JP2002250421A - Variable speed change gear - Google Patents

Variable speed change gear

Info

Publication number
JP2002250421A
JP2002250421A JP2001064944A JP2001064944A JP2002250421A JP 2002250421 A JP2002250421 A JP 2002250421A JP 2001064944 A JP2001064944 A JP 2001064944A JP 2001064944 A JP2001064944 A JP 2001064944A JP 2002250421 A JP2002250421 A JP 2002250421A
Authority
JP
Japan
Prior art keywords
center
rotation
side
member
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001064944A
Other languages
Japanese (ja)
Inventor
Sadatomo Kuribayashi
定友 栗林
Original Assignee
Kayseven Co Ltd
株式会社ケイセブン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000388917 priority Critical
Priority to JP2000-388917 priority
Application filed by Kayseven Co Ltd, 株式会社ケイセブン filed Critical Kayseven Co Ltd
Priority to JP2001064944A priority patent/JP2002250421A/en
Publication of JP2002250421A publication Critical patent/JP2002250421A/en
Application status is Pending legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a friction transmission variable speed change gear, capable of gaining a high driving force transmission efficiency using a simple structure.
SOLUTION: Revolving members 2, 4 on driving side and driven side are arranged rotatably and opposite about a revolving center 1, and a driving force is transmitted by a driving force transmitting mechanism 6 between these. A revolving member 4 at driven side has a contact surface 4b obliquely expanding inwardly in the circumferential direction, and a revolving member 2 at driving side also has the same contact surface at driving side. The driving force transmitting mechanism 6 contains spheres 12A, 12B, a holding means 14 for holding thereof around rotating centers 11A, 11B in the plane passing the centers and containing the revolving center 1, a controlling means 16 for changing the rotating center direction in the plane containing the revolving center, and a central revolving member 18 which is rotatable and arranged about the revolving center 1. Either of the spheres 12A, 12B come in contact with the contact surfaces at driving side and driven side and outer periphery of the central revolving member 18.
COPYRIGHT: (C)2002,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、駆動力伝達の技術分野に属するものであり、特に摩擦伝動式の無段変速機に関するものである。 The present invention relates are those belonging to the technical field of the driving force transmission, and in particular frictional transmission type continuously variable transmission.

【0002】 [0002]

【従来の技術及び発明が解決しようとする課題】摩擦伝動式の無段変速機としては、駆動側回転部材と被動側回転部材とを同軸回転可能なように対向配置し、これら駆動側及び被動側の回転部材にそれぞれ円錐面を形成しておき、複数の駆動力伝達球体を回転部材の回転中心の周りで周方向に関して均等に配置し、これら球体を駆動側及び被動側の回転部材の円錐面の双方と接触してそれぞれ自転軸の周りで自転することが可能なように保持リングにより回転部材の回転中心に対して径方向外側から保持したものがある。 The continuously variable transmission frictional transmission type BACKGROUND OF INVENTION Problems to be Solved], oppositely disposed the driving side rotational member and the driven side rotating member so as to be coaxial rotation, these drive side and the driven previously formed respectively conical surface on the rotating member side, cone plurality of uniformly disposed with respect to the circumferential direction around the rotational center of the driving force transmitting spherical rotary member, these spheres driving side and the driven side rotational member there are those retained from the radially outer side with respect to the rotation center of the rotary member by a holding ring so as to be capable of rotating around a respective rotation axis in contact with both surfaces. この変速機では、駆動側回転部材及び被動側回転部材の回転中心を通る断面内で該回転中心に対し各球体の自転軸がなす角度を変化させるように球体の姿勢を制御することで、変速動作を行っている。 In the transmission, by controlling the orientation of the spheres so as to vary the angle between the rotation axis of the spherical bodies to the rotation center in a cross-section through the rotational center of the driving side rotational member and the driven side rotating member, the transmission It performs an operation.

【0003】しかしながら、この変速機では、駆動力伝達球体は駆動側及び被動側の双方の回転部材の凸状の円錐面(即ち斜め外向きの面)と接触せしめられるので、 However, in this transmission, the driving force transmitting balls is contacted with convex conical surfaces of both of the rotating member of the drive-side and driven-side (that is, the surface of the oblique outward),
接触摩擦に基づく駆動力伝達の効率は十分とはいえない。 Efficiency of the driving force transmission based on contact friction is not sufficient.

【0004】そこで、本発明は、簡単な構造で高い駆動力伝達効率を得ることが可能な摩擦伝動式の無段変速機を提供することを目的とするものである。 [0004] Therefore, the present invention is an object to provide a continuously variable transmission which can obtain a high driving force transmission efficiency with a simple structure frictional transmission type.

【0005】 [0005]

【課題を解決するための手段】本発明によれば、以上の如き目的を達成するものとして、第1回転中心の周りでそれぞれ回転可能なように互いに対向して配置された駆動側回転部材及び被動側回転部材と、前記駆動側回転部材から前記被動側回転部材へと駆動力を伝達するための駆動力伝達機構部とを備えており、前記駆動側回転部材は前記被動側回転部材と対向する側に前記第1回転中心の周りで周方向に延在せる斜め内向きの駆動側接触面を有しており、前記被動側回転部材は前記駆動側回転部材と対向する側に前記第1回転中心の周りで周方向に延在せる斜め内向きの被動側接触面を有しており、前記駆動力伝達機構部は、前記第1回転中心の周りに配置された複数の球体と、該複数の球体をそれぞれその中心を通り前記第1回転中心 According to the present invention SUMMARY OF], as to achieve the above object, the driving-side rotating member disposed opposite to each other so as to be rotatable respectively about a first rotational center and the driven side rotating member, wherein the driving-side rotating member to the driven-side rotating member and a driving force transmitting mechanism for transmitting a driving force, the driving-side rotating member is the driven side rotating member and the opposite circumferentially around said first rotational center on the side has a slanted inward of the drive side contact surface thereby extending, the driven-side rotating member is the first on the side opposite to the driving side rotational member circumferentially about a center of rotation has a driven-side contact surface of the oblique inward to extend, the driving force transmitting mechanism includes a plurality of spheres disposed about the first rotational center, the a plurality of spheres as said first rotation about its center, respectively 含む面内の第2回転中心の周りで回転可能なように保持する保持手段と、前記第2回転中心の方向を前記第1回転中心を含む面内で変化させるための制御手段とを含んでおり、前記複数の球体はいずれも前記駆動側接触面及び前記被動側接触面と当接せしめられていることを特徴とする無段変速機、が提供される。 It includes a holding means for holding so as to be rotatable about a second center of rotation of a plane including, and control means for changing the direction of the second rotational center in a plane including the first rotational center cage, CVT, wherein the have a plurality of spheres both be brought into contact with the drive-side contact surface and the driven-side contact surface, is provided.

【0006】本発明の一態様においては、前記駆動力伝達機構部は前記駆動側回転部材及び前記被動側回転部材に対して前記第1回転中心の周りで相対的に回転可能なように配置された中央回転部材を含んでおり、前記複数の球体はいずれも前記中央回転部材の外周面と当接せしめられている。 [0006] In one aspect of the present invention, the driving force transmission mechanism is arranged so as to be relatively rotatable about the first rotational center with respect to the driving side rotational member and the driven-side rotating member and includes a central rotary member, both said plurality of spheres are allowed outer circumferential surface abutting said central rotary member. 本発明の一態様においては、前記中央回転部材は前記保持手段により回転可能に保持されている。 In one aspect of the present invention, the central rotary member is rotatably held by the holding means. 本発明の一態様においては、前記中央回転部材は前記駆動側回転部材及び前記被動側回転部材により回転可能に保持されている。 In one aspect of the present invention, the central rotary member is rotatably held by the driving side rotational member and the driven side rotational member.

【0007】本発明の一態様においては、前記保持手段は前記球体を保持する前記第2回転中心の方向の自転軸と該自転軸を支持する支持腕とを有する。 [0007] In one aspect of the present invention, the retaining means and a support arm for supporting the rotation shaft and the free-rotating shaft direction of the second rotation center for holding the sphere. 本発明の一態様においては、前記制御手段は前記複数の球体について前記支持腕を回動させることで前記自転軸の前記第1回転中心に対する角度を同等に変化させるものである。 In one aspect of the present invention, the control means is intended to vary equally the angle relative to the first rotational center of the rotation axis by rotating the support arm for the plurality of spheres.

【0008】本発明の一態様においては、前記保持手段は前記球体を保持する前記第2回転中心の方向の自転軸と該自転軸の両端を前記第1回転中心に関する径方向に移動可能に支持する1対のガイド支持板とを有しており、該ガイド支持板には前記第1回転中心に関する径方向に延びたガイド長孔が形成されている。 [0008] In one aspect of the present invention, movably supported above the retaining means at both ends of the rotation axis and the free-rotating shaft direction of the second rotation center for holding the balls in the radial direction about the first rotational center It has a pair of guide supporting plate which, in the guide supporting plate guide slot extending in a radial direction about the first rotational center is formed. 本発明の一態様においては、前記制御手段は前記複数の球体について前記1対のガイド支持板のガイド長孔を貫通せる前記自転軸の一方端を前記第1回転中心に関する径方向に移動させることで前記自転軸の前記第1回転中心に対する角度を同等に変化させるものである。 In one aspect of the present invention, the control means moves the one end of the rotation shaft to penetrate the pair of guide supporting plate guide slots for the plurality of balls radially about the first rotational center it is intended to equally change the angle with respect to the first rotational center of the rotation shaft in.

【0009】本発明の一態様においては、前記複数の球体のそれぞれは前記駆動側接触面及び前記被動側接触面と当接せしめられる球面部と該球面部より前記第1回転中心寄りに位置し前記第2回転中心に関して回転対称に形成された支持面部と該支持面部に突設された自転軸部とを備えており、前記保持手段は前記球体の自転軸部及び支持面部を前記第2回転中心の周りで回転可能なように支持する支持部材を備えている。 [0009] In one aspect of the present invention, each of the plurality of spheres is located in the first rotational center closer than the spherical portion and the spherical surface portion which is brought into contact with the drive-side contact surface and the driven-side contact surface and a support surface portion formed in rotational symmetry and rotation shaft portion projecting from the said support surface with respect to the second rotational center, the holding means rotates the shaft portion and the second rotating support surface of the sphere and a support member for rotatably supporting about the center. 本発明の一態様においては、前記制御手段は前記複数の球体について前記支持部材を回動させることで前記自転軸部の前記第1回転中心に対する角度を同等に変化させるものである。 In one aspect of the present invention, the control means is intended to vary equally the angle relative to the first rotational center of the rotation shaft section by rotating the support member for the plurality of spheres. 本発明の一態様においては、前記制御手段は前記複数の球体のそれぞれについて前記第2回転中心の方向を前記第1 In one aspect of the present invention, the control means of the plurality of the direction of the second rotational center for each of the spherical first
回転中心と直交する状態を経て変化させるものである。 It is intended to vary via the state that is perpendicular to the rotation center.

【0010】本発明の一態様においては、前記複数の球体は前記第1回転中心の周りで周方向に均等に配置されている。 [0010] In one aspect of the present invention, the plurality of spheres are evenly arranged circumferentially around said first rotational center. 本発明の一態様においては、前記駆動側接触面と前記被動側接触面とは前記第1回転中心に垂直な面に関して対称である。 In one aspect of the present invention, wherein the drive-side contact surface and said driven-side contact surface is symmetrical about a plane perpendicular to the first rotational center.

【0011】 [0011]

【発明の実施の形態】以下、本発明の実施の形態を、図面を参照しながら説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the embodiments of the present invention will be described with reference to the drawings.

【0012】図1〜図3はそれぞれ本発明の無段変速機の第1の実施形態を示す分解斜視図、一部分解斜視図及び組立状態を示す斜視図であり、図4及び図5はその断面図である。 [0012] FIGS. 1 to 3 is an exploded perspective view showing a first embodiment of a continuously variable transmission of the present invention, respectively, a perspective view of a partially exploded perspective view and an assembled state, FIG. 4 and FIG. 5 is that it is a cross-sectional view.

【0013】これらの図において、駆動側回転部材2はZ方向の回転中心1の周りで回転可能な回転軸2aを有しており、被動側回転部材4は回転中心1の周りで回転可能な回転軸4aを有している。 [0013] rotatable in these figures, the drive-side rotation member 2 has a rotatable rotary shaft 2a at about a center of rotation 1 in the Z direction, the driven side rotating member 4 at about a center of rotation 1 and a rotary shaft 4a. 即ち、駆動側回転部材2及び被動側回転部材4は同軸にて回転可能なように対向配置されている。 That is, the driving-side rotating member 2 and the driven side rotating member 4 is opposed to be rotatable in coaxial. 駆動側回転部材2は、被動側回転部材4と対向する側に回転中心1の周りで周方向に延在せる斜め内向きの駆動側接触面2bを有している。 Driving side rotating member 2 has a driven-side rotating member 4 opposite to the oblique inward extending to a circumferential direction around the rotational center 1 on a side driving side contact surface 2b. 同様に、被動側回転部材4は、駆動側回転部材2と対向する側に回転中心1の周りで周方向に延在せる斜め内向きの被動側接触面4bを有している。 Similarly, the driven side rotating member 4 has a driving-side rotating member 2 opposite to the oblique inward extending to a circumferential direction around the rotational center 1 on the side driven side contact surface 4b. これら駆動側接触面2 These drive-side contact surface 2
b及び被動側接触面4bは、回転中心1に直交する面(XY面)に関して対称に形成されている。 b and the driven-side contact surface 4b is formed symmetrically with respect to a plane perpendicular to the rotational center 1 (XY plane).

【0014】駆動側回転部材2と被動側回転部材4との間には、駆動側回転部材2から被動側回転部材4へと駆動力を伝達するための駆動力伝達機構部6が配置されている。 [0014] Between the drive-side rotating member 2 and the driven side rotating member 4, is the driving force transmission mechanism portion 6 is arranged for transmitting a driving force from the driving-side rotating member 2 to the driven side rotating member 4 there. 駆動力伝達機構部6は、回転中心1の周りで周方向に均等に配置された2つの球体12A,12Bを有する。 Driving force transmission mechanism portion 6 has two spheres 12A, 12B which are uniformly arranged in the circumferential direction around the rotational center 1. 球体12A,12Bは、それぞれその中心を通り回転中心1を含む面内の回転中心(自転中心)11A,1 Spheres 12A, 12B, the rotation center (rotation center) of the plane including the street rotation center 1 its center, respectively 11A, 1
1Bの周りで自転可能なように保持手段14により保持されている。 Is held by the holding means 14 so as to be rotating around 1B. 保持手段14は、球体12A,12Bを自転可能に保持する自転中心方向の自転軸14A1,14 Holding means 14, the sphere 12A, the rotation center direction for holding 12B a possible rotation rotation axis 14A1,14
B1と、該自転軸をXZ面内にて支持するようにY方向に延在せる支持腕14A2,14B2とを有する。 And B1, and a support arm 14A2,14B2 to extend in the Y direction so as to support the the free-rotating shaft in XZ plane. 該支持腕14A2,14B2は保持手段14の枠体に対してそれぞれ回動可能に支持されている。 The support arm 14A2,14B2 is rotatably supported respectively to the frame of the holding means 14.

【0015】保持手段14には、各球体12A,12B [0015] the holding means 14, the spherical bodies 12A, 12B
に係る自転軸14A1,14B1の方向を回転中心1を含むXZ面内で変化させるための制御手段16が付設されている。 Control means 16 for changing in the XZ plane including the center of rotation 1 the direction of the rotation axis 14A1,14B1 is attached according to the. 制御手段16は、支持腕14A2,14B2 Control means 16, the support arm 14A2,14B2
に付され互いに噛み合うギヤ16A,16Bと、支持腕14B2に固定された変速レバー16'とを有する。 Gear 16A that attached are meshed with each other to have a 16B, and fixed to the support arm 14B2 shift lever 16 '. 変速レバー16'をY方向の周りで回動させることで、回転中心1に対し球体自転軸14A1,14B1がなす角度を変化させることができる。 The shift lever 16 'by rotating about the Y-direction, it is possible to change the angle between the spherical rotation axis 14A1,14B1 respect to the rotation center 1. 保持手段14には、また、回転中心1の周りで回転可能なように配置された中央回転部材18が付設されている。 The holding means 14, The central rotary member 18 arranged so as to be rotatable about a rotation center 1 is attached. 中央回転部材18 Central rotary member 18
は、駆動側回転部材2及び被動側回転部材4に対して回転中心1の周りで相対的に回転可能とされていることになる。 It would have been a relatively rotatable about a center of rotation 1 with respect to the driving side rotational member 2 and the driven side rotating member 4.

【0016】球体12A,12Bは、いずれも駆動側接触面2b、被動側接触面4b及び中央回転部材18の円筒形状外周面と当接せしめられている。 [0016] spheres 12A, 12B are both driven side contact surface 2b, and is brought cylindrical outer peripheral surface and the abutment of the driven-side contact surface 4b and the central rotary member 18. 保持手段14の枠体は、不図示の手段により回転中心1の周りでの回転を阻止された状態にて維持される。 Frame holding means 14 is maintained in a state which is prevented from rotating at about a center of rotation 1 by means not shown.

【0017】次に、以上のような実施形態の動作について説明する。 [0017] Next, the operation of the above-described embodiments.

【0018】駆動側回転部材2の回転中心1の周りの回転力は駆動側接触面2bと球体12A,12Bとの接触摩擦により球体12A,12Bへと伝達され、これにより球体12A,12Bがそれぞれ自転中心11A,11 The rotational force driving side contact surface 2b and the sphere 12A around the rotation center 1 of the driving-side rotating member 2, the sphere 12A by contact friction with 12B, is transmitted to 12B, thereby spheres 12A, 12B, respectively rotation center 11A, 11
Bの周りで回転せしめられる。 It is rotated about the B. この球体12A,12B This sphere 12A, 12B
の自転の際には、球体12A,12Bとの接触摩擦により、中央回転部材18が回転せしめられる。 During the rotation, the sphere 12A, by contact friction with 12B, the central rotary member 18 is rotated. 球体12 Sphere 12
A,12Bが自転すると、球体12A,12Bと被動側接触面4bとの接触摩擦により被動側回転部材4が回転中心1の周りで回転せしめられる。 A, the 12B is rotates, the driven side rotating member 4 is rotated about the rotation center 1 by contact friction between the ball 12A, 12B and the driven-side contact surface 4b.

【0019】変速レバー16'をY方向の周りで回動させることで、支持腕14B2及びこれとギヤ16A,1 [0019] The shift lever 16 'by rotating about the Y-direction, the support arm 14B2 and this and the gear 16A, 1
6Bを介して結合された支持腕14A2をY方向の周りで互いに逆向きに同一角度回動させ、自転軸14A1, The support arm 14A2 coupled via 6B is the same angle rotation in opposite directions around the Y-direction, rotation shaft 14A1,
14B1をY方向の周りで互いに逆向きに同一角度回動させることができる。 14B1 to can be the same angle rotation in opposite directions around the Y-direction. このようにしてY方向に対し自転中心11A,11Bがなす角度を設定することにより、 Thus with respect to the Y direction rotation center 11A, by setting the angle 11B is formed,
変速比が設定される。 The gear ratio is set. 即ち、自転中心11A,11Bから駆動側接触面2bと球体12A,12Bとの接触位置までの距離と、自転中心11A,11Bから被動側接触面4bと球体12A,12Bとの接触位置までの距離との比に応じて変速比が決まる。 That is, the distance to the contact position of the rotation center 11A, 11B from the drive-side contact surface 2b and the sphere 12A, the distance to the contact position with the 12B, rotation center 11A, the driven-side contact surface 4b and the spherical 12A from 11B, and 12B gear ratio is determined according to the ratio of the.

【0020】このような変速動作を、図6を参照して説明する。 [0020] Such a shift operation will be described with reference to FIG. 図6(a)では、変速レバー16'がX方向を向いており、自転中心11A,11Bが回転中心1と平行であり、この場合には等速(変速比1)となる。 In FIG. 6 (a), shift lever 16 'are oriented in the X direction, rotation center 11A, 11B is parallel to the rotational center 1, a constant velocity (speed ratio 1) in this case. 図6 Figure 6
(b)では、変速レバー16'がX方向に対して角度+ (B) In the angular shift lever 16 'with the X-direction +
θだけ傾いており、自転中心11A,11Bが回転中心1に対して角度+θだけ傾いており、この場合には増速となる。 Are inclined by theta, rotation center 11A, 11B are inclined by an angle + theta with respect to the rotation center 1, the speed increasing in this case. 図6(c)では、変速レバー16'がX方向に対して角度−θだけ傾いており、自転中心11A,11 In FIG. 6 (c), it is inclined by an angle -θ shift lever 16 'with the X-direction, rotation center 11A, 11
Bが回転中心1に対して角度−θだけ傾いており、この場合には減速となる。 B is tilted by an angle -θ with respect to the rotational center 1, the deceleration in this case.

【0021】本実施形態において、十分な駆動力の伝達を確保するためには、駆動側回転部材2と被動側回転部材4とを互いにZ方向に近づけるように押圧する。 In the present embodiment, in order to ensure transmission of sufficient driving force presses to close the drive-side rotation member 2 and the driven side rotating member 4 in the Z direction. このような押圧のための手段としては、駆動側回転部材2の回転力を回転中心1の方向の押圧力に変換する公知の機構を使用することができる。 As the means for such pressing it may be a known mechanism for converting the rotational force of the driving-side rotating member 2 to the pressing force in the direction of the center of rotation 1. この押圧に伴い、球体12 As a result of this pressing, sphere 12
A,12Bが回転中心1の方へと押圧され、その押圧力は中央回転部材18により受け止められる。 A, 12B is pressed toward the center of rotation 1, the pressing force is received by the central rotary member 18. 球体12 Sphere 12
A,12Bが回転中心1の周りで周方向に均等に配置されていることと相まって、押圧力は良好なバランスを維持しており、振動などの発生の原因となることは実質上ない。 A, 12B is combined with that are disposed uniformly in the circumferential direction around the rotational center 1, the pressing force is maintained good balance, it is virtually not cause generation of vibration.

【0022】また、本実施形態においては、駆動側接触面2b及び被動側接触面4bがいずれも斜め内向きに形成されているので、これらの接触面と球体12A,12 Further, in the present embodiment, since the drive-side contact surface 2b and the driven-side contact surface 4b is formed on both obliquely inward, these contact surfaces and the sphere 12A, 12
Bとの間の接触摩擦による駆動力伝達の効率は高い。 Efficiency of the driving force transmission by the contact friction between the B is high.

【0023】図7及び図8はそれぞれ本発明の無段変速機の第2の実施形態を示す分解斜視図及び一部分解斜視図であり、図9及び図10はその断面図である。 [0023] Figures 7 and 8 is an exploded perspective view and a partially exploded perspective view showing a second embodiment of the continuously variable transmission of the present invention, respectively, FIGS. 9 and 10 is a sectional view thereof. これらの図において、図1〜6におけると同様の機能を有する部材には同一の符号が付されている。 In these figures, it is denoted by the same reference numerals to members having the same functions as in Figure 1-6.

【0024】本実施形態は、保持手段14の構成が上記第1の実施形態のものと異なる。 The present embodiment, arrangement of the holding means 14 is different from that of the first embodiment. 即ち、保持手段14の枠体は、互いに平行に配列されたXY面内の1対のプレート141,142と、一方の端部をプレート141に取り付けられ且つ他方の端部をプレート142に取り付けられた連結部材143A,143B;144A,14 That is, the frame holding means 14 is attached to plate 142 and plate 141, 142 of a pair of the XY plane are arranged parallel to one another, the and the other end attached to the plate 141 to one end a connecting member 143A, 143B; 144A, 14
4Bとを有する。 And a 4B. 支持腕14A2は、球体12Aを取り巻くような形態をなし且つY方向に関し球体の前後両側にて枠体連結部材143A,144Aにより回動可能に保持されている。 Support arm 14A2 is frame connected it relates and Y-direction in the form such as to surround the sphere 12A at both front and rear sides of the spherical member 143A, are rotatably held by 144A. 同様に、支持腕14B2は、球体12 Similarly, support arm 14B2 is, the sphere 12
Bを取り巻くような形態をなし且つY方向に関し球体の前後両側にて枠体連結部材143B,144Bにより回動可能に保持されている。 Frame connected by front and rear side forms a sphere relates and Y direction without the like surrounding the B member 143B, and is pivotably held by 144B.

【0025】また、本実施形態では、中央回転部材18 Further, in this embodiment, the central rotary member 18
は、プレート141,142により両端を支持されたZ It was supported at both ends by plates 141 and 142 Z
方向の支持ロッドの周囲にベアリングを介して回転中心1の周りで回転可能に支持されている。 It is rotatably supported about a rotation center 1 via the bearings around the direction of the support rod.

【0026】本実施形態では、プレート141,142 [0026] In this embodiment, the plate 141 and 142
に対する連結部材143A,143B;144A,14 Connecting member 143A against, 143B; 144A, 14
4BのX方向の取付位置に調整代を設けておくことにより、組立時に保持手段14により球体12A,12Bを保持する際に、球体12A,12Bを中央回転部材18 By keeping the adjustment amount attached to the attachment position in the X direction 4B, when holding the spheres 12A, 12B by the holding means 14 during assembly, the sphere 12A, 12B of the central rotary member 18
に対して良好に当接させた状態となした上で、支持腕1 On which none the state of being well contact against the support arm 1
4A2,14B2を保持した連結部材143A,143 4A2,14B2 holding the coupling member 143A, 143
B;144A,144Bをプレート141,142に対し固定することができる。 B; 144A, can be fixed to the plate 141, 142 to 144B. これにより、駆動力伝達効率の更なる向上が可能となる。 This enables further improvement of the driving force transmission efficiency.

【0027】本実施形態においては、上記第1の実施形態と同様な動作がなされ、同様な作用効果が得られる。 In the present embodiment, the same operation as the first embodiment is performed, the same effects can be obtained.

【0028】図11及び図12はそれぞれ本発明の無段変速機の第3の実施形態を示す分解斜視図及び一部分解斜視図であり、図13及び図14はその断面図である。 [0028] FIGS. 11 and 12 is an exploded perspective view and a partially exploded perspective view showing a third embodiment of a continuously variable transmission of the present invention, respectively, FIGS. 13 and 14 is a sectional view thereof.
これらの図において、図1〜10におけると同様の機能を有する部材には同一の符号が付されている。 In these figures, it is denoted by the same reference numerals to members having the same functions as in FIGS. 1-10.

【0029】本実施形態では、駆動力伝達に、回転中心1の周りで周方向に均等に配置された3つの球体12 [0029] In the present embodiment, the driving force transmission, evenly arranged circumferentially around the rotational center 1 three spheres 12
A,12B,12Cを使用している。 We are using A, 12B, and 12C. これらの球体12 These spheres 12
A,12B,12Cは、それぞれその中心を通り回転中心1を含む面内の自転中心11A,11B,11Cの周りで自転可能なように保持手段により保持されている。 A, 12B, 12C is rotation center 11A of the plane including the street rotation center 1 its center, respectively, 11B, is held by the holding means so as to be rotating around 11C.
保持手段は、球体12A,12B,11Cを自転可能に保持する自転中心方向の自転軸14A1,14B1,1 Retaining means, spheres 12A, 12B, the rotation center direction for holding 11C the possible rotation rotation axis 14A1,14B1,1
4C1と、該自転軸をそれぞれ回転中心1を含む面内にて支持する1対のガイド支持板145,146とを有する。 And 4C1, and a guide support plate 145, 146 of a pair of supporting the free-rolling axis in the plane, each comprising a center of rotation 1. 該ガイド支持板145,146は、不図示の手段により回転中心1の周りでの回転を阻止され互いに固定された状態にて維持される。 The guide support plate 145, 146 is prevented from rotation around the rotational center 1 by means not shown is maintained at a state of being fixed to each other.

【0030】ガイド支持板145,146には回転中心1に関して径方向に細長いガイド長孔145A,145 The guide support plate elongate guide length in the radial direction with respect to the rotation center 1 to 145 and 146 holes 145A, 145
B,145C;146A,146B,146Cが形成されており、ガイド長孔145A,146Aにより自転軸14A1の両端がガイドされ、ガイド長孔145B,1 B, 145C; 146A, 146B, 146C are formed, the guide long hole 145A, both ends of the rotation shaft 14A1 by 146A is guided, the guide slot 145B, 1
46Bにより自転軸14B1の両端がガイドされ、ガイド長孔145C,146Cにより自転軸14C1の両端がガイドされるように各自転軸の両端が対応するガイド長孔と適合している。 46B at both ends of the rotation shaft 14B1 are guided by the guide slot 145C, both ends of each rotation axis is compatible with the corresponding guide slot so both ends of the rotation shaft 14C1 is guided by 146C.

【0031】ガイド支持板146に隣接し且つ該ガイド支持板146に対して回転中心1の周りで相対的に回動可能なように、制御手段を構成する制御プレート161 [0031] As adjacent the guide support plate 146 and against the guide support plate 146 can be relatively pivoted about a center of rotation 1, controls constituting the control unit plate 161
が配置されている。 There has been placed. 制御プレート161には、回転中心1に関する径方向に対して斜めに細長いカム長孔161 The control plate 161, an elongated cam slot 161 obliquely to the radial direction about the rotation center 1
A,161B,161Cが形成されており、これらカム長孔内にまで対応する自転軸14A1,14B1,14 A, 161B, 161C are formed, the rotation shaft corresponding to these long cam hole 14A1,14B1,14
C1の一端が延びている。 One end of C1 extends. ガイド長孔146Aとこれに対応するカム長孔161Aとの関係は、ガイド長孔14 Relationship between the guide slot 146A and the cam slot 161A corresponding to this, the elongated guide hole 14
6Bとこれに対応するカム長孔161Bとの関係と同一であり、且つガイド長孔146Cとこれに対応するカム長孔161Cとの関係とも同一である。 6B and is identical to the relationship between the cam slot 161B corresponding thereto is identical with the relationship between the cam slot 161C for and guide slot 146C and corresponding thereto.

【0032】制御プレート161には、径方向に延びた変速レバー161'が付設されている。 [0032] Control plate 161, shift lever 161 'is attached extending radially. 変速レバー16 The shift lever 16
1'をZ方向の周りで回動させることで、回転中心1に対し球体自転軸14A1,14B1,14C1がなす角度を変化させることができる。 1 'by rotating around the Z-direction, it is possible to respect the rotational center 1 varies the angle between the spherical rotation axis 14A1,14B1,14C1. 即ち、制御プレート16 That is, the control plate 16
1が回転中心1の周りで回転するにつれて、カム長孔1 As 1 is rotated about a center of rotation 1, the cam slot 1
61A〜161Cとガイド長孔146A〜146Cとの重畳位置にある自転軸14A1,14B1,14C1の一端の位置が変化せしめられ、これにより自転軸14A Position of one end of the rotation axis 14A1,14B1,14C1 in superimposed position and 61A~161C and guide slot 146A~146C is made to change, thereby rotation axis 14A
1,14B1,14C1の回転中心1に対する傾き角が設定される。 Tilt angle is set with respect to the rotation center 1 1,14B1,14C1. この際には、自転軸14A1,14B1, At this time, the rotation axis 14A1,14B1,
14C1の他端の位置もガイド長孔145A〜145C Position of the other end of 14C1 also guide slot 145A~145C
内で変化する。 Changes within. 尚、本実施形態においては、自転軸14 In the present embodiment, the rotation shaft 14
A1,14B1,14C1の回転中心1に対する傾き角は、変速レバー161'の回転角のみではなく該回転角とカム長孔161A,161B,161Cの傾き角との双方に依存する。 Inclination angle with respect to the rotational center 1 A1,14B1,14C1 is not only the rotation angle of the shift lever 161 'the rotation angle and the cam slot 161A, 161B, depending on both the inclination angle of 161C.

【0033】本実施形態では、中央回転部材18は駆動側回転部材2及び被動側回転部材4によりベアリングを介して回転可能に支持されている。 [0033] In this embodiment, the central rotary member 18 is rotatably supported via a bearing by the drive-side rotating member 2 and the driven side rotating member 4. そして、球体12 Then, the sphere 12
A,12B,12Cは、いずれも駆動側接触面2b、被動側接触面4b及び中央回転部材18の円筒形状外周面と当接せしめられている。 A, 12B, 12C are all driven side contact surface 2b, and is brought cylindrical outer peripheral surface and the abutment of the driven-side contact surface 4b and the central rotary member 18.

【0034】本実施形態においては、上記第1の実施形態及び第2の実施形態と同様な動作がなされ、同様な作用効果が得られる。 [0034] In this embodiment, the same operation as the first embodiment and the second embodiment is performed, the same effects can be obtained. 更に、本実施形態では、3つの球体12A,12B,12Cを使用して駆動力伝達を行っているので、より大きな駆動力伝達が可能である。 Further, in the present embodiment, three balls 12A, 12B, since using 12C doing driving force transmission, it is possible greater driving force transmission.

【0035】図15は本発明の無段変速機の第4の実施形態を示す正面図であり、図16はその断面図である。 [0035] Figure 15 is a front view showing a fourth embodiment of the continuously variable transmission of the present invention, FIG 16 is a sectional view thereof.
これらの図において、図1〜14におけると同様の機能を有する部材には同一の符号が付されている。 In these figures, it is denoted by the same reference numerals to members having the same functions as in Figure 1-14.

【0036】本実施形態では、駆動力伝達に、回転中心1の周りで周方向に均等に配置された6つの球体12 [0036] In the present embodiment, the driving force transmission, evenly arranged circumferentially around a center of rotation 1 six spheres 12
A,12B,12C,12D,12E,12Fを使用している。 Using A, 12B, 12C, 12D, 12E, and 12F. これらの球体12A〜12Fは、それぞれその中心を通り回転中心1を含む面内の自転中心11A,・ These spheres 12A~12F is rotation center 11A of the plane including the street rotation center 1 its center, respectively, -
・・・・の周りで自転可能なように保持手段14により保持されている。 Is held by the holding means 14 so as to be rotating around ..... 保持手段14は、球体12A〜12F The holding means 14, sphere 12A~12F
を自転可能に保持する自転中心方向の自転軸14A1, Rotates can hold the rotation center of the rotation shaft 14A1,
14B1,14C1,14D1,14E1,14F1 14B1,14C1,14D1,14E1,14F1
と、該自転軸をそれぞれ回転中心1を含む面内にて支持する支持腕14A2,14B2,・・・・・14F2とを有する。 When the support arm for supporting the free-rolling axis in the plane containing the respective rotation center 1 14A2,14B2, and a · · · · · 14F2. 該支持腕14A2〜14F2は、保持手段1 The support arms 14A2~14F2, the holding means 1
4の枠体に対して、それぞれ回転中心1及び自転中心1 Against 4 of the frame, respectively the rotational center 1 and rotation center 1
1A,・・・・・を含む面に垂直な方向の周りで回動可能に支持されている。 1A, and it is rotatably supported about a direction perpendicular to the plane containing ......

【0037】保持手段14には、各球体12A〜12F [0037] the holding means 14, each sphere 12A~12F
に係る自転軸14A1〜14F1の方向を回転中心1を含む面内で変化させるための制御手段が付設されている。 Control means for causing the direction of the rotation axis 14A1~14F1 according to changes in a plane including the rotation center 1 is attached. 該制御手段は、支持腕14A2〜14F2の両端に付され隣接するものどうしで互いに噛み合うギヤ16 The control means, attached to both ends of the support arms 14A2~14F2 mesh with each other in adjacent ones each other gear 16
A,16B,16C,16D,16E,16Fと、支持腕14A2に固定された変速レバー16'とを有する。 With A, 16B, 16C, 16D, 16E, 16F and, a fixed to the support arm 14A2 shift lever 16 '.
変速レバー16'をY方向の周りで回動させることで、 The shift lever 16 'by rotating about the Y-direction,
回転中心1に対し球体自転軸14A1〜14F1がなす角度を変化させることができる。 With respect to the rotation center 1 can change the angle between the spherical rotation axis 14A1~14F1. 保持手段14には、また、回転中心1の周りで回転可能なようにベアリングを介して配置された中央回転部材18が付設されている。 The holding means 14, The central rotary member 18 which is disposed via a bearing so as to be rotatable about a rotation center 1 is attached.
中央回転部材18は、駆動側回転部材2及び被動側回転部材4に対して回転中心1の周りで相対的に回転可能とされていることになる。 Central rotary member 18 would have been relatively rotatable about a rotation center 1 with respect to the driving side rotational member 2 and the driven side rotating member 4.

【0038】球体12A〜12Fは、いずれも駆動側接触面2b、被動側接触面4b及び中央回転部材18の円筒形状外周面と当接せしめられている。 The spheres 12A~12F are both driven side contact surface 2b, cylindrical outer peripheral surface of the driven-side contact surface 4b and the central rotary member 18 and is brought into contact. 保持手段14の枠体は、不図示の手段により回転中心1の周りでの回転を阻止された状態にて維持される。 Frame holding means 14 is maintained in a state which is prevented from rotating at about a center of rotation 1 by means not shown.

【0039】変速レバー16'をY方向の周りで回動させることで支持腕14A2が回動せしめられ、ギヤ16 The support arm 14A2 is made to pivot the shift lever 16 'by rotating about the Y-direction, the gear 16
A〜16Fの隣接するものどうしの噛み合いにより、他の支持腕14B2〜14F2も同様に同一角度だけ回動せしめられる。 The engagement of each other which A~16F adjacent to, other support arm 14B2~14F2 also caused to rotate by the same angle in the same manner. このようにして自転中心11A,・・・ Rotation center 11A In this way, ...
・・が回転中心1となす角度を設定することにより、変速比が設定される。 · By sets the angle between the center of rotation 1, the gear ratio is set.

【0040】以上のように、本実施形態では、基本的には上記第1の実施形態及び第2の実施形態と同等な動作が行われ同様な作用効果が得られる。 [0040] As described above, in this embodiment, basically the first embodiment and the second embodiment and the equivalent behavior been conducted same effect can be obtained. 更に、本実施形態では、6つの球体12A〜12Fを使用して駆動力伝達を行っているので、より一層大きな駆動力伝達が可能である。 Further, in the present embodiment, since performed to driving force transmission uses six spheres 12A-12F, it is more possible greater driving force transmission.

【0041】本実施形態の機構は、球体の数が6以外の複数の場合にも適用することができる。 The mechanism of this embodiment can be the number of spheres is applied to a case of a plurality of non-6. 球体数が2または3のように少ない場合には、球体を支持しないダミーの支持腕を用いることで、変速レバー16'から全ての球体自転軸に対して自転中心の回動力を伝達することができる。 If the number of spheres is small as 2 or 3, by using a dummy support arms that do not support sphere, it transmits the rotational force of the rotation center for all spheres spin axis from the speed change lever 16 ' it can.

【0042】図17〜21は本発明の無段変速機の第5 [0042] Figure 17-21 fifth continuously variable transmission of the present invention
の実施形態に係るものであり、図17は一部分解斜視図であり、図18は分解斜視図であり、図19は断面図であり、図20は駆動力伝達機構部の正面図であり、図2 Are those according to the embodiment, FIG. 17 is a partially exploded perspective view, FIG. 18 is an exploded perspective view, FIG. 19 is a sectional view, FIG. 20 is a front view of the driving force transmission mechanism, Figure 2
1は球体及びその保持手段の一部を示す分解斜視図である。 1 is an exploded perspective view showing a portion of a sphere and its holding means. これらの図において、図1〜16におけると同様の機能を有する部材には同一の符号が付されている。 In these figures, it is denoted by the same reference numerals to members having the same functions as in Figure 1-16.

【0043】本実施形態では、図19に示されているように、駆動側回転軸2a及び被動側回転軸4aは、不図示の筐体によりそれぞれベアリング3,5を介して回転中心1の周りで回転可能なように支持されている。 [0043] In this embodiment, as shown in Figure 19, the drive side rotating shaft 2a and the driven side rotational shaft 4a is about a center of rotation 1 via bearings 3 and 5 respectively by housing (not shown) It is supported so as in rotatable.

【0044】本実施形態では、駆動側回転軸2aは駆動側回転部材2の主体部(駆動側接触面2bを有する部材)を貫通して被動側回転部材4の方へと延びており、 [0044] In this embodiment, the drive side rotating shaft 2a extends towards the driven side rotating member 4 through the main portion of the driving side rotating member 2 (member having a drive-side contact surface 2b),
駆動側回転軸2aは駆動側回転部材主体部に対して回転中心1の周りで若干の相対回転が可能なように適合されている。 Drive side rotating shaft 2a is adapted to allow some relative rotation about a center of rotation 1 with respect to the driving side rotational member main unit. この適合は、次のようにしてなされている。 This adaptation is performed as follows. 即ち、被動側回転部材4からみて駆動側回転部材主体部より遠い位置において、駆動側回転軸2aにはフランジ部2a'が形成されている。 That is, in a position farther from the driving-side rotating member main unit driven side rotating member 4 when viewed from the flange portion 2a 'is formed in the drive side rotating shaft 2a. 該フランジ部2a'と駆動側回転部材主体部との間には、回転力を回転中心1の方向の押圧力に変換するローラーカム機構が配置されている。 Between the said flange portion 2a 'and the driving-side rotating member main body, a roller cam mechanism for converting a rotational force to the pressing force in the direction of the center of rotation 1 it is disposed. 該ローラーカム機構は、押圧板2cと、回転中心1 The roller cam mechanism includes a pressing plate 2c, the center of rotation 1
の周りで周方向に関し均等に配置された4つのローラー2dと、その保持板2eと、ローラー2dに対応して駆動側回転部材主体部に形成された4つの周方向カム面2 Four rollers 2d evenly spaced relates circumferentially around, the holding plate 2e and four circumferential cam surface formed on the drive-side rotating member main body in correspondence with the roller 2d 2
fとを有する。 And a f. 保持板2eは、各ローラー2dをその軸方向が回転中心1に対し放射状に配列されるようにして回転自在に維持し且つ各ローラー2dの相対的位置関係を適正に保持する。 Holding plate 2e has a respective roller 2d its axial properly holding the relative positional relationship between the rotatably maintain and each roller 2d so as to be arranged radially with respect to the rotational center 1. カム面2fは、周方向の特定の向きに沿って次第に深くなるようにZ方向位置が変化している。 Cam surface 2f is, Z direction position as progressively deeper along the circumferential direction of the particular orientation is changing.

【0045】また、駆動側回転軸2aの先端部と被動側回転部材4との適合は、次のようにしてなされている。 Further, compliance with the tip portion of the drive side rotating shaft 2a and the driven side rotating member 4 is performed as follows.
即ち、被動側回転部材4と駆動側回転軸2aの先端部との間には、アンギュラコンタクトのベアリング4cが配置されており、該ベアリング4cを受けるために駆動側回転軸先端部にはカラー4dが摺動及び回動可能なように取り付けられている。 That is, between the driven-side rotating member 4 and the driving-side tip of the rotary shaft 2a, the bearing 4c of the angular contact is arranged, the collar on the drive side rotating shaft tip for receiving the bearing 4c 4d There has been mounted so as to be slidable and rotational. 駆動側回転軸先端部には図示されているようにオネジが形成されており、ここに適合されたナット4fとカラー4dとの間には皿バネ4eが配置されている。 Male thread As shown in the drive side rotating shaft tip portion is formed, disc spring 4e is disposed between the nut 4f and color 4d adapted here. オネジ上でのナット4fの位置を変化させることで、カラー4dのZ方向位置または被動側回転部材4に対するZ方向の押圧力を調整することができる。 By changing the position of the nut 4f on male threads, it is possible to adjust the pressing force in the Z direction with respect to the Z-direction position or the driven-side rotating member 4 of the collar 4d. 更に、駆動側回転軸2aの先端と被動側回転部材4 Furthermore, the tip of the drive side rotating shaft 2a and the driven side rotating member 4
との間には、ラジアルベアリング4gが介在している。 Between the radial bearings 4g is interposed.

【0046】一方、図21に示されているように、本実施形態では、球体12Aは、球面部12Aaと支持面部12Abと自転軸部12Acとを有する。 Meanwhile, as shown in Figure 21, in this embodiment, the sphere 12A includes a rotation shaft portion 12Ac spherical portion 12Aa and the supporting surface portion 12Ab. 球面部12A Spherical portion 12A
aは、ほぼ半球面状であり、駆動側接触面2b及び被動側接触面4bと当接せしめられる。 a is substantially hemispherical, is a drive-side contact surface 2b and the driven-side contact surface 4b brought into contact. 自転軸部12Ac Rotation shaft portion 12Ac
は、支持面部12Abから回転中心1に向かって球体自転中心11Aの方向に突設されている。 It is projected in the direction of the sphere rotation center 11A of support surface 12Ab toward the center of rotation 1. 支持面部12A Support surface 12A
bは、球体自転中心11Aに関して回転対称に形成されており、本実施形態では特に球体自転中心11Aと直交する平面とされている。 b is formed in a rotationally symmetrical with respect to the sphere rotation center 11A, there is a plane, especially perpendicular to the spherical rotation center 11A in the present embodiment.

【0047】球体12Aは、保持手段を構成する支持部材14Aaにより支持されている。 The spheres 12A is supported by a supporting member 14Aa forming the holding means. この支持は、次のようにしてなされている。 This support is performed as follows. 即ち、支持部材14Aaには、 In other words, the support member 14Aa is,
球体自転中心11Aと直交し球体支持面部12Abと対向するように配置された支持面が形成されており、更に球体自転軸部12Acが球体自転中心11Aの周りで回動可能なように挿通せしめられる挿通孔14a'が形成されている。 Spherical rotation center 11A and is perpendicular to arranged the support surface is formed so as to face the spheres bearing surface 12Ab, caused to insertion as further rotatable about the spherical rotation shaft portion 12Ac of spherical rotation center 11A insertion holes 14a 'are formed. 支持部材14Aaの支持面と球体支持面部12Abとの間には、スラストベアリングが介在している。 Between the support surface and the spherical bearing surface 12Ab of the support member 14Aa is thrust bearing is interposed. 該ベアリングは、支持部材14Aaの支持面及び球体支持面部12Abにそれぞれ取り付けられた板部材1 The bearing support member 14Aa of the support surface and the spherical bearing surface 12Ab plate member respectively attached to the 1
4Ac,14Aeと、これらの間にてリング状の保持板14Adにより回転可能に保持されて球体自転中心11 4ac, and 14Ae, is rotatably held by the ring-shaped holding plate 14Ad at between these spheres rotation center 11
Aの周りで均等に配置されたボール14Ad'とを含んでいる。 It contains balls 14ad 'and evenly spaced around the A. 球体自転軸部12Acの先端部には、球体12 The distal end of the spherical rotation shaft portion 12Ac are spheres 12
Aが支持部材14Aaから脱落するのを防止するための係止クリップ14Afが取り付けられている。 A is engagement clip 14Af is attached for preventing the falling off from the support member 14Aa. 支持部材14Aaの両端部には、支持腕14Abが取り付けられている。 At both ends of the support member 14Aa is support arms 14Ab is attached.

【0048】図17、図18及び図20に示されているように、本実施形態では、以上のような球体12Aと同等な球体12B,12Cが、以上のような支持部材14 [0048] Figure 17, as shown in FIGS. 18 and 20, in the present embodiment, as described above sphere 12A equivalent sphere 12B, 12C is, as described above the supporting member 14
Aaと同等な支持部材14Ba,14Ca、同等な支持腕14Bb,14Cb及びその他の同等な部材を用いて支持されている。 Aa equivalent support member 14Ba, 14Ca, equivalent support arm 14Bb, and is supported with 14Cb and other equivalent member. 駆動力伝達機構部6を構成する保持手段は、中央部材15と、該中央部材に取り付けられそれぞれ2つの回動支持孔を有する3つの回動支持部材15 Holding means constituting the driving force transmission mechanism portion 6, the central member 15, three rotary support member 15, each having two pivot support hole attached to the central member
1,152,153とを有する。 And a 1,152,153. そして、回動支持部材151の第1の回動支持孔と回動支持部材152の第1 The first of the first pivot support hole and the pivot support member 152 of the rotary support member 151
の回動支持孔とにより、上記支持部材14Aaの両端部の支持腕14Abが回動(この回動の中心は球体12A By the rotation support hole of the support member supporting arms 14Ab is pivoted at both ends of the 14Aa (the center of the rotation is a sphere 12A
の球面形状の中心を通る)可能なように挿通せしめられており、これら支持腕の先端にはそれぞれベベルギヤ1 Of passing through the center of spherical shape) it has been brought through as possible, bevel gear 1 respectively to the distal end of the support arm
6A1,16A2が取り付けられている。 6A1,16A2 is attached. 同様にして、 In the same way,
回動支持部材152の第2の回動支持孔と回動支持部材153の第1の回動支持孔とにより、上記支持部材14 By a first rotation support hole of the second pivot support hole and the rotation support member 153 of the rotation support member 152, the support member 14
Baの両端部の支持腕14Bbが回動(この回動の中心は球体12Bの球面形状の中心を通る)可能なように挿通せしめられており、これら支持腕の先端にはそれぞれベベルギヤ16B1,16B2が取り付けられている。 Support arm 14Bb are rotated at both ends of Ba (the center of the rotation passes through the center of the spherical shape of the spherical body 12B) has been brought through as possible, each of the distal ends of the support arms bevel gears 16B1,16B2 It is attached.
更に、同様にして、回動支持部材151の第2の回動支持孔と回動支持部材153の第2の回動支持孔とにより、上記支持部材14Caの両端部の支持腕14Cbが回動(この回動の中心は球体12Cの球面形状の中心を通る)可能なように挿通せしめられており、これら支持腕の先端にはそれぞれベベルギヤ16C1,16C2が取り付けられている。 Furthermore, similarly, by the second pivot support hole of the second pivot support hole and the rotation support member 153 of the rotation support member 151, the support arm 14Cb of both ends of the support member 14Ca is rotated It has been allowed through so as to be the (center of the rotation passes through the center of the spherical shape of the spherical 12C), the tip of the support arms respectively bevel gear 16C1,16C2 attached. ベベルギヤ16A1,16C1は噛み合っており、ベベルギヤ16A2,16B1は噛み合っており、ベベルギヤ16B2,16C2は噛み合っている。 Bevel gear 16A1,16C1 meshes, bevel gear 16A2,16B1 meshes, bevel gear 16B2,16C2 is engaged.

【0049】支持部材14Aaの両端部の支持腕14A The support arm 14A of the both ends of the support member 14Aa
bのうちの一方は、その先端がベベルギヤ16A1より更に少し延出しており、これにより形成される延出部に変速レバー16'が取り付けられている。 b one of the its leading end has out further extends slightly above the bevel gear 16A1, and the shift lever 16 'is attached to the extending portion thus formed. 尚、回転中心1の周りでの駆動力伝達機構部6の回転を抑止するために、回動支持部材151,152,153は不図示の上記筐体に取り付けられている。 In order to suppress the driving force rotation of the transmission mechanism portion 6 at about a center of rotation 1, the rotating support members 151, 152, 153 is attached to the housing (not shown).

【0050】次に、以上のような実施形態の動作について説明する。 Next, the operation of the above-described embodiments.

【0051】駆動側回転軸2aから入力される回転力は、ローラーカム機構を介して駆動側回転部材2の主体部へと伝達される。 The rotational force input from the drive side rotating shaft 2a is transmitted to the main portion of the driving side rotational member 2 via a roller cam mechanism. その際、駆動側回転部材2の主体部が球体12A,12B,12Cを介して被動側回転部材4を押圧し、該被動側回転部材4は回転中心1に沿って押される。 At that time, the main body portion is spherical 12A of the driving side rotating member 2, 12B, 12C presses the driven-side rotating member 4 via a 該被 dynamic side rotating member 4 is pushed along the rotation center 1. この押圧力と皿バネ4eの反発力とが釣り合って平衡が維持され、回転中心1の方向に関する駆動側回転部材2の主体部、球体12A,12B,12C、その保持手段及び被動側回転部材4の位置が決まる。 The equilibrium balance with repulsion of the pressing force and the disc spring 4e is maintained, the main portion of the driving side rotating member 2 with respect to the direction of the center of rotation 1, the sphere 12A, 12B, 12C, the holding means and the driven side rotating member 4 of the determined position.

【0052】そして、駆動側回転軸2aから伝達される駆動側回転部材2の回転中心1の周りの回転力は駆動側接触面2bと球体12A,12B,12Cの球面部との接触摩擦により球体12A,12B,12Cへと伝達され、これにより球体12A,12B,12Cがそれぞれ自転中心11A他の周りで回転せしめられる。 [0052] Then, the rotational force drive side contact surface 2b and the sphere 12A around the rotation center 1 of the driving-side rotating member 2 which is transmitted from the drive-side rotating shaft 2a, 12B, the contact friction between the spherical surface portion of the 12C spheres 12A, 12B, is transmitted to 12C, thereby spheres 12A, 12B, 12C is rotated in the respective rotation center 11A other around. この球体12A,12B,12Cが自転すると、球体12A,1 The spheres 12A, 12B, when 12C is rotating, the sphere 12A, 1
2B,12Cと被動側接触面4bとの接触摩擦により被動側回転部材4が回転中心1の周りで回転せしめられる。 2B, the driven side rotating member 4 is rotated about the rotation center 1 by contact friction between 12C and the driven-side contact surface 4b. 被動側回転部材4は駆動側回転部材2と逆向きに回転する。 Driven-side rotating member 4 is rotated in the drive-side rotation member 2 and the opposite.

【0053】変速レバー16'を回動させることで、支持腕14Ab及びこれと上記ベベルギヤを介して結合された球体12B,12Cに関する支持腕14Bb,14 [0053] By rotating the shift lever 16 ', the support arms 14Ab and combined spheres 12B through which the aforementioned bevel gear, the support about 12C arm 14Bb, 14
Cbを同一角度回動させ、各球体の自転軸部(12Ac The Cb is the same angle rotation, the rotation shaft of the spherical bodies (12Ac
など)を同一角度回動させることができる。 Etc.) can be the same angle rotation. この自転軸部の回動範囲は、球体12Aに関して図19に矢印で示されている。 The rotation range of the rotation shaft portion is indicated by arrows in FIG. 19 with respect to the sphere 12A. 図示されているように、自転軸部の方向は回転中心1と直交する変速比1の状態を経て減速側及び増速側に変化せしめられる。 As shown, the direction of rotation the shaft portion is made to change the speed reduction side and acceleration side via the state of the gear ratio 1 perpendicular to the rotation center 1. 本実施形態では、変速比範囲を広くとることが可能である。 In the present embodiment, it is possible to widen the transmission ratio range. 例えば、駆動側回転部材2が回転し且つ被動側回転部材4が回転しない変速状態も可能であり、駆動源から駆動側回転部材2に伝達される回転力が小さくとも回転力伝達開始(発進)を良好に行うことが可能である。 For example, shifting state in which the driving-side rotating member 2 is not and rotates the driven side rotating member 4 rotates is also possible, the rotational force transmission starting with a small rotational force transmitted from the driving source to the driving side rotating member 2 (start) it is possible to perform satisfactorily.

【0054】本実施形態においては、球体12A,12 [0054] In this embodiment, the sphere 12A, 12
B,12Cが回転中心1の周りで周方向に均等に配置されており、各部の押圧力は良好なバランスを維持しており、振動などの発生の原因となることは実質上ない。 B, 12C are evenly arranged circumferentially around a center of rotation 1, the pressing force of each part maintains a good balance, it is virtually not cause generation of vibration. また、駆動側接触面2b及び被動側接触面4bがいずれも斜め内向きに形成されているので、これらの接触面と球体12A,12B,12Cとの間の接触摩擦による駆動力伝達の効率は高い。 Further, since the drive-side contact surface 2b and the driven-side contact surface 4b is formed on both obliquely inward, these contact surfaces and spheres 12A, 12B, the efficiency of the driving force transmission by the contact friction between the 12C high.

【0055】以上のように、本発明において、球体は、 [0055] As described above, in the present invention, spheres,
必ずしも完全またはほぼ全体に球面を有するものに限定されることはなく、変速動作時において駆動側接触面及び被動側接触面の双方と当接せしめられた状態で第2回転中心の周りで回転可能なものであればよく、上記のようなほぼ半球状のものやそれに近い球面部を有するものであってもよい。 Necessarily complete or is not limited to those having a spherical surface almost entirely, rotatable about a second rotation center in both the state of contact allowed was the driving-side contact surface and the driven-side contact surface at the time of gear shifting operation as long as such, it may have a substantially hemispherical ones and spherical portion close thereto as described above. そして、本発明において、球体の中心は、球面部の球面形状の中心を指すものである。 Then, in the present invention, the center of the sphere is intended to refer to the center of the spherical shape of the spherical portion.

【0056】 [0056]

【発明の効果】以上説明したように、本発明によれば、 As described in the foregoing, according to the present invention,
駆動側及び被動側の回転部材の斜め内向きの接触面に複数の球体を当接させ、駆動側及び被動側の回転部材の回転中心に対する球体自転中心の傾きを制御することで変速動作を行うので、簡単な構造にて高い駆動力伝達効率を得ることが可能である。 Is brought into contact with a plurality of spheres on the contact surface of the oblique inward of the rotating member of the drive side and the driven side, it performs a shift operation by controlling the inclination of the spherical rotation center relative to the rotation center of the rotary member of the driving side and the driven side since, it is possible to obtain a high driving force transmission efficiency by a simple structure.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の無段変速機を示す分解斜視図である。 1 is an exploded perspective view showing a continuously variable transmission of the present invention.

【図2】図1の無段変速機の一部分解斜視図である。 Figure 2 is a partially exploded perspective view of the continuously variable transmission of FIG.

【図3】図1の無段変速機の組立状態を示す斜視図である。 3 is a perspective view showing an assembled state of the continuously variable transmission of FIG.

【図4】図1の無段変速機の断面図である。 4 is a cross-sectional view of the continuously variable transmission of FIG.

【図5】図1の無段変速機の断面図である。 5 is a cross-sectional view of the continuously variable transmission of FIG.

【図6】図1の無段変速機の変速動作の説明図である。 6 is an explanatory diagram of a transmission operation of the continuously variable transmission of FIG.

【図7】本発明の無段変速機を示す分解斜視図である。 7 is an exploded perspective view showing a continuously variable transmission of the present invention.

【図8】図7の無段変速機の一部分解斜視図である。 8 is a partially exploded perspective view of the continuously variable transmission of FIG.

【図9】図7の無段変速機の断面図である。 9 is a cross-sectional view of the continuously variable transmission of FIG.

【図10】図7の無段変速機の断面図である。 It is a cross-sectional view of a continuously variable transmission [10] FIG.

【図11】本発明の無段変速機を示す分解斜視図である。 11 is an exploded perspective view showing a continuously variable transmission of the present invention.

【図12】図11の無段変速機の一部分解斜視図である。 12 is a partially exploded perspective view of the continuously variable transmission of FIG. 11.

【図13】図11の無段変速機の断面図である。 It is a cross-sectional view of the continuously variable transmission 13 11.

【図14】図11の無段変速機の断面図である。 14 is a cross-sectional view of a continuously variable transmission of FIG. 11.

【図15】本発明の無段変速機を示す正面図である。 15 is a front view showing a continuously variable transmission of the present invention.

【図16】図11の無段変速機の断面図である。 It is a cross-sectional view of a continuously variable transmission [16] FIG.

【図17】本発明の無段変速機の一部分解斜視図である。 17 is a partially exploded perspective view of the continuously variable transmission of the present invention.

【図18】図17の無段変速機の分解斜視図である。 It is an exploded perspective view of a continuously variable transmission [18] FIG.

【図19】図17の無段変速機の断面図である。 It is a cross-sectional view of the continuously variable transmission 19 Figure 17.

【図20】図17の無段変速機の駆動力伝達機構部の正面図である。 Figure 20 is a front view of the driving force transmission mechanism of the continuously variable transmission of FIG. 17.

【図21】図17の無段変速機の球体及びその保持手段の一部を示す分解斜視図である。 21 is an exploded perspective view showing a portion of a sphere and holding means of the continuously variable transmission of Figure 17.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 回転部材の回転中心 2 駆動側回転部材 2a 駆動側回転軸 2a' フランジ部 2b 駆動側接触面 2c 押圧板 2d ローラー 2e ローラー保持板 2f カム面 3,5 ベアリング 4 被動側回転部材 4a 被動側回転軸 4b 被動側接触面 4c ベアリング 4d カラー 4e 皿バネ 4f ナット 4g ラジアルベアリング 6 駆動力伝達機構部 11A,11B,11C 球体自転中心 12A〜12F 球体 12Aa 球面部 12Ab 支持面部 12Ac 自転軸部 14 保持手段 14A1〜14F1 球体自転軸 14A2〜14F2 支持腕 14Aa,14Ba,14Ca 支持部材 14Aa' 挿通孔 14Ab,14Bb,14Cb 支持腕 14Ac,14Ae 板部材 14Ad 保持板 14Ad' ボール 14Af 係止クリップ 15 中央部材 16 制 1 rotation center 2 driving side rotational member 2a driving-side rotating shaft 2a 'flange portion 2b driven side contact surface 2c pressing plate 2d roller 2e roller holding plate 2f cam surfaces 3,5 bearing 4 driven-side rotating member 4a driven side rotation of the rotary member shaft 4b driven-side contact surface 4c bearing 4d color 4e disc spring 4f nut 4g radial bearing 6 driving force transmission mechanism 11A, 11B, 11C sphere rotation center 12A~12F sphere 12Aa spherical portion 12Ab support surface 12Ac rotation shaft portion 14 holding means 14A1 ~14F1 spherical rotation axis 14A2~14F2 support arms 14Aa, 14Ba, 14Ca support member 14Aa 'insertion holes 14Ab, 14Bb, 14Cb support arm 14Ac, 14Ae plate member 14ad holding plate 14ad' ball 14Af engagement clip 15 central member 16 system 手段 16A〜16F ギヤ 16A1,16A2,16B1,16B2,16C1, Means 16A~16F gear 16A1,16A2,16B1,16B2,16C1,
16C2 ベベルギヤ 16' 変速レバー 18 中央回転部材 141,142 プレート 143A,143B,144A,144B 連結部材 145,146 ガイド支持板 145A〜145C,146A〜146C ガイド長孔 151,152,153 回動支持部材 161 制御プレート 161A〜161C カム長孔 161' 変速レバー 16C2 bevel gear 16 'shift lever 18 central rotating member 141 plates 143A, 143B, 144A, 144B connecting member 145 and 146 guide supporting plates 145A~145C, 146A~146C guide slot 151, 152, 153 turn supporting member 161 control plates 161A~161C cam slot 161 'shift lever

Claims (13)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 第1回転中心の周りでそれぞれ回転可能なように互いに対向して配置された駆動側回転部材及び被動側回転部材と、前記駆動側回転部材から前記被動側回転部材へと駆動力を伝達するための駆動力伝達機構部とを備えており、 前記駆動側回転部材は前記被動側回転部材と対向する側に前記第1回転中心の周りで周方向に延在せる斜め内向きの駆動側接触面を有しており、前記被動側回転部材は前記駆動側回転部材と対向する側に前記第1回転中心の周りで周方向に延在せる斜め内向きの被動側接触面を有しており、 前記駆動力伝達機構部は、前記第1回転中心の周りに配置された複数の球体と、該複数の球体をそれぞれその中心を通り前記第1回転中心を含む面内の第2回転中心の周りで回転可能なように保持する保持手段と 1. A driving and driven side rotational member and the driven side rotating member disposed to face each other so as to be rotatable respectively about a first rotation center, and from the driving side rotational member to the driven-side rotating member and a driving force transmitting mechanism for transmitting a force, the driving side rotational member is obliquely inwardly extending to circumferentially around said first rotational center on the side opposite to the driven side rotating member of has a drive-side contact surface, the driven side rotating member is driven-side contact surface of the oblique inward extending to circumferentially around said first rotational center on the side opposite to the driving side rotational member has, the driving force transmitting mechanism includes a first of said plurality of spheres arranged around the first rotation center, in the plane containing the spheres as the first rotating about its center each of the plurality of holding means for holding so as to be rotatable about a second rotational center 前記第2 The second
    回転中心の方向を前記第1回転中心を含む面内で変化させるための制御手段とを含んでおり、 前記複数の球体はいずれも前記駆動側接触面及び前記被動側接触面と当接せしめられていることを特徴とする無段変速機。 The direction of the rotation center includes a control means for changing in a plane containing the first center of rotation, the plurality of spheres are allowed both with the driving-side contact surface and the driven-side contact surface abutting CVT, characterized in that is.
  2. 【請求項2】 前記駆動力伝達機構部は前記駆動側回転部材及び前記被動側回転部材に対して前記第1回転中心の周りで相対的に回転可能なように配置された中央回転部材を含んでおり、前記複数の球体はいずれも前記中央回転部材の外周面と当接せしめられていることを特徴とする、請求項1に記載の無段変速機。 Wherein said driving force transmitting mechanism portion includes a central rotary member disposed in relatively rotatable around said first rotational center with respect to the driving side rotational member and the driven-side rotating member and de, characterized in that none of the plurality of spheres are allowed outer circumferential surface abutting said central rotating member, the continuously variable transmission according to claim 1.
  3. 【請求項3】 前記中央回転部材は前記保持手段により回転可能に保持されていることを特徴とする、請求項2 Wherein said central rotary member is characterized in that it is rotatably held by said holding means, according to claim 2
    に記載の無段変速機。 Continuously variable transmission according to.
  4. 【請求項4】 前記中央回転部材は前記駆動側回転部材及び前記被動側回転部材により回転可能に保持されていることを特徴とする、請求項2に記載の無段変速機。 Wherein said central rotary member is characterized by being rotatably supported by the driving side rotational member and the driven-side rotating member, the continuously variable transmission according to claim 2.
  5. 【請求項5】 前記保持手段は前記球体を保持する前記第2回転中心の方向の自転軸と該自転軸を支持する支持腕とを有することを特徴とする、請求項1〜4のいずれかに記載の無段変速機。 The method according to claim 5, wherein said holding means and having a support arm for supporting the rotation shaft and the free-rotating shaft direction of the second rotation center for holding the sphere, any one of claims 1 to 4 continuously variable transmission according to.
  6. 【請求項6】 前記制御手段は前記複数の球体について前記支持腕を回動させることで前記自転軸の前記第1回転中心に対する角度を同等に変化させるものであることを特徴とする、請求項5に記載の無段変速機。 Wherein said control means is characterized in that for equally changing the angle with respect to the first rotational center of the rotation axis by rotating the support arm for the plurality of spheres according to claim continuously variable transmission according to 5.
  7. 【請求項7】 前記保持手段は前記球体を保持する前記第2回転中心の方向の自転軸と該自転軸の両端を前記第1回転中心に関する径方向に移動可能に支持する1対のガイド支持板とを有しており、該ガイド支持板には前記第1回転中心に関する径方向に延びたガイド長孔が形成されていることを特徴とする、請求項1〜4のいずれかに記載の無段変速機。 Wherein said holding means guides supporting a pair of movably supporting both ends of the rotation axis and the free-rotating shaft direction of the second rotation center for holding the balls in the radial direction about the first rotational center has a plate, the said guide support plates, characterized in that the guide slot extending radially about the first rotational center is formed, according to claim 1 continuously variable transmission.
  8. 【請求項8】 前記制御手段は前記複数の球体について前記1対のガイド支持板のガイド長孔を貫通せる前記自転軸の一方端を前記第1回転中心に関する径方向に移動させることで前記自転軸の前記第1回転中心に対する角度を同等に変化させるものであることを特徴とする、請求項7に記載の無段変速機。 Wherein said control means is the rotation by moving the one end of the rotation shaft to penetrate the pair of guide supporting plate guide slots for the plurality of balls radially about the first rotational center and characterized in that for an angle equal to the change to the first rotational center of the shaft, a continuously variable transmission according to claim 7.
  9. 【請求項9】 前記複数の球体のそれぞれは前記駆動側接触面及び前記被動側接触面と当接せしめられる球面部と該球面部より前記第1回転中心寄りに位置し前記第2 Wherein said each of the plurality of spheres located on the first rotational center closer than the spherical portion and the spherical surface portion which is brought into contact with the drive-side contact surface and the driven-side contact surface and the second
    回転中心に関して回転対称に形成された支持面部と該支持面部に突設された自転軸部とを備えており、前記保持手段は前記球体の自転軸部及び支持面部を前記第2回転中心の周りで回転可能なように支持する支持部材を備えていることを特徴とする、請求項1に記載の無段変速機。 And a support surface portion formed in rotational symmetry and rotation shaft portion projecting from the said support surface with respect to the rotational center, the holding means around said second rotational center of the rotation shaft portion and the support surface of the sphere in which it characterized in that it comprises a support member for rotatably supporting, continuously variable transmission according to claim 1.
  10. 【請求項10】 前記制御手段は前記複数の球体について前記支持部材を回動させることで前記自転軸部の前記第1回転中心に対する角度を同等に変化させるものであることを特徴とする、請求項9に記載の無段変速機。 Wherein said control means characterized in that to equally change the angle with respect to the first rotational center of the rotation shaft section by rotating the support member for the plurality of spheres according continuously variable transmission according to claim 9.
  11. 【請求項11】 前記制御手段は前記複数の球体のそれぞれについて前記第2回転中心の方向を前記第1回転中心と直交する状態を経て変化させるものであることを特徴とする、請求項9〜10のいずれかに記載の無段変速機。 Wherein said control means characterized in that to vary via the state orthogonal to the first rotation about the direction of the second rotation center for each of the plurality of spheres according to claim 9 continuously variable transmission according to any one of the 10.
  12. 【請求項12】 前記複数の球体は前記第1回転中心の周りで周方向に均等に配置されていることを特徴とする、請求項1〜11のいずれかに記載の無段変速機。 12. The method of claim 11, wherein the plurality of spheres is characterized in that it is evenly arranged circumferentially around said first rotational center, continuously variable transmission according to any one of claims 1 to 11.
  13. 【請求項13】 前記駆動側接触面と前記被動側接触面とは前記第1回転中心に垂直な面に関して対称であることを特徴とする、請求項1〜12のいずれかに記載の無段変速機。 Wherein the method according to claim 13, wherein the drive-side contact surface and said driven-side contact surface is symmetrical about a plane perpendicular to the first rotational center, stepless according to any one of claims 1 to 12 transmission.
JP2001064944A 2000-12-21 2001-03-08 Variable speed change gear Pending JP2002250421A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000388917 2000-12-21
JP2000-388917 2000-12-21
JP2001064944A JP2002250421A (en) 2000-12-21 2001-03-08 Variable speed change gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001064944A JP2002250421A (en) 2000-12-21 2001-03-08 Variable speed change gear

Publications (1)

Publication Number Publication Date
JP2002250421A true JP2002250421A (en) 2002-09-06

Family

ID=26606278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001064944A Pending JP2002250421A (en) 2000-12-21 2001-03-08 Variable speed change gear

Country Status (1)

Country Link
JP (1) JP2002250421A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100640247B1 (en) 2005-09-20 2006-10-24 부산대학교 산학협력단 Cvt for automobile usage
KR100821297B1 (en) 2006-08-29 2008-04-11 부산대학교 산학협력단 Cvt of traction transmission having pressure unit
WO2011114494A1 (en) * 2010-03-18 2011-09-22 トヨタ自動車株式会社 Continuously variable transmission
JP2011202734A (en) * 2010-03-25 2011-10-13 Toyota Motor Corp Continuously variable transmission
JP2012501418A (en) * 2008-08-26 2012-01-19 フォールブルック テクノロジーズ インコーポレイテッド Continuously Variable Transmission
JP2012144198A (en) * 2011-01-13 2012-08-02 Jtekt Corp Steering device of vehicle
WO2012169056A1 (en) * 2011-06-10 2012-12-13 トヨタ自動車株式会社 Continuously variable transmission
JP2014001860A (en) * 2003-02-28 2014-01-09 Fallbrook Intellectual Property Co Llc Continuously variable transmission
US8845485B2 (en) 2011-04-04 2014-09-30 Fallbrook Intellectual Property Company Llc Auxiliary power unit having a continuously variable transmission
US8870711B2 (en) 2008-10-14 2014-10-28 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8888643B2 (en) 2010-11-10 2014-11-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8900085B2 (en) 2007-07-05 2014-12-02 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8920285B2 (en) 2004-10-05 2014-12-30 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8996263B2 (en) 2007-11-16 2015-03-31 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US9017207B2 (en) 2006-06-26 2015-04-28 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9022889B2 (en) 2005-10-28 2015-05-05 Fallbrook Intellectual Property Company Llc Electromotive drives
US9074674B2 (en) 2008-06-23 2015-07-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9086145B2 (en) 2006-11-08 2015-07-21 Fallbrook Intellectual Property Company Llc Clamping force generator
US9121464B2 (en) 2005-12-09 2015-09-01 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9182018B2 (en) 2008-02-29 2015-11-10 Fallbrook Intellectual Property Company Llc Continuously and/or infinitely variable transmissions and methods therefor
US9239099B2 (en) 2007-02-16 2016-01-19 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9249880B2 (en) 2007-12-21 2016-02-02 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US9273760B2 (en) 2007-04-24 2016-03-01 Fallbrook Intellectual Property Company Llc Electric traction drives
US9279482B2 (en) 2009-04-16 2016-03-08 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9328807B2 (en) 2007-02-01 2016-05-03 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9341246B2 (en) 2005-11-22 2016-05-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9360089B2 (en) 2010-03-03 2016-06-07 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9365203B2 (en) 2008-08-05 2016-06-14 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9371894B2 (en) 2007-02-12 2016-06-21 Fallbrook Intellectual Property Company Llc Continuously variable transmissions and methods therefor
US9611921B2 (en) 2012-01-23 2017-04-04 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9618100B2 (en) 2008-05-07 2017-04-11 Fallbrook Intellectual Property Company Llc Assemblies and methods for clamping force generation
US9677650B2 (en) 2013-04-19 2017-06-13 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9683640B2 (en) 2008-06-06 2017-06-20 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9683638B2 (en) 2005-12-30 2017-06-20 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US9945456B2 (en) 2007-06-11 2018-04-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10047861B2 (en) 2016-01-15 2018-08-14 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US10458526B2 (en) 2016-03-18 2019-10-29 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, systems and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS47448B1 (en) * 1966-07-08 1972-01-07
JPS5235481U (en) * 1975-09-04 1977-03-12
JPS6131754A (en) * 1984-07-21 1986-02-14 Yutaka Abe Non-stage transmission with semispherical top
JPH03149442A (en) * 1989-11-02 1991-06-26 Mitsuo Okamoto Friction type continuously variable transmission
JP2001521109A (en) * 1997-10-22 2001-11-06 リニアー バイシクルズ インコーポレイテッド Continuously variable transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS47448B1 (en) * 1966-07-08 1972-01-07
JPS5235481U (en) * 1975-09-04 1977-03-12
JPS6131754A (en) * 1984-07-21 1986-02-14 Yutaka Abe Non-stage transmission with semispherical top
JPH03149442A (en) * 1989-11-02 1991-06-26 Mitsuo Okamoto Friction type continuously variable transmission
JP2001521109A (en) * 1997-10-22 2001-11-06 リニアー バイシクルズ インコーポレイテッド Continuously variable transmission

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9046158B2 (en) 2003-02-28 2015-06-02 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10428939B2 (en) 2003-02-28 2019-10-01 Fallbrook Intellectual Property Company Llc Continuously variable transmission
JP2014134292A (en) * 2003-02-28 2014-07-24 Fallbrook Intellectual Property Co Llc Continuously variable transmission
JP2014001860A (en) * 2003-02-28 2014-01-09 Fallbrook Intellectual Property Co Llc Continuously variable transmission
US9732848B2 (en) 2003-02-28 2017-08-15 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10036453B2 (en) 2004-10-05 2018-07-31 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8920285B2 (en) 2004-10-05 2014-12-30 Fallbrook Intellectual Property Company Llc Continuously variable transmission
KR100640247B1 (en) 2005-09-20 2006-10-24 부산대학교 산학협력단 Cvt for automobile usage
US9022889B2 (en) 2005-10-28 2015-05-05 Fallbrook Intellectual Property Company Llc Electromotive drives
US9950608B2 (en) 2005-10-28 2018-04-24 Fallbrook Intellectual Property Company Llc Electromotive drives
US9506562B2 (en) 2005-10-28 2016-11-29 Fallbrook Intellectual Property Company Llc Electromotive drives
US9709138B2 (en) 2005-11-22 2017-07-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9341246B2 (en) 2005-11-22 2016-05-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10208840B2 (en) 2005-12-09 2019-02-19 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9121464B2 (en) 2005-12-09 2015-09-01 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9683638B2 (en) 2005-12-30 2017-06-20 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US9726282B2 (en) 2006-06-26 2017-08-08 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9017207B2 (en) 2006-06-26 2015-04-28 Fallbrook Intellectual Property Company Llc Continuously variable transmission
KR100821297B1 (en) 2006-08-29 2008-04-11 부산대학교 산학협력단 Cvt of traction transmission having pressure unit
US9086145B2 (en) 2006-11-08 2015-07-21 Fallbrook Intellectual Property Company Llc Clamping force generator
US9878719B2 (en) 2007-02-01 2018-01-30 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9676391B2 (en) 2007-02-01 2017-06-13 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9328807B2 (en) 2007-02-01 2016-05-03 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US10260607B2 (en) 2007-02-12 2019-04-16 Fallbrook Intellectual Property Company Llc Continuously variable transmissions and methods therefor
US9371894B2 (en) 2007-02-12 2016-06-21 Fallbrook Intellectual Property Company Llc Continuously variable transmissions and methods therefor
US9239099B2 (en) 2007-02-16 2016-01-19 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10094453B2 (en) 2007-02-16 2018-10-09 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9574643B2 (en) 2007-04-24 2017-02-21 Fallbrook Intellectual Property Company Llc Electric traction drives
US10056811B2 (en) 2007-04-24 2018-08-21 Fallbrook Intellectual Property Company Llc Electric traction drives
US9273760B2 (en) 2007-04-24 2016-03-01 Fallbrook Intellectual Property Company Llc Electric traction drives
US9945456B2 (en) 2007-06-11 2018-04-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9869388B2 (en) 2007-07-05 2018-01-16 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10260629B2 (en) 2007-07-05 2019-04-16 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8900085B2 (en) 2007-07-05 2014-12-02 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10100927B2 (en) 2007-11-16 2018-10-16 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US8996263B2 (en) 2007-11-16 2015-03-31 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US9249880B2 (en) 2007-12-21 2016-02-02 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US9739375B2 (en) 2007-12-21 2017-08-22 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US9182018B2 (en) 2008-02-29 2015-11-10 Fallbrook Intellectual Property Company Llc Continuously and/or infinitely variable transmissions and methods therefor
US9850993B2 (en) 2008-02-29 2017-12-26 Fallbrook Intellectual Property Company Llc Continuously and/or infinitely variable transmissions and methods therefor
US9618100B2 (en) 2008-05-07 2017-04-11 Fallbrook Intellectual Property Company Llc Assemblies and methods for clamping force generation
US9683640B2 (en) 2008-06-06 2017-06-20 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9074674B2 (en) 2008-06-23 2015-07-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9528561B2 (en) 2008-06-23 2016-12-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10066713B2 (en) 2008-06-23 2018-09-04 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9365203B2 (en) 2008-08-05 2016-06-14 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9878717B2 (en) 2008-08-05 2018-01-30 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9903450B2 (en) 2008-08-26 2018-02-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
JP2012501418A (en) * 2008-08-26 2012-01-19 フォールブルック テクノロジーズ インコーポレイテッド Continuously Variable Transmission
US8852050B2 (en) 2008-08-26 2014-10-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10253880B2 (en) 2008-10-14 2019-04-09 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8870711B2 (en) 2008-10-14 2014-10-28 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9574642B2 (en) 2008-10-14 2017-02-21 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9920823B2 (en) 2009-04-16 2018-03-20 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9279482B2 (en) 2009-04-16 2016-03-08 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10066712B2 (en) 2010-03-03 2018-09-04 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9360089B2 (en) 2010-03-03 2016-06-07 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US8613684B2 (en) 2010-03-18 2013-12-24 Toyota Jidosha Kabushiki Kaisha Continuously variable transmission
JP5131353B2 (en) * 2010-03-18 2013-01-30 トヨタ自動車株式会社 Continuously Variable Transmission
CN102265063A (en) * 2010-03-18 2011-11-30 丰田自动车株式会社 CVT
WO2011114494A1 (en) * 2010-03-18 2011-09-22 トヨタ自動車株式会社 Continuously variable transmission
JP2011202734A (en) * 2010-03-25 2011-10-13 Toyota Motor Corp Continuously variable transmission
US10197147B2 (en) 2010-11-10 2019-02-05 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8888643B2 (en) 2010-11-10 2014-11-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9291251B2 (en) 2010-11-10 2016-03-22 Fallbrook Intellectual Property Company Llc Continuously variable transmission
JP2012144198A (en) * 2011-01-13 2012-08-02 Jtekt Corp Steering device of vehicle
US8845485B2 (en) 2011-04-04 2014-09-30 Fallbrook Intellectual Property Company Llc Auxiliary power unit having a continuously variable transmission
WO2012169056A1 (en) * 2011-06-10 2012-12-13 トヨタ自動車株式会社 Continuously variable transmission
CN103597248A (en) * 2011-06-10 2014-02-19 丰田自动车株式会社 Continuously variable transmission
US9611921B2 (en) 2012-01-23 2017-04-04 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10428915B2 (en) 2012-01-23 2019-10-01 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9677650B2 (en) 2013-04-19 2017-06-13 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10323732B2 (en) 2013-04-19 2019-06-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10047861B2 (en) 2016-01-15 2018-08-14 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US10458526B2 (en) 2016-03-18 2019-10-29 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, systems and methods

Similar Documents

Publication Publication Date Title
US3246531A (en) Infinitely variable speed change gear
CA1152548A (en) Thrust bearing
US5954586A (en) Constant velocity joint
US5069653A (en) Tripot type constant velocity universal joint
US20120322609A1 (en) Power transmission device
US6119539A (en) Infinitely and continuously variable transmission system
US3581587A (en) Transmission
JP2004183825A (en) Continuously variable transmission
JP2004176832A (en) Continuously variable transmission unit
SE501754C2 (en) The differential gear
CN1010247B (en) Gearless differential speed reducer
JP2004518099A (en) Linear guide
JPS5940016A (en) Uniform speed universal joint
JP2005527753A (en) Stepless adjustable friction roller toroidal transmission
JP2005240928A (en) Rotary cam pressure regulating device
CA1039976A (en) Planetary gearing
KR100189281B1 (en) Speed reducer
US3375739A (en) Conical planetary friction gear drive
CN103109108A (en) Toroidal type continuously variable transmission
JP2004516436A (en) Planetary gear transmission
KR20090059133A (en) Reduction gear
CN1086452C (en) Gearbox
KR100225740B1 (en) Cross groove constant velocity joint having fixed center
GB2280233A (en) A high speed ratio CVT for a supercharger
JP2000314431A (en) Universal joint having thrust washer

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080218

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100617

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A02 Decision of refusal

Effective date: 20101014

Free format text: JAPANESE INTERMEDIATE CODE: A02