invention will be described in detail. カーボンナノチューブ複合成形体は、 Carbon nanotube composite moldings,
マトリックス中にカーボンナノチューブが一定方向に配列されて複合された状態で成形されている。 Carbon nanotubes are formed in a state of being combined are arranged in a certain direction in the matrix. このカーボンナノチューブ複合成形体は、板状や管状、塊状、その他の任意の形状に成形されて用いられる。 The carbon nanotube composite compacts, plate-like or tubular, bulk, are formed into any other shape used.

【0017】本発明で用いられるカーボンナノチューブの種類や製造方法については特に限定されるものではないが、カーボンより形成され、直径がナノメートルオーダーでチューブ状をなすものである。 There is no particular limitation on the method of the type and manufacturing a carbon nanotube used in the present invention, is formed of carbon, are those which form a tube shape in the nanometer order diameter. 例えば、特開平6 For example, JP-A-6
−157016号、特開平6−280116号、特開平10−203810号、特開平11−11917号などの各公報に開示される製造方法で得られたカーボンナノチューブを使用することができる。 No. -157016, JP-A-6-280116, JP-A-10-203810, the carbon nanotubes obtained by the production method disclosed in JP-like JP 11-11917 can be used. カーボンナノチューブの合成には、アーク放電法を利用するのが一般的になってきているが、その他、レーザー蒸発法や熱分解法、 The synthesis of carbon nanotubes, but to utilize an arc discharge method has become general, other, laser evaporation method or thermal decomposition method,
プラズマ放電を利用する方法などが近年研究され、それらの方法により得られるカーボンナノチューブを使用することもできる。 And a method utilizing a plasma discharge is studied in recent years, it is also possible to use carbon nanotubes obtained by those methods.

【0018】カーボンナノチューブは炭素原子が構成する6角網目がチューブ状に連なった構造を有している。 [0018] Carbon nanotubes have a structure in which hexagonal mesh constituting carbon atoms, which are arranged in this tubular.
6角網目のチューブが1枚構造のものはシングルウォールナノチューブ(以下、SWNTと略称する)と呼ばれ、一方、多層の6角網目のチューブから構成されているものはマルチウォールナノチューブ(以下、MWNT Single-wall nanotubes are those of the tube one structure of hexagonal mesh (hereinafter, abbreviated as SWNT) is called, whereas multi-wall nanotubes that are composed of the multilayered hexagonal mesh tube (hereinafter, MWNT
と略称する)と呼ばれている。 It is called abbreviated) and. どのような構造のカーボンナノチューブが得られるかは、合成方法や条件等によってある程度決定される。 Or the carbon nanotubes of any structure is obtained is determined in part by synthetic methods and conditions.

【0019】生成物にはカーボンナノチューブと同時に、非晶質カーボンナノ粒子、フラーレン類及び金属ナノ粒子なども副生成物として混入するが、これらの副生成物が含まれていてもよい。 [0019] At the same time the product carbon nanotubes, amorphous carbon nanoparticles, but mixed as such also by-products fullerenes and metal nanoparticles may contain these by-products. フラーレン類などは、トルエン、二硫化水素、ベンゼン、クロロベンゼンなどの有機溶剤に可溶なため、抽出が可能である。 Such as fullerenes, toluene, hydrogen disulfide, benzene, because soluble in organic solvents such as chlorobenzene, it is possible extraction. また、カーボンナノチューブの層間はカーボンナノ粒子やグラファイト片の層間よりも狭いため、このことを利用し、ナノ粒子やグラファイト片のみ選択的に層間化合物を形成し、 Further, the interlayer of the carbon nanotube narrower than layers of carbon nanoparticles or graphite piece, utilizing this, to form a selectively intercalation compound only nanoparticles or graphite piece,
より低温で燒結させて取り除くことが可能である。 It can be removed by more sintered at low temperatures. これにより、処理温度が低くなった分、燃焼によるナノチューブの消耗を抑えることができ、回収率が上がる。 Thus, minute processing temperature is lower, it is possible to reduce the drain on the nanotubes by the combustion, the recovery rate is increased.

【0020】また、生成方法にもよるが、カーボンナノチューブは高アスペクト比の材料であり、生成されたものも複雑に絡み合った構造を有している場合が多い。 Further, depending on the generation process, the carbon nanotube is a material having a high aspect ratio, in many cases even those produced has a complicated entangled structure. これらは超音波分散等で分散させても良いが、好ましくは所定の条件で粉砕処理をして、カーボンナノチューブの長さを生成時より短く加工しても良い。 It may be dispersed by an ultrasonic homogenizer or the like, but preferably by a pulverization treatment under a predetermined condition, may be processed shorter than when generating the length of the carbon nanotubes. 粉砕処理の方法は限定されないが、せん断、すりつぶし等の乾式粉砕法、又は界面活性剤を含む水や有機溶剤等を含むボールミル、ホモジナイザー等を利用する方法が採用される。 The method of pulverization is not limited, shearing, dry grinding methods such as grinding, or a ball mill containing water, an organic solvent or the like containing a surfactant, a method of utilizing a homogenizer or the like is employed.

【0021】本発明で使用されるカーボンナノチューブは、SWNT、MWNTのいずれかに限ったものではない。 [0021] Carbon nanotubes used in the present invention, SWNT, not limited to any of the MWNT. さらに、カーボンナノチューブに金属又は他の無機物や有機物を含むもの、カーボンナノチューブ内に炭素又は他の物質が充填されたもの、カーボンナノチューブがコイル状(螺旋状)又はフィブリル状のもの、その他いわゆるナノファイバーも用いることができる。 Further, those containing metal or other inorganic or organic carbon nanotubes, which carbon or other materials in the carbon nanotubes are filled, carbon nanotubes coiled (helical) or those fibrillated, other so-called nanofibers it can be also used. また、 Also,
カーボンナノチューブの直径と長さも限定されるものではないが、製造の容易性や機能発現性などの点から、カーボンナノチューブの直径は1〜20nm、チューブ長さは50nm〜100μmの範囲が好ましい。 Without being limited diameter and length of carbon nanotubes, in view of easiness and functional expression of manufacture, the diameter of the carbon nanotubes 1 to 20 nm, a tube length in the range of 50nm~100μm is preferred.

【0022】次に、カーボンナノチューブが配合されるマトリックスは、カーボンナノチューブを配合する母材となる材料である。 Next, a matrix of carbon nanotubes are blended is a material serving as a base material to be blended with carbon nanotubes. このマトリックスとしては例えば樹脂、ゴム、熱可塑性エラストマー、接着剤、塗料、インキ、金属、合金、セラミックス、セメント、ゲル状物、 As the matrix resin, for example, rubber, thermoplastic elastomers, adhesives, coatings, inks, metals, alloys, ceramics, cement, gel-like material,
紙、繊維、織布、不織布などが使用できる。 Paper, fiber, woven fabric, nonwoven fabric, etc. can be used. そして、マトリックスは目的とする複合成形体の硬さ、機械的強度、耐熱性、電気的特性、耐久性、信頼性などの要求性能に応じて選択することができる。 The matrix may be the hardness of the composite molding of interest, mechanical strength, heat resistance, electrical properties, durability, depending on the required performance and reliability selected. なかでも、成形加工性が容易な熱可塑性樹脂、硬化性樹脂、ゴム及び熱可塑性エラストマーから選ばれる少なくとも1種の有機高分子が好適である。 Among them, moldability easy thermoplastic resin, curable resin, at least one organic polymer selected from rubber and thermoplastic elastomers are suitable.

【0023】具体的な熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体などのエチレン−α−オレフィン共重合体、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、エチレン−酢酸ビニル共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリフッ化ビニリデンやポリテトラフルオロエチレン等のフッ素系重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、 [0023] As a specific thermoplastic resin, polyethylene, polypropylene, ethylene - propylene copolymer ethylene -α- olefin copolymers such as, polymethyl pentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene - vinyl acetate copolymer, polyvinyl alcohol, polyvinyl acetal, fluorine-based polymers such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene,
ポリアクリロニトリル、スチレン−アクリロニトリル共重合体、ABS樹脂、ポリフェニレンエーテル及び変性PPE樹脂、脂肪族及び芳香族ポリアミド類、ポリイミド、ポリアミドイミド、ポリメタクリル酸及びそのメチルエステルなどのポリメタクリル酸エステル類、ポリアクリル酸類、ポリカーボネート、ポリフェニレンスルフィド、ポリサルホン、ポリエーテルサルホン、ポリエーテルニトリル、ポリエーテルケトン、ポリケトン、液晶ポリマー、シリコーン樹脂、アイオノマー等の熱可塑性樹脂などが挙げられる。 Polyacrylonitrile, styrene - acrylonitrile copolymer, ABS resin, polyphenylene ether and modified PPE resin, aliphatic and aromatic polyamides, polyimide, polyamide-imide, polymethacrylic acid esters such as polymethacrylic acid and its methyl ester, polyacrylic acids, polycarbonate, polyphenylene sulfide, polysulfone, polyether sulfone, polyether nitrile, polyether ketone, polyketone, liquid crystal polymers, silicone resins, and thermoplastic resins ionomer and the like.

【0024】硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、アクリル樹脂、ウレタン樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、ジシクロペンタジエン樹脂、ベンゾシクロブテン樹脂等が挙げられる。 [0024] As the curable resin, epoxy resin, phenol resin, acrylic resin, urethane resin, polyimide resin, unsaturated polyester resin, diallyl phthalate resin, dicyclopentadiene resin, benzocyclobutene resins. なお、硬化性樹脂の硬化形態については熱硬化性に限定されず、光硬化性、湿気硬化性などの常法に従った硬化方法による樹脂を使用することができる。 Note that the cured form of the curable resin is not limited to thermosetting, photocuring, the resin due to the curing method according to a conventional method, such as a moisture-curing can be used.

【0025】ゴムとしては、天然ゴム又は合成ゴムを使用することができる。 [0025] As the rubber, a natural rubber or synthetic rubber. 合成ゴムとしては、ブタジエンゴム、イソプレンゴム、スチレンブタジエン共重合ゴム、 As the synthetic rubber, butadiene rubber, isoprene rubber, styrene-butadiene copolymer rubber,
ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、 Nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber,
エチレン−プロピレンゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレン、ブチルゴム及びハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、シリコーンゴム等が挙げられる。 Ethylene - propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber and halogenated butyl rubber, fluororubber, urethane rubber, silicone rubber, and the like.

【0026】熱可塑性エラストマーとしては、スチレン−ブタジエン又はスチレン−イソプレンブロック共重合体とその水添ポリマー及びスチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等が挙げられる。 [0026] As thermoplastic elastomer, a styrene - butadiene or styrene - isoprene block copolymer and hydrogenated polymers thereof and a styrene-based thermoplastic elastomer, olefin thermoplastic elastomer, vinyl chloride thermoplastic elastomer, polyester thermoplastic elastomer , polyurethane thermoplastic elastomers, polyamide thermoplastic elastomers, and the like. リサイクル性を考慮すれば、上記の熱可塑性樹脂又は熱可塑性エラストマーを使用することが好ましい。 Considering the recycling, it is preferable to use the above thermoplastic resin or thermoplastic elastomer.

【0027】なかでも、シリコーンゴム、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ベンゾシクロブテン樹脂、フッ素樹脂及びポリフェニレンエーテル樹脂より選ばれる少なくとも1種、特にシリコーンゴム、エポキシ樹脂及びポリイミド樹脂より選ばれる少なくとも1種を用いることが信頼性の観点から好ましい。 [0027] Among them, silicone rubber, epoxy resin, polyimide resin, bismaleimide resins, benzocyclobutene resins, at least one selected from fluorine resin and polyphenylene ether resin, at least particularly selected from silicone rubber, epoxy resin and polyimide resin it is preferable from the viewpoint of reliability to use one.

【0028】また、以上から選択される複数の有機高分子からなるポリマーアロイを配合したり、公知の可塑剤や充填材、硬化剤、炭素繊維やガラス繊維、アラミド繊維などの有機繊維、安定剤、着色材などの添加剤を配合しても差し支えない。 Further, or blended polymer alloy comprising a plurality of organic polymer selected from the above, known plasticizers and fillers, curing agent, carbon fibers, glass fibers, organic fibers such as aramid fibers, stabilizers , no problem be compounded additives such as colorants.

【0029】また、マトリックス中に添加するカーボンナノチューブを配合しやすくしたり、磁場を印加した際に配列しやすくする目的で、有機溶剤や水を加えて組成物の粘度を低下させると好ましい場合がある。 Further, or easily blended carbon nanotubes added to the matrix, in order to facilitate sequence when a magnetic field is applied, may be preferable if lowering the viscosity of the composition by adding an organic solvent or water is there. さらに、 further,
分散状態を向上させる目的で界面活性剤等の分散安定剤を用いてもよい。 In order to improve the dispersed state may be used a dispersion stabilizer such as a surfactant.

【0030】マトリックスに配合するカーボンナノチューブの量としては、マトリックス100重量部当り、 [0030] The amount of carbon nanotubes to be blended into a matrix, the matrix, per 100 parts by weight
0.01〜100重量部の範囲が好ましい。 Range of 0.01 to 100 parts by weight is preferred. この配合量が0.01重量部未満の場合には異方性機能を十分に発現できず、100重量部を越える場合にはマトリックスにおけるカーボンナノチューブの分散性が低下したりして好ましくない。 Can not be sufficiently exhibited anisotropy work if the amount is less than 0.01 part by weight is not preferable in the case of exceeding 100 parts by weight lowered dispersibility of the carbon nanotubes in the matrix. 実際には使用するマトリックス材料の種類や他の添加剤等や、用いる磁場の強さにより変化するが、磁場によって配列が可能で異方性機能を効果的に発現できる範囲のカーボンナノチューブの配合量としては、0.1〜20重量部の範囲が実用的である。 In fact the type and other additives or the like of the matrix material used varies with the intensity of the magnetic field to be used, but the amount of the carbon nanotube in a range that can effectively express the anisotropic features can be arranged by a magnetic field is as is in the range of 0.1 to 20 parts by weight practical.

【0031】さらに、カーボンナノチューブとマトリックス材料との濡れ性や接着性を向上させるために、カーボンナノチューブの表面をあらかじめ脱脂処理や洗浄処理を施したり、紫外線照射処理、コロナ放電処理、プラズマ処理、火炎処理、イオン注入処理などの活性化処理を施すことが好ましい。 Furthermore, in order to improve the wettability and adhesiveness between the carbon nanotube and the matrix material, or subjected to a degreasing treatment and cleaning treatment of the surface of the carbon nanotube, ultraviolet irradiation treatment, corona discharge treatment, plasma treatment, flame treatment, is preferably subjected to an activation treatment such as an ion implantation process. 加えて、これらの表面処理後にシラン系やチタン系、アルミニウム系などのカップリング剤で処理することによって、さらに多量のカーボンナノチューブを容易に分散混合しやすくなり、得られる複合成形体の一層の高機能化が達成できる。 In addition, these surface treatment after silane or titanium type, by treatment with a coupling agent such as an aluminum-based, further tends to easily dispersed and mixed a large amount of carbon nanotubes, even higher in the composite molded body obtained function can be attained.

【0032】マトリックス中にカーボンナノチューブを分散させる方法としては、特に限定されるものではない。 [0032] As a method for dispersing the carbon nanotubes in the matrix is ​​not particularly limited. 例えば、液状高分子の場合には、所定量のカーボンナノチューブを添加して通常のミキサーやブレンダーで混合すればよい。 For example, in the case of a liquid polymer may be mixed in a conventional mixer or blender by adding a predetermined amount of the carbon nanotubes. さらに、混合分散状態を向上させる目的で超音波や振動による処理を施してもよい。 Further, for the purpose of improving the mixing and dispersion state it may be subjected to a treatment with ultrasonic waves or vibrations. 混入した空気を除去する目的で真空又は加圧によって脱泡操作を加えることが好ましい。 It is preferable to add a defoaming by vacuum or pressure in order to remove entrained air. ペレットや粉末形状などの固体高分子の場合には、所定量のカーボンナノチューブを添加して通常の押出機、ニーダー、ロールなどの混練機械を使用して混練分散することができる。 In the case of a polymer such as pellets or powder form is generally the extruder by adding a predetermined amount of the carbon nanotube, a kneader, can be used kneading machine such as roll kneading dispersion.

【0033】カーボンナノチューブを一定方向に配列させるために印加する磁場の強さとしては、磁束密度として0.05〜30テスラの範囲が好ましい。 [0033] As the strength of the magnetic field to be applied in order to arrange the carbon nanotubes in a certain direction, the range of 0.05 to 30 Tesla is preferred as the magnetic flux density. 磁束密度が0.05テスラ未満の場合にはカーボンナノチューブを一定方向に十分配列させることができず、30テスラを越える場合には磁場の強さが過剰で、配列の効果はそれ以上向上しない。 If the magnetic flux density is less than 0.05 Tesla can not be sufficiently arranged carbon nanotubes in a certain direction, when exceeding 30 Tesla an excessive intensity of the magnetic field, the effect of the sequence does not improve any more. 実際には使用するマトリックスとカーボンナノチューブの種類や添加量、得ようとするカーボンナノチューブ複合成形体の形状、及び最終製品の要求性能に応じて実験的に設定することができるが、カーボンナノチューブを効果的に配列させることができる磁束密度としては、5〜20テスラの範囲が実用的である。 In practice the type and amount of the matrix and the carbon nanotubes to be used, the shape of the carbon nanotube composite molded article to be obtained, and can be set experimentally according to the required performance of the final product, the effect of carbon nanotubes the magnetic flux density can be arrayed in the range of 5-20 tesla practical.

【0034】外部から印加する磁場の発生手段としては、永久磁石、電磁石、コイルなどを利用できる。 [0034] The generating means of the magnetic field applied from the outside, can be utilized permanent magnets, electromagnets, coils and the like. 本発明では、反磁性を有するカーボンナノチューブを磁力線に対して平行方向に配列させることができるので、磁場の向きは、所望の配列方向に応じて磁石のN極とS極を配置させれば良い。 In the present invention, since the carbon nanotubes having a diamagnetic can be arranged in a direction parallel to the magnetic field lines, the orientation of the magnetic field, it is sufficient to place the N and S poles of the magnet in accordance with the desired arrangement direction . その他、N極とN極が対向するように磁石を配置させても、磁石を片側のみに配置させても、磁力線が曲線状になるように配置させても差し支えない。 Other, even by placing the magnets such N poles and N poles are opposed, be arranged magnets on only one side, also it is arranged so magnetic field lines become curved no problem. すなわち、目的とする機能の異方性が発現するように磁力線の向きを調整して磁場を印加すれば良い。 That is, it is applied a magnetic field by adjusting the orientation of the magnetic field lines to express anisotropic features of interest.

【0035】得られた混合組成物は、プレス成形法、押出成形法、トランスファー成形法、カレンダー成形法などによって板状、管状、塊状などの求める形状に成形加工して複合成形体を製造することができる。 The resultant mixture composition, press molding, extrusion molding, transfer molding, plate or the like calender molding, tubular, molded to be produced composite molded body into a shape determined, such as bulk can. さらに、塗装、印刷などのプロセスによって薄膜状に加工することも可能である。 Additionally, painting, can be processed into a thin film by a process such as printing. このようにして得られたカーボンナノチューブ複合成形体は、カーボンナノチューブが任意の一定方向に配列されるが、その事実は電子顕微鏡による拡大写真で確認することができた。 The thus obtained carbon nanotube composite compacts, but the carbon nanotubes are arranged in any given direction, that fact could be confirmed by the photograph enlarged by an electron microscope.

【0036】以上説明した実施形態により発揮される効果を以下にまとめて記載する。 [0036] The effect exerted by the embodiments described above are summarized in the following. ・ 実施形態で説明したカーボンナノチューブ複合成形体は、カーボンナノチューブが任意の一定方向に配列されている。 Carbon nanotube composite molded article described in the embodiment, the carbon nanotubes are arranged in any given direction. このため、カーボンナノチューブの延びる方向とその他の方向において電気的性質、熱的性質、機械的性質などの性質が異なり、従来では得られなかった優れた異方性機能を発揮することができる。 Therefore, electrical properties in the direction and other directions of extension of the carbon nanotubes, thermal properties, different properties such as mechanical properties, conventionally can exhibit anisotropy excellent features which can not be obtained. しかも、カーボンナノチューブは極微小な材料であることから、微小な複合成形体について異方性機能を発揮することができる。 Moreover, since the carbon nanotubes are extremely small materials, it can exhibit anisotropic features for small composite compacts.

【0037】・ このようなカーボンナノチューブ複合成形体は、カーボンナノチューブを含有する組成物に磁場を印加させることによって、マトリックス中のカーボンナノチューブを任意の一定方向に効率良く配列させることができる。 [0037] - Such carbon nanotube composite compacts by applying a magnetic field to the composition containing carbon nanotubes, can be efficiently arranged carbon nanotubes in the matrix in an arbitrary predetermined direction.

【0038】・ その他にも、カーボンナノチューブ複合成形体は、磁気的性質、電磁気的性質、線膨張係数、 [0038] - Besides, the carbon nanotube composite molding, magnetic properties, electromagnetic properties, linear expansion coefficient,
誘電的性質などにおいて異方性を発現することができる。 Capable of expressing the anisotropy in such dielectric properties. 従って、圧力センサー、感圧スイッチ、磁気シールド材料、磁気記録材料、磁気フィルターなどの様々な用途に利用することが可能である。 Therefore, the pressure sensor, the pressure sensitive switch, magnetic shielding materials, magnetic recording materials, it is possible to use in various applications such as magnetic filter.

【0039】 [0039]

【実施例】以下、実施例を挙げて前記実施形態をさらに具体的に説明する。 EXAMPLES Hereinafter, the embodiments of examples will be described more specifically. 各例において、カーボンナノチューブは、以下の合成例に基き作製したものを用いた。 In each instance, carbon nanotubes used was prepared based on the following synthesis examples. 各実施例及び比較例においては板状に成形したカーボンナノチューブ複合成形体について述べるが、本発明はこれに限定されるものではない。 Although described carbon nanotube composite compact molded into a plate shape in each of the examples and comparative examples, the present invention is not limited thereto.

【0040】以下に、各例で使用するカーボンナノチューブの合成方法の一例として、触媒を用いる熱分解法について説明する。 [0040] As an example of a synthesis method of a carbon nanotube to be used in each example will be described thermal decomposition method using a catalyst. この方法は、カーボンファイバー気相成長法とほぼ同じである。 This method is substantially the same as the carbon fiber vapor deposition.

【0041】すなわち、まず恒温槽の中に原料ガスとしてエチレンやプロパンを水素と共に導入する。 [0041] That is, first, ethylene or propane introduced together with hydrogen as a source gas in a constant temperature bath. この場合、原料ガスとしては、これ以外にもメタン、エタン、 In this case, as the raw material gas, methane other than this, ethane,
プロパン、ブタン、ヘキサン、シクロヘキサノン等の飽和炭化水素やエチレン、プロピレン、ベンゼン、トルエン等の不飽和炭化水素、アセトン、メタノール、一酸化炭素等の酸素を含む原料でも構わない。 It may propane, butane, hexane, saturated hydrocarbons and ethylene cyclohexanone, propylene, benzene, unsaturated hydrocarbons such as toluene, acetone, methanol, and the raw material containing oxygen, such as carbon monoxide.

【0042】次に、恒温槽中に導入された上記の原料ガスを加熱又は冷却して蒸気圧を制御し、さらに水素ガス流により熱分解炉に導入し、原料ガスとしてのエチレンやプロパンを熱分解させることにより、カーボンナノチューブを生成させる。 Next, the above raw material gas introduced in a constant temperature bath heated or cooled to control the vapor pressure is introduced into the pyrolysis furnace by addition of hydrogen gas stream, heat ethylene or propane as the raw material gas by decomposing to produce a carbon nanotube. (実施例1)本実施例の板状のカーボンナノチューブ複合成形体を製造するための製造装置及び製造方法を、図1から図4に基づいて説明する。 The manufacturing apparatus and manufacturing method for manufacturing a (Example 1) plate-shaped carbon nanotube composite molding of the present embodiment will be described with reference to FIGS. 1 to 4.

【0043】図2に示すように、一対の金型1a,1b As shown in FIG. 2, a pair of molds 1a, 1b
は対向配置されるとともに、一方の金型1aの対向面には目的とする板状のカーボンナノチューブ複合成形体に対応する成形凹部2が凹設されている。 Together with the opposed, on the opposite surface of the one mold 1a are shaped recess 2 is recessed corresponding to the plate-shaped carbon nanotube composite molding of interest. 両金型1a,1 Molds 1a, 1
bはアルミニウムにより形成され、成形凹部2の内面はフッ素樹脂でコーティング処理されている。 b is formed of aluminum and the inner surface of the forming recess 2 is coated with a fluorine resin. そして、熱硬化性の不飽和ポリエステル樹脂〔日本触媒(株)製の商品名エポラック G−157MB〕100重量部に対し、カーボンナノチューブを1重量部添加して攪拌した組成物3を、金型1a,1bの成形凹部2に充填した。 The thermosetting unsaturated polyester resin [manufactured by Nippon Shokubai Co. Ltd. under the trade name Eporakku G-157MB] 100 parts by weight, the composition 3 was added and stirred 1 parts by weight of carbon nanotubes, mold 1a and filling formed recess 2 of the 1b.

【0044】次いで、図3に示すように、金型1a,1 [0044] Then, as shown in FIG. 3, the mold 1a, 1
bを一定の圧力で型締めし、成形凹部2を密閉した。 The b and clamping at a constant pressure, was sealed molded recess 2. その後、図4に示すように、金型1a,1bの両端部に一対の磁石4a,4bを配置し、磁石4a,4bのN極とS Thereafter, as shown in FIG. 4, the mold 1a, a pair at both ends of the 1b magnets 4a, arranged 4b, the magnet 4a, 4b of the N poles and S
極とを対向させた。 It was opposed to the poles. すなわち、成形凹部2の内底面と平行な一方向に10テスラの磁場を印加し、常温で30分硬化させた。 That is, the inner bottom surface parallel to the magnetic field of one direction 10 Tesla shaped recess 2 is applied, and cured for 30 minutes at room temperature. その後、金型1a,1bを型開きし、成形凹部2からカーボンナノチューブ複合成形体5を取り出した。 Thereafter, the mold 1a, and open mold 1b, was removed carbon nanotube composite molding 5 from the molding recess 2.

【0045】図1に示したように、得られた板状の複合成形体5中のカーボンナノチューブ6は、上下面(図1 [0045] As shown in FIG. 1, a carbon nanotube 6 in 5 obtained plate-shaped composite compacts, the upper and lower surfaces (Fig. 1
の上面又は下面)と平行な一定方向に配列していた。 Of the upper surface or the lower surface) and were arranged in parallel a predetermined direction. (実施例2)前記成形凹部2の内底面と垂直の方向に1 (Example 2) 1 in the direction of the inner bottom surface perpendicular of the forming recess 2
0テスラの磁場を印加した以外は実施例1と同様にして、カーボンナノチューブ複合成形体5を得た。 Except that a magnetic field is applied in the 0 Tesla in the same manner as in Example 1 to obtain a carbon nanotube composite molding 5. 得られた板状の複合成形体5中のカーボンナノチューブ6は、 The resulting carbon nanotubes 6 of the plate-like composite molded body 5,
図5に示したように、複合成形体5の上下面と垂直方向に配列していた。 As shown in FIG. 5, it was arranged on upper and lower surfaces and vertical composite compact 5. (実施例3)熱硬化性のエポキシ樹脂(EPO−TEC (Example 3) thermosetting epoxy resin (EPO-TEC
H社製の商品名エポテック310)100重量部に対し、カーボンナノチューブを1重量部添加して攪拌した組成物を、図2に示す金型の成形凹部2に充填した。 To H Co. trade name Epotek 310) 100 parts by weight, was filled with composition was stirred by adding 1 part by weight of carbon nanotubes, the molding recess 2 of the mold shown in FIG. その後、実施例1と同様に操作してカーボンナノチューブ複合成形体5を得た。 Then, to obtain a carbon nanotube composite molding 5 in the same manner as in Example 1. (実施例4)熱硬化性のエポキシ樹脂(EPO−TEC (Example 4) thermosetting epoxy resin (EPO-TEC
H社製 エポテック310)100重量部に対し、カーボンナノチューブを2重量部添加して攪拌した組成物を、図2に示す金型1aの成形凹部2に充填した。 To H manufactured by Epotec 310) 100 parts by weight, the composition is added and stirred 2 parts by weight of carbon nanotubes, and filling formed recess 2 of the mold 1a shown in FIG. その後、実施例1と同様に操作してカーボンナノチューブ複合成形体を得た。 Then, to obtain a carbon nanotube composite molding in the same manner as in Example 1. (実施例5)熱可塑性のポリカーボネート樹脂〔三菱エンジニアリングプラスチック(株)製の商品名ユーピロンS−2000〕100重量部に対し、カーボンナノチューブ1重量部をスクリュー押出機で混練した組成物に対して、塩化メチレンを添加し、均一な液状に溶解するまで攪拌した。 To (Example 5) a thermoplastic polycarbonate resin [trade name manufactured by Mitsubishi Engineering Plastics Corporation Iupilon S-2000] 100 parts by weight, 1 part by weight of carbon nanotubes with respect to composition was kneaded with a screw extruder, methylene chloride was added and stirred until dissolved into a uniform liquid. 得られた溶液を図2に示した金型1aの成形凹部2に充填した。 The resulting solution was filled into the molding recess 2 of the mold 1a shown in FIG. 2. その後、成形凹部2の内底面と平行な一方向に10テスラの磁場を印加しながら、12 Then, while applying a magnetic field of 10 Tesla at the inner bottom surface and parallel to one direction of the forming recesses 2, 12
0℃で1時間加熱固化してカーボンナノチューブ複合成形体5を得た。 0 to obtain a carbon nanotube composite molding 5 by heating solidifies for 1 h at ° C.. (実施例6)金型1aの成形凹部2の内底面と垂直の方向に10テスラの磁場を印加した以外は実施例5と同様にして、カーボンナノチューブ複合成形体5を得た。 (Example 6) except that the application of the inner bottom surface and a magnetic field of 10 tesla in the direction of the vertical molding recess 2 of the mold 1a in the same manner as in Example 5, to obtain a carbon nanotube composite molding 5. (比較例1)熱硬化性の不飽和ポリエステル樹脂〔日本触媒(株)製の商品名エポラックG−157MB〕10 (Comparative Example 1) The thermosetting unsaturated polyester resin [manufactured by Nippon Shokubai Co. Ltd. under the trade name Eporakku G-157MB] 10
0重量部に対し、カーボンナノチューブを1重量部添加して攪拌した組成物1を、図2に示す金型1aの成形凹部2に充填した。 To 0 parts by weight, the composition 1 was added and stirred 1 parts by weight of carbon nanotubes, and filling formed recess 2 of the mold 1a shown in FIG. その後、磁場を印加せずに、常温で3 Thereafter, without applying a magnetic field, 3 at room temperature
0分放置し硬化させてカーボンナノチューブ複合成形体を得た。 0 min was allowed to cure to obtain a carbon nanotube composite molding. 得られた複合成形体中のカーボンナノチューブは、ランダム方向に分散していた。 The resulting carbon nanotubes in the composite compacts were randomly distributed directions. (比較例2)熱硬化性のエポキシ樹脂(EPO−TEC (Comparative Example 2) thermosetting epoxy resin (EPO-TEC
H社製 エポテック310)100重量部に対し、カーボンナノチューブを1重量部添加して攪拌した組成物を、図2に示す金型1aの成形凹部2に充填した。 To H manufactured by Epotec 310) 100 parts by weight, the composition is added and stirred 1 parts by weight of carbon nanotubes, and filling formed recess 2 of the mold 1a shown in FIG. その後、磁場を印加せずに、常温で30分放置し硬化させてカーボンナノチューブ複合成形体を得た。 Thereafter, without applying a magnetic field to obtain a carbon nanotube composite compacts by left for 30 minutes at room temperature cured. (比較例3)熱硬化性のエポキシ樹脂(EPO−TEC (Comparative Example 3) a thermosetting epoxy resin (EPO-TEC
H社製 エポテック310)100重量部に対し、カーボンナノチューブを2重量部添加して攪拌した組成物を、図2に示す金型1aの成形凹部2に充填した。 To H manufactured by Epotec 310) 100 parts by weight, the composition is added and stirred 2 parts by weight of carbon nanotubes, and filling formed recess 2 of the mold 1a shown in FIG. その後、磁場を印加せずに、常温で30分放置し硬化させてカーボンナノチューブ複合成形体を作製した。 Thereafter, without applying a magnetic field to produce a carbon nanotube composite compacts by left for 30 minutes at room temperature cured. (比較例4)熱可塑性のポリカーボネート樹脂〔三菱エンジニアリングプラスチック(株)製の商品名ユーピロンS−2000〕100重量部に対し、カーボンナノチューブ1重量部をスクリュー押出機で混練したペレット100重量部に対して、塩化メチレン70重量部を添加し、ペレットが完全に溶解するまで攪拌した。 To (Comparative Example 4) thermoplastic polycarbonate resin [trade name of Mitsubishi Engineering-Plastics Corporation Iupilon S-2000] 100 parts by weight, relative to the pellet 100 parts by weight were kneaded by a screw extruder 1 part by weight of carbon nanotubes Te, added parts by weight of methylene chloride 70, and stirred until the pellet is completely dissolved. 得られた溶液を図2に示した金型1aの成形凹部2に充填した。 The resulting solution was filled into the molding recess 2 of the mold 1a shown in FIG. 2.
その後、磁場を印加せずに120℃で1時間加熱固化し、カーボンナノチューブ複合成形体を得た。 Thereafter, without applying a magnetic field for one hour heating and solidified at 120 ° C., to obtain a carbon nanotube composite molding.

【0046】上記の実施例1、2、5及び6並びに比較例1及び4で得られたカーボンナノチューブ複合成形体を動的粘弾性測定装置〔(株)オリエンテック製の商品名レオバイブロンDDV−III〕にて周波数11Hzにおける貯蔵弾性率E、損失弾性率E及び損失正接tan The above Examples 1, 2, 5 and 6 and Comparative Example 1 and a dynamic viscoelasticity measuring device and the resulting carbon nanotube composite compact at 4 [Corporation Orientec Ltd. click trade name Rheovibron DDV-III storage modulus E at frequency 11Hz in], loss modulus E and the loss tangent tan
δを測定した。 It was measured δ. それらの結果を表1に示した。 The results are shown in Table 1.

【0047】 [0047]

【表1】 [Table 1] また、実施例3及び4並びに比較例2及び3で得られたカーボンナノチューブ複合成形体をSQUID磁化測定装置(Quantum Design社製,MPMS-7)にて0〜5Tにおける磁化率χを測定した。 Moreover, Examples 3 and 4 and Comparative Example SQUID magnetization measuring device and the resulting carbon nanotube composite shaped body 2 and 3 (Quantum Design Co., MPMS-7) was measured magnetic susceptibility χ in 0~5T at. それらの結果を表2に示した。 The results are shown in Table 2. なお、以下の表2から表4の測定方向は、次の意味を表す。 The measurement direction of the table 4 from Table 2 below, the following meanings.

【0048】 平行:カーボンナノチューブの向きと平行方向に測定した。 The parallel was measured in a direction parallel to the direction of the carbon nanotubes. 垂直:カーボンナノチューブの向きと垂直方向に測定した。 Vertical: was measured in a direction perpendicular to the direction of the carbon nanotubes. 無:カーボンナノチューブが一定方向に配列せず、ランダムに分散した試料を測定した。 No: carbon nanotubes not aligned in a certain direction was measured randomly dispersed sample.

【0049】 [0049]

【表2】 [Table 2] さらに、実施例3及び比較例2で得られたカーボンナノチューブ複合成形体の電気抵抗値を測定し、結果を表3 Furthermore, by measuring the electrical resistance of the carbon nanotube composite molded body obtained in Example 3 and Comparative Example 2, Table 3 Results
に示した。 It was shown to. なお、電気抵抗値は、端子間距離1mmで直流1mAの電流を通電した際の2端子間の電圧を測定して算出した値である。 The electric resistance value is a value calculated by measuring the voltage between the two terminals at the time of passing current of the direct current 1mA in the distance between terminals 1 mm.

【0050】 [0050]

【表3】 [Table 3] また、実施例1及び2並びに比較例1で得られたカーボンナノチューブ複合成形体を熱機械分析測定装置(メトラー社製 TMA−40、TA−3000)にて、温度30〜200℃における線膨張係数を測定した。 Further, the carbon nanotube composite molded body obtained in Example 1 and 2 and Comparative Example 1 by thermal mechanical analysis measuring apparatus (Mettler Co. TMA-40, TA-3000), the linear expansion coefficient in a temperature 30 to 200 ° C. It was measured. それらの結果を表4に示した。 The results are shown in Table 4.

【0051】 [0051]

【表4】 [Table 4] 表2の特に実施例3について、磁化率χの変化から磁気の異方性が認められる。 Especially Example 3 in Table 2, the magnetic anisotropy is observed from a change in the magnetic susceptibility chi. また、表3の実施例3について、電気抵抗値の変化から電気抵抗の異方性が認められる。 Also, for Example 3 in Table 3, the anisotropy of the electrical resistance is observed from a change in electrical resistance. さらに、表4の実施例1について、線膨張係数の変化から線膨張の異方性が認められる。 Furthermore, for Example 1 in Table 4, anisotropy changes from the linear expansion coefficient of linear expansion is observed. 加えて、表1に示したように、実施例1では貯蔵弾性率E及び損失弾性率Eについて成形体の上下面に平行な方向が垂直な方向より大きく、弾性率が優れていることがわかった。 In addition, as shown in Table 1, greater than perpendicularly it is parallel to the upper and lower surfaces of the molded article for Example 1, the storage modulus E and the loss modulus E, found that the elastic modulus are excellent It was.

【0052】なお、本発明は前記実施形態を次のように変更して構成することも可能である。 [0052] The present invention can be constructed by modifying the embodiment as follows. ・ マトリックス中にカーボンナノチューブを含有する組成物3に印加する磁場の方向を、金型1aの成形凹部2の内底面に対して斜め方向に設定してもよい。 - the direction of the magnetic field applied to the composition 3 containing carbon nanotubes in the matrix, it may be set in an oblique direction relative to the inner bottom surface of the molding recess 2 of the mold 1a.

【0053】・ カーボンナノチューブの表面に強磁性材料などの被膜を形成し、カーボンナノチューブの配列を効果的に行うように構成してもよい。 [0053] - to form a film, such as a ferromagnetic material on the surface of the carbon nanotubes may be configured to effectively carry out the sequence of the carbon nanotubes. このように構成すれば、異方性をより有効に発揮させることができる。 According to this structure, it is possible to more effectively exhibit the anisotropy.

【0054】・ 黒鉛化炭素繊維などの炭素繊維をカーボンナノチューブとともにマトリックスに配合することもできる。 [0054] The carbon fibers, such as, graphitized carbon fiber may be incorporated into a matrix along with the carbon nanotubes. このように構成した場合、熱伝導性と電気絶縁性についても異方性を発揮させることができる。 In such a configuration, it is possible also to exhibit anisotropic for thermal conductivity and electrical insulation.

【0055】・ マトリックスとして金属、セラミックス若しくはそれ以外の無機物又はそれらの前駆体を使用し、溶融状態又は溶媒分散状態で磁場を印加し、その後冷却固化又は乾燥後焼成して複合成形体を製造することができる。 [0055] matrix metal, using a ceramic or other inorganic or their precursors, by applying a magnetic field in the melt or solvent dispersion state, for producing a composite molded body was fired after then cooled and solidified or dried be able to. 例えば、カーボンナノチューブを配合したアルミニウム合金組成物を所定形状の容器内に収容して溶融させ、その状態で磁場を印加してカーボンナノチューブを一定方向に配列させ、それを冷却固化して複合成形体を製造することができる。 For example, to accommodate an aluminum alloy composition containing carbon nanotubes in a container of a predetermined shape to melt, it is arranged carbon nanotubes in a certain direction by applying a magnetic field in this state, composite compacts it to cool and solidify it can be produced. さらに、カーボンナノチューブを配合したフェノール樹脂やエポキシ樹脂などの組成物を所定形状の容器内に収容して溶融させ、その状態で磁場を印加してカーボンナノチューブを一定方向に配列させ、それを乾燥後焼成してマトリックスを炭化又は黒鉛化させ、カーボンナノチューブ炭素複合成形体を製造することができる。 Furthermore, by housing the composition such as a phenol resin or an epoxy resin containing carbon nanotubes in a container of a predetermined shape to melt, it is arranged carbon nanotubes in a certain direction by applying a magnetic field in this state, after drying it calcined matrix is ​​carbonized or graphitized, it is possible to produce a carbon nanotube-carbon composite formed body. このように構成した場合、複合成形体の硬さ、機械的強度、耐熱性、電気的特性、耐久性などの異方性を発現させることができる。 In such a configuration, it is possible to express the hardness of the composite molded body, mechanical strength, heat resistance, electrical properties, the anisotropy of the durability.

【0056】さらに、前記実施形態より把握される技術的思想について以下に記載する。 [0056] Furthermore, described below technical ideas grasped from the above embodiment. ・ カーボンナノチューブは、直径が1〜20nm、長さが50nm〜100μmである請求項1又は請求項2 Carbon nanotubes, according to claim 1 or claim 2 1 to 20 nm in diameter and a length of 50nm~100μm
に記載のカーボンナノチューブ複合成形体。 Carbon nanotube composite molded article according to. このように構成した場合、カーボンナノチューブを容易に製造できるとともに、カーボンナノチューブ複合成形体の異方性機能を有効に発現させることができる。 In such a configuration, with the carbon nanotubes can be easily manufactured, it can be effectively expressed anisotropy function of the carbon nanotube composite compact.

【0057】・ カーボンナノチューブの配合量は、マトリックスに対して0.1〜20重量部である請求項1 [0057] - amount of carbon nanotubes, according to claim 1 from 0.1 to 20 parts by weight with respect to the matrix
又は請求項2に記載のカーボンナノチューブ複合成形体。 Or carbon nanotube composite molded product according to claim 2. このように構成した場合、磁場によってカーボンナノチューブの配列が可能で、異方性機能を効果的に発現することができる。 In such a configuration, can be arranged in the carbon nanotube by a magnetic field, it is possible to express the anisotropic effectively function.

【0058】・ 磁場の強さは、磁束密度として5〜2 [0058] The strength of the-magnetic field, as the magnetic flux density 5-2
0テスラである請求項3又は請求項4に記載のカーボンナノチューブ複合成形体の製造方法。 Carbon nanotube production method of a composite molded article according to a 0 Tesla claim 3 or claim 4. この方法によれば、カーボンナノチューブを効果的に配列させることができる。 According to this method, it is possible to arrange the carbon nanotubes efficiently.

【0059】 [0059]

【発明の効果】以上詳述したように、本発明によれば次のような効果を発揮することができる。 As described in detail above, it is possible to exhibit the following effects according to the present invention.

【0060】請求項1に記載の発明のカーボンナノチューブ複合成形体によれば、電気的性質、熱的性質、機械的性質などの性質について、従来では得られなかった優れた異方性機能を発揮することができる。 [0060] According to the carbon nanotube composite molding of the invention described in claim 1, electrical properties, thermal properties, the properties such as mechanical properties, excellent anisotropic features which can not be obtained by conventional can do.

【0061】請求項2に記載の発明のカーボンナノチューブ複合成形体によれば、請求項1に記載の発明の効果に加え、所望形状を得るための成形加工性に優れている。 [0061] According to the carbon nanotube composite molding of the invention described in claim 2, in addition to the effect of the invention according to claim 1, it is superior in moldability for obtaining a desired shape. 請求項3に記載の発明のカーボンナノチューブ複合成形体の製造方法によれば、請求項1に記載の発明の効果を奏するカーボンナノチューブ複合成形体を効率良く得ることができる。 According to the method of manufacturing the carbon nanotube composite molding of the invention described in claim 3, it is possible to efficiently obtain a carbon nanotube composite compact the effects of the invention described in claim 1.

【0062】請求項4に記載の発明のカーボンナノチューブ複合成形体の製造方法によれば、請求項3に記載の発明の効果に加え、所望形状を得るための成形加工性に優れている。 [0062] According to the method of manufacturing the carbon nanotube composite molding of the invention described in claim 4, in addition to the effect of the invention according to claim 3, it is excellent in moldability for obtaining a desired shape.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 実施例1のカーボンナノチューブ複合成形体を示す概略説明図。 1 is a schematic diagram illustrating a carbon nanotube composite molded article of Example 1.

【図2】 成形用の金型を型開きした状態を示す断面図。 2 is a cross-sectional view showing a state in which mold opening the mold for molding.

【図3】 金型の成形凹部に組成物を注入して型締めした状態を示す断面図。 3 is a cross-sectional view showing a mold clamping state by injecting the composition into the molding recesses of the mold.

【図4】 図3の状態に続き、金型の両端に一対の磁石を配置し、成形凹部内の組成物に磁場を印加した状態を示す断面図。 [4] Following the state shown in FIG. 3, it arranged a pair of magnets at opposite ends of the mold, cross-sectional view showing a state of applying a magnetic field to the composition in the molding in the recess.

【図5】 実施例2のカーボンナノチューブ複合成形体を示す概略説明図。 Figure 5 is a schematic explanatory view showing a carbon nanotube composite molded article of Example 2.

【符号の説明】 DESCRIPTION OF SYMBOLS

5…カーボンナノチューブ複合成形体、6…カーボンナノチューブ。 5 ... carbon nanotube composite molding, 6 ... carbon nanotubes.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 7識別記号 FI テーマコート゛(参考) C08L 101/00 C08L 101/00 // B29K 21:00 B29K 21:00 101:10 101:10 (72)発明者 木村 亨 東京都北区田端5丁目10番5号 ポリマテ ック 株式会社R&Dセンター内 (72)発明者 湯村 守雄 茨城県つくば市東1−1 経済産業省産業 技術総合研究所物質工学工業技術研究所 内 (72)発明者 大嶋 哲 茨城県つくば市東1−1 経済産業省産業 技術総合研究所物質工学工業技術研究所 内 (72)発明者 吾郷 浩樹 茨城県つくば市東1−1 経済産業省産業 技術総合研究所物質工学工業技術研究所 内 (72)発明者 内田 邦夫 茨城県つくば市東1−1 経済産業省産業 技術総合研 ────────────────────────────────────────────────── ─── of the front page continued (51) Int.Cl 7 identification mark FI theme Court Bu (reference) C08L 101/00 C08L 101/00 // B29K 21:00 B29K 21:00 101:. 10 101: 10 (72) inventor Toru Kimura Kita-ku, Tokyo Tabata 5-chome 10th No. 5 Porimate click Co., Ltd. R & D in the center (72) inventor Morio Yumura Higashi, Tsukuba, Ibaraki, 1-1 Ministry of economy, Trade and industry National Institute of Advanced industrial Science and technology substance of industrial Science and technology research in Tokoro (72) inventor Akira Oshima Higashi, Tsukuba, Ibaraki, 1-1 Ministry of economy, Trade and industry National Institute of Advanced industrial Science and technology substance Institute of Advanced industrial Science and technology within the (72) inventor Hiroki Ago Higashi, Tsukuba, Ibaraki, 1-1 Ministry of economy, Trade and industry industrial Science and technology Research Institute substance of industrial Science and technology in the Laboratory (72) inventor Kunio Uchida Higashi, Tsukuba, Ibaraki, 1-1 Ministry of economy, Trade and industry industrial technology Research Institute 究所物質工学工業技術研究所 内 (72)発明者 角舘 洋三 茨城県つくば市東1−1 経済産業省産業 技術総合研究所物質工学工業技術研究所 内 (72)発明者 横井 裕之 茨城県つくば市東1−1 経済産業省産業 技術総合研究所物質工学工業技術研究所 内 Fターム(参考) 4F071 AA02 AA03 AB03 AE15 AH12 BA01 BB01 BB03 BB06 BB13 4F204 AA28 AA36 AA45 AA49 AE04 AJ02 AJ03 AJ09 EA03 EB01 EE02 EF02 EF27 4J002 AA011 AA021 DA036 FD116 Institute substance of Industrial Science and Technology in the Laboratory (72) inventor Sumiyakata Yozo Higashi, Tsukuba, Ibaraki, 1-1 Ministry of Economy, Trade and Industry National Institute of Advanced Industrial Science and Technology substance Institute of Advanced Industrial Science and Technology within the (72) inventor Hiroyuki Yokoi Higashi, Tsukuba, Ibaraki, 1 -1 Ministry of economy, Trade and industry National Institute of Advanced industrial Science and technology substance Institute of Advanced industrial Science and technology in the F-term (reference) 4F071 AA02 AA03 AB03 AE15 AH12 BA01 BB01 BB03 BB06 BB13 4F204 AA28 AA36 AA45 AA49 AE04 AJ02 AJ03 AJ09 EA03 EB01 EE02 EF02 EF27 4J002 AA011 AA021 DA036 FD116

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 マトリックス中にカーボンナノチューブが一定方向に配列されて複合された状態で成形されていることを特徴とするカーボンナノチューブ複合成形体。 1. A carbon nanotube composite molding, characterized in that the carbon nanotubes in the matrix is ​​molded in a state of being combined are aligned in a certain direction.
  2. 【請求項2】 マトリックスが、熱可塑性樹脂、硬化性樹脂、ゴム及び熱可塑性エラストマーから選ばれる少なくとも1種の有機高分子であることを特徴とする請求項1に記載のカーボンナノチューブ複合成形体。 2. A matrix is ​​a thermoplastic resin, curable resin, carbon nanotube composite molded product according to claim 1, wherein the at least one organic polymer selected from rubber and thermoplastic elastomers.
  3. 【請求項3】 マトリックス中にカーボンナノチューブを含有する組成物に磁場を印加させてカーボンナノチューブを一定方向に配列させた状態で、固化させて成形することを特徴とするカーボンナノチューブ複合成形体の製造方法。 In 3. A state in which by applying a magnetic field to the composition containing carbon nanotubes in the matrix are arranged carbon nanotubes in a certain direction, the production of carbon nanotube composite molded article characterized by molding solidifying Method.
  4. 【請求項4】 マトリックスが、熱可塑性樹脂、硬化性樹脂、ゴム及び熱可塑性エラストマーから選ばれる少なくとも1種の有機高分子であることを特徴とする請求項3に記載のカーボンナノチューブ複合成形体の製造方法。 4. A matrix is ​​a thermoplastic resin, curable resin, a rubber and a thermoplastic at least one carbon nanotube composite molding according to claim 3, characterized in that the organic polymer is selected from elastomers Production method.
JP2001074244A 2001-03-15 2001-03-15 Carbon nanotube composite molded body and method for producing the same Active JP4697829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001074244A JP4697829B2 (en) 2001-03-15 2001-03-15 Carbon nanotube composite molded body and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001074244A JP4697829B2 (en) 2001-03-15 2001-03-15 Carbon nanotube composite molded body and method for producing the same
US10/097,393 US20030096104A1 (en) 2001-03-15 2002-03-14 Carbon nanotube complex molded body and the method of making the same

Publications (2)

Publication Number Publication Date
JP2002273741A true JP2002273741A (en) 2002-09-25
JP4697829B2 JP4697829B2 (en) 2011-06-08

Family

ID=18931545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001074244A Active JP4697829B2 (en) 2001-03-15 2001-03-15 Carbon nanotube composite molded body and method for producing the same

Country Status (2)

Country Link
US (1) US20030096104A1 (en)
JP (1) JP4697829B2 (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003025069A1 (en) * 2001-09-14 2003-03-27 Bridgestone Corporation Thermoplastic elastomer composition
DE10301996A1 (en) * 2003-01-21 2004-07-29 Technische Universität Hamburg-Harburg Mixing of carbon nanotube reinforcement with polymers (especially polyesters) takes place before the end of the polycondensation used to produce the polymer
WO2004065496A1 (en) * 2003-01-20 2004-08-05 Teijin Limited Carbon nanotube coated with aromatic condensation polymer
WO2004099477A2 (en) * 2003-05-09 2004-11-18 Showa Denko K.K. Fine carbon fiber with linearity and resin composite material using the same
WO2005008784A1 (en) * 2003-07-17 2005-01-27 Matsushita Electric Industrial Co., Ltd. Field effect transistor and method for manufacturing same
WO2004070349A3 (en) * 2002-11-27 2005-03-31 Univ Rice William M Functionalized carbon nanotube-polymer composites and interactions with radiation
JP2006086471A (en) * 2004-09-17 2006-03-30 Yaskawa Electric Corp Heat radiation fin and its manufacturing method
JP2006131903A (en) * 2004-11-02 2006-05-25 Internatl Business Mach Corp <Ibm> Conductive liquid crystal polymer matrix, miniature electronic device containing the same, method for producing structure containing the device (conductive liquid crystal polymer matrix containing carbon nanotube)
JP2006150541A (en) * 2004-11-30 2006-06-15 Nano Frontier Corp Oriented and patterning-solidified compound material of cnt and its manufacturing method
JP2006158950A (en) * 2004-11-15 2006-06-22 Kasco Corp Golf ball
JP2006255852A (en) * 2005-03-18 2006-09-28 Kyocera Corp Composite fiber body and cutting tool using the same
JP2006524631A (en) * 2003-04-28 2006-11-02 リーンドロ バルザーノ, Single wall carbon nanotube-ceramic composite and method of use
JP2006312677A (en) * 2005-05-09 2006-11-16 Koichiro Beitake Carbon fiber oriented connecting film and its manufacturing method
KR100647595B1 (en) * 2004-02-17 2006-11-17 삼성에스디아이 주식회사 Complex for forming case and plasma display panel assembly using the same
JP2007009333A (en) * 2006-10-23 2007-01-18 Shinshu Univ Plated structure and method of manufacturing the same
JP2007009213A (en) * 2005-07-01 2007-01-18 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Heat conductive material and method for preparation of the same
CN1303618C (en) * 2002-11-29 2007-03-07 日精树脂工业株式会社 Conductive resin molded product with insulation sheath and its preparing method
JP2007062570A (en) * 2005-08-31 2007-03-15 Nissin Kogyo Co Ltd Lip-shaped seal member, vehicular hydraulic master cylinder using the lip-shaped seal member
JP2007076604A (en) * 2005-09-16 2007-03-29 Nissin Kogyo Co Ltd Diaphragm and reservoir tank of hydraulic master cylinder for vehicle
JP2007168263A (en) * 2005-12-22 2007-07-05 Seiko Precision Inc Resin-made case for electronic equipment and manufacturing method of resin molding
JP2007284679A (en) * 2006-04-14 2007-11-01 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Composite material containing carbon nanotubes and process for its production
JPWO2005095274A1 (en) * 2004-03-31 2008-02-21 ステラケミファ株式会社 Aggregate of carbon nanotubes, method for forming the same, and biocompatible material
JP2008044099A (en) * 2006-08-11 2008-02-28 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Carbon nanotube composite material and manufacturing method thereof
JP2008156646A (en) * 2006-12-22 2008-07-10 Xerox Corp Coating composition and fusing material
CN100433311C (en) * 2003-09-24 2008-11-12 英特尔公司 Thermal interface material with aligned carbon nanotubes
JP2008308344A (en) * 2007-06-12 2008-12-25 Mefs Kk Carbon nanofiber, manufacturing method thereof, manufacturing method of carbon fiber composite material using carbon nanofiber and carbon fiber composite material
JP2009130113A (en) * 2007-11-22 2009-06-11 Fujitsu Ltd Package and electronic device using carbon nanotube
JP2009286688A (en) * 2008-05-28 2009-12-10 Hon Hai Precision Industry Co Ltd Method of manufacturing carbon nanotube film
JP2010056482A (en) * 2008-08-29 2010-03-11 Fujitsu Ltd Printed wiring board and conductive material
JP2010064488A (en) * 2008-09-12 2010-03-25 Hon Hai Precision Industry Co Ltd Method for manufacturing composite using carbon nanotube array
JP2010120289A (en) * 2008-11-18 2010-06-03 Semes Co Ltd Device and method for composing conductive composite
US7785701B2 (en) 2003-04-09 2010-08-31 Nissin Kogyo Co., Ltd. Carbon fiber composite material and process for producing the same
JP2010192581A (en) * 2009-02-17 2010-09-02 National Institute Of Advanced Industrial Science & Technology Electromagnetic wave radiator and electromagnetic wave absorber
JP2010222707A (en) * 2010-06-07 2010-10-07 Shinshu Univ Electroless plating method and electroless plating solution
JP2010538861A (en) * 2007-08-16 2010-12-16 エアバス オペレーションズ リミティド Method and apparatus for manufacturing parts from composite materials
US7927169B2 (en) 2004-11-22 2011-04-19 Nissin Kogyo Co., Ltd. Method of manufacturing thin film, substrate having thin film, electron emission material, method of manufacturing electron emission material, and electron emission device
US8053506B2 (en) 2003-07-23 2011-11-08 Nissin Kogyo Co., Ltd. Carbon fiber composite material and method of producing the same, formed product of carbon fiber composite and method of producing the same, carbon fiber-metal composite material and method of producing the same, and formed product of carbon fiber-metal composite and method of producing the same
JP2012062452A (en) * 2010-09-18 2012-03-29 Sekisui Chem Co Ltd Thermoplastic resin composite material and method of producing the same
JP2012082382A (en) * 2010-09-15 2012-04-26 Sekisui Chem Co Ltd Resin composite molding, and method for manufacturing the same
JP2012087041A (en) * 2010-09-22 2012-05-10 Yamagata Prefecture Multi-wall carbon nanotube-dispersed and mixed aqueous gel, manufacturing method, and application thereof
JP2012139679A (en) * 2011-01-03 2012-07-26 General Electric Co <Ge> Process of forming material having nano-particle and material having nano-particle
US8377547B2 (en) 2004-07-16 2013-02-19 Nissin Kogyo Co., Ltd. Carbon fiber-metal composite material and method of producing the same
JP2013063641A (en) * 2011-09-01 2013-04-11 Boeing Co:The Method, apparatus and material mixture for direct digital manufacturing of fiber reinforced part
JP2013523591A (en) * 2010-04-06 2013-06-17 ウィリアム・マーシュ・ライス・ユニバーシティ Production of highly conductive carbon nanotube-polymer composites
CN103241709A (en) * 2013-04-29 2013-08-14 中国科学院金属研究所 Method for adjusting photoelectric property of nanocarbon film by ozone and for graphing nanocarbon film
US8513348B2 (en) 2008-07-10 2013-08-20 Nissin Kogyo Co., Ltd. Carbon nanofibers, method of producing carbon nanofibers, carbon fiber composite material using carbon nanofibers, and method of producing the carbon fiber composite material
JP2013534363A (en) * 2010-07-23 2013-09-02 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Method and system for enhancing the performance of thermal interface materials
KR101308183B1 (en) 2011-08-19 2013-09-12 숭실대학교산학협력단 Conductive polymer complex and forming method thereof
KR101360417B1 (en) * 2011-11-23 2014-02-11 현대자동차주식회사 Aluminum-cnt composites and method for producing the same
US20140132439A1 (en) * 2012-07-10 2014-05-15 Kabushiki Kaisha Riken Electromagnetic wave absorber
JP5540419B2 (en) * 2010-02-15 2014-07-02 国立大学法人北海道大学 Carbon nanotube sheet and method for producing the same
US9082744B2 (en) 2013-07-08 2015-07-14 International Business Machines Corporation Method for aligning carbon nanotubes containing magnetic nanoparticles in a thermosetting polymer using a magnetic field
US9090004B2 (en) 2013-02-06 2015-07-28 International Business Machines Corporation Composites comprised of aligned carbon fibers in chain-aligned polymer binder
US9096784B2 (en) 2010-07-23 2015-08-04 International Business Machines Corporation Method and system for allignment of graphite nanofibers for enhanced thermal interface material performance
US9245813B2 (en) 2013-01-30 2016-01-26 International Business Machines Corporation Horizontally aligned graphite nanofibers in etched silicon wafer troughs for enhanced thermal performance
US9257359B2 (en) 2011-07-22 2016-02-09 International Business Machines Corporation System and method to process horizontally aligned graphite nanofibers in a thermal interface material used in 3D chip stacks
JP2017507809A (en) * 2014-02-04 2017-03-23 エヌ12 テクノロジーズ, インク.N12 Technologies, Inc. Articles of nanostructure-reinforced composite and manufacturing method
CN106883476A (en) * 2010-12-14 2017-06-23 钢筋分子设计有限责任公司 Improved Elastomer Formulations
KR20180004624A (en) * 2016-07-04 2018-01-12 류도영 Carbon nanotubes and conductive polymer composite material produced is mixed utilization and efficient composition
WO2018012445A1 (en) * 2016-07-15 2018-01-18 パナソニックIpマネジメント株式会社 Metal-clad laminate and printed wiring board
KR20180020501A (en) * 2016-08-18 2018-02-28 한국과학기술연구원 Polyketone-carbon based filler composites and preparation methods thereof
WO2019022528A1 (en) * 2017-07-28 2019-01-31 엘에프피 주식회사 Polytetrafluoroethylene carbon nanotube composite having electro-conductive property and method for producing same
KR20190047780A (en) * 2017-10-30 2019-05-09 (주) 오프렌 Method and apparatus for producing high strength component

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6991363B2 (en) * 2000-04-28 2006-01-31 Premark Feg L.L.C. Mixer with pivotable bowl
EP1461390A1 (en) * 2002-04-01 2004-09-29 Carbon Nanotechnologies, Inc. Composite of single-wall carbon nanotubes and aromatic polyamide and process for making the same
JP2003317606A (en) * 2002-04-19 2003-11-07 Mitsubishi Pencil Co Ltd Electrode for electron gun and electron gun
JP4416376B2 (en) * 2002-05-13 2010-02-17 富士通株式会社 Semiconductor device and manufacturing method thereof
JP3969228B2 (en) * 2002-07-19 2007-09-05 松下電工株式会社 Mechanical deformation detection sensor, acceleration sensor using the same, and pressure sensor
WO2004045267A2 (en) * 2002-08-23 2004-06-03 The Regents Of The University Of California Improved microscale vacuum tube device and method for making same
AU2003304297A1 (en) * 2002-08-23 2005-01-21 Sungho Jin Article comprising gated field emission structures with centralized nanowires and method for making the same
US7012266B2 (en) 2002-08-23 2006-03-14 Samsung Electronics Co., Ltd. MEMS-based two-dimensional e-beam nano lithography device and method for making the same
US6994584B1 (en) 2002-08-30 2006-02-07 Advanced Micro Devices, Inc. Thermally conductive integrated circuit mounting structures
US7068582B2 (en) * 2002-09-30 2006-06-27 The Regents Of The University Of California Read head for ultra-high-density information storage media and method for making the same
US20050079282A1 (en) * 2002-09-30 2005-04-14 Sungho Jin Ultra-high-density magnetic recording media and methods for making the same
US20060061011A1 (en) * 2002-09-30 2006-03-23 Masami Kikuchi Orientated carbon nanotube composite, process for producing orientated carbon nanotube, and, produced using orientated carbon nanotube composite, pneumatic tire, wheel for vehicle, tire wheel assembly and disk brake
US20040071951A1 (en) * 2002-09-30 2004-04-15 Sungho Jin Ultra-high-density information storage media and methods for making the same
WO2004033370A1 (en) * 2002-10-11 2004-04-22 Massachusetts Institute Of Technology Nanopellets and method of making nanopellets
US20040096607A1 (en) * 2002-11-15 2004-05-20 Kelley Ronald James Gas storage media, containers, and battery employing the media
EP1697972A2 (en) * 2003-11-18 2006-09-06 Washington State University Research Foundation Micro-transducer and thermal switch for same
US20060188718A1 (en) * 2002-12-04 2006-08-24 Hideaki Nitta Composite fiber including wholly aromatic polyamide and carbon nanotube
WO2005014708A1 (en) * 2003-06-23 2005-02-17 William Marsh Rice University Elastomers reinforced with carbon nanotubes
US20040266063A1 (en) * 2003-06-25 2004-12-30 Montgomery Stephen W. Apparatus and method for manufacturing thermal interface device having aligned carbon nanotubes
US6976532B2 (en) * 2003-06-26 2005-12-20 The Regents Of The University Of California Anisotropic thermal applications of composites of ceramics and carbon nanotubes
US7481267B2 (en) * 2003-06-26 2009-01-27 The Regents Of The University Of California Anisotropic thermal and electrical applications of composites of ceramics and carbon nanotubes
JP2005127965A (en) * 2003-10-27 2005-05-19 Mitsubishi Pencil Co Ltd Optically measuring carbon substrate and method for manufacturing the same
JP2005133034A (en) * 2003-10-31 2005-05-26 Fuji Xerox Co Ltd Aliphatic polyetherketone polymer and resin composition
JP4070707B2 (en) * 2003-11-13 2008-04-02 株式会社潤工社 Fluororesin composition
US7932549B2 (en) * 2003-12-18 2011-04-26 International Business Machines Corporation Carbon nanotube conductor for trench capacitors
US6997039B2 (en) 2004-02-24 2006-02-14 Clemson University Carbon nanotube based resonant-circuit sensor
KR20060024564A (en) * 2004-09-14 2006-03-17 삼성에스디아이 주식회사 Method for aligning carbon nanotubes and method of manufacturing field emission device using the same
TWI388042B (en) * 2004-11-04 2013-03-01 Taiwan Semiconductor Mfg Integrated circuit nanotube-based substrate
TW200633171A (en) * 2004-11-04 2006-09-16 Koninkl Philips Electronics Nv Nanotube-based fluid interface material and approach
US7351360B2 (en) * 2004-11-12 2008-04-01 International Business Machines Corporation Self orienting micro plates of thermally conducting material as component in thermal paste or adhesive
US8715533B2 (en) 2004-12-17 2014-05-06 Asahi R&D Co., Ltd. Dielectric raw material, antenna device, portable phone and electromagnetic wave shielding body
EP1829933B1 (en) * 2004-12-17 2015-07-22 ASAHI FR R&D Co., Ltd. Method of controlling specific inductive capacity, dielectric material, mobile phone and human phantom model
WO2006078952A1 (en) * 2005-01-21 2006-07-27 University Of California Methods for fabricating a long-range ordered periodic array of nano-features, and articles comprising same
US20060174385A1 (en) * 2005-02-02 2006-08-03 Lewis Gruber Method and apparatus for detecting targets
US8092910B2 (en) * 2005-02-16 2012-01-10 Dow Corning Toray Co., Ltd. Reinforced silicone resin film and method of preparing same
KR101271662B1 (en) * 2005-02-16 2013-06-05 다우 코닝 도레이 캄파니 리미티드 Reinforced silicone resin film and method of preparing same
JP2007039638A (en) * 2005-03-23 2007-02-15 Nissin Kogyo Co Ltd Carbon fiber composite material
WO2007018756A1 (en) * 2005-08-04 2007-02-15 Dow Corning Corporation Reinforced silicone resin film and method of preparing same
AU2006292615A1 (en) * 2005-09-16 2007-03-29 Hyperion Catalysis International, Inc. Conductive silicone and methods for preparing same
EP1969065B1 (en) * 2005-12-21 2011-07-27 Dow Corning Corporation Silicone resin film, method of preparing same, and nanomaterial-filled silicone composition
JP5543111B2 (en) * 2006-01-19 2014-07-09 ダウ・コーニング・コーポレイション Self-supporting silicone resin film, preparation method thereof, and nanomaterial-filled silicone composition for self-supporting silicone resin film
AT516331T (en) * 2006-02-02 2011-07-15 Dow Corning Silicone resin film, manufacturing method and nanomaterally filled silicone composition
TW200745262A (en) * 2006-02-10 2007-12-16 Teijin Ltd Resin composition and method for producing the same
US8084097B2 (en) * 2006-02-20 2011-12-27 Dow Corning Corporation Silicone resin film, method of preparing same, and nanomaterial-filled silicone composition
EP2024283A2 (en) 2006-05-19 2009-02-18 Massachusetts Institute of Technology Continuous process for the production of nanostructures including nanotubes
US8337979B2 (en) 2006-05-19 2012-12-25 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
CN101522838B (en) * 2006-10-05 2012-07-04 陶氏康宁东丽株式会社 Silicone resin film and method of preparing same
US20100112321A1 (en) * 2007-02-06 2010-05-06 Dow Corning Corporation Silicone Resin, Silicone Composition, Coated Substrate, and Reinforced Silicone Resin Film
EP2117836B1 (en) * 2007-02-22 2012-11-07 Dow Corning Corporation Reinforced silicone resin films
JP5377334B2 (en) * 2007-02-22 2013-12-25 ダウ コーニング コーポレーション Reinforced silicone resin film
DE602008001879D1 (en) * 2007-02-22 2010-09-02 Dow Corning Method for producing conductive films and articles made in this process
JP2010519382A (en) * 2007-02-22 2010-06-03 ダウ コーニング コーポレーション Reinforced silicone resin film and method for preparing the same
JP5250025B2 (en) * 2007-05-01 2013-07-31 ダウ・コーニング・コーポレイション Reinforced silicone resin film
US8020621B2 (en) * 2007-05-08 2011-09-20 Baker Hughes Incorporated Downhole applications of composites having aligned nanotubes for heat transport
US20110121179A1 (en) * 2007-06-01 2011-05-26 Liddiard Steven D X-ray window with beryllium support structure
US20080318026A1 (en) * 2007-06-25 2008-12-25 University Of Dayton Method of modifying carbon nanomaterials, composites incorporating modified carbon nanomaterials and method of producing the composites
AU2008275064A1 (en) * 2007-07-09 2009-01-15 Brigham Young University Methods and devices for charged molecule manipulation
CN101360387B (en) 2007-08-03 2012-06-13 富葵精密组件(深圳)有限公司 Flexible circuit board base membrane, flexible circuit board substrate and flexible circuit board
CN101376497B (en) * 2007-08-31 2011-06-22 清华大学 Carbon nano-tube composite material precast member and preparation thereof
DE102007042217B4 (en) * 2007-09-05 2019-10-10 Robert Bosch Gmbh Process for the preparation of porous ceramics, the ceramics thus produced and their use
US9305735B2 (en) 2007-09-28 2016-04-05 Brigham Young University Reinforced polymer x-ray window
EP2190778A4 (en) * 2007-09-28 2014-08-13 Univ Brigham Young Carbon nanotube assembly
WO2009048694A1 (en) * 2007-10-12 2009-04-16 Dow Corning Corporation Reinforced silicone resin film and nanofiber-filled silicone composition
RU2410402C2 (en) 2007-12-28 2011-01-27 Александр Метталинович Тишин Porous materials with embedded nanoparticles, preparation methods and use thereof
CN101970193A (en) * 2008-02-11 2011-02-09 Memc电子材料有限公司 Carbon nanotube reinforced wiresaw beam used in wiresaw slicing of ingots into wafers
US9023175B2 (en) * 2008-08-04 2015-05-05 Lockheed Martin Corporation Carbon/carbon film adhesive
US20100108393A1 (en) * 2008-11-04 2010-05-06 Baker Hughes Incorporated Downhole mud motor and method of improving durabilty thereof
US9494615B2 (en) * 2008-11-24 2016-11-15 Massachusetts Institute Of Technology Method of making and assembling capsulated nanostructures
RU2011126161A (en) * 2008-11-25 2013-01-10 Саша МАНТОВАНИ Device for quick transmission of heat energy
WO2010097099A1 (en) * 2009-02-27 2010-09-02 Siemens Aktiengesellschaft Electric component and method for producing an electric component
US8313443B2 (en) * 2009-03-09 2012-11-20 Tom Michael D Tensiometer utilizing elastic conductors
US20100239828A1 (en) * 2009-03-19 2010-09-23 Cornaby Sterling W Resistively heated small planar filament
US8247971B1 (en) 2009-03-19 2012-08-21 Moxtek, Inc. Resistively heated small planar filament
WO2011009477A1 (en) * 2009-07-23 2011-01-27 Siemens Aktiengesellschaft Cable containing oriented nanoparticles
US20110146859A1 (en) * 2009-12-21 2011-06-23 Frank Schmitz Tire with component containing carbon nanotubes
EP2585402A2 (en) * 2010-06-22 2013-05-01 Designed Nanotubes, LLC Modified carbon nanotubes, methods for production thereof and products obtained therefrom
US8526574B2 (en) 2010-09-24 2013-09-03 Moxtek, Inc. Capacitor AC power coupling across high DC voltage differential
US8995621B2 (en) 2010-09-24 2015-03-31 Moxtek, Inc. Compact X-ray source
US8498381B2 (en) 2010-10-07 2013-07-30 Moxtek, Inc. Polymer layer on X-ray window
CN102053735B (en) * 2010-12-27 2015-01-21 清华大学 Touch screen input fingerstall
US9575598B2 (en) * 2010-12-27 2017-02-21 Tsinghua University Inputting fingertip sleeve
US8804910B1 (en) 2011-01-24 2014-08-12 Moxtek, Inc. Reduced power consumption X-ray source
US8750458B1 (en) 2011-02-17 2014-06-10 Moxtek, Inc. Cold electron number amplifier
US8929515B2 (en) 2011-02-23 2015-01-06 Moxtek, Inc. Multiple-size support for X-ray window
JP5790023B2 (en) * 2011-02-25 2015-10-07 富士通株式会社 Manufacturing method of electronic parts
US8792619B2 (en) 2011-03-30 2014-07-29 Moxtek, Inc. X-ray tube with semiconductor coating
US9076628B2 (en) 2011-05-16 2015-07-07 Brigham Young University Variable radius taper x-ray window support structure
US9174412B2 (en) 2011-05-16 2015-11-03 Brigham Young University High strength carbon fiber composite wafers for microfabrication
US8989354B2 (en) 2011-05-16 2015-03-24 Brigham Young University Carbon composite support structure
US9475921B2 (en) 2011-06-23 2016-10-25 Molecular Rebar Design, Llc Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom
US9997785B2 (en) 2011-06-23 2018-06-12 Molecular Rebar Design, Llc Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom
US8817950B2 (en) 2011-12-22 2014-08-26 Moxtek, Inc. X-ray tube to power supply connector
US8761344B2 (en) 2011-12-29 2014-06-24 Moxtek, Inc. Small x-ray tube with electron beam control optics
GB201210850D0 (en) 2012-06-19 2012-08-01 Eads Uk Ltd Thermoplastic polymer powder
US20150327408A1 (en) * 2012-10-04 2015-11-12 Compass Datacenters, Llc Magnetic blocking tiles for a datacenter facility
KR101462426B1 (en) * 2012-12-07 2014-11-17 한화케미칼 주식회사 Formulation and Process of Highly Thermal Conducting Rubber Composite using Carbon Nanotubes for Bladder
US20140175338A1 (en) * 2012-12-21 2014-06-26 Polyone Corporation Electrically conductive polyphenylene sulfide compounds
JP2014187134A (en) * 2013-03-22 2014-10-02 Riken Corp Electromagnetic wave absorber
US9173623B2 (en) 2013-04-19 2015-11-03 Samuel Soonho Lee X-ray tube and receiver inside mouth
WO2016014585A1 (en) 2014-07-22 2016-01-28 Advanced Technology Materials, Inc. Molded fluoropolymer breakseal with compliant material
US10427382B2 (en) * 2015-10-29 2019-10-01 King Abdulaziz University Composite epoxy material with embedded MWCNT fibers and process of manufacturing
US10350837B2 (en) 2016-05-31 2019-07-16 Massachusetts Institute Of Technology Composite articles comprising non-linear elongated nanostructures and associated methods
GB2555852A (en) * 2016-11-14 2018-05-16 Jaguar Land Rover Ltd Moulding process and apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029939B2 (en) * 1972-07-05 1975-09-27
JP2000026760A (en) * 1998-07-14 2000-01-25 Suzuki Sogyo Co Ltd Functional coating composition
JP2000063670A (en) * 1998-08-24 2000-02-29 Suzuki Sogyo Co Ltd Thermally conductive silicone rubber composition and its molded item
JP2000141505A (en) * 1998-11-09 2000-05-23 Polymatech Co Ltd Method for molding polymer composite material and magnetic field-orientated press molding device
JP2000141392A (en) * 1998-11-09 2000-05-23 Polymatech Co Ltd Method for molding polymer composite material and magnetic field oriented press forming machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6599961B1 (en) * 2000-02-01 2003-07-29 University Of Kentucky Research Foundation Polymethylmethacrylate augmented with carbon nanotubes
US6420293B1 (en) * 2000-08-25 2002-07-16 Rensselaer Polytechnic Institute Ceramic matrix nanocomposites containing carbon nanotubes for enhanced mechanical behavior
JP2002121404A (en) * 2000-10-19 2002-04-23 Polymatech Co Ltd Heat-conductive polymer sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029939B2 (en) * 1972-07-05 1975-09-27
JP2000026760A (en) * 1998-07-14 2000-01-25 Suzuki Sogyo Co Ltd Functional coating composition
JP2000063670A (en) * 1998-08-24 2000-02-29 Suzuki Sogyo Co Ltd Thermally conductive silicone rubber composition and its molded item
JP2000141505A (en) * 1998-11-09 2000-05-23 Polymatech Co Ltd Method for molding polymer composite material and magnetic field-orientated press molding device
JP2000141392A (en) * 1998-11-09 2000-05-23 Polymatech Co Ltd Method for molding polymer composite material and magnetic field oriented press forming machine

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003025069A1 (en) * 2001-09-14 2003-03-27 Bridgestone Corporation Thermoplastic elastomer composition
EP2258762A1 (en) * 2002-11-27 2010-12-08 William Marsh Rice University Functionalized carbon nanotube-polymer composites and interactions with radiation
EP2258763A1 (en) * 2002-11-27 2010-12-08 William Marsh Rice University Functionalized carbon nanotube-polymer composites and interactions with radiation
US7744844B2 (en) 2002-11-27 2010-06-29 William Marsh Rice University Functionalized carbon nanotube-polymer composites and interactions with radiation
WO2004070349A3 (en) * 2002-11-27 2005-03-31 Univ Rice William M Functionalized carbon nanotube-polymer composites and interactions with radiation
US8809979B2 (en) 2002-11-27 2014-08-19 William Marsh Rice University Functionalized carbon nanotube-polymer composites and interactions with radiation
CN1303618C (en) * 2002-11-29 2007-03-07 日精树脂工业株式会社 Conductive resin molded product with insulation sheath and its preparing method
WO2004065496A1 (en) * 2003-01-20 2004-08-05 Teijin Limited Carbon nanotube coated with aromatic condensation polymer
US7754328B2 (en) 2003-01-20 2010-07-13 Teijin Limited Carbon nanotube coated with aromatic condensation polymer
DE10301996A1 (en) * 2003-01-21 2004-07-29 Technische Universität Hamburg-Harburg Mixing of carbon nanotube reinforcement with polymers (especially polyesters) takes place before the end of the polycondensation used to produce the polymer
US7927692B2 (en) 2003-04-09 2011-04-19 Nissin Kogyo Co., Ltd. Carbon fiber composite material and process for producing the same
US7785701B2 (en) 2003-04-09 2010-08-31 Nissin Kogyo Co., Ltd. Carbon fiber composite material and process for producing the same
US8808605B2 (en) 2003-04-09 2014-08-19 Nissin Kogyo Co., Ltd. Carbon fiber composite material and process for producing the same
JP2006524631A (en) * 2003-04-28 2006-11-02 リーンドロ バルザーノ, Single wall carbon nanotube-ceramic composite and method of use
CN100439574C (en) * 2003-05-09 2008-12-03 昭和电工株式会社 Fine carbon fiber with linearity and resin composite material using the same
US8084121B2 (en) 2003-05-09 2011-12-27 Showa Denko K.K. Fine carbon fiber with linearity and resin composite material using the same
US8372511B2 (en) 2003-05-09 2013-02-12 Showa Denko K.K. Fine carbon fiber with linearity and resin composite material using the same
JP2013217011A (en) * 2003-05-09 2013-10-24 Showa Denko Kk Linear fine carbon fiber
KR100675599B1 (en) * 2003-05-09 2007-01-30 쇼와 덴코 가부시키가이샤 Fine carbon fiber with linearity and resin composite material using the same
WO2004099477A3 (en) * 2003-05-09 2005-01-27 Showa Denko Kk Fine carbon fiber with linearity and resin composite material using the same
WO2004099477A2 (en) * 2003-05-09 2004-11-18 Showa Denko K.K. Fine carbon fiber with linearity and resin composite material using the same
JP2010084316A (en) * 2003-05-09 2010-04-15 Showa Denko Kk Fine carbon fiber with linearity and composite material using the same
US7858968B2 (en) 2003-07-17 2010-12-28 Panasonic Corporation Field effect transistor and method of fabricating the same
JP4632952B2 (en) * 2003-07-17 2011-02-23 パナソニック株式会社 Field effect transistor and manufacturing method thereof
WO2005008784A1 (en) * 2003-07-17 2005-01-27 Matsushita Electric Industrial Co., Ltd. Field effect transistor and method for manufacturing same
JPWO2005008784A1 (en) * 2003-07-17 2006-09-28 松下電器産業株式会社 Field effect transistor and manufacturing method thereof
US8053506B2 (en) 2003-07-23 2011-11-08 Nissin Kogyo Co., Ltd. Carbon fiber composite material and method of producing the same, formed product of carbon fiber composite and method of producing the same, carbon fiber-metal composite material and method of producing the same, and formed product of carbon fiber-metal composite and method of producing the same
CN100433311C (en) * 2003-09-24 2008-11-12 英特尔公司 Thermal interface material with aligned carbon nanotubes
KR100647595B1 (en) * 2004-02-17 2006-11-17 삼성에스디아이 주식회사 Complex for forming case and plasma display panel assembly using the same
JP5014786B2 (en) * 2004-03-31 2012-08-29 ステラケミファ株式会社 Aggregate of carbon nanotubes, method for forming the same, and biocompatible material
JPWO2005095274A1 (en) * 2004-03-31 2008-02-21 ステラケミファ株式会社 Aggregate of carbon nanotubes, method for forming the same, and biocompatible material
US8377547B2 (en) 2004-07-16 2013-02-19 Nissin Kogyo Co., Ltd. Carbon fiber-metal composite material and method of producing the same
JP4666203B2 (en) * 2004-09-17 2011-04-06 株式会社安川電機 Radiation fin and method of manufacturing the same
JP2006086471A (en) * 2004-09-17 2006-03-30 Yaskawa Electric Corp Heat radiation fin and its manufacturing method
JP2006131903A (en) * 2004-11-02 2006-05-25 Internatl Business Mach Corp <Ibm> Conductive liquid crystal polymer matrix, miniature electronic device containing the same, method for producing structure containing the device (conductive liquid crystal polymer matrix containing carbon nanotube)
JP2006158950A (en) * 2004-11-15 2006-06-22 Kasco Corp Golf ball
US7927169B2 (en) 2004-11-22 2011-04-19 Nissin Kogyo Co., Ltd. Method of manufacturing thin film, substrate having thin film, electron emission material, method of manufacturing electron emission material, and electron emission device
US8253318B2 (en) 2004-11-22 2012-08-28 Nissin Kogyo Co., Ltd. Method of manufacturing thin film, substrate having thin film, electron emission material, method of manufacturing electron emission material, and electron emission device
JP2006150541A (en) * 2004-11-30 2006-06-15 Nano Frontier Corp Oriented and patterning-solidified compound material of cnt and its manufacturing method
JP2006255852A (en) * 2005-03-18 2006-09-28 Kyocera Corp Composite fiber body and cutting tool using the same
JP2006312677A (en) * 2005-05-09 2006-11-16 Koichiro Beitake Carbon fiber oriented connecting film and its manufacturing method
JP4653029B2 (en) * 2005-07-01 2011-03-16 ツィンファ ユニバーシティ Thermally conductive material and method for producing the same
JP2007009213A (en) * 2005-07-01 2007-01-18 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Heat conductive material and method for preparation of the same
US8029900B2 (en) 2005-07-01 2011-10-04 Tsinghua University Thermal interface material and method for manufacturing same
JP2007062570A (en) * 2005-08-31 2007-03-15 Nissin Kogyo Co Ltd Lip-shaped seal member, vehicular hydraulic master cylinder using the lip-shaped seal member
JP4493567B2 (en) * 2005-08-31 2010-06-30 日信工業株式会社 Lip-shaped seal member and vehicle hydraulic master cylinder using the lip-shaped seal member
JP4493572B2 (en) * 2005-09-16 2010-06-30 日信工業株式会社 Reservoir tank of diaphragm and vehicle hydraulic master cylinder
JP2007076604A (en) * 2005-09-16 2007-03-29 Nissin Kogyo Co Ltd Diaphragm and reservoir tank of hydraulic master cylinder for vehicle
JP2007168263A (en) * 2005-12-22 2007-07-05 Seiko Precision Inc Resin-made case for electronic equipment and manufacturing method of resin molding
JP4723529B2 (en) * 2006-04-14 2011-07-13 ツィンファ ユニバーシティ Composite material including carbon nanotube and method for producing the same
JP2007284679A (en) * 2006-04-14 2007-11-01 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Composite material containing carbon nanotubes and process for its production
JP2008044099A (en) * 2006-08-11 2008-02-28 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Carbon nanotube composite material and manufacturing method thereof
JP2007009333A (en) * 2006-10-23 2007-01-18 Shinshu Univ Plated structure and method of manufacturing the same
JP4599565B2 (en) * 2006-10-23 2010-12-15 国立大学法人信州大学 Electrolytic plating method and electrolytic plating solution
JP2008156646A (en) * 2006-12-22 2008-07-10 Xerox Corp Coating composition and fusing material
JP2008308344A (en) * 2007-06-12 2008-12-25 Mefs Kk Carbon nanofiber, manufacturing method thereof, manufacturing method of carbon fiber composite material using carbon nanofiber and carbon fiber composite material
JP2010538861A (en) * 2007-08-16 2010-12-16 エアバス オペレーションズ リミティド Method and apparatus for manufacturing parts from composite materials
JP2009130113A (en) * 2007-11-22 2009-06-11 Fujitsu Ltd Package and electronic device using carbon nanotube
JP2009286688A (en) * 2008-05-28 2009-12-10 Hon Hai Precision Industry Co Ltd Method of manufacturing carbon nanotube film
US8236389B2 (en) 2008-05-28 2012-08-07 Tsinghua University Method for making carbon nanotube films
US8513348B2 (en) 2008-07-10 2013-08-20 Nissin Kogyo Co., Ltd. Carbon nanofibers, method of producing carbon nanofibers, carbon fiber composite material using carbon nanofibers, and method of producing the carbon fiber composite material
JP2010056482A (en) * 2008-08-29 2010-03-11 Fujitsu Ltd Printed wiring board and conductive material
JP2010064488A (en) * 2008-09-12 2010-03-25 Hon Hai Precision Industry Co Ltd Method for manufacturing composite using carbon nanotube array
JP2010120289A (en) * 2008-11-18 2010-06-03 Semes Co Ltd Device and method for composing conductive composite
JP2010192581A (en) * 2009-02-17 2010-09-02 National Institute Of Advanced Industrial Science & Technology Electromagnetic wave radiator and electromagnetic wave absorber
JP5540419B2 (en) * 2010-02-15 2014-07-02 国立大学法人北海道大学 Carbon nanotube sheet and method for producing the same
JP2013523591A (en) * 2010-04-06 2013-06-17 ウィリアム・マーシュ・ライス・ユニバーシティ Production of highly conductive carbon nanotube-polymer composites
JP2010222707A (en) * 2010-06-07 2010-10-07 Shinshu Univ Electroless plating method and electroless plating solution
JP2013534363A (en) * 2010-07-23 2013-09-02 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Method and system for enhancing the performance of thermal interface materials
US9096784B2 (en) 2010-07-23 2015-08-04 International Business Machines Corporation Method and system for allignment of graphite nanofibers for enhanced thermal interface material performance
JP2012082382A (en) * 2010-09-15 2012-04-26 Sekisui Chem Co Ltd Resin composite molding, and method for manufacturing the same
JP2012062452A (en) * 2010-09-18 2012-03-29 Sekisui Chem Co Ltd Thermoplastic resin composite material and method of producing the same
JP2012087041A (en) * 2010-09-22 2012-05-10 Yamagata Prefecture Multi-wall carbon nanotube-dispersed and mixed aqueous gel, manufacturing method, and application thereof
CN106883476A (en) * 2010-12-14 2017-06-23 钢筋分子设计有限责任公司 Improved Elastomer Formulations
JP2012139679A (en) * 2011-01-03 2012-07-26 General Electric Co <Ge> Process of forming material having nano-particle and material having nano-particle
US9257359B2 (en) 2011-07-22 2016-02-09 International Business Machines Corporation System and method to process horizontally aligned graphite nanofibers in a thermal interface material used in 3D chip stacks
KR101308183B1 (en) 2011-08-19 2013-09-12 숭실대학교산학협력단 Conductive polymer complex and forming method thereof
JP2013063641A (en) * 2011-09-01 2013-04-11 Boeing Co:The Method, apparatus and material mixture for direct digital manufacturing of fiber reinforced part
KR101360417B1 (en) * 2011-11-23 2014-02-11 현대자동차주식회사 Aluminum-cnt composites and method for producing the same
US20140132439A1 (en) * 2012-07-10 2014-05-15 Kabushiki Kaisha Riken Electromagnetic wave absorber
US9276326B2 (en) * 2012-07-10 2016-03-01 Kabushiki Kaisha Riken Electromagnetic wave absorber
US9245813B2 (en) 2013-01-30 2016-01-26 International Business Machines Corporation Horizontally aligned graphite nanofibers in etched silicon wafer troughs for enhanced thermal performance
US9090004B2 (en) 2013-02-06 2015-07-28 International Business Machines Corporation Composites comprised of aligned carbon fibers in chain-aligned polymer binder
CN103241709A (en) * 2013-04-29 2013-08-14 中国科学院金属研究所 Method for adjusting photoelectric property of nanocarbon film by ozone and for graphing nanocarbon film
US9406651B2 (en) 2013-07-08 2016-08-02 Globalfoundries Inc. Chip stack with oleic acid-aligned nanotubes in thermal interface material
US9082744B2 (en) 2013-07-08 2015-07-14 International Business Machines Corporation Method for aligning carbon nanotubes containing magnetic nanoparticles in a thermosetting polymer using a magnetic field
JP2017507809A (en) * 2014-02-04 2017-03-23 エヌ12 テクノロジーズ, インク.N12 Technologies, Inc. Articles of nanostructure-reinforced composite and manufacturing method
KR20180004624A (en) * 2016-07-04 2018-01-12 류도영 Carbon nanotubes and conductive polymer composite material produced is mixed utilization and efficient composition
KR101896103B1 (en) * 2016-07-04 2018-10-04 류도영 Carbon nanotubes and conductive polymer composite material produced is mixed utilization and efficient composition
WO2018012445A1 (en) * 2016-07-15 2018-01-18 パナソニックIpマネジメント株式会社 Metal-clad laminate and printed wiring board
KR20180020501A (en) * 2016-08-18 2018-02-28 한국과학기술연구원 Polyketone-carbon based filler composites and preparation methods thereof
KR101984207B1 (en) * 2016-08-18 2019-05-30 한국과학기술연구원 Polyketone-carbon based filler composites and preparation methods thereof
WO2019022528A1 (en) * 2017-07-28 2019-01-31 엘에프피 주식회사 Polytetrafluoroethylene carbon nanotube composite having electro-conductive property and method for producing same
KR20190047780A (en) * 2017-10-30 2019-05-09 (주) 오프렌 Method and apparatus for producing high strength component
KR102049102B1 (en) 2017-10-30 2019-11-26 (주) 오프렌 Method and apparatus for producing high strength component

Also Published As

Publication number Publication date
JP4697829B2 (en) 2011-06-08
US20030096104A1 (en) 2003-05-22

Similar Documents

Publication Publication Date Title
Liu et al. Thermal conductivity improvement of silicone elastomer with carbon nanotube loading
Fan et al. Synthesis, characterizations, and physical properties of carbon nanotubes coated by conducting polypyrrole
Bin et al. Development of highly oriented polyethylene filled with aligned carbon nanotubes by gelation/crystallization from solutions
Chae et al. A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber
Garmestani et al. Polymer‐mediated alignment of carbon nanotubes under high magnetic fields
Gojny et al. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites
Kim et al. Morphology and properties of polyester/exfoliated graphite nanocomposites
Tibbetts et al. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites
Yan et al. Structured reduced graphene oxide/polymer composites for ultra‐efficient electromagnetic interference shielding
Ramanathan et al. Functionalized SWNT/polymer nanocomposites for dramatic property improvement
KR100742080B1 (en) Carbon fiber composite metal material and process for producing the same
US8372511B2 (en) Fine carbon fiber with linearity and resin composite material using the same
Pak et al. Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers
Shim et al. Multiparameter structural optimization of single-walled carbon nanotube composites: toward record strength, stiffness, and toughness
US20060035085A1 (en) High thermal conductivite element, method for manufacturing same, and heat radiating system
ES2378908T3 (en) Conductive polyolefins with good mechanical properties
Coleman et al. Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites
Isayev et al. Ultrasound assisted twin screw extrusion of polymer–nanocomposites containing carbon nanotubes
Ni et al. Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites
JP5179979B2 (en) Carbon nanofiber and method for producing the same, method for producing carbon fiber composite material using carbon nanofiber, and carbon fiber composite material
CN100544946C (en) Carbon fiber composite material and method of producing the same
US20060216516A1 (en) Composite material
Moniruzzaman et al. Polymer nanocomposites containing carbon nanotubes
Chen et al. Preparation of polystyrene–graphite conducting nanocomposites via intercalation polymerization
Biercuk et al. Carbon nanotube composites for thermal management

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110225

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350