JP2002273490A - Method of starting up operation of anaerobic digestion fermenter for organic sludge and digestion method for the same - Google Patents
Method of starting up operation of anaerobic digestion fermenter for organic sludge and digestion method for the sameInfo
- Publication number
- JP2002273490A JP2002273490A JP2001081149A JP2001081149A JP2002273490A JP 2002273490 A JP2002273490 A JP 2002273490A JP 2001081149 A JP2001081149 A JP 2001081149A JP 2001081149 A JP2001081149 A JP 2001081149A JP 2002273490 A JP2002273490 A JP 2002273490A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- anaerobic digestion
- organic
- methane
- organic sludge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 111
- 230000029087 digestion Effects 0.000 title claims abstract description 54
- 238000000855 fermentation Methods 0.000 claims abstract description 81
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 80
- 230000004151 fermentation Effects 0.000 claims abstract description 79
- 241000894006 Bacteria Species 0.000 claims abstract description 37
- 230000000694 effects Effects 0.000 claims abstract description 29
- 239000010813 municipal solid waste Substances 0.000 claims abstract description 29
- 239000010815 organic waste Substances 0.000 claims abstract description 12
- 235000007164 Oryza sativa Nutrition 0.000 claims abstract description 10
- 235000009566 rice Nutrition 0.000 claims abstract description 10
- 239000010808 liquid waste Substances 0.000 claims abstract description 8
- 239000002689 soil Substances 0.000 claims abstract description 7
- 239000000835 fiber Substances 0.000 claims abstract description 6
- 238000011068 load Methods 0.000 claims description 53
- 238000002309 gasification Methods 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- 241000209094 Oryza Species 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 9
- 230000001079 digestive Effects 0.000 claims description 7
- 239000010871 livestock manure Substances 0.000 claims description 7
- 239000010801 sewage sludge Substances 0.000 claims description 7
- 238000006297 dehydration reaction Methods 0.000 claims description 5
- 230000001788 irregular Effects 0.000 claims description 4
- 239000002361 compost Substances 0.000 claims description 3
- 241000233866 Fungi Species 0.000 claims description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 2
- 238000004904 shortening Methods 0.000 abstract description 2
- 240000007594 Oryza sativa Species 0.000 abstract 1
- 239000010828 animal waste Substances 0.000 abstract 1
- 235000013527 bean curd Nutrition 0.000 abstract 1
- 230000002708 enhancing Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 18
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 239000008187 granular material Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 150000004665 fatty acids Chemical class 0.000 description 7
- 229910001385 heavy metal Inorganic materials 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000005416 organic matter Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000009264 composting Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 230000001580 bacterial Effects 0.000 description 3
- 239000010794 food waste Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-N propionic acid Chemical compound CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 3
- 238000005273 aeration Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 239000010800 human waste Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004449 solid propellant Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 101700082090 CA17 Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 230000000102 heterotrophic Effects 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000000813 microbial Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/20—Sludge processing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/40—Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、下水、し尿、畜産
廃棄物、生ごみ及び食品廃棄物等の有機性汚泥の嫌気性
消化方法に係り、特に前記有機性汚泥の嫌気性消化発酵
槽の運転開始時の高速立ち上げ方法と有機性汚泥の嫌気
性消化システムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for anaerobic digestion of organic sludge such as sewage, night soil, livestock waste, garbage and food waste, and more particularly to a method for anaerobic digestion and fermentation of said organic sludge. It relates to a high-speed start-up method at the start of operation and an anaerobic digestion system for organic sludge.
【0002】[0002]
【従来の技術】従来よりし尿、浄化槽汚泥、下水汚泥、
農集汚泥、家畜ふん尿、生ごみ、食品廃棄物等の有機性
廃棄物よりメタンガスやコンポストを生成し、有用物質
を回収し資源化する有機性廃棄物処理システムは公知で
あり、かかるシステムは、し尿、浄化槽汚泥、農集汚
泥、下水汚泥、家畜ふん尿を除渣工程において除渣し、
固液分離工程において液状廃棄物と有機性汚泥とに分離
し、液状廃棄物は、曝気その他の生物処理工程でBOD
分解並びに必要に応じて脱窒素し、スクリーンや膜分離
等の固液分離工程で浮遊物を除去し、更に重金属処理工
程で鉄・マンガンなどの重金属類を除去して放流水また
は再利用水としている。2. Description of the Related Art Human waste, septic tank sludge, sewage sludge,
Agricultural sludge, livestock manure, garbage, organic waste treatment systems that generate methane gas and compost from organic waste such as food waste, collect useful resources, and turn them into resources are known. Night soil, septic tank sludge, agricultural sludge, sewage sludge, livestock manure
In the solid-liquid separation process, liquid waste and organic sludge are separated, and the liquid waste is subjected to BOD in aeration and other biological treatment processes.
Decompose and denitrify as needed, remove suspended matter in solid-liquid separation process such as screen and membrane separation, and remove heavy metals such as iron and manganese in heavy metal treatment process to discharge water or reused water I have.
【0003】一方、上記脱水汚泥は嫌気性発酵工程のメ
タン発酵槽に導入してメタン発酵させ、発生したメタン
ガスを回収し、コジェネ発電に供するとともに、発酵槽
から流出する消化汚泥を脱水工程で脱水したものをコン
ポスト化工程で肥料や固形燃料として回収している。On the other hand, the above-mentioned dewatered sludge is introduced into a methane fermentation tank in an anaerobic fermentation step and subjected to methane fermentation. The generated methane gas is collected and used for cogeneration, and digested sludge flowing out of the fermentation tank is dewatered in a dehydration step. The waste is recovered as fertilizer and solid fuel in the composting process.
【0004】[0004]
【発明が解決しようとする課題】メタン発酵は、有機汚
泥中の有機物の内、炭水化物は嫌気性消化発酵菌により
低級脂肪酸やアルコール類に分解され、又タンパク質は
有機酸を経てアミン、アンモニアに分解される(消化発
酵)。そして消化発酵により生成された低分子有機物は
メタンガス化菌類によりメタンと炭酸ガスに分解される
(狭義のメタン発酵)。そしてこれらの消化菌やメタン
ガス化菌群は汚泥中に存在し、嫌気条件と温度条件(中
温メタン発酵処理(35℃前後)、高温処理(55℃前
後))によって増殖を図っている。しかしながら前記メ
タン発酵槽の問題として、嫌気性消化を司る微生物、特
にメタンガス化菌群は生育が遅いため、嫌気性消化(メ
タン発酵槽)槽の立上げには長期間を要するという問題
がある。In methane fermentation, carbohydrates of organic matter in organic sludge are decomposed into lower fatty acids and alcohols by anaerobic digestive fermenters, and proteins are decomposed into amines and ammonia via organic acids. (Digestion and fermentation). The low-molecular-weight organic matter produced by digestion fermentation is decomposed into methane and carbon dioxide by methane gasifying fungi (methane fermentation in a narrow sense). These digestive bacteria and methane gasification bacteria are present in the sludge, and grow under anaerobic and temperature conditions (medium temperature methane fermentation treatment (around 35 ° C.), high temperature treatment (around 55 ° C.)). However, as a problem of the methane fermenter, there is a problem that it takes a long time to start up the anaerobic digester (methane fermenter) because the microorganisms that govern anaerobic digestion, particularly the methane gasifiers, grow slowly.
【0005】即ち通常のメタン発酵法は一般に、メタン
発酵槽の液中若しくは液面付近にメタン菌を浮遊させて
いる浮遊生物法によって行われるが、浮遊生物法は、負
荷変動に弱いため、メタン発酵槽の立上げ時にメタン発
酵菌の増殖に合わせて、容積負荷を増やしていかない
と、メタン発酵槽内で有機酸蓄積が発生し、有機性廃棄
物の処理能力が低下してしまう。このため特に脱水有機
汚泥の場合に、有機性負荷が大きいために、メタン発酵
のスタートアップ(立ち上げ)には、通常、90日以上
もかかっている。That is, the ordinary methane fermentation method is generally performed by a floating organism method in which methane bacteria are suspended in the liquid of a methane fermentation tank or near the liquid surface. Unless the volume load is increased in accordance with the growth of the methane fermentation bacterium at the time of starting the fermenter, organic acid accumulation occurs in the methane fermenter, and the processing capacity of organic waste decreases. For this reason, especially in the case of dehydrated organic sludge, startup of methane fermentation usually takes 90 days or more due to a large organic load.
【0006】例えば有機汚泥のみを段階的に負荷増大さ
せながら、100%の定格容積負荷に移行させる立ち上
げ時の期間と容積負荷の変化を図7に基づいて説明する
に、例えば定格容積負荷50%程度から開始し、2週間
毎に10%ずつ負荷増大させると約3ヵ月以上必要であ
る。For example, referring to FIG. 7, a description will be given of a change in the volume load and a startup period in which only the organic sludge is gradually increased in load while shifting to a rated volume load of 100%. %, And if the load is increased by 10% every two weeks, it takes about three months or more.
【0007】一方メタン発酵のスタートアップ期間の短
縮を図る技術として、前記メタン発酵槽に、槽内に穏や
かな攪拌条件を与えることによりグラニュール(グラニ
ュールとは、毬藻状をした嫌気性微生物造粒体である)
を形成させる方法(特開昭62−22594 号、特開
昭62−22595 号、特開昭62−22596
号)、グラニュールの形成を促進させるのに粒状担体を
活性汚泥とともにメタン発酵槽に充填し、担体に脱窒菌
を増殖させることにより脱窒菌グラニュールに変える方
法、並びに嫌気性処理槽にメタン発酵菌グラニュールの
みを充填し、メタン発酵菌グラニュールに存在する脱窒
菌を増殖させることにより脱窒菌グラニュールに変える
方法(特開昭7−290088号)等がある。しかしな
がら脱水有機汚泥の場合に、有機性負荷が大きいために
前記従来技術では立ち上げ期間の大幅短縮にはつながら
ない。On the other hand, as a technique for shortening the startup period of methane fermentation, granules (granules are anaerobic microbial granules having a cone-like shape) are given to the methane fermentation tank by applying gentle stirring conditions in the tank. Body)
(Japanese Patent Application Laid-Open Nos. 62-22594, 62-22595 and 62-22596)
No.), a method in which granular carriers are filled together with activated sludge into a methane fermentation tank to promote the formation of granules, and denitrifying bacteria are grown on the carriers to convert them into denitrifying bacteria granules. There is a method of filling only the bacterial granules and growing the denitrifying bacteria present in the methane fermenting bacterial granules to convert them into denitrifying bacterial granules (JP-A-7-290088). However, in the case of dehydrated organic sludge, the organic load is large, and the conventional technique does not lead to a significant reduction in the start-up period.
【0008】しかもメタン発酵にかかる嫌気性細菌は、
BOD酸化に係る従属栄養細菌に比べてその増殖速度は
大幅に小さく、しかもメタン発酵槽の立上げ時には前記
したように、メタン発酵菌の増殖に合わせて、容積負荷
を増やしていかないと、メタン発酵槽内で有機酸蓄積が
発生し、有機性廃棄物の処理能力が低下してしまうが、
メタン発酵は嫌気条件であるために、密閉槽で行われる
ので、メタン発酵菌の増殖状態が分からず、このため定
格負荷の増大を余裕を持って行わなければならない。特
に従来は、メタン発酵の性能を迅速に評価する手法がな
いため、投入可能な負荷を明確に算出できず経験的に負
荷を決定するため、ますます立上げ期間が長くなるとい
う問題があった。Further, anaerobic bacteria involved in methane fermentation are:
The growth rate is significantly lower than that of the heterotrophic bacterium involved in BOD oxidation, and when the methane fermentation tank is started up, as described above, the methane fermentation rate must be increased in accordance with the growth of the methane fermentation bacterium. Although organic acid accumulation occurs in the tank, the processing capacity of organic waste decreases,
Since methane fermentation is performed in a closed tank because of anaerobic conditions, the growth state of methane fermentation bacteria cannot be determined, and therefore the rated load must be increased with a margin. Especially, in the past, there was no method to quickly evaluate the performance of methane fermentation, so the load that could be input could not be calculated clearly, and the load was determined empirically. .
【0009】本発明は、かかる従来技術に鑑み、運転開
始時のメタン発酵菌の増殖状態を精度良く掴みながら運
転開始時の立ち上げ時間の大幅短縮化が図れる有機性汚
泥の嫌気性消化方法を提供することを目的とする。In view of the prior art, the present invention provides an anaerobic digestion method of organic sludge which can greatly reduce the start-up time at the start of operation while accurately grasping the growth state of methane fermentation bacteria at the start of operation. The purpose is to provide.
【0010】[0010]
【課題を解決するための手段】本発明はかかる課題を解
決するために、し尿、浄化槽汚泥、農集汚泥、下水汚
泥、家畜ふん尿等の有機性廃棄物を液状廃棄物と有機性
汚泥とに分離し、該有機性汚泥を嫌気性消化発酵槽に導
入して嫌気性消化によりメタン発酵させる有機性汚泥の
嫌気性消化方法において、前記有機性汚泥の嫌気性消化
発酵槽の運転立ち上げ開始時に、米糠、おから若しくは
生ゴミ等の嫌気性消化発酵菌により易分解されやすい繊
維分の少ない物質を最初に投入してメタンガス化菌の活
性を増大させた後若しくはこれと並行して、該消化発酵
槽に脱水有機性汚泥を投入して、該汚泥の容積負荷を段
階的に増大させながら、定格負荷に移行させることを特
徴とし、そして定格負荷に移行させた後、前記嫌気性消
化発酵槽で発酵させた消化汚泥を脱水分離し、該脱水汚
泥をコンポスト処理し、一方前記脱水分離させた分離液
を生物処理することを特徴とする有機性汚泥の嫌気性消
化システムにある。In order to solve the above-mentioned problems, the present invention converts organic wastes such as night soil, septic tank sludge, agricultural sludge, sewage sludge, livestock manure, etc. into liquid waste and organic sludge. In the anaerobic digestion method of organic sludge, which is separated and introduced into the anaerobic digestion fermenter by introducing the organic sludge into the anaerobic digestion and fermentation by anaerobic digestion, at the time of starting the operation of the anaerobic digester and fermenter for organic sludge. After increasing the activity of methane gasifying bacteria by adding a substance with a low fiber content that is easily decomposed by anaerobic digestive fermentation bacteria such as rice bran, okara or garbage, or in parallel with this, Feeding the dehydrated organic sludge to the fermenter, gradually increasing the volume load of the sludge, and shifting to a rated load, and after shifting to the rated load, the anaerobic digestion fermenter Fermented in The digested sludge is dewatered separated, the dehydrating sludge composting process, while the certain dehydration separated so the separated liquid to the anaerobic digestion system of the organic sludge, characterized in that the biological treatment.
【0011】かかる発明は、運転立ち上げ開始時のメタ
ンガス化菌の活性が低いときには、米糠、おから若しく
は生ゴミ等の嫌気性消化発酵菌により易分解されやすい
繊維分の少ない物質によりメタンガス化菌の活性を増加
させる。メタンガス化菌の活性を増大させた後、該消化
発酵槽に脱水有機性汚泥を投入して、該汚泥の容積負荷
を段階的に増大させながら、定格負荷に移行させる。[0011] According to the invention, when the activity of the methane gasifier at the start of operation is low, the methane gasifier is easily decomposed by an anaerobic digestive fermentation bacterium such as rice bran, okara or garbage. Increase the activity of. After increasing the activity of the methane gasifier, dehydrated organic sludge is introduced into the digestion fermenter to shift the sludge to a rated load while gradually increasing the volume load.
【0012】かかる発明によれば、メタン発酵処理のス
タートアップ時の発酵が安定する期間が、例えば、従来
法の12週程度に対し、5〜6週と、ほぼ半分に大幅短
縮することができる。According to this invention, the period during which the fermentation is stabilized at the start-up of the methane fermentation treatment can be substantially reduced, for example, to about 5 to 6 weeks, which is about 12 weeks in the conventional method.
【0013】この場合、前記有機性汚泥の容積負荷の段
階的増大を定期周期で行うことなく、メタンガス化菌の
活性増加度合いを測定した結果に基づいて不定期周期で
行うことにより、有機性廃棄物の処理能力を低下するこ
となく立ち上げの迅速化と運転開始時の立ち上げ時間の
大幅短縮化が図れる。[0013] In this case, the organic sludge is not periodically increased in a stepwise manner, but is performed in an irregular cycle based on the result of measuring the degree of increase in the activity of the methane gasifying bacteria. The start-up can be speeded up and the start-up time at the start of operation can be significantly reduced without reducing the processing capacity of the object.
【0014】即ち、運転開始の立ち上げ時に消化発酵槽
内に導入される有機性汚泥量が多すぎると有機物負荷が
過剰になり、その場合は、酸生成菌の反応速度がメタン
菌よりも速いために、酢酸、プロピオン酸などの揮発性
脂肪酸の蓄積がみられる。そして、揮発性脂肪酸濃度が
高くなり、遊離の揮発性脂肪酸濃度が高くなると、メタ
ン発酵が阻害されるようになり、速やかに揮発性脂肪酸
濃度を低下させないとメタン菌が活性を失い、このよう
な場合には、有機性廃棄物の投入を低減あるいは停止す
るか、またはアルカリ剤を添加して遊離揮発性脂肪酸の
増加を抑制し、揮発性脂肪酸の減少を待つしかなかった
が、メタンガス化菌の活性増加度合いを測定した結果に
基づいて段階的投入を図ることにより、有機性廃棄物の
処理能力を低下することなく前記効果が得られる。That is, when the amount of organic sludge introduced into the digestion fermenter at the start of operation is too large, the load of organic matter becomes excessive, and in that case, the reaction rate of acid-producing bacteria is faster than that of methane bacteria. Therefore, accumulation of volatile fatty acids such as acetic acid and propionic acid is observed. Then, when the volatile fatty acid concentration increases and the free volatile fatty acid concentration increases, methane fermentation becomes inhibited, and if the volatile fatty acid concentration is not immediately reduced, the methane bacteria loses activity, and In such cases, it was necessary to reduce or stop the input of organic waste, or to suppress the increase in free volatile fatty acids by adding an alkali agent and wait for the reduction of volatile fatty acids, but the methane gasification bacteria The above effects can be obtained without lowering the processing capacity of organic waste by stepwise charging based on the result of measuring the degree of activity increase.
【0015】尚、前記した測定方法は、嫌気性消化発酵
槽の運転立ち上げ途中でメタン発酵中の汚泥を消化発酵
槽より適量引き抜き、これを容器に定量投入し、気相を
窒素ガスで置換した後、酢酸Naの溶液を適量加えて、
所定温度で保持し、この容器より経時的に発生するガス
量を測定し、メタン発酵槽全体で処理可能な負荷を算出
する測定方法を用いるのが好ましい。In the measurement method described above, an appropriate amount of sludge during methane fermentation is withdrawn from the digestion fermentation tank during the start-up of the anaerobic digestion fermentation tank, and the sludge is quantitatively charged into a container, and the gas phase is replaced with nitrogen gas. After that, add an appropriate amount of a solution of Na acetate,
It is preferable to use a measurement method of maintaining the temperature at a predetermined temperature, measuring the amount of gas generated from this container over time, and calculating the load that can be processed in the entire methane fermentation tank.
【0016】[0016]
【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る構成部品の寸法、形状、その相対配置などは特に特定
的な記載がない限り、この発明の範囲をそれのみに限定
する趣旨ではなく単なる説明例に過ぎない。図1は本発
明の基本構成を示す全体ブロック図で、し尿、浄化槽汚
泥、下水汚泥、農集汚泥、家畜ふん尿、生ごみ、食品廃
棄物等の有機性廃棄物よりメタンガスやコンポストを生
成して資源化する有機性廃棄物処理システムを示す。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to an embodiment shown in the drawings. However, unless otherwise specified, dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the invention, but are merely illustrative examples. FIG. 1 is an overall block diagram showing the basic configuration of the present invention, in which methane gas and compost are produced from organic waste such as night soil, septic tank sludge, sewage sludge, agricultural sludge, livestock manure, garbage, and food waste. 1 shows an organic waste treatment system for recycling.
【0017】かかるシステムは、し尿、浄化槽汚泥、農
集汚泥、下水汚泥、家畜ふん尿を除渣工程1において除
渣し、固液分離工程2において液状廃棄物と有機性脱水
汚泥11とに分離し、液状廃棄物は、曝気その他の生物
処理工程3でBOD分解並びに必要に応じて脱窒素し、
スクリーンや膜分離等の不図示の固液分離工程で浮遊物
を除去し、更に重金属処理工程10で鉄・マンガンなど
の重金属類を除去して放流水または再利用水としてい
る。一方、上記有機性脱水汚泥11は嫌気性発酵工程の
メタン発酵槽(嫌気性消化発酵槽5)に導入してメタン
発酵させ、発生したメタンガスを回収し、コジェネ発電
に供するとともに、発酵槽から流出する消化汚泥を脱水
工程6で脱水したものをコンポスト化工程7で肥料や固
形燃料として回収している。一方前記脱水分離させた分
離液は生物処理工程3に戻し、BOD分解並びに必要に
応じて脱窒素し、更に重金属処理工程10で鉄・マンガ
ンなどの重金属類を除去して放流水または再利用水とし
ている。In this system, human waste, septic tank sludge, agricultural sludge, sewage sludge, and livestock manure are removed in a removing step 1 and separated into liquid waste and organic dewatered sludge 11 in a solid-liquid separation step 2. , The liquid waste is subjected to BOD decomposition and denitrification as necessary in the aeration and other biological treatment step 3,
Suspended matter is removed in a solid-liquid separation step (not shown) such as a screen or a membrane separation, and heavy metals such as iron and manganese are removed in a heavy metal treatment step 10 to be discharged water or reused water. On the other hand, the organic dewatered sludge 11 is introduced into a methane fermentation tank (anaerobic digestion fermentation tank 5) in an anaerobic fermentation step and is subjected to methane fermentation. The generated methane gas is collected, supplied to cogeneration, and discharged from the fermentation tank. The digested sludge to be dewatered in the dewatering step 6 is collected in the composting step 7 as fertilizer or solid fuel. On the other hand, the separated liquid subjected to the dehydration separation is returned to the biological treatment step 3, BOD decomposition and, if necessary, denitrification, and heavy metals such as iron and manganese are removed in the heavy metal treatment step 10 to discharge water or reused water. And
【0018】そしてメタン発酵槽(嫌気性消化発酵槽
5)を有機性汚泥のみで立ち上げる場合は、図3に示す
如く目標の容積負荷(ここでは仮に4kgVTS/m3
/日)に対して50%の負荷で開始し、2週間毎に10
%ずつ負荷増加して立ち上げた所、安定運転状態に移行
するまで90〜100日の14週(3ヶ月余)かかっ
た。When the methane fermentation tank (anaerobic digestion fermentation tank 5) is started up using only organic sludge, a target volume load (here, 4 kg VTS / m 3 ) is used as shown in FIG.
/ Day) at a load of 50% and 10
It took 14 weeks (more than 3 months) for 90 to 100 days to start stable operation when the load was increased by%.
【0019】(実施例1)先ず、図2により米糠、おか
ら若しくは生ゴミ4等の嫌気性消化発酵菌により易分解
されやすい繊維分の少ない物質を最初に投入してメタン
ガス化菌の活性を増大させた後、該消化発酵槽に脱水有
機性汚泥を投入して、該汚泥の容積負荷を段階的に増大
させながら、定格負荷に移行させる第1の実施例を示
す。尚、図中8、9は米糠、おから若しくは生ゴミ4と
脱水有機性汚泥11の投入制御を行うバルブである。(Example 1) First, as shown in FIG. 2, a substance having a low fiber content that is easily decomposed by anaerobic digestive fermentation bacteria such as rice bran, okara or garbage 4 is first introduced to determine the activity of methane gasification bacteria. A first embodiment in which dehydrated organic sludge is charged into the digestion fermenter after the increase and the volume load of the sludge is gradually increased while shifting to a rated load is shown. Numerals 8 and 9 in the figure denote valves for controlling the introduction of rice bran, okara or garbage 4 and the dehydrated organic sludge 11.
【0020】本実施例はメタン発酵槽(嫌気性消化発酵
槽5)の運転開始時に生ゴミ4を容積負荷の20%投入
し、次に第1週目で10%増量して30%に、更に第2
週目で更に10%増量して40%にした後、第3週目で
生ゴミを10%引き抜いて30%にするとともに、ここ
で始めて有機性汚泥11を40%投入する。更に第4週
目で生ゴミを更に10%引き抜いて20%にするととも
に、有機性汚泥11を更に40%投入して80%にす
る。最後に第5週目で生ゴミを20%のまま、有機性汚
泥を更に20%投入して100%にして定格負荷に移行
する。この結果安定運転状態に移行するまで5〜6週
(1.5ヶ月)と大幅に短縮された。生ごみ4は有機性
汚泥11に比較して、同じ有機物量だと2倍程度メタン
菌群の活性を向上させる能力があるため、20%と少な
い投入量で活性を増加できる。In this embodiment, at the start of operation of the methane fermentation tank (anaerobic digestion and fermentation tank 5), garbage 4 is charged at 20% of the volume load, and then increased by 10% to 30% in the first week. Second
After further increasing the amount by 10% to 40% in the week, the garbage is extracted by 10% to 30% in the third week, and the organic sludge 11 is supplied 40% for the first time. In the fourth week, garbage is further extracted by 10% to 20%, and organic sludge 11 is further added by 40% to 80%. Finally, in the fifth week, 20% of organic garbage is added to keep the garbage at 20%, and 100% is added to shift to the rated load. As a result, it was greatly reduced to 5 to 6 weeks (1.5 months) before shifting to the stable operation state. The garbage 4 has the ability to improve the activity of the methane bacteria group about twice as much as the organic matter in comparison with the organic sludge 11, so that the activity can be increased with a small input amount of 20%.
【0021】(実施例2)次に図3により米糠、おから
若しくは生ゴミ4等の嫌気性消化発酵菌により易分解さ
れやすい繊維分の少ない物質を最初に投入してメタンガ
ス化菌の活性を増大させながら、これと並行して該消化
発酵槽に脱水有機性汚泥を段階的に投入して、定格負荷
に移行させる第2の実施例を示す。Example 2 Next, according to FIG. 3, a substance having a low fiber content that is easily decomposed by an anaerobic digestive fermentation bacterium such as rice bran, okara or garbage 4 is first charged to determine the activity of the methane gasification bacterium. A second embodiment in which dehydrated organic sludge is gradually fed into the digestion fermenter in parallel with increasing the load to shift to the rated load is shown.
【0022】本実施例はメタン発酵槽(嫌気性消化発酵
槽5)の運転開始時に生ゴミ4を容積負荷の20%投入
し、と同時に有機性汚泥11を35%投入する。次に有
機汚泥11を第1週目で15%増量して50%に、更に
第2週目で20%増量して70%に投入した後、第3週
目で20%増量して90%に投入する。更に第4週目で
有機性汚泥11を15%引き抜いて75%に減量して負
荷を低減させた後。最後に第5週目で有機性汚泥11を
更に25%投入して100%にして定格負荷に移行す
る。この実施例においても安定運転状態に移行するまで
5〜6週(1.5ヶ月)と大幅に短縮された。尚、生ご
み4と有機性汚泥11の比率や容積負荷の値は、単なる
参考値であり、ここに示した値に限らないことは当然で
あり、消化発酵槽の容積や有機性汚泥の種類によっても
可変である。In this embodiment, at the start of operation of the methane fermentation tank (anaerobic digestion fermentation tank 5), garbage 4 is charged at 20% of the volume load, and at the same time, organic sludge 11 is charged at 35%. Next, the organic sludge 11 was increased by 15% in the first week to 50%, further increased in the second week by 20% and fed to 70%, and then increased by 20% in the third week to 90%. To In the fourth week, the organic sludge 11 was extracted 15% and reduced to 75% to reduce the load. Finally, in the fifth week, an additional 25% of the organic sludge 11 is added to 100% to shift to the rated load. Also in this example, it was greatly reduced to 5 to 6 weeks (1.5 months) before shifting to the stable operation state. The ratio of the garbage 4 to the organic sludge 11 and the value of the volume load are merely reference values, and are not limited to the values shown here. Is also variable.
【0023】従ってこれらの実施例によれば、生物学的
に易分解な物質を開始時に投入することで、投入量は少
ないものの実効負荷は高くなる。これは、滞留時間が長
くなる作用があり、メタンガス化菌を流出させることな
く、メタン菌を効率良く増殖させることが可能となり、
これにより、難分解性物質を多量に投入するのに比較
し、メタン菌を早く増殖させることができる。 <実施例3>実施例3は、前記メタン発酵槽(嫌気性消
化発酵槽5)の有機性汚泥11や生ゴ4ミの容積負荷の
段階的増大を1週間毎の定期周期で行うことなく、メタ
ンガス化菌の活性増加度合いを測定した結果に基づいて
不定期周期で行うものである。この測定は好ましくは脱
水有機性汚泥11の運転立上げ過程で、メタン発酵汚泥
を適量引き抜き、バイアルびん(容量68ml)に30
ml投入し、気相を窒素ガスで置換えるここに酢酸Na
の溶液を適量加えて、所定温度で保持する。そしてバイ
アルびんより経時的に発生するガス量を測定し、汚泥1
ml当り発生するガス量から、汚泥消化発酵槽(メタン
発酵槽)全体で処理可能な負荷を算出する。この測定は
数時間で測定し、翌日には決定した負荷量に増加させ
る。Therefore, according to these embodiments, the effective load is increased although the amount of input is small by inputting the biologically easily decomposable substance at the start. This has the effect of increasing the residence time, making it possible to grow methane bacteria efficiently without letting out methane gasification bacteria,
As a result, the methane bacterium can be grown more quickly than when a large amount of the hardly decomposable substance is introduced. <Example 3> In Example 3, the stepwise increase in the volume load of the organic sludge 11 and the raw garbage in the methane fermentation tank (anaerobic digestion fermentation tank 5) was not performed at regular intervals of one week. This is performed at irregular intervals based on the result of measuring the degree of increase in the activity of methane gasifying bacteria. This measurement is preferably made in the process of starting up the dehydrated organic sludge 11 by extracting an appropriate amount of the methane fermentation sludge and placing it in a vial bottle (68 ml capacity).
ml, and replace the gas phase with nitrogen gas.
Is added and kept at a predetermined temperature. The amount of gas generated over time from the vial bottle was measured, and sludge 1
From the amount of gas generated per ml, the load that can be processed in the entire sludge digestion fermenter (methane fermenter) is calculated. This measurement takes several hours and is increased to the determined load the next day.
【0024】かかる実施例を図4のフロー図に基づいて
説明する。尚、図5はメタン発酵槽(嫌気性消化発酵槽
5)のメタンガス化菌の増加度合い活性測定した場合の
容積負荷の増加および図5は測定したメタン発酵槽(嫌
気性消化発酵槽5)のメタンガス化活性の増加状態を示
すグラフ図である。This embodiment will be described with reference to the flowchart of FIG. FIG. 5 shows an increase in the volume load when the activity of the methane gasification bacteria in the methane fermentation tank (anaerobic digestion and fermentation tank 5) was measured, and FIG. 5 shows the measured methane fermentation tank (anaerobic digestion and fermentation tank 5). It is a graph which shows the state of increase of methane gasification activity.
【0025】ガス化活性は、単位時間のメタン発酵槽容
積当り発生する発酵ガス量を意味する。ここでは、有機
物1kgVTS当り1Nm3の発酵ガスが発生すると仮
定している。 先ず図4に示すように、運転開始時に生ゴミを容積負荷
の20%投入し、前記測定方法で活性度を測定する。
(S1) メタン発酵汚泥1mlの酢酸からのガス発生能力を算出
し、次に発酵槽当たりのガス発生能力を算出する。(S
2) 例えば酢酸からのガス発生能力が 0.1mlガス/m
l汚泥/hrの場合、1日当りとしては0.1m3×2
4=2.4m3/m3汚泥/日となる。一般的に、メタ
ン発酵ガスの70%が酢酸を経由しているため、汚泥本
来のガス発生能力は、2.4÷0.7=3.42 m3
/m3汚泥/日である。しかし、活性測定は最適条件で
測定するため、実際の発酵条件では、本来の能力の70
%程度しか、発揮できないと考えられる。 したがっ
て、汚泥のガス発生能力は、活性測定の値をそのまま用
いる。Gasification activity means the amount of fermentation gas generated per unit time of methane fermentation tank volume. Here, it is assumed that 1 Nm 3 of fermentation gas is generated per kg of organic matter VTS. First, as shown in FIG. 4, at the start of operation, garbage is charged at 20% of the volume load, and the activity is measured by the above-described measuring method.
(S1) The gas generation capacity from acetic acid of 1 ml of methane fermentation sludge is calculated, and then the gas generation capacity per fermenter is calculated. (S
2) For example, the gas generation capacity from acetic acid is 0.1 ml gas / m
In the case of 1 sludge / hr, 0.1 m 3 × 2 per day
4 = 2.4 m 3 / m 3 sludge / day. Generally, since 70% of the methane fermentation gas passes through acetic acid, the inherent gas generation capacity of the sludge is 2.4 ÷ 0.7 = 3.42 m 3
/ M is 3 sludge / day. However, since the activity is measured under the optimal conditions, the actual capacity of the fermentation is 70% under the actual fermentation conditions.
It is considered that only about% can be demonstrated. Therefore, the value of the activity measurement is directly used for the gas generation ability of the sludge.
【0026】次にこのガス発生能力から投入可能な有機
物の容積負荷を算出する。(S3) 分解有機物あたりに発生するガス量は、1Nm3ガス/
分解kgVTSである。例えば、汚泥の場合、有機物の
30%が分解される。ガス化能力が2.4m3/m3汚
泥/日とすると、投入可能な汚泥量は、2.4÷0.3
=8 kgVTS/m3汚泥/日と算出される。Next, the volume load of the organic substance that can be charged is calculated from the gas generating capacity. (S3) The amount of gas generated per decomposed organic substance is 1 Nm 3 gas /
Decomposed kg VTS. For example, in the case of sludge, 30% of organic matter is decomposed. Assuming that the gasification capacity is 2.4 m 3 / m 3 sludge / day, the amount of sludge that can be input is 2.4 ÷ 0.3
= 8 is calculated to be kgVTS / m 3 sludge / day.
【0027】次に評価段階(S4)で容積負荷が現状値
を越える場合は、投入量を維持し、現状値と同じ場合は
先ず生ゴミの投入量を5%単位で増加させ、生ゴミの投
入量が40%を越えた場合は、始めて有機性汚泥を40
%投入する。次に有機性汚泥の投入増加に対応させて、
生ゴミを段階的に引き抜く。3〜第4週目で有機性汚泥
を更に20%ずつ投入して100%にして定格負荷に移
行して目標容積負荷以上であれば終了する(S5)。こ
の結果安定運転状態に移行するまで4〜5週(1ヶ月
余)と前記実施例より大幅に短縮された。Next, in the evaluation step (S4), if the volume load exceeds the current value, the input amount is maintained. If the volume load is the same as the current value, the input amount of garbage is first increased by 5% to reduce the amount of garbage. When the input amount exceeds 40%, the organic sludge is first reduced to 40%.
%throw into. Next, in response to the increase in the input of organic sludge,
Pull out the garbage step by step. In the third to fourth weeks, the organic sludge is further added by 20%, and the sludge is set to 100%, and the load shifts to the rated load. As a result, it took 4 to 5 weeks (more than one month) to shift to the stable operation state, which was significantly shorter than that of the above-described embodiment.
【0028】[0028]
【発明の効果】以上記載のごとく請求項1及び4記載の
本発明によれば、運転開始の立上げ時に難分解性汚泥で
はなく、易分解性の米糠、おから若しくは生ゴミ等の生
ごみを用いることでメタン菌の生育を促進し、菌数の増
加と活性を速やかに高める。その後、汚泥等の難分解性
物質を段階的に投入することで嫌気性消化発酵槽を迅速
に立上げることが出来る。請求項2〜3記載の発明によ
れば、消化汚泥のガス発生能力測定な簡便・迅速に結果
を得ることが可能である。そのため、適正な負荷を決定
し素早く投入量に反映できる効果を持つため、酸敗させ
ることなく嫌気性消化発酵槽の立上げが可能となる。As described above, according to the present invention as set forth in claims 1 and 4, garbage such as easily decomposable rice bran, okara or garbage is not used at the time of start-up of the operation. Promotes the growth of methane bacteria and increases the number and activity of the bacteria quickly. Thereafter, the anaerobic digestion and fermentation tank can be quickly set up by gradually adding a hardly decomposable substance such as sludge. According to the second and third aspects of the present invention, it is possible to easily and quickly obtain the result of measuring the gas generation capacity of digested sludge. Therefore, it has an effect of determining an appropriate load and quickly reflecting the input amount, so that the anaerobic digestion and fermentation tank can be started up without causing rancidity.
【図1】 本発明の基本構成を示す全体ブロック図あ
る。FIG. 1 is an overall block diagram showing a basic configuration of the present invention.
【図2】 本発明に係る第1の実施例を示すグラフ図で
ある。FIG. 2 is a graph showing a first embodiment according to the present invention.
【図3】 本発明に係る第2の実施例を示すグラフ図で
ある。(生ごみ量を一定とした場合)FIG. 3 is a graph showing a second embodiment according to the present invention. (When the amount of garbage is fixed)
【図4】 前記有機性汚泥や生ゴミの容積負荷の段階的
増大をメタンガス化菌の活性増加度合いを測定した結果
に基づいて不定期周期で行うものの測定フロー図であ
る。FIG. 4 is a measurement flow chart of performing the stepwise increase of the volume load of the organic sludge and the garbage at irregular intervals based on the result of measuring the degree of activity increase of the methane gasifier.
【図5】 図4に基づいて活性測定した場合の容積負荷
の増加を行う第2の実施例を示すグラフ図である。FIG. 5 is a graph showing a second example in which the volume load is increased when the activity is measured based on FIG.
【図6】 測定したメタンガス化活性の様子を示すグラ
フ図である。FIG. 6 is a graph showing the measured methane gasification activity.
【図7】 有機性汚泥のみを段階的に負荷増大させなが
ら100%の定格容積負荷に移行させる立ち上げ時の期
間と容積負荷の変化を示すグラフ図である。FIG. 7 is a graph showing a change in the volume load and a period at the time of startup in which only the organic sludge is shifted to a rated volume load of 100% while the load is gradually increased.
1 除渣工程 2 固液分離工程 3 生物処理工程 4 米糠、おから等の生ゴミ 5 メタン発酵槽(嫌気性消化発酵槽) 6 脱水工程 7 コンポスト化工程 8、9 バルブ 10 重金属処理工程 11 有機性汚泥 DESCRIPTION OF SYMBOLS 1 Debris removal process 2 Solid-liquid separation process 3 Biological treatment process 4 Garbage such as rice bran and okara 5 Methane fermentation tank (anaerobic digestion fermentation tank) 6 Dehydration step 7 Composting step 8, 9 Valve 10 Heavy metal treatment step 11 Organic Sludge
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 謙治 横浜市中区錦町12番地 三菱重工業株式会 社横浜製作所内 (72)発明者 菅田 清 横浜市金沢区幸浦一丁目8番地1 三菱重 工業株式会社横浜研究所内 Fターム(参考) 4D004 AA02 AA03 AA04 BA03 BA04 CA17 4D059 AA01 AA02 AA03 AA07 BA12 BE00 BE49 CC01 4H061 AA02 CC36 CC39 CC42 CC51 CC55 FF06 GG10 GG19 GG50 GG54 GG69 GG70 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenji Nakamura 12 Nishikicho, Naka-ku, Yokohama-shi Mitsubishi Heavy Industries, Ltd. Yokohama Works (72) Inventor Kiyoshi Suga 1-8-1, Koura, Kanazawa-ku, Yokohama-shi Mitsubishi Heavy Industries, Ltd. 4D004 AA02 AA03 AA04 BA03 BA04 CA17 4D059 AA01 AA02 AA03 AA07 BA12 BE00 BE49 CC01 4H061 AA02 CC36 CC39 CC42 CC51 CC55 FF06 GG10 GG19 GG50 GG54 GG69 GG70
Claims (4)
家畜ふん尿等の有機性廃棄物を液状廃棄物と有機性汚泥
とに分離し、該有機性汚泥を嫌気性消化発酵槽に導入し
て嫌気性消化によりメタン発酵させる有機性汚泥の嫌気
性消化方法において、 前記有機性汚泥の嫌気性消化発酵槽の運転立ち上げ開始
時に、米糠、おから若しくは生ゴミ等の嫌気性消化発酵
菌により分解されやすい繊維分の少ない物質を最初に投
入してメタンガス化菌の活性を増大させた後若しくはこ
れと並行して、該消化発酵槽に有機性汚泥を投入して、
該汚泥の容積負荷を段階的に増大させながら、定格負荷
に移行させることを特徴とする有機性汚泥の嫌気性消化
発酵槽の運転立ち上げ方法。(1) night soil, septic tank sludge, agricultural sludge, sewage sludge,
An anaerobic digestion method for organic sludge, in which organic waste such as livestock manure is separated into liquid waste and organic sludge, and the organic sludge is introduced into an anaerobic digestion fermenter and methane fermented by anaerobic digestion. At the start of the operation of the anaerobic digestion and fermentation tank for organic sludge, a substance having a low fiber content that is easily decomposed by the anaerobic digestion and fermentation bacteria such as rice bran, okara or garbage is first charged, and methane gasification is performed. After or in parallel with increasing the activity of the fungus, organic sludge is charged into the digestive fermenter,
A method for starting operation of an anaerobic digestion and fermentation tank for organic sludge, wherein the sludge is shifted to a rated load while the volume load is gradually increased.
が、メタンガス化菌の活性増加度合いを測定した結果に
基づいて不定期周期で行われることを特徴とする請求項
1記載の有機性汚泥の嫌気性消化発酵槽の運転立ち上げ
方法。2. The organic method according to claim 1, wherein the stepwise increase in the volume load of the organic sludge is performed at irregular intervals based on the result of measuring the degree of increase in the activity of the methane gasifier. How to start up the anaerobic digestion and fermentation tank for sludge.
発酵槽の運転立ち上げ途中でメタン発酵中の汚泥を消化
発酵槽より適量引き抜き、これを容器に定量投入し、気
相を窒素ガスで置換した後、酢酸Naの溶液を適量加え
て、所定温度で保持し、この容器より経時的に発生する
ガス量を測定し、メタン発酵槽全体で処理可能な負荷を
算出する測定方法であることを特徴とする請求項2記載
の有機性汚泥の嫌気性消化発酵槽の運転立ち上げ方法。3. The method according to claim 2, wherein the sludge undergoing methane fermentation is withdrawn from the digestion fermentation tank in an appropriate amount during the start-up of the anaerobic digestion fermentation tank, and a certain amount of the sludge is charged into a vessel. After replacing with gas, an appropriate amount of a solution of Na acetate is added, the temperature is maintained at a predetermined temperature, the amount of gas generated over time from this container is measured, and a load that can be processed in the entire methane fermentation tank is measured by a measuring method. 3. The method according to claim 2, further comprising the steps of:
家畜ふん尿等の有機性廃棄物を液状廃棄物と有機性汚泥
とに分離し、該有機性汚泥を嫌気性消化発酵槽に導入し
て嫌気性消化によりメタン発酵させる有機性汚泥の嫌気
性消化システムにおいて、 前記有機性汚泥の嫌気性消化発酵槽の運転立ち上げ開始
時に、米糠、おから若しくは生ゴミ等の嫌気性消化発酵
菌により易分解されやすい繊維分の少ない物質を最初に
投入してメタンガス化菌の活性を増大させた後若しくは
これと並行して、該消化発酵槽に脱水有機性汚泥を投入
して、該汚泥の容積負荷を段階的に増大させながら、定
格負荷に移行させた後、前記嫌気性消化発酵槽で発酵さ
せた消化汚泥を脱水分離し、該脱水汚泥をコンポスト処
理し、一方前記脱水分離させた分離液を生物処理するこ
とを特徴とする有機性汚泥の嫌気性消化システム。4. Night soil, septic tank sludge, agricultural sludge, sewage sludge,
An anaerobic digestion system for organic sludge, in which organic waste such as livestock manure is separated into liquid waste and organic sludge, and the organic sludge is introduced into an anaerobic digestion and fermentation tank and methane fermented by anaerobic digestion. At the start of the operation of the anaerobic digestion and fermentation tank for the organic sludge, a substance having a low fiber content that is easily decomposed by the anaerobic digestion and fermentation bacteria such as rice bran, okara or garbage is first introduced and methane gas is supplied. After or in parallel with increasing the activity of the bacterium, the dehydrated organic sludge is put into the digestion fermentation tank, and while the volume load of the sludge is increased stepwise, the sludge is shifted to the rated load. Anaerobic digestion of organic sludge, wherein the digested sludge fermented in the anaerobic digestion fermenter is dewatered and separated, and the dewatered sludge is subjected to compost treatment, while the separated liquid subjected to dehydration separation is subjected to biological treatment. System M
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001081149A JP2002273490A (en) | 2001-03-21 | 2001-03-21 | Method of starting up operation of anaerobic digestion fermenter for organic sludge and digestion method for the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001081149A JP2002273490A (en) | 2001-03-21 | 2001-03-21 | Method of starting up operation of anaerobic digestion fermenter for organic sludge and digestion method for the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002273490A true JP2002273490A (en) | 2002-09-24 |
Family
ID=18937303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001081149A Pending JP2002273490A (en) | 2001-03-21 | 2001-03-21 | Method of starting up operation of anaerobic digestion fermenter for organic sludge and digestion method for the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002273490A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006167705A (en) * | 2004-11-22 | 2006-06-29 | Tsukishima Kikai Co Ltd | Biomass treatment method in sewage treatment plant |
JP2009011993A (en) * | 2007-07-09 | 2009-01-22 | Takuma Co Ltd | Method for starting up anaerobic digestion system |
JP2012091102A (en) * | 2010-10-26 | 2012-05-17 | Ohbayashi Corp | Method of evaluating reactivity in methane fermentation treatment |
JP2012125667A (en) * | 2010-12-13 | 2012-07-05 | Miki Sato | Method for preventing thickening and solidification of scum in sewage treatment tank |
CN102701557A (en) * | 2012-06-08 | 2012-10-03 | 同济大学 | Quick starting method for producing biogas through anaerobic fermentation of municipal sludge |
JP2013169528A (en) * | 2012-02-22 | 2013-09-02 | Miki Sato | Method for treating excess sludge |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08173993A (en) * | 1994-12-27 | 1996-07-09 | Meidensha Corp | Method for controlling anaerobic treatment |
JPH11197636A (en) * | 1998-01-13 | 1999-07-27 | Kubota Corp | Method for treatment of organic waste |
JP2000301116A (en) * | 1999-04-16 | 2000-10-31 | Mitsubishi Kakoki Kaisha Ltd | Treatment of organic waste |
-
2001
- 2001-03-21 JP JP2001081149A patent/JP2002273490A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08173993A (en) * | 1994-12-27 | 1996-07-09 | Meidensha Corp | Method for controlling anaerobic treatment |
JPH11197636A (en) * | 1998-01-13 | 1999-07-27 | Kubota Corp | Method for treatment of organic waste |
JP2000301116A (en) * | 1999-04-16 | 2000-10-31 | Mitsubishi Kakoki Kaisha Ltd | Treatment of organic waste |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006167705A (en) * | 2004-11-22 | 2006-06-29 | Tsukishima Kikai Co Ltd | Biomass treatment method in sewage treatment plant |
JP2009011993A (en) * | 2007-07-09 | 2009-01-22 | Takuma Co Ltd | Method for starting up anaerobic digestion system |
JP2012091102A (en) * | 2010-10-26 | 2012-05-17 | Ohbayashi Corp | Method of evaluating reactivity in methane fermentation treatment |
JP2012125667A (en) * | 2010-12-13 | 2012-07-05 | Miki Sato | Method for preventing thickening and solidification of scum in sewage treatment tank |
JP2013169528A (en) * | 2012-02-22 | 2013-09-02 | Miki Sato | Method for treating excess sludge |
CN102701557A (en) * | 2012-06-08 | 2012-10-03 | 同济大学 | Quick starting method for producing biogas through anaerobic fermentation of municipal sludge |
CN102701557B (en) * | 2012-06-08 | 2013-10-16 | 同济大学 | Quick starting method for producing biogas through anaerobic fermentation of municipal sludge |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gaur et al. | Anaerobic digestion of activated sludge, anaerobic granular sludge and cow dung with food waste for enhanced methane production | |
Salminen et al. | Semi-continuous anaerobic digestion of solid poultry slaughterhouse waste: effect of hydraulic retention time and loading | |
JP2594751B2 (en) | Organic matter decomposition method | |
Sivakumar et al. | Anaerobic treatment of spoiled milk from milk processing industry for energy recovery–A laboratory to pilot scale study | |
Wang et al. | Anaerobic treatment of source-separated domestic bio-wastes with an improved upflow solid reactor at a short HRT | |
JP4875864B2 (en) | Biomass processing system | |
JP2006272138A (en) | Organic waste treatment method | |
Park et al. | Evaluation of operational parameters in thermophilic acid fermentation of kitchen waste | |
JP4864339B2 (en) | Organic waste processing apparatus and processing method | |
JP2006314920A (en) | Method for recovering energy from biomass | |
JP2002273490A (en) | Method of starting up operation of anaerobic digestion fermenter for organic sludge and digestion method for the same | |
JP2003326237A (en) | Organic waste treating system | |
JP2003103292A (en) | Combined treatment method of wastewater and waste derived from organism | |
JP3351034B2 (en) | Method and apparatus for treating wastewater containing organic solids | |
JP2004290921A (en) | Methane fermentation method and system | |
JP2005144361A (en) | Organic waste treating method | |
Patel et al. | Single and multichamber fixed film anaerobic reactors for biomethanation of acidic petrochemical wastewater-systems performance | |
Wid et al. | Anaerobic digestion of screenings for biogas recovery | |
Nair et al. | Enhanced degradation of waste grass clippings in one and two stage anaerobic systems | |
JP4907123B2 (en) | Organic waste processing method and processing system | |
JP2005103375A (en) | Methane fermentation treatment method and apparatus | |
JP2009011993A (en) | Method for starting up anaerobic digestion system | |
EP0484867A1 (en) | Process for the utilization of organic wastes for producing biogas and agricultural products | |
KR100227186B1 (en) | Anaerobic treatment method of organic wastewater and fermenter using it | |
KR100314744B1 (en) | Nitrogen & Phosphorous Removing Methods from Waste Water with using Organic Wastes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080128 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080526 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080526 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080627 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100709 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100726 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101029 |