JP2002257838A - Drive mechanism capable of positioning and chip with the same - Google Patents

Drive mechanism capable of positioning and chip with the same

Info

Publication number
JP2002257838A
JP2002257838A JP2001109287A JP2001109287A JP2002257838A JP 2002257838 A JP2002257838 A JP 2002257838A JP 2001109287 A JP2001109287 A JP 2001109287A JP 2001109287 A JP2001109287 A JP 2001109287A JP 2002257838 A JP2002257838 A JP 2002257838A
Authority
JP
Japan
Prior art keywords
chip
flow path
substance
force
positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001109287A
Other languages
Japanese (ja)
Inventor
Zen Takamura
禅 高村
Sakuichiro Adachi
作一郎 足立
Yasuhiro Horiike
靖浩 堀池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001109287A priority Critical patent/JP2002257838A/en
Publication of JP2002257838A publication Critical patent/JP2002257838A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem that the absence of a simple drive mechanism of an integrated chemical chip in which a micro-channel, reaction, and an analyzing device are incorporated on one chip and which is capable of transferring a flowable reagent in the channel while precisely positioning the reagent and being integrated on the same chip as the channel obstructs the sophistication of the chip. SOLUTION: The devised drive device is capable of step-by-step positioning by combining a pump capable of controlling a force with the channel in which a plurality of obstructions capable of trapping a moving interface by surface tension are arranged, forming them on the same chip, and releasing the trapping by a pulsating force exceeding the force of the trapping.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】半導体微細加工をバイオ化学
に応用し、チップ上に微細な流路や、反応、分析装置を
つくりこみ、分析を一つのチップ上で行ってしまおうと
いう、microfluidicsやmicro to
tal analysis(μ−TAS)、Lab−o
n−a−chipとよばれる分野が、DNAチップや、
高速電気泳動チップとして非常に急激な立ち上がりを見
せている。分析の分野のみならず、化学合成において
も、微細化にともなう高い反応性や、小型化からくる超
並列性をいかした、大量合成チップとして化学の集積化
が進みつつある。また、生物化学は人ゲノムの塩基配列
の決定から、ゲノム創薬をめざして、タンパク質の発現
機構の解析あるいは、大量のランダムな遺伝子配列から
有効な成分を探し出すと言った手法で、微量な化学成分
を大規模に取り扱う機会が増えている。本発明はこのよ
うな分野で用いられる集積化された化学チップ上で、液
等の物質の輸送を行う機構に関するものである。
BACKGROUND OF THE INVENTION The field of microfluidics and microfabrication in which microfabrication of semiconductors is applied to biochemistry, microchannels, reactions, and analyzers are built on a chip, and analysis is performed on one chip. to
tal analysis (μ-TAS), Lab-o
The field called na-chip is a DNA chip,
It shows a very rapid rise as a high-speed electrophoresis chip. Not only in the field of analysis, but also in chemical synthesis, the integration of chemistry as a mass-synthesized chip utilizing high reactivity associated with miniaturization and massive parallelism resulting from miniaturization is progressing. In addition, biochemistry is based on the technique of determining the base sequence of the human genome, analyzing the expression mechanism of proteins for the purpose of genomic drug discovery, or searching for effective components from a large number of random gene sequences. Opportunities for handling ingredients on a large scale are increasing. The present invention relates to a mechanism for transporting a substance such as a liquid on an integrated chemical chip used in such a field.

【0002】[0002]

【従来の技術】半導体微細加工技術などをもちいて、石
英や樹脂の板上微細な溝を掘り、孔の開いた板をかぶせ
て、流路とする。これらの流路は、あらかじめ設計され
たパターンで合流や枝別れしており、物質をその中に流
すことにより、混合、反応、分離、分析を行うことがで
きる。流路内の物質の移動には電気浸透流とよばれる現
象を用いることが多い。電気浸透流とは、細い流路の内
部に水溶液等の液体をいれ、その流路の両端に電圧を印
加すると、液体と壁との間にできる電気二重層に力が加
わり、液体が移動する現象である。分岐或いは合流した
流路では、それぞれの分岐/合流点の先についた液溜
に、適正な電圧をかけることにより、分岐/合流点での
流れを制御でき、向き及び流量比を変えることが可能で
ある。この方法では全ての分岐/合流点が電気的に接続
されており、各節に与える電圧は複雑な連立方程式の解
となり、その接点の数だけ高電圧源を用意する必要があ
り、大規模化を阻んでいた。また、実際に搬送したい物
質が流れる流路全体に電圧をかけるため、流路中に混入
或いは発生した泡によって簡単に制御不能になり、また
流路を流れる物質の電気伝導度が反応とともに変化した
り、異物叉は固形搬送物によって流路断面積が変化した
場合、流れを制御するのに適正な電圧が変化し、非常に
制御が難しい。
2. Description of the Related Art Using a semiconductor fine processing technique or the like, a fine groove is dug on a quartz or resin plate, and a plate with a hole is covered to form a flow path. These flow paths are joined or branched in a pattern designed in advance, and mixing, reaction, separation, and analysis can be performed by flowing a substance therein. A phenomenon called electroosmotic flow is often used for the movement of the substance in the flow channel. An electroosmotic flow is a method in which a liquid such as an aqueous solution is placed inside a narrow flow path, and when a voltage is applied to both ends of the flow path, a force is applied to an electric double layer formed between the liquid and the wall, and the liquid moves. It is a phenomenon. In a branched or merged flow path, the flow at the branch / merge point can be controlled and the direction and flow ratio can be changed by applying an appropriate voltage to the liquid reservoir at the end of each branch / merge point. It is. In this method, all branches / confluences are electrically connected, and the voltage applied to each node is a solution of a complex system of equations, and it is necessary to prepare as many high voltage sources as the number of contacts, which increases the scale. Was blocked. In addition, since a voltage is applied to the entire flow path through which the substance to be actually conveyed flows, it becomes easily uncontrollable due to bubbles mixed in or generated in the flow path, and the electric conductivity of the substance flowing through the flow path changes with the reaction. If the flow path cross-sectional area changes due to foreign matter or solid conveyed material, an appropriate voltage for controlling the flow changes, which is very difficult to control.

【0003】また、薬液の混合の順番は、流路の連結の
順番によってきまり、したがって処理手順はチップ設計
時に固定される。また、このような連続フロー処理で
は、反応時間は、流路の長さによって主に決定され固定
である。チップによっては、チップの外から加えられた
空気圧、或いは回転による遠心力により、チップ使用時
に任意のタイミングで、順繰りに連結された反応層を搬
送するバッチ式処理ができるものがある。液の流れる方
向を制御するために、機械式バルブを持つものもあり、
このバルブはやはり外からの空気圧等によって制御され
る。しかしこれらの高性能なチップは大きな外部装置を
必要とし、小型/携帯性などのチップ化のメリットを害
している。処理手順を使用時にプログラム可能な汎用的
なチップの実例は皆無である。
[0003] The order of mixing the chemicals is determined by the order of connection of the flow paths, and thus the processing procedure is fixed at the time of chip design. In such a continuous flow process, the reaction time is determined mainly by the length of the flow path and is fixed. Some chips can perform batch-type processing in which the connected reaction layers are sequentially conveyed at an arbitrary timing when the chips are used, by air pressure applied from outside the chips or centrifugal force due to rotation. Some have a mechanical valve to control the direction of liquid flow,
This valve is also controlled by air pressure from the outside. However, these high-performance chips require large external devices, and impair the merits of chip formation such as small size and portability. There is no example of a general purpose chip that can be programmed to use the procedure.

【0004】[0004]

【発明が解決しようとする課題】以上述べたような困難
や制限は、簡単にチップ上に集積化でき、面積占有率が
少なく、液体を扱うのに、大規模化に適し、使いやすく
適当な駆動装置がなかったことと関係している。本発明
は、このような条件を満たし、さらにあたかもステッピ
ングモーターのように移動量を精密に制御可能な線形動
作をするアクチュエーターを提供する。これにより弁を
用いず、手順が使用時に決定できる化学集積チップ等が
容易に実現できる。
The difficulties and limitations as described above can be easily integrated on a chip, have a small area occupation rate, and are suitable for large-scale use, easy to use, and suitable for handling liquid. It has to do with the lack of a drive. The present invention provides an actuator that satisfies such conditions and performs a linear operation capable of precisely controlling a moving amount like a stepping motor. As a result, a chemical integrated chip or the like whose procedure can be determined at the time of use can be easily realized without using a valve.

【0005】[0005]

【課題を解決させるための手段】本発明は図1に示すよ
うに、力を制御できる集積化されたポンプと、流路に形
成されたドット列のような、一定の或いは設計した間隔
で、流路と形状あるいは表面の性質が違う障害物を複数
配置した領域の組み合わせからなる。この障害物の領域
に、ポンプを用いて、液体と気体のような界面をもつ物
質を送り込む叉は引き込むと、その界面が表面張力によ
って障害物にトラップされる。次に、そのトラップ力を
超える力をポンプで加えるとトラップが外れ、界面は次
ぎの障害物まで移動しはじめる。移動している間に、ポ
ンプの力をトラップを超えられない力にまで減少させて
おくと、次ぎの障害物で再びそこにトラップされる。即
ち、適当な条件を設定すると、ポンプでパルス的な力を
与えることにより、1パルスで、1障害物だけ移動し、
あたかもステッピングモーターのような、線形のアクチ
ュエーターを実現することが可能である。
SUMMARY OF THE INVENTION As shown in FIG. 1, the present invention provides an integrated pump capable of controlling a force and a fixed or designed interval such as a row of dots formed in a flow path. It consists of a combination of regions where a plurality of obstacles having different shapes and surface properties are arranged. When a substance having an interface such as a liquid and a gas is fed or drawn into the area of the obstacle using a pump, the interface is trapped by the obstacle due to surface tension. Next, when a force exceeding the trapping force is applied by a pump, the trap is released, and the interface starts to move to the next obstacle. If you reduce the power of the pump to a value that cannot exceed the trap while moving, it will be trapped again at the next obstacle. That is, if appropriate conditions are set, a pulse-like force is applied by a pump to move one obstacle by one pulse,
It is possible to realize a linear actuator as if it were a stepping motor.

【0006】[0006]

【発明の実施の形態】図2に本発明の実施の形態の基本
型を示す。本発明によって精密に位置制御された移動量
を、それに連続する気密な流路とその中に入った気体等
の媒体を用いて伝え、目的の搬送物を精密に位置決めし
ながら移動させる。本発明で用いる力を制御できる集積
化ポンプとしては、例えば気密性があり気泡を発生しな
い電極(光硬化によりパターンニングした、ポリアクリ
ルアミドのようなゲルを用いた塩橋等があげられる)を
用いた電気浸透流ポンプのようなものがあげられる。得
にこのような電気浸透流ポンプとの組み合わせは、微細
化するほど能力が向上するスケーリングルールが成り立
ち得に有望である。また本発明は、今までの技術とは異
なり、ポンプ部と位置制御部と実際に搬送させたい物質
を、同一な物質で構成することも可能であるが、圧力を
伝えられる媒体で接続し、独立して設計することも可能
であることに大きな利点がある。例えば媒体にガスや絶
縁性で混ざらない液体(水に対して油)等を用いると、
搬送させたい物質と、ポンプ及び位置制御部の間の電気
的接続と物質が拡散して混ざってしまう接続を断ち切る
ことができ、各々を電気的、物質的に独立に設計でき、
最適化できる。図3に本発明を複数組み合わせた実施の
形態を示す。このように本発明を複数組み合わせた時、
各々を独立に設計できる利点はさらに強調される。以下
は簡単の為に、ポンプと位置決め機構の作動物質、及び
搬送物質として水溶液、その間の圧力媒体として空気を
仮定する。即ち、従来の技術で述べたような、電気浸透
流を用いた連続フロー型のチップでは、すべての分岐点
/合流点が電気的に接続されているために、その接点の
数だけ電圧を用意なければならず、大規模化を拒んでい
た。本発明では、電気的に絶縁がはかれるため、単に併
置するだけで容易に規模を拡大できる。また、ガスなど
の圧力媒体によって、物質的連続性が切断できる利点
と、精密に位置決めできる利点を組み合わせると次のよ
うなメリットがうまれる。即ち、流路内で圧力媒体によ
って分断された複数の流動する物質の位置を精密に制御
することにより、弁を用いないで複数の物質を互いに混
ざらないように任意の位置に移動し、或いは一つの液塊
を複数に分別し、またはそれらを必要に応じて混合する
ことが、図3の形態を用いて容易に可能である。従っ
て、図3の形態を用いると、必要に応じて任意順にリザ
ーバーから薬液を取り出し、任意の順番で反応層に導き
反応させ、必要に応じて分析層で分析し、といったこと
が容易に実現可能である。つまり、処理手順がチップ使
用時に決定でき、いろいろなプロぐラムをチップ使用時
に組み立てることにより、その場その場に応じたいくつ
もの処理を実現できる、汎用化学チップが実現可能であ
る。これは、従来のチップが、チップ設計時に処理手順
が決定され、固定されていたことにくらべて大きなメリ
ットである。
FIG. 2 shows a basic type of an embodiment of the present invention. According to the present invention, the movement amount whose position is precisely controlled is transmitted by using a gas-tight medium and a gas-tight flow path that is continuous with the movement amount, and the target object is moved while being precisely positioned. As the integrated pump capable of controlling the force used in the present invention, for example, an electrode that is airtight and does not generate bubbles (such as a salt bridge using a gel such as polyacrylamide patterned by photocuring) is used. Such as a conventional electroosmotic pump. In particular, the combination with such an electroosmotic pump is promising because a scaling rule in which the capability is improved as the size is reduced is established. Also, in the present invention, unlike the conventional techniques, the pump unit, the position control unit, and the substance to be actually conveyed can be made of the same substance, but are connected by a medium capable of transmitting pressure, There is a great advantage in that it can be designed independently. For example, if a gas or a liquid that is insulative and does not mix (oil versus water) is used
The substance to be transported, the electrical connection between the pump and the position control unit and the connection where the substance is diffused and mixed can be cut off, each can be designed electrically and materially independently,
Can be optimized. FIG. 3 shows an embodiment in which a plurality of the present invention are combined. Thus, when a plurality of the present invention are combined,
The advantage that each can be designed independently is further emphasized. For the sake of simplicity, it is assumed below that the pump and the actuating material of the positioning mechanism, the aqueous solution as the transport material and the air as the pressure medium between them. That is, in the continuous flow type chip using the electroosmotic flow as described in the related art, since all the junctions / junctions are electrically connected, the voltage is prepared by the number of the contacts. And refused to scale up. In the present invention, since the insulation is provided electrically, the scale can be easily increased simply by juxtaposition. Further, when the advantage that the material continuity can be cut by a pressure medium such as a gas and the advantage that it can be precisely positioned are combined, the following advantages are obtained. That is, by precisely controlling the positions of a plurality of flowing substances separated by the pressure medium in the flow path, the plurality of substances can be moved to an arbitrary position without using a valve so as not to be mixed with each other. It is easily possible to separate two liquid masses into a plurality of liquid masses or to mix them as necessary, using the configuration of FIG. Therefore, by using the configuration of FIG. 3, it is possible to easily realize that the chemical solution is taken out of the reservoir in an arbitrary order as needed, guided to the reaction layer in an arbitrary order and reacted, and analyzed in the analysis layer as needed. It is. That is, a general-purpose chemical chip can be realized in which the processing procedure can be determined when the chip is used, and various programs can be realized on a case-by-case basis by assembling various programs when the chip is used. This is a great merit compared to a conventional chip in which the processing procedure is determined and fixed at the time of chip design.

【0007】[0007]

【実施例】本発明を石英で作成されたチップ上に実施し
た例を次ぎに示す。チップの作成方法は、20mm×2
0mm石英板上に1μm厚のCr膜をスパッタし、フォ
トリソグラフィとウエットエッチングでパターンニング
する。これをハードマスクとしてC+CH
ガスを使用したMLDプラズマにて幅30μm深さ20
μmの流路を形成する。これに入出孔をあけた石英蓋を
1%HF中で圧着しチップとした。アクリルアミドとビ
スアクリルアミド及び光硬化イニシエータを配合した溶
液を流路内につめ、塩橋部分にのみ紫外線を当てること
でパターニングしたゲル塩橋電極を、気密で泡を発生し
ない電極に用いた電気浸透流ポンプを形成した。流路な
いに100μm間隔で、直径5μmの円柱を立て、障害
物とした。これに生理的リン酸緩衝液を1/10に希釈
して、ポンプ部より導入し作動液とした。この作動液が
位置制御部へ流れていき、その気体と液体の界面が、表
面張力で円柱にトラップされることで、ステッピング動
作を実現する。用いた、ポンプは印加電圧に比例して定
まった圧力を発生できる。図4のように、パルス的に圧
力を変化させることにより、前進と後退のステッピング
動作を確認した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is implemented on a chip made of quartz will be described below. 20mm × 2
A 1 μm thick Cr film is sputtered on a 0 mm quartz plate and patterned by photolithography and wet etching. Using this as a hard mask, C 4 F 8 + CH 2 F 2
30 μm width, 20 depth by MLD plasma using gas
A μm channel is formed. A quartz lid having an inlet / outlet was press-bonded in 1% HF to form a chip. An electroosmotic flow using a gel salt bridge electrode patterned by applying a solution containing acrylamide, bisacrylamide, and a photo-curing initiator into the flow channel and applying ultraviolet light only to the salt bridge, and using it as an airtight and bubble-free electrode A pump was formed. Cylinders with a diameter of 5 μm were erected at intervals of 100 μm without a flow path to serve as obstacles. This was diluted with a physiological phosphate buffer solution to 1/10 and introduced from a pump section to obtain a working fluid. This working fluid flows to the position control unit, and the interface between the gas and the liquid is trapped in a cylinder by surface tension to realize a stepping operation. The pump used can generate a fixed pressure in proportion to the applied voltage. As shown in FIG. 4, forward and backward stepping operations were confirmed by changing the pressure in a pulsed manner.

【0008】[0008]

【発明の効果】本発明により、簡単にチップ上に集積化
でき、占有面積が少なく、大規模化に適し、あたかもス
テッピングモーターのように移動量を精密に制御可能な
線形動作をするアクチュエーターを実現できた。またこ
のようなアクチュエータを用いることにより、流路内の
複数の液体の位置を精密に制御することにより、バルブ
を用いないで複数の液体を互いに混ざらないように任意
の位置に移動し、或いは一つの液塊を複数に分別し、ま
たはそれらを必要に応じて混合することも可能になる。
処理手順を使用時にプログラム可能な汎用的なチップも
実現できる。
According to the present invention, an actuator which can be easily integrated on a chip, has a small occupied area, is suitable for large-scale operation, and has a linear operation capable of precisely controlling a moving amount like a stepping motor is realized. did it. Further, by using such an actuator, the positions of a plurality of liquids in a flow path are precisely controlled, so that the plurality of liquids can be moved to an arbitrary position without using a valve so as not to mix with each other. It is also possible to separate two liquid masses into a plurality or to mix them as needed.
A general-purpose chip whose processing procedure can be programmed at the time of use can also be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の位置決め動作を実施するための原理を
説明した図である。
FIG. 1 is a diagram illustrating a principle for performing a positioning operation according to the present invention.

【図2】本発明を一つ用い、電気浸透流ポンプと組み合
わせ、ガスを媒体にして遠隔の液滴の精密位置決めを実
現した実施形態を示す図である。
FIG. 2 is a view showing an embodiment in which one of the present invention is combined with an electro-osmotic flow pump to realize precise positioning of a remote droplet using a gas as a medium.

【図3】本発明を複数用い、使用時に処理手順をプログ
ラム可能な、大規模な汎用化学チップに応用した時の実
施形態図である。
FIG. 3 is an embodiment of a case where the present invention is applied to a large-scale general-purpose chemical chip in which a plurality of the present invention are used and a processing procedure can be programmed at the time of use.

【図4】本発明を石英を用いたチップ上に実現し、確認
したステッピング動作を示す図である。
FIG. 4 is a diagram showing a stepping operation confirmed and realized by realizing the present invention on a chip using quartz.

【符号の説明】[Explanation of symbols]

1 力が制御できる集積化されたポンプ 2 流路 3 表面張力で界面をトラップする障害物 4 作動物質A(液体等) 5 作動物質B(気体等) 6 作動物質AとBの界面 7 パルス電圧入力 8 白金電極 9 ゲル塩橋電極 10 ポンプ部 11 リン酸バッファ 12 圧力媒体(空気) 13 搬送したい物質(試薬等) 14 円柱で構成された表面張力で界面をトラップする
障害物 15 液溜 16 共通流路 17 ポンプと位置決め装置で構成されたアクチュエー
タ(本発明) 18 反応層など 19 分析層など 20 ヒーターなど 21 薬液のリザーバ
1 Integrated pump with controllable force 2 Flow path 3 Obstacle trapping interface by surface tension 4 Working substance A (liquid etc.) 5 Working substance B (gas etc.) 6 Interface between working substances A and B 7 Pulse voltage Input 8 Platinum electrode 9 Gel salt bridge electrode 10 Pump unit 11 Phosphate buffer 12 Pressure medium (air) 13 Substance to be conveyed (reagent etc.) 14 Obstacle trapped at the interface by surface tension composed of cylinders 15 Liquid reservoir 16 Common Channel 17 Actuator composed of pump and positioning device (the present invention) 18 Reaction layer etc. 19 Analysis layer etc. 20 Heater etc. 21 Reservoir of chemical liquid

Claims (4)

【特許請求の範囲】[The claims] 【請求項1】チップ内部に流路を形成し、その流路内の
物質を位置決めしながら搬送するための駆動装置で、位
置決めのために、流路内に一定の或いは設計した間隔
で、流路と形状あるいは表面の性質が違う障害物を複数
配置し、そこを流れる物質の界面が、表面張力によって
障害物にトラップされ、そのトラップ力を超えるパルス
的な力でトラップをはずし、次ぎの障害物まで移動して
再びそこにトラップされることにより、ステップ的な位
置決めを特徴とする位置決め機構。
1. A driving device for forming a flow path inside a chip and transporting a substance in the flow path while positioning the flow path. A plurality of obstacles with different roads and shapes or surface properties are placed, and the interface of the material flowing through them is trapped by the obstacles due to surface tension, and the trap is removed with a pulse-like force exceeding the trapping force. A positioning mechanism characterized by stepwise positioning by moving to an object and being trapped there again.
【請求項2】請求項1のような位置決め機構と、片側に
ゲル電極を用いた電気浸透流ポンプのような力を発生す
る駆動装置、及び実際に搬送したい物質が通る流路を同
一のチップ内に集積化し、それらの間に働く力を、実際
に搬送したい物質と同一あるいは異なる気体或いは液体
によって流路内を伝え、目的の物質移動を達成すること
により、ポンプ部、位置決め機構、実際の搬送物質の間
の電気的接続、あるいは物質の拡散による混入などの物
質的接続を必要に応じて分断し、設計を容易とすること
を特徴とする化学集積チップ。
2. The same chip as the positioning mechanism according to claim 1, a driving device for generating a force such as an electroosmotic flow pump using a gel electrode on one side, and a flow path through which a substance to be actually conveyed passes. In the pump, the positioning mechanism, and the actual mass transfer, the force acting between them is transmitted through the flow path by the same or different gas or liquid as the substance to be actually conveyed, and the target substance transfer is achieved. A chemical integrated chip characterized in that electrical connection between transported substances or physical connection such as mixing due to diffusion of a substance is divided as necessary to facilitate design.
【請求項3】請求項1のようなステップ的な位置決め機
構がついた流路を用い、その流路の位置決め可能な位置
に分岐点を設け、試薬の格納庫、各種の反応装置、分析
装置などを配置し、それらの間を任意の順番で物質を移
動させることにより、チップ設計時にきめられた手順だ
けではなく、チップ使用時に任意の手順で物質の、混
合、反応、分析等を実行できることを特徴とする化学集
積チップ。
3. A flow path provided with a stepwise positioning mechanism according to claim 1, a branch point is provided at a position where the flow path can be positioned, and a reagent storage, various reaction devices, an analysis device, etc. By disposing materials in any order between them, it is possible to perform mixing, reaction, analysis, etc. of substances not only in the procedure determined at the time of chip design but also in any procedure when using the chip. Characterized chemical integrated chip.
【請求項4】請求項1のようなステップ的な位置決め機
構を同一チップに集積化した流路を用い、流路内の複数
の流動する物質の位置を精密に制御することにより、弁
を用いないで複数の物質を互いに混ざらないように任意
の位置に移動し、或いは一つの液塊を複数に分別し、ま
たはそれらを必要に応じて混合することを特徴とする化
学集積チップ。
4. The use of a valve by precisely controlling the positions of a plurality of flowing substances in a flow path using a flow path in which the step-like positioning mechanism according to claim 1 is integrated on the same chip. A chemical integrated chip characterized by moving a plurality of substances to an arbitrary position so as not to mix with each other, or separating one liquid mass into a plurality of liquid masses, or mixing them as necessary.
JP2001109287A 2001-03-02 2001-03-02 Drive mechanism capable of positioning and chip with the same Pending JP2002257838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001109287A JP2002257838A (en) 2001-03-02 2001-03-02 Drive mechanism capable of positioning and chip with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001109287A JP2002257838A (en) 2001-03-02 2001-03-02 Drive mechanism capable of positioning and chip with the same

Publications (1)

Publication Number Publication Date
JP2002257838A true JP2002257838A (en) 2002-09-11

Family

ID=18961254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001109287A Pending JP2002257838A (en) 2001-03-02 2001-03-02 Drive mechanism capable of positioning and chip with the same

Country Status (1)

Country Link
JP (1) JP2002257838A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003071262A1 (en) * 2002-02-19 2003-08-28 Ngk Insulators, Ltd. Micro chemical chip
WO2004051229A1 (en) * 2002-12-02 2004-06-17 Nec Corporation Liquid switch, and microchip and mass-analyzing system using the same
WO2007072914A1 (en) * 2005-12-21 2007-06-28 Kyocera Corporation Electroosmotic flow pump, pumping system, microchemical chip and fuel cell
US8120748B2 (en) 2003-11-18 2012-02-21 Asml Netherlands B.V. Lithographic processing optimization based on hypersampled correlations

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003071262A1 (en) * 2002-02-19 2003-08-28 Ngk Insulators, Ltd. Micro chemical chip
WO2004051229A1 (en) * 2002-12-02 2004-06-17 Nec Corporation Liquid switch, and microchip and mass-analyzing system using the same
US7274016B2 (en) 2002-12-02 2007-09-25 Nec Corporation Liquid switch, and microchip and mass-analyzing system using the same
US8120748B2 (en) 2003-11-18 2012-02-21 Asml Netherlands B.V. Lithographic processing optimization based on hypersampled correlations
WO2007072914A1 (en) * 2005-12-21 2007-06-28 Kyocera Corporation Electroosmotic flow pump, pumping system, microchemical chip and fuel cell
JP4721236B2 (en) * 2005-12-21 2011-07-13 京セラ株式会社 Electroosmotic pump, pumping system, microchemical chip and fuel cell

Similar Documents

Publication Publication Date Title
US8394249B2 (en) Methods for manipulating droplets by electrowetting-based techniques
US6790328B2 (en) Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream
US8147668B2 (en) Apparatus for manipulating droplets
Sun et al. Controlled dispensing and mixing of pico-to nanoliter volumes using on-demand droplet-based microfluidics
US20070113907A1 (en) Devices and methods using fluid-transporting features of differing dwell times
JP2002257838A (en) Drive mechanism capable of positioning and chip with the same
CA2500252C (en) Methods and apparatus for manipulating droplets by electrowetting-based techniques
JP2008170405A (en) Mixing/transferring device for microfluid and mixing/transferring device for microfluid by alternating current electrophoretic method
Sun et al. Robust extraction interface for coupling droplet-based and continuous flow microfluidics
JP2011058943A (en) Liquid feeding device