JP2002263496A - Catalyst composition, manufacturing method thereof and method of manufacturing carbon nanofiber - Google Patents

Catalyst composition, manufacturing method thereof and method of manufacturing carbon nanofiber

Info

Publication number
JP2002263496A
JP2002263496A JP2001069808A JP2001069808A JP2002263496A JP 2002263496 A JP2002263496 A JP 2002263496A JP 2001069808 A JP2001069808 A JP 2001069808A JP 2001069808 A JP2001069808 A JP 2001069808A JP 2002263496 A JP2002263496 A JP 2002263496A
Authority
JP
Japan
Prior art keywords
carbon
catalyst
metal particles
catalyst composition
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001069808A
Other languages
Japanese (ja)
Inventor
Yoshinari Fujiwara
Terumi Furuta
Hajime Goto
Toshio Tokune
照実 古田
肇 後藤
敏生 徳根
良也 藤原
Original Assignee
Honda Motor Co Ltd
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, 本田技研工業株式会社 filed Critical Honda Motor Co Ltd
Priority to JP2001069808A priority Critical patent/JP2002263496A/en
Publication of JP2002263496A publication Critical patent/JP2002263496A/en
Application status is Pending legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst composition, in which catalyst particles are arranged to be separately scattered on a carbon based supporting body, and a manufacturing method thereof and a manufacturing method capable easily manufacturing high purity carbon nanofiber. SOLUTION: The catalyst composition is composed of the catalyst metal particle 1 having the surface covered with carbon 3 and nano-structured carbon 2 dispersed on the surroundings. The catalyst metal particle is at least one kind selected from Ti, Zr, Fe, Co, Ni and Y. The nano-structural carbon 2 is the carbon nanofiber. The catalyst composition is produced by vaporizing the catalyst metal and the carbon material and rapidly quenching. The vaporization is performed by arc discharge. The catalyst composition is placed on a carbon substrate 21 and is exposed in an oxidizing atmosphere to remove the carbon 3 and the nano-structural carbon 2 by oxidation. A gaseous mixture of hydrogen with hydrocarbon is passed through the carbon substrate 21 supporting the catalyst metal particle 1 to form the carbon nanofiber.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、カーボンナノファイバー等のナノ構造炭素の製造に用いられる触媒組成物とその製造方法とに関するものである。 The present invention relates is directed to a catalyst composition used in the production of nano-sized carbon such as carbon nanofibers and its manufacturing method. また、本発明は、前記カーボンナノファイバーの製造方法にも関するものである。 The present invention also relates to a method for producing the carbon nanofibers.

【0002】 [0002]

【従来の技術】近年、C60フラーレン、カーボンナノチューブ、グラファイトナノファイバー等のナノメートルオーダーの大きさを有するナノ構造炭素が注目されている。 In recent years, C60 fullerene, carbon nanotube, nanostructured carbon having a size of nanometer order graphite nanofiber or the like has attracted attention. 前記ナノ構造炭素は、その特殊な構造のために、 The nanostructured carbons, because of its special structure,
特殊な機能的性質、構造的性質を備えている。 Special functional properties, has a structural nature. 例えば、 For example,
数ナノメートルの微細な大きさを備えるグラファイトナノファイバーは、水素吸蔵、電池電極、キャパシタ等に応用する用途がある。 Graphite nanofiber having a fine size of several nanometers, is hydrogen absorbing, battery electrodes, application applied to a capacitor or the like.

【0003】前記ナノ構造炭素の製造方法として、例えば、特開平11−256430号記載の技術が知られている。 As a method for producing the nanostructured carbons, for example, techniques of JP-A 11-256430 Patent forth are known. 前記公報記載の技術は、炭素、黒鉛、無機酸化物からなる支持体粒子上に多価遷移金属触媒の粒子を担持させ、水素と炭化水素との混合ガスをチューブに流通すると共に、該チューブに該触媒を導入するものである。 The publication of the art, carbon, graphite, on a support particles of an inorganic oxide is supported particles of polyvalent transition metal catalyst, with flowing a mixed gas of hydrogen and hydrocarbon in a tube, in the tube it is intended to introduce the catalyst.
ここで、前記公報には、前記遷移金属触媒の粒子を前記支持体粒子上に担持させる際に、3.5〜70μm、好ましくは6〜30μmの間隔で離散させることが、前記ナノ構造炭素を製造するために重要であるとされている。 Here, the in Japanese, when supporting the particles of the transition metal catalyst to the support on the particles, 3.5~70Myuemu, preferably be discrete intervals of 6~30Myuemu, the nano-sized carbon it is as important to manufacture.

【0004】ところが、前記支持体粒子として黒鉛等の炭素系材料を用いると、前記遷移金属触媒の粒子が凝集してしまう傾向があり、前記のような離散した状態を作ることが難しいとの問題がある。 [0004] However, the use of carbon-based material such as graphite as the support particles, wherein there is a tendency for particles of the transition metal catalyst tend to aggregate, problems with difficult to make a discrete state as the there is. そこで、従来、前記支持体として、比表面積を増加させるために多孔質としたアルミナ基板を用い、該アルミナ基板上に前記遷移金属触媒の粒子を離散した状態で配置し、該アルミナ基板上に水素と炭化水素との混合ガスを流通させて、前記ナノ構造炭素を製造させることが行われている。 Therefore, conventionally, as the support, an alumina substrate having a porous in order to increase the specific surface area, disposed in a state of being discrete particles of the transition metal catalyst to the alumina substrate, the hydrogen on the alumina substrate and a mixed gas by the flow of the hydrocarbon, thereby producing the nano-sized carbon is being performed.

【0005】しかしながら、前記のようにアルミナ基板上に前記遷移金属触媒を配置して前記ナノ構造炭素を製造すると生成したナノ構造炭素にアルミナが不純物として混入してしまい、該不純物を除去して高純度に精製するためにフッ酸等の強力な酸処理工程が必要になるとの不都合がある。 However, the cause alumina nano-sized carbon produced as by placing the transition metal catalyst on an alumina substrate to produce the nano-sized carbon is mixed as an impurity as high to remove the impurities strong acid treatment such as hydrofluoric acid to purify the purity is inconvenient and would require.

【0006】 [0006]

【発明が解決しようとする課題】本発明は、かかる不都合を解消して、炭素系材料からなる支持体に対して触媒粒子を離散した状態で配置することができる触媒組成物及びその製造方法を提供することを目的とする。 [SUMMARY OF THE INVENTION The present invention is to solve such an inconvenience, the catalyst composition may be placed in a state of discrete catalyst particles to the support made of a carbon-based material and a manufacturing method thereof an object of the present invention is to provide.

【0007】また、本発明は、高純度のカーボンナノファイバーを容易に得ることができるカーボンナノファイバーの製造方法を提供することを目的とする。 [0007] The present invention also aims to provide a method for producing a carbon nanofiber can be easily obtained with high purity carbon nanofibers.

【0008】 [0008]

【課題を解決するための手段】かかる目的を達成するために、本発明の触媒組成物は、表面が炭素で被覆された直径3〜20nmの触媒金属粒子と、該触媒金属粒子の周囲に分散されて該触媒金属粒子の凝集を妨げるナノ構造炭素とからなることを特徴とする。 Means for Solving the Problems] To achieve the above object, the catalyst composition of the present invention, the surface of the catalyst metal particles having a diameter 3~20nm coated with carbon, dispersed around the catalyst metal particles It has been characterized by comprising a nano-sized carbon that prevents aggregation of the catalyst metal particles.

【0009】本発明の触媒組成物によれば、前記触媒金属粒子の表面が炭素で被覆されており、しかも該触媒金属粒子間に前記ナノ構造炭素が介在している。 According to the catalyst composition of the present invention, the surface is coated with carbon in the catalyst metal particles, yet is the nano-sized carbon between the catalyst metal particles are interposed. そこで、 there,
本発明の触媒組成物を炭素基板上に配置したときに、前記触媒金属粒子は前記ナノ構造炭素により凝集を妨げられ、離散した状態を維持することができる。 When the catalyst composition of the present invention was placed on a carbon substrate, the catalyst metal particles is prevented aggregation by the nanostructured carbons can maintain a discrete state.

【0010】従って、本発明の触媒組成物によれば、炭素基板を用いてナノ構造炭素を製造することができ、高純度のナノ構造炭素を得ることができる。 [0010] Therefore, according to the catalyst composition of the present invention, it is possible to be able to produce a nanostructured carbon, obtaining a nano-sized carbon of high purity with a carbon substrate.

【0011】本発明の触媒組成物は、前記触媒金属粒子として、例えば、Ti,Zr,Fe,Co,Ni,Yからなる群から選択される少なくとも1種の金属粒子を用いることができる。 [0011] The catalyst composition of the present invention, as the catalyst metal particles, for example, Ti, Zr, Fe, Co, Ni, it is possible to use at least one metal particle selected from the group consisting of Y. また、本発明の触媒組成物における前記ナノ構造炭素としては、例えばカーボンナノファイバーを挙げることができる。 As examples of the nanostructured carbon in the catalyst composition of the present invention, for example, and carbon nanofiber.

【0012】本発明の触媒組成物は、触媒金属と炭素材料とを共に蒸発させた後、蒸発した触媒金属と炭素材料との蒸気を急冷することにより、表面が炭素で被覆された直径3〜20nmの触媒金属粒子と、該触媒金属粒子の周囲に分散されて該触媒金属粒子の凝集を妨げるナノ構造炭素とからなる触媒組成物を生成させる製造方法により、有利に製造することができる。 [0012] The catalyst composition of the present invention, after both evaporated and catalyst metal and the carbon material, by quenching the vapor of the evaporation catalyst metal and the carbon material, the surface is covered with carbon diameter 3 20nm and catalytic metal particles, by a production method to produce a catalyst composition comprising a nanostructure carbon is dispersed to the environment prevents the aggregation of the catalyst metal particles of the catalyst metal particles, it can be advantageously produced. 前記触媒金属と炭素材料とを共に蒸発させる方法としては、例えば、前記触媒金属の粉末と、前記炭素材料としての黒鉛粉末とを混合してなる電極を用いてアーク放電を行う方法を用いることができる。 As a method for both evaporating and the catalytic metal and the carbon material, for example, a powder of the catalytic metal, is possible to use a method of performing graphite powder and using a mixing comprising electrode arcing as the carbon material it can.

【0013】また、本発明のカーボンナノファイバーの製造方法は、表面が炭素で被覆された直径3〜20nm [0013] The manufacturing method of a carbon nanofiber of the present invention, the surface is covered with carbon diameter 3~20nm
の触媒金属粒子と、該触媒金属粒子の周囲に分散されて該触媒金属粒子の凝集を妨げるナノ構造炭素とからなる触媒組成物を炭素基板上に配置する工程と、前記炭素基板上に配置された前記触媒組成物を酸化雰囲気に曝露し、前記触媒金属粒子の表面を被覆している炭素と、前記ナノ構造炭素とを酸化して除去することにより該触媒金属粒子を分散した状態で該炭素基板上に担持せしめる工程と、前記触媒金属粒子を担持している炭素基板上に、水素と炭化水素との混合ガスを流通することにより、カーボンナノファイバーを生成せしめる工程とを備えることを特徴とする。 A catalytic metal particles, disposing a catalyst composition comprising a nanostructure carbon is dispersed to the environment prevents the aggregation of the catalyst metal particles on the carbon substrate of the catalyst metal particles is disposed on the carbon substrate the catalyst composition is exposed to an oxidizing atmosphere, and the carbon covering the surface of the catalytic metal particles, the carbon while dispersing the catalytic metal particles by removing the oxidation of said nano-sized carbon was a step allowed to carry on the substrate, on carbon substrate carrying the catalyst metal particles, by flowing a mixed gas of hydrogen and hydrocarbons, and characterized by comprising a step of allowed to generate carbon nanofiber to.

【0014】本発明のカーボンナノファイバーの製造方法によれば、前記本発明の触媒組成物を炭素基板上に配置するので、触媒金属粒子が該炭素基板上で凝集することを防止して、離散した状態で配置することができる。 According to the manufacturing method of a carbon nano fiber of the present invention, the so placing the catalyst composition on the carbon substrate of the present invention, it is possible to prevent the catalyst metal particles aggregate on the carbon substrate, the discrete it can be placed in a state.
前記炭素基板上に配置された触媒組成物は、次いで、酸化雰囲気に曝露されることにより、前記触媒金属粒子の表面を被覆している炭素と、前記ナノ構造炭素とが酸化されて除去される。 The catalyst composition disposed on the carbon substrate is then by being exposed to an oxidizing atmosphere, and the carbon covering the surface of the catalytic metal particles, wherein the nano-sized carbon is removed by oxidation . この結果、前記触媒金属粒子を凝集させることなく、前記のように離散した状態のままで、 As a result, without causing agglomeration of the catalytic metal particles, it remains discrete state as described above,
前記炭素基板上に担持させることができる。 It can be supported on the carbon substrate.

【0015】そこで、次に、前記触媒金属粒子を担持している炭素基板上に、水素と炭化水素との混合ガスを流通することにより、基板から炭素以外の物質が不純物として混入することを防止して、高純度のカーボンナノファイバーを生成させることができる。 [0015] Accordingly, next, prevention on a carbon substrate carrying the catalyst metal particles, by flowing a mixed gas of hydrogen and hydrocarbons, that the material other than carbon from the substrate as an impurity , it is possible to produce high purity carbon nanofibers.

【0016】 [0016]

【発明の実施の形態】次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Next will be described in more detail embodiments of the present invention with reference to the accompanying drawings. 図1は本実施形態の触媒組成物の説明図であり、図2は本実施形態の触媒組成物を製造するアーク放電装置のシステム構成図、図3は本実施形態のカーボンナノファイバーの製造方法を示す工程図である。 Figure 1 is an explanatory view of the catalyst composition of the present embodiment, FIG. 2 is a system configuration diagram of an arc discharge apparatus for producing a catalyst composition of the present embodiment, FIG. 3 is a manufacturing method of a carbon nano fiber of the present embodiment it is a process diagram showing a.

【0017】本実施形態の触媒組成物は、図1示のように、触媒金属粒子1と、その周囲に分散されたカーボンナノファイバー2とからなり、触媒金属粒子1の表面は炭素被覆層3により被覆されている。 The catalyst composition of the present embodiment, as shown in FIG. 1 shows, the catalytic metal particles 1 consist surrounding dispersed carbon nanofibers 2 which its surface of the catalytic metal particles 1 carbon coating layer 3 It is covered by.

【0018】前記触媒金属粒子1は、Ti,Zr,F [0018] The catalytic metal particles 1, Ti, Zr, F
e,Co,Ni,Yからなる群から選択される少なくとも1種であり、本実施形態ではTi,Ni,Yが1: e, Co, and at least one Ni, selected from the group consisting of Y, in this embodiment Ti, Ni, Y is 1:
1:1の原子比率で混合されている。 1: is mixed with 1 atomic ratio. 前記触媒金属粒子1は、それぞれ実質的に純物質であればよく、不可避的不純物を含んでいてもよい。 The catalytic metal particles 1 each may be substantially pure material, it may contain unavoidable impurities.

【0019】また、触媒金属粒子1は、3〜20nmの直径を備えている。 Further, the catalytic metal particles 1 has a diameter of 3 to 20 nm. 触媒金属粒子1の直径が20nmを超えると、このような触媒金属粒子1を用いてナノ構造炭素を生成させることが難しくなる。 If the diameter of the catalytic metal particles 1 is more than 20 nm, it is difficult to produce a nano-sized carbon with such catalytic metal particles 1. また、触媒金属粒子1の直径を3nm未満とするには、特殊な装置等を必要とし、コスト増が避けられない。 Further, the diameter of the catalytic metal particles 1 to be less than 3nm requires specialized equipment such as is inevitable cost increase.

【0020】前記カーボンナノファイバー2は、例えば、直径0.7〜5nm、長さ10〜1000nmの範囲にあることにより、炭素層3で被覆された触媒金属粒子1の凝集を好適に妨げることができる。 [0020] The carbon nanofibers 2, for example, a diameter 0.7~5Nm, by a range of length 10 to 1000 nm, can suitably prevent the agglomeration of the catalytic metal particles 1 covered with the carbon layer 3 it can.

【0021】前記触媒組成物は、例えば、図2示のような構成のアーク放電装置11を用いて製造することができる。 [0021] The catalyst composition may, for example, can be produced by using an arc discharge device 11 of the configuration shown in FIG. 2 shows. アーク放電装置11は、開閉自在のアーク放電チャンバ12内に固定された負極13と、負極13に対して進退自在に備えられた正極(消耗電極)14とを備え、負極13と正極14とは電源装置15に接続されている。 Arc discharge apparatus 11 includes a negative electrode 13 which is fixed to the openable arc discharge chamber 12, and a movably provided was positive (consumable electrode) 14 with respect to the negative electrode 13, a negative electrode 13 and positive electrode 14 It is connected to a power supply 15. また、アーク放電チャンバ12は、開閉弁16を介して図示しない真空ポンプに接続されており、開閉弁17を介して図示しないヘリウムガス源に接続されている。 Also, the arc discharge chamber 12 is connected to a vacuum pump (not shown) via an on-off valve 16 is connected to a helium gas source (not shown) via an on-off valve 17. 尚、このようなアーク放電装置11としては、例えば、特開平11−263609号公報記載の装置等を用いることができる。 Examples of such an arc discharge device 11, for example, may be used an apparatus or the like of JP-A-11-263609 JP.

【0022】前記負極13、正極14は軸方向に沿って中空部を備える中実円筒形状の高純度黒鉛電極であり、 [0022] The negative electrode 13, positive electrode 14 is a high purity graphite electrodes solid cylindrical in comprising a hollow portion along the axial direction,
前記中空部には触媒金属粒子1と黒鉛粉末との混合物が充填されている。 The said hollow portion mixture of the catalyst metal particles 1 and the graphite powder is filled. 本実施形態では、Ni:Y:Ti:黒鉛=1:1:1:97の原子比率で混合した混合物を前記中空部に充填した負極13、正極14を用い、0.0 In the present embodiment, Ni: Y: Ti: Graphite = 1: 1: 1: negative electrode 13 mixed the mixture with atomic proportions was filled in the hollow portion 97, using the positive electrode 14, 0.0
55MPaのヘリウム雰囲気下、100A、30Vの電流、電圧条件で、アーク放電を行う。 Under a helium atmosphere of 55 MPa, 100A, 30 V current, at voltage conditions, performing arc discharge.

【0023】この結果、前記アーク放電により、負極1 [0023] Consequently, by the arc discharge, the negative electrode 1
3、正極14から触媒金属粒子1と炭素材料としての黒鉛とが蒸発し、それぞれの蒸気が生成する。 3, and a graphite as the catalyst metal particles 1 and carbon material evaporated from the cathode 14, each steam generating. このとき、 At this time,
アーク放電チャンバ12内は、前記アーク放電を行っている負極13、正極14の近傍は高温であるが、負極1 The arc discharge chamber 12, the negative electrode 13 that is performing the arc discharge, but the vicinity of the positive electrode 14 is a high temperature, a negative electrode 1
3、正極14から離れた領域は遙かに低温になっている。 3, a region apart from the positive electrode 14 is in a low temperature much. そこで、触媒金属粒子1と黒鉛との蒸気は、負極1 Therefore, the vapor of the catalyst metal particles 1 and the graphite, the negative electrode 1
3、正極14から離れると、急冷され、図1示のような触媒組成物が生成する。 3, away from the positive electrode 14, is rapidly cooled, the catalyst composition as shown in FIG. 1 shown is generated. 前記触媒組成物は、前記アーク放電終了後、アーク放電チャンバ12内から回収することができる。 The catalyst composition may be recovered from the post-arc discharge completion, the arc discharge chamber 12.

【0024】次に、図1示の触媒組成物を用いてカーボンナノファイバーを製造する方法について説明する。 Next, a method for producing a carbon nanofiber with reference to FIG. 1 shows the catalyst composition.

【0025】本実施形態では、まず、前記触媒組成物をエタノール中に投入し、該エタノールに超音波を印加することにより、前記触媒組成物を十分に分散、懸濁させて懸濁液を調製する。 [0025] In this embodiment, first, put the catalyst composition in ethanol, prepared by applying ultrasonic waves to the ethanol thoroughly disperse the catalyst composition, the suspension was suspended to. 次に、図3(a)示のように前記懸濁液を炭素基板21上に塗布し、乾燥することによりエタノールを除去して、炭素基板21上に前記触媒組成物を配置する。 Next, coated on FIGS. 3 (a) shows carbon substrate 21 the suspension as, drying to remove ethanol by, placing the catalyst composition on the carbon substrate 21. 前記触媒組成物は、表面が炭素被覆層3 The catalyst composition, surface carbon coating layer 3
で被覆された触媒金属粒子1間にカーボンナノファイバー2が介在しているので、炭素基板21上で触媒金属粒子1が凝集することがない。 In so between coated catalytic metal particles 1 are carbon nanofibers 2 is interposed, never catalytic metal particles 1 are aggregated on the carbon substrate 21. 尚、図3(a)では、説明のために、触媒金属粒子1,1の間にカーボンナノファイバー2が1本ずつ規則正しく介在されているように図示しているが、実際には触媒金属粒子1とカーボンナノファイバー2との位置関係は不規則になっているのは言うまでもない。 In the FIG. 3 (a), for purposes of explanation, although the carbon nanofibers 2 between the catalytic metal particles 1,1 are shown as being regularly interposed one by one, in fact catalytic metal particles 1 and the positional relationship between the carbon nanofibers 2 has become irregular course.

【0026】次に、図3(b)示のように、前記触媒組成物が配置された炭素基板21を石英管22内に投入する。 Next, as shown in FIG. 3 (b) shows, to introduce the carbon substrate 21 in which the catalyst composition is disposed in the quartz tube 22. そして、石英管22に10%の酸素を含むアルゴンガスを、550℃、100ccmの速度で流通する。 Then, argon gas containing 10% oxygen in a quartz tube 22, 550 ° C., flows at a rate of 100 ccm.

【0027】前記のようにすると石英管22内が酸化雰囲気となり、前記触媒組成物は該酸化雰囲気に曝露されて、カーボンナノファイバー2と炭素被覆層3とが二酸化炭素ガスに酸化されて除去される。 [0027] the quartz tube 22 when as the becomes oxidizing atmosphere, the catalyst composition is exposed to oxidizing atmosphere, and the carbon nanofibers 2 and the carbon coating layer 3 is being removed is oxidized to carbon dioxide gas that. この結果、図3 As a result, as shown in FIG. 3
(c)示のように、炭素基板21上には露出された触媒金属粒子1のみが残り、しかも触媒金属粒子1は間にカーボンナノファイバー2が介在していた状態のまま、凝集することなく炭素基板21に担持されている。 As in (c) indicates, leaving only the catalytic metal particles 1, which is exposed on the carbon substrate 21, moreover it remains catalytic metal particles 1 is the carbon nanofibers 2 while was interposed, without aggregation It is supported on a carbon substrate 21.

【0028】そこで、次に、石英管22に水素:メタン=4:1の混合ガスを、600℃、100ccmの速度で流通することにより、カーボンナノファイバーを生成せしめる。 [0028] Accordingly, next, hydrogen in a quartz tube 22: Methane = 4: 1 mixed gas, 600 ° C., by circulating at a rate of 100 ccm, allowed to produce the carbon nanofibers. 前記カーボンナノファイバーは、前記のように凝集せず、離散した状態の触媒金属粒子1の上に成長するので、触媒金属粒子1の粒子サイズに従ったカーボンナノファイバーが得られる。 The carbon nanofibers do not aggregate as described above, since the grown on the catalytic metal particles 1 of discrete state, the carbon nanofiber in accordance with the particle size of the catalytic metal particles 1 are obtained.

【0029】本実施形態の製造方法によれば、得られたカーボンナノファイバーは、前記触媒金属粒子1以外の不純物を含んでいないので、触媒金属粒子1を常法により除去することにより、容易に高純度化することができる。 According to the manufacturing method of this embodiment, the resulting carbon nanofibers does not contain the impurities other than the catalytic metal particles 1, the catalytic metal particles 1 is removed by a conventional method, easily it can be highly purified.

【0030】尚、本実施形態では、前記触媒組成物を生成させるために、触媒金属粒子1と炭素材料との蒸発をアーク放電により行っているが、レーザー、プラズマ等を熱源として蒸発させるようにしてもよい。 [0030] In the present embodiment, in order to produce said catalyst composition, evaporation of the catalytic metal particles 1 and the carbon material is performed by arc discharge, so as to evaporate the laser, plasma, etc. as a heat source it may be.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本実施形態の触媒組成物の説明図。 Figure 1 is an illustration of the catalyst composition of the present embodiment.

【図2】本実施形態の触媒組成物を製造するアーク放電装置のシステム構成図。 [Figure 2] system block diagram of an arc discharge apparatus for producing a catalyst composition of the present embodiment.

【図3】本実施形態のカーボンナノファイバーの製造方法を示す工程図。 [3] a process diagram showing a manufacturing method of a carbon nano fiber of the present embodiment.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…触媒金属粒子、 2…ナノ構造炭素、 3…炭素被覆層、 21…炭素基板。 1 ... catalytic metal particles, 2 ... nanostructured carbons, 3 ... carbon coating layer, 21 ... carbon substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 良也 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 徳根 敏生 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 4G069 AA02 AA08 BA08A BA08B BB02A BB02B BC40A BC40B BC50A BC50B BC51A BC66A BC67A BC68A BC68B CB81 DA05 EB19 EC28 EC30 FA01 FB31 FB37 FB58 4L037 AT01 CS03 FA20 PA02 PA11 UA20 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Saitama Prefecture Yoshiya Fujiwara Wako Chuo 1-chome No. 4 No. 1 stock company Honda intra-technology Research Institute (72) inventor Tokune Toshiki Wako, Saitama central 1-chome No. 4 No. 1 stock company Honda R & D in the F-term (reference) 4G069 AA02 AA08 BA08A BA08B BB02A BB02B BC40A BC40B BC50A BC50B BC51A BC66A BC67A BC68A BC68B CB81 DA05 EB19 EC28 EC30 FA01 FB31 FB37 FB58 4L037 AT01 CS03 FA20 PA02 PA11 UA20

Claims (6)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】表面が炭素で被覆された直径3〜20nm 1. A surface coated with a carbon diameter 3~20nm
    の触媒金属粒子と、該触媒金属粒子の周囲に分散されて該触媒金属粒子の凝集を妨げるナノ構造炭素とからなることを特徴とする触媒組成物。 Of the catalytic metal particles, the catalyst composition is dispersed to the environment, characterized in that it consists of a nano-sized carbon that prevents aggregation of the catalyst metal particles of the catalyst metal particles.
  2. 【請求項2】前記触媒金属粒子は、Ti,Zr,Fe, Wherein said catalytic metallic particles, Ti, Zr, Fe,
    Co,Ni,Yからなる群から選択される少なくとも1 Co least 1, Ni, is selected from the group consisting of Y
    種の金属粒子であることを特徴とする請求項1記載の触媒組成物。 The catalyst composition of claim 1, wherein the species of the metal particles.
  3. 【請求項3】前記ナノ構造炭素は、カーボンナノファイバーであることを特徴とする請求項1または請求項2記載の触媒組成物。 Wherein the nanostructured carbon, claim 1 or claim 2 catalyst composition, wherein the a carbon nanofiber.
  4. 【請求項4】触媒金属と炭素材料とを共に蒸発させた後、蒸発した触媒金属と炭素材料との蒸気を急冷することにより、表面が炭素で被覆された直径3〜20nmの触媒金属粒子と、該触媒金属粒子の周囲に分散されて該触媒金属粒子の凝集を妨げるナノ構造炭素とからなる触媒組成物を生成させることを特徴とする触媒組成物の製造方法。 Wherein after the catalyst metal and the carbon material are both evaporating, by quenching the vapor of the evaporation catalyst metal and the carbon material, the surface and the catalytic metal particles having a diameter 3~20nm coated with carbon , process for preparing a catalyst composition, characterized in that to produce a catalyst composition comprising a nanostructure carbon is dispersed around the catalyst metal particles prevent the agglomeration of the catalytic metal particles.
  5. 【請求項5】前記触媒金属の粉末と、前記炭素材料としての黒鉛粉末とを混合してなる電極を用いてアーク放電を行うことにより、該触媒金属と該炭素材料とを共に蒸発させることを特徴とする請求項4記載の触媒組成物の製造方法。 Powder according to claim 5 wherein the catalyst metal, by performing graphite powder and using a mixing comprising electrode arcing as the carbon material, that is both evaporated and the catalyst metal and the carbon material the method according to claim 4 catalyst composition, wherein.
  6. 【請求項6】表面が炭素で被覆された直径3〜20nm 6. A surface coated with carbon diameter 3~20nm
    の触媒金属粒子と、該触媒金属粒子の周囲に分散されて該触媒金属粒子の凝集を妨げるナノ構造炭素とからなる触媒組成物を炭素基板上に配置する工程と、 前記炭素基板上に配置された前記触媒組成物を酸化雰囲気に曝露し、前記触媒金属粒子の表面を被覆している炭素と、前記ナノ構造炭素とを酸化して除去することにより該触媒金属粒子を分散した状態で該炭素基板上に担持せしめる工程と、 前記触媒金属粒子を担持している炭素基板上に、水素と炭化水素との混合ガスを流通することにより、カーボンナノファイバーを生成せしめる工程とを備えることを特徴とするカーボンナノファイバーの製造方法。 A catalytic metal particles, disposing a catalyst composition comprising a nanostructure carbon is dispersed to the environment prevents the aggregation of the catalyst metal particles on the carbon substrate of the catalyst metal particles is disposed on the carbon substrate the catalyst composition is exposed to an oxidizing atmosphere, and the carbon covering the surface of the catalytic metal particles, the carbon while dispersing the catalytic metal particles by removing the oxidation of said nano-sized carbon was a step allowed to carry on the substrate, on carbon substrate carrying the catalyst metal particles, by flowing a mixed gas of hydrogen and hydrocarbons, and characterized by comprising a step of allowed to generate carbon nanofiber manufacturing method of a carbon nano-fiber to be.
JP2001069808A 2001-03-13 2001-03-13 Catalyst composition, manufacturing method thereof and method of manufacturing carbon nanofiber Pending JP2002263496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001069808A JP2002263496A (en) 2001-03-13 2001-03-13 Catalyst composition, manufacturing method thereof and method of manufacturing carbon nanofiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001069808A JP2002263496A (en) 2001-03-13 2001-03-13 Catalyst composition, manufacturing method thereof and method of manufacturing carbon nanofiber

Publications (1)

Publication Number Publication Date
JP2002263496A true JP2002263496A (en) 2002-09-17

Family

ID=18927785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001069808A Pending JP2002263496A (en) 2001-03-13 2001-03-13 Catalyst composition, manufacturing method thereof and method of manufacturing carbon nanofiber

Country Status (1)

Country Link
JP (1) JP2002263496A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054922A (en) * 2001-08-13 2003-02-26 Sony Corp Structure including carbon-coated catalyst nanoparticle, method of making such structure, and method of producing carbon nanostructure therefrom
WO2004094700A1 (en) * 2003-02-18 2004-11-04 Shinshu University Metal particles and method for producing same
WO2009132407A2 (en) * 2008-04-30 2009-11-05 Universidade Federal De Minas Gerais - Ufmg Process for the continuous, large-scale synthesis of carbon nanotubes on cement clinker, and nanostructured products
JP4905129B2 (en) * 2004-02-26 2012-03-28 コニカミノルタホールディングス株式会社 Method for producing a nanoparticle deposition substrate
JP2013513483A (en) * 2009-12-15 2013-04-22 エスディーシー マテリアルズ インコーポレイテッド A method of forming a mobility of nano active material was suppressed catalyst
JP2014065033A (en) * 2012-09-24 2014-04-17 Korea Institute Of Energ Reserch Method for producing metal-carbon composite supported catalyst using co-vaporization method for producing hydrogen, and metal-carbon composite supported catalyst for producing hydrogen produced thereby
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054922A (en) * 2001-08-13 2003-02-26 Sony Corp Structure including carbon-coated catalyst nanoparticle, method of making such structure, and method of producing carbon nanostructure therefrom
WO2004094700A1 (en) * 2003-02-18 2004-11-04 Shinshu University Metal particles and method for producing same
JP4905129B2 (en) * 2004-02-26 2012-03-28 コニカミノルタホールディングス株式会社 Method for producing a nanoparticle deposition substrate
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9085487B2 (en) 2008-04-30 2015-07-21 Universidade Federal De Minas Gerais Large scale production of carbon nanotubes in portland cement
WO2009132407A2 (en) * 2008-04-30 2009-11-05 Universidade Federal De Minas Gerais - Ufmg Process for the continuous, large-scale synthesis of carbon nanotubes on cement clinker, and nanostructured products
WO2009132407A3 (en) * 2008-04-30 2011-06-09 Universidade Federal De Minas Gerais - Ufmg Process for the continuous, large-scale synthesis of carbon nanotubes on cement clinker, and nanostructured products
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
JP2013513483A (en) * 2009-12-15 2013-04-22 エスディーシー マテリアルズ インコーポレイテッド A method of forming a mobility of nano active material was suppressed catalyst
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9566567B2 (en) 2012-09-24 2017-02-14 Korea Institute Of Energy Research Metal-carbon composite supported catalyst for hydrogen production using co-evaporation and method of preparing the same
JP2014065033A (en) * 2012-09-24 2014-04-17 Korea Institute Of Energ Reserch Method for producing metal-carbon composite supported catalyst using co-vaporization method for producing hydrogen, and metal-carbon composite supported catalyst for producing hydrogen produced thereby
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Similar Documents

Publication Publication Date Title
Couteau et al. CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production
Gooding Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing
Arora et al. Arc discharge synthesis of carbon nanotubes: Comprehensive review
US7090819B2 (en) Gas-phase process for purifying single-wall carbon nanotubes and compositions thereof
Zhang et al. Structure modification of single-wall carbon nanotubes
Yang et al. Effect of purification on pore structure of HiPco single-walled carbon nanotube aggregates
CN1176014C (en) Process for directly synthesizing ultra-long single-wall continuous nano carbon tube
KR101110409B1 (en) Method of manufacturing carbon nanostructure
US6887451B2 (en) Process for preparing carbon nanotubes
Kingston et al. Efficient laser synthesis of single-walled carbon nanotubes through laser heating of the condensing vaporization plume
Ugarte et al. Filling carbon nanotubes
Prasek et al. Methods for carbon nanotubes synthesis
JP3825336B2 (en) Nanocarbon production method and nano-carbon production apparatus
RU2213050C2 (en) Method for preparing carbon
Chen et al. Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD
JP5138742B2 (en) Method and apparatus for synthesizing filamentary structures
Pham-Huu et al. Large scale synthesis of carbon nanofibers by catalytic decomposition of ethane on nickel nanoclusters decorating carbon nanotubes
US5424054A (en) Carbon fibers and method for their production
JP4811712B2 (en) Carbon nanotube bulk structure and a manufacturing method thereof
Gulino et al. C2H6 as an active carbon source for a large scale synthesis of carbon nanotubes by chemical vapour deposition
JP3363759B2 (en) Carbon nanotube device and manufacturing method thereof
Li et al. Purification of CVD synthesized single-wall carbon nanotubes by different acid oxidation treatments
US7094385B2 (en) Process for the mass production of multiwalled carbon nanotubes
Mubarak et al. An overview on methods for the production of carbon nanotubes
US20090068461A1 (en) Carbon nanotubes on carbon nanofiber substrate