JP2002220213A - Method for syntheszing iiib family nitrogen compound - Google Patents

Method for syntheszing iiib family nitrogen compound

Info

Publication number
JP2002220213A
JP2002220213A JP2001010168A JP2001010168A JP2002220213A JP 2002220213 A JP2002220213 A JP 2002220213A JP 2001010168 A JP2001010168 A JP 2001010168A JP 2001010168 A JP2001010168 A JP 2001010168A JP 2002220213 A JP2002220213 A JP 2002220213A
Authority
JP
Japan
Prior art keywords
nitrogen compound
group iiib
synthesizing
nitrogen
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001010168A
Other languages
Japanese (ja)
Inventor
Isamu Nakao
勇 中尾
Shigeru Kojima
繁 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001010168A priority Critical patent/JP2002220213A/en
Publication of JP2002220213A publication Critical patent/JP2002220213A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily synthesizing an IIIB family nitrogen compound at a reduced manufacturing cost. SOLUTION: This method is to synthesize gallium nitride by thermal cracking of Tris (dimethylamino) Gallium in trioctylamine. The obtained gallium nitride is a fine particle whose size is smaller than 4 times the Bohr radius of an exciton.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、IIIB族窒素化合
物の合成方法に関するものである。
[0001] The present invention relates to a method for synthesizing a Group IIIB nitrogen compound.

【0002】[0002]

【従来の技術】半導体結晶を励起子ボーア半径程度に小
さくすると、量子サイズ効果を示すことがわかってい
る。励起子ボーア半径は、電子とホールが結合した状態
である励起子の空間的広がりを示す(数式1)。結晶の
サイズをこの倍の大きさ、つまり励起子ボーア半径の4
倍以下の直径にすると、量子サイズ効果により次のよう
な現象が観測されている。 バンドギャップエネルギーの増大 遷移確率の増大 非線型光学係数の増大 ホールバーニング また、量子サイズ効果ではないが、このような小さな結
晶では、体積当りの結晶欠陥によるエネルギーの増加が
大きいため、結晶中に欠陥が存在しにくく、結晶欠陥の
少ない結晶が得られることがわかっている。以上のよう
な現象は工業的に、 発光・吸収波長制御 発光輝度飽和レベルの向上 波長多重光記録 のような技術として利用できるため、発光デバイス、光
学デバイス、ディスプレイデバイス、光記録材料などへ
の応用が期待されている。
2. Description of the Related Art It has been known that when a semiconductor crystal is reduced to about the exciton Bohr radius, a quantum size effect is exhibited. The exciton Bohr radius indicates the spatial spread of excitons in a state where electrons and holes are combined (Equation 1). The size of the crystal is twice as large, ie, the exciton Bohr radius of 4
When the diameter is twice or less, the following phenomenon is observed due to the quantum size effect. Increase in band gap energy Increase in transition probability Increase in non-linear optical coefficient Hole burning Also, although not a quantum size effect, in such a small crystal, the energy increase due to crystal defects per volume is large. It is known that crystals with few crystal defects can be obtained. The above phenomena can be used industrially as technologies such as emission / absorption wavelength control, enhancement of emission luminance saturation level, and wavelength division multiplexing optical recording, and application to light emitting devices, optical devices, display devices, optical recording materials, etc. Is expected.

【0003】[0003]

【数1】 (Equation 1)

【0004】しかしながら、これまでにこのような効果
が確認されているのは、II−VI族半導体の超微粒子によ
るものがほとんどであるため、信頼性および耐久性に問
題があった。またカドミウムやセレンといった環境汚染
物質を使用しているため、これに代わる材料が必要とさ
れてきた。II−VI族半導体に代わる材料として、窒化物
系半導体の微結晶合成の試みがなされている。とくに窒
化ガリウムは、熱分解により励起子ボーア半径である
2.5nmすなわち直径では5nm程度の微結晶が形成
されることが知られている。例えば、トリオクチルアミ
ン中でガリウムイミドポリマー[Ga(NH)3/2n
分解することで、フォトルミネッセンスを示すGaN微
粒子が得られている(Appl. Phys. Lett. Vol. 785, N
o. 4, p. 478, 1999)。しかし、この熱分解物質は低温
で分解するため、取り扱いが非常に難しい。また結晶表
面をヘキサデシルアミンで処理するプロセスを設けなけ
ればならない。このような理由から量産時の歩留まりの
低下や製造コストの上昇をもたらす。本発明はこのよう
な問題点を解決する。
However, most of such effects have been confirmed so far due to the use of ultrafine particles of II-VI group semiconductors, and thus have problems in reliability and durability. In addition, the use of environmental pollutants such as cadmium and selenium requires alternative materials. Attempts have been made to synthesize microcrystals of nitride-based semiconductors as materials that can replace II-VI group semiconductors. In particular, it is known that gallium nitride forms microcrystals having a exciton Bohr radius of 2.5 nm, that is, a diameter of about 5 nm by thermal decomposition. For example, gallium imide polymer [Ga (NH) 3/2 ] n is decomposed in trioctylamine to obtain GaN fine particles exhibiting photoluminescence (Appl. Phys. Lett. Vol. 785, N
o. 4, p. 478, 1999). However, since this pyrolysis material is decomposed at a low temperature, it is very difficult to handle. In addition, a process for treating the crystal surface with hexadecylamine must be provided. For these reasons, the yield during mass production is reduced and the manufacturing cost is increased. The present invention solves such a problem.

【0005】すなわち本発明の目的は、製造コストを低
く抑えることができるとともに、容易にIIIB族窒素化
合物を合成することのできる方法を提供することにあ
る。
That is, an object of the present invention is to provide a method capable of suppressing the production cost and easily synthesizing a group IIIB nitrogen compound.

【0006】[0006]

【課題を解決するための手段】本発明は、少なくともII
IB族元素、窒素および炭素を含む化合物を、溶媒中で
加熱して分解することを特徴とするIIIB族窒素化合物
の合成方法を提供するものである。また本発明は、III
B族元素がガリウムであり、且つ生成されるIIIB族窒
素化合物が、窒化ガリウムである前記のIIIB族窒素化
合物の合成方法を提供するものである。また本発明は、
少なくともIIIB族元素、窒素および炭素を含む化合物
が、トリス(ジメチルアミノ)ガリウムである前記のII
IB族窒素化合物の合成方法を提供するものである。ま
た本発明は、溶媒が、トリオクチルアミンである前記の
IIIB族窒素化合物の合成方法を提供するものである。
また本発明は、励起子ボーア半径の4倍よりも小さい微
粒子であるIIIB族窒素化合物の合成方法を提供するも
のである。
SUMMARY OF THE INVENTION The present invention provides at least II
An object of the present invention is to provide a method for synthesizing a group IIIB nitrogen compound, which comprises decomposing a compound containing a group IB element, nitrogen and carbon by heating in a solvent. The present invention also relates to III
An object of the present invention is to provide a method for synthesizing the above-mentioned group IIIB nitrogen compound in which the group B element is gallium and the generated group IIIB nitrogen compound is gallium nitride. The present invention also provides
The aforementioned II, wherein the compound containing at least a Group IIIB element, nitrogen and carbon is tris (dimethylamino) gallium.
It is intended to provide a method for synthesizing a Group IB nitrogen compound. Further, the present invention provides the above-mentioned, wherein the solvent is trioctylamine.
It is intended to provide a method for synthesizing a Group IIIB nitrogen compound.
The present invention also provides a method for synthesizing a group IIIB nitrogen compound which is fine particles smaller than four times the exciton Bohr radius.

【0007】[0007]

【発明の実施の形態】本発明のIIIB族窒素化合物の合
成方法は、前記のように、少なくともIIIB族元素、窒
素および炭素を含む化合物を、溶媒中で加熱して分解す
ることを特徴としている。とくに、IIIB族元素がガリ
ウムであり、少なくともIIIB族元素、窒素および炭素
を含む化合物が、トリス(ジメチルアミノ)ガリウムで
あり、生成されるIIIB族窒素化合物が、窒化ガリウム
であるのが好ましい。また、本発明の合成方法に使用さ
れる溶媒としては、トリオクチルアミン、トリ−n−オ
クチルホスフィンオキサイド等が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for synthesizing a group IIIB nitrogen compound of the present invention is characterized in that, as described above, a compound containing at least a group IIIB element, nitrogen and carbon is decomposed by heating in a solvent. . In particular, the group IIIB element is preferably gallium, the compound containing at least the group IIIB element, nitrogen and carbon is tris (dimethylamino) gallium, and the group IIIB nitrogen compound produced is preferably gallium nitride. Examples of the solvent used in the synthesis method of the present invention include trioctylamine and tri-n-octylphosphine oxide.

【0008】以下、少なくともIIIB族元素、窒素およ
び炭素を含む化合物としてトリス(ジメチルアミノ)ガ
リウム(以下TDMAGという)、IIIB族窒素化合物
として窒化ガリウム、溶媒としてトリオクチルアミン
(以下、TOAという)を用いて本発明の合成方法を説
明する。なお、本発明の合成方法は、これらに限定され
るものではない。
Hereinafter, tris (dimethylamino) gallium (hereinafter referred to as TDMAG) is used as a compound containing at least a group IIIB element, nitrogen and carbon, gallium nitride is used as a group IIIB nitrogen compound, and trioctylamine (hereinafter referred to as TOA) is used as a solvent. The synthesis method of the present invention will be described. The synthesis method of the present invention is not limited to these.

【0009】まず、TDMAGの合成について説明す
る。TDMAGは、従来用いられてきたガリウムイミド
ポリマーに比べ安定であるので好ましい。下記化学反応
式(1)により、TDMAGを合成することができる。
First, the synthesis of TDMAG will be described. TDMAG is preferred because it is more stable than conventionally used gallium imide polymers. TDMAG can be synthesized by the following chemical reaction formula (1).

【0010】[0010]

【化1】 Embedded image

【0011】ジメチルアミノリチウム(以下、DMAL
という)と生成物のTDMAGは反応性が高いので一連
の操作は全て不活性ガス雰囲気中で行うのがよい。グロ
ーブボックス内でDMALと三塩化ガリウムを3:1の
モル比で秤量し、n−ヘキサン中で攪拌しながら72〜
120時間、具体的には96時間以上反応させる。反応
温度は10〜25℃が好ましい。反応終了後ろ過を行
い、反応副生成物である塩化リチウムを取り除き、TD
MAGを取り出す。次に、下記化学反応式(2)によ
り、TDMAGをTOA中で熱分解する。
Dimethylaminolithium (hereinafter referred to as DML)
) And the product TDMAG are highly reactive, so that all of the series of operations should be performed in an inert gas atmosphere. In a glove box, DMAL and gallium trichloride are weighed at a molar ratio of 3: 1, and stirred in n-hexane for 72-
The reaction is performed for 120 hours, specifically 96 hours or more. The reaction temperature is preferably from 10 to 25C. After completion of the reaction, filtration was performed to remove lithium chloride as a reaction by-product, and TD
Take out the MAG. Next, TDMAG is thermally decomposed in TOA according to the following chemical reaction formula (2).

【0012】[0012]

【化2】 Embedded image

【0013】この熱分解は、不活性ガス雰囲気中でTD
MAGにTOAを適量加え、6〜48時間で300〜3
50℃の反応させることにより行う。具体的には24時
間で330℃の熱分解反応が挙げられる。次に固体の分
解物質を分離し有機不純物を取り除くためn−ヘキサン
と無水メタノールで洗浄を数回行う。これにより、窒化
ガリウムを得ることができる。
This thermal decomposition is carried out by TD in an inert gas atmosphere.
Add appropriate amount of TOA to MAG, 300 ~ 3 in 6 ~ 48 hours
The reaction is carried out at 50 ° C. Specifically, a thermal decomposition reaction at 330 ° C. for 24 hours can be mentioned. Next, washing is performed several times with n-hexane and anhydrous methanol to separate solid decomposed substances and remove organic impurities. Thereby, gallium nitride can be obtained.

【0014】図1は、得られたサンプルのX線回折測定
の結果を示す図である。35°付近のピークはzinc ble
nd構造の<111>面、あるいはWurtzite構造の<10
1>によるものである。この結果だけでは結晶構造は確
定できないが、スペクトル半値幅は約5degであるこ
とから、これより平均粒径(直径)はScherrerの式を用
いると2〜3nmと見積もられる。すなわち、GaNの
励起子ボーア半径2.5nmの4倍よりも小さな結晶が
合成されたことがわかる。なお、Scherrerの式は、下記
で示される。
FIG. 1 is a diagram showing the results of X-ray diffraction measurement of the obtained sample. The peak around 35 ° is zinc ble
<111> plane of nd structure or <10> of Wurtzite structure
1>. Although the crystal structure cannot be determined from this result alone, the half-width of the spectrum is about 5 deg. Therefore, the average particle diameter (diameter) is estimated to be 2 to 3 nm using the Scherrer equation. That is, it is understood that a crystal smaller than four times the exciton Bohr radius of GaN of 2.5 nm was synthesized. The Scherrer equation is shown below.

【0015】[0015]

【数2】 (Equation 2)

【0016】次にこのサンプルの室温におけるフォトル
ミネッサンス(PL)および励起(PLE)スペクトル
の測定結果を示す。図2は、PLスペクトルの測定結果
を示す図である(励起波長:325nm)。波長410
nm(約3.0eV)、および470nm(約2.6e
V)付近をピークとする二つの発光が観測されている。
波長410nmのブロードなピークは過去の文献(J.Ph
ys.Chem. Solids 1970, Vol. 31, p. 707)よりβ−G
2 3によるものであることが分かっている。波長47
0nm付近のブロードなピークは、後に示すPLEスペ
クトルの結果から、GaNによるものであることが分か
る。このGaNの発光は直接バンド間遷移による発光
(波長362nm)ではない。その起源は現時点では不
明であるが、窒素の欠陥や、合成時に混入してしまった
不純物、熱分解時の溶媒の分解によってできた有機物な
どが関与しているものと推測される。
Next, a photole of this sample at room temperature was prepared.
Minesence (PL) and excitation (PLE) spectra
2 shows the measurement results. Fig. 2 shows the measurement results of the PL spectrum.
(Excitation wavelength: 325 nm). Wavelength 410
nm (about 3.0 eV), and 470 nm (about 2.6 eV).
Two light emission peaks near V) are observed.
The broad peak at a wavelength of 410 nm is described in the past literature (J. Ph.
ys. Chem. Solids 1970, Vol. 31, p. 707)
aTwoO ThreeIt is known to be due to Wavelength 47
The broad peak near 0 nm is the PLE spectrum shown later.
From the results of the vector, you can see that it is due to GaN
You. This GaN emission is due to direct interband transition.
(Wavelength 362 nm). Its origin is currently unclear
It is clear, but it was mixed in during the synthesis and the defect of nitrogen
Impurities, organic substances formed by the decomposition of solvents during thermal decomposition
It is presumed that they are involved.

【0017】図3は、PLEスペクトルの測定結果を示
す図である。エミッション波長は479nmで励起波長
をスキャンした。波長360nm(約3.4eV)付近
に吸収端がある。この吸収帯は、GaNバンド端吸収に
よるものである。Wurtzite構造の場合、GaNのバンド
端吸収波長は362nm(3.41eV)、Zinc blend
構造の場合は約380nm(3.2〜3.3eV)と報
告されている。本実施の形態で測定された吸収端は、Wu
rtziteであれば測定誤差範囲内でバルクGaNの値と一
致している。Zinc blend構造であれば、量子サイズ効果
によりバンド端が200〜300meVブルーシフトし
たと考えられる。
FIG. 3 is a diagram showing the measurement results of the PLE spectrum. The emission wavelength was 479 nm and the excitation wavelength was scanned. There is an absorption edge near a wavelength of 360 nm (about 3.4 eV). This absorption band is due to GaN band edge absorption. In the case of the Wurtzite structure, the band edge absorption wavelength of GaN is 362 nm (3.41 eV), and Zinc blend
In the case of the structure, it is reported to be about 380 nm (3.2 to 3.3 eV). The absorption edge measured in the present embodiment is Wu
If it is rtzite, it matches the value of bulk GaN within the measurement error range. In the case of the Zinc blend structure, it is considered that the band edge has shifted blue by 200 to 300 meV due to the quantum size effect.

【0018】このように、結晶構造は確定できないが、
PLE測定による吸収端波長の値からGaNが合成され
ていることを示すことができる。また、X線回折ピーク
の半値幅から、結晶の平均粒径は2〜3nmであること
も、すなわち励起子ボーア半径の4倍よりも小さいこと
も示すことができる。すなわち本発明の方法は、製造コ
ストを低く抑えることができるとともに、容易にIIIB
族窒素化合物を合成することができる。そして本発明の
方法で得られたIIIB族窒素化合物は、励起子ボーア半
径の4倍よりも小さい微粒子状のものである。なお、本
実施の形態ではIIIB族窒素化合物として窒化ガリウム
の場合について説明したが、この方法はIn、Al、B
など多くのIIIB族金属元素の窒化物に応用できる。ま
た、TDMAG結晶中にX{N(CH32n(式中、
Xはドーピング元素を示し、nはドーピング元素の価数
を示す)を取り込むことで、発光センターやドナー、ア
クセプターイオンのドーピングをすることもできる。
Thus, although the crystal structure cannot be determined,
The value of the absorption edge wavelength obtained by the PLE measurement can indicate that GaN is synthesized. Also, the half-width of the X-ray diffraction peak can indicate that the average grain size of the crystal is 2 to 3 nm, that is, smaller than four times the exciton Bohr radius. In other words, the method of the present invention can reduce the production cost and can easily prepare IIIB
A group nitrogen compound can be synthesized. The group IIIB nitrogen compound obtained by the method of the present invention is in the form of fine particles smaller than four times the exciton Bohr radius. In this embodiment, the case where gallium nitride is used as the group IIIB nitrogen compound has been described.
And many other group IIIB metal element nitrides. Further, in the TDMAG crystal, X {N (CH 3 ) 2 } n (where,
X represents a doping element, and n represents a valence of the doping element), whereby doping with a light-emitting center, a donor, or an acceptor ion can be performed.

【0019】[0019]

【発明の効果】このように本発明によれば、製造コスト
を低く抑えることができるとともに、容易にIIIB族窒
素化合物を合成することのできる方法を提供することが
できる。また本発明の合成方法により合成された窒化物
微粒子は、II−IV族微粒子に比べ、環境に対する影響が
非常に少ない。さらに、本発明により得られた窒化物微
粒子を蛍光体に応用した場合、遷移確率の増大により、
通常の蛍光体に比べ輝度飽和レベルが大幅に向上し、粒
径変化による発光波長制御も可能である。さらにまた、
本発明により得られた窒化物微粒子を記録材料に応用し
た場合、ホールバーニングによる多値記録が可能となる
ため、干渉ピットや磁化状態、相変化等による記録方式
と比較して、大幅に記録密度を向上することができる。
また、本発明により得られた窒化物微粒子は、3次の非
線形光学係数の大きな材料を得ることができる。
As described above, according to the present invention, it is possible to provide a method that can reduce the production cost and can easily synthesize a group IIIB nitrogen compound. Further, the nitride fine particles synthesized by the synthesis method of the present invention have very little influence on the environment as compared with the II-IV group fine particles. Furthermore, when the nitride fine particles obtained according to the present invention are applied to a phosphor, the transition probability increases,
The luminance saturation level is greatly improved as compared with ordinary phosphors, and the emission wavelength can be controlled by changing the particle size. Furthermore,
When the nitride fine particles obtained according to the present invention are applied to a recording material, multi-value recording by hole burning becomes possible, so that the recording density is significantly higher than the recording method using interference pits, magnetization state, phase change, etc. Can be improved.
Further, the nitride fine particles obtained by the present invention can obtain a material having a large third-order nonlinear optical coefficient.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態で得られたサンプルのX線回折測定
の結果を示す図である。
FIG. 1 is a diagram showing a result of X-ray diffraction measurement of a sample obtained in an embodiment.

【図2】実施の形態で得られたサンプルのフォトルミネ
ッサンス(PL)スペクトルの測定結果を示す図である
FIG. 2 is a diagram showing a measurement result of a photoluminescence (PL) spectrum of a sample obtained in an embodiment.

【図3】実施の形態で得られたサンプルの励起(PL
E)スペクトルの測定結果を示す図である。
FIG. 3 shows the excitation (PL) of the sample obtained in the embodiment.
E) It is a figure which shows the measurement result of a spectrum.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくともIIIB族元素、窒素および炭
素を含む化合物を、溶媒中で加熱して分解することを特
徴とするIIIB族窒素化合物の合成方法。
1. A method for synthesizing a group IIIB nitrogen compound, comprising decomposing a compound containing at least a group IIIB element, nitrogen and carbon by heating in a solvent.
【請求項2】 IIIB族元素がガリウムであり、且つ生
成されるIIIB族窒素化合物が、窒化ガリウムである請
求項1に記載のIIIB族窒素化合物の合成方法。
2. The method for synthesizing a group IIIB nitrogen compound according to claim 1, wherein the group IIIB element is gallium, and the generated group IIIB nitrogen compound is gallium nitride.
【請求項3】 少なくともIIIB族元素、窒素および炭
素を含む化合物が、トリス(ジメチルアミノ)ガリウム
である請求項2に記載のIIIB族窒素化合物の合成方
法。
3. The method for synthesizing a group IIIB nitrogen compound according to claim 2, wherein the compound containing at least a group IIIB element, nitrogen and carbon is tris (dimethylamino) gallium.
【請求項4】 溶媒が、トリオクチルアミンである請求
項3に記載のIIIB族窒素化合物の合成方法。
4. The method for synthesizing a Group IIIB nitrogen compound according to claim 3, wherein the solvent is trioctylamine.
【請求項5】 前記IIIB族窒素化合物は励起子ボーア
半径の4倍よりも小さい微粒子である請求項1〜4に何
れか1項記載のIIIB族窒素化合物の合成方法。
5. The method for synthesizing a group IIIB nitrogen compound according to claim 1, wherein the group IIIB nitrogen compound is fine particles having a diameter smaller than four times the exciton Bohr radius.
JP2001010168A 2001-01-18 2001-01-18 Method for syntheszing iiib family nitrogen compound Pending JP2002220213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001010168A JP2002220213A (en) 2001-01-18 2001-01-18 Method for syntheszing iiib family nitrogen compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001010168A JP2002220213A (en) 2001-01-18 2001-01-18 Method for syntheszing iiib family nitrogen compound

Publications (1)

Publication Number Publication Date
JP2002220213A true JP2002220213A (en) 2002-08-09

Family

ID=18877529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001010168A Pending JP2002220213A (en) 2001-01-18 2001-01-18 Method for syntheszing iiib family nitrogen compound

Country Status (1)

Country Link
JP (1) JP2002220213A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077245A (en) * 2005-09-13 2007-03-29 Sharp Corp Semiconductor phosphor particle and method for producing the same
JP4896126B2 (en) * 2006-03-28 2012-03-14 シャープ株式会社 Group 13 nitride semiconductor phosphor and method for producing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246208A (en) * 1984-05-21 1985-12-05 Toshiba Tungaloy Co Ltd Preparation of boron nitride
JPS63100004A (en) * 1986-09-04 1988-05-02 イー・アイ・デュポン・デ・ニモアス・アンド・カンパニー High purity aluminum nitride in controlled form
JPH02134387A (en) * 1988-11-16 1990-05-23 Ube Ind Ltd Nitrogen-containing organic gallium compound
JPH02217473A (en) * 1988-02-29 1990-08-30 Natl Res Dev Corp Forming method of aluminum nitride film
JPH02263714A (en) * 1989-02-20 1990-10-26 Rhone Poulenc Chim Preparation of boron nitride
JPH1072205A (en) * 1996-08-29 1998-03-17 Otsuka Chem Co Ltd Fine disk-like hexagonal boron nitride powder and its production
JPH10194712A (en) * 1996-12-27 1998-07-28 Tokuyama Corp Production of boron nitride precursor and boron nitride fiber
JP2002241112A (en) * 2000-12-11 2002-08-28 Nichia Chem Ind Ltd Method for manufacturing group xiii nitride crystal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246208A (en) * 1984-05-21 1985-12-05 Toshiba Tungaloy Co Ltd Preparation of boron nitride
JPS63100004A (en) * 1986-09-04 1988-05-02 イー・アイ・デュポン・デ・ニモアス・アンド・カンパニー High purity aluminum nitride in controlled form
JPH02217473A (en) * 1988-02-29 1990-08-30 Natl Res Dev Corp Forming method of aluminum nitride film
JPH02134387A (en) * 1988-11-16 1990-05-23 Ube Ind Ltd Nitrogen-containing organic gallium compound
JPH02263714A (en) * 1989-02-20 1990-10-26 Rhone Poulenc Chim Preparation of boron nitride
JPH1072205A (en) * 1996-08-29 1998-03-17 Otsuka Chem Co Ltd Fine disk-like hexagonal boron nitride powder and its production
JPH10194712A (en) * 1996-12-27 1998-07-28 Tokuyama Corp Production of boron nitride precursor and boron nitride fiber
JP2002241112A (en) * 2000-12-11 2002-08-28 Nichia Chem Ind Ltd Method for manufacturing group xiii nitride crystal

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A.C.FRANK ET AL.: "Microstructural Characterisation of Nanocrystalline GaN Prepared by Detonations of Gallium Azides", ADVANCED MATERIALS FOR OPTICS AND ELECTRONICS, vol. 8, no. 3, JPN6010005669, 10 September 1998 (1998-09-10), pages 135 - 146, XP000774850, ISSN: 0001531343, DOI: 10.1002/(SICI)1099-0712(199805/06)8:3<135::AID-AMO342>3.0.CO;2-C *
K.E.GONSALVES ET AL.: "Synthesis and characterization of a nanostructured gallium nitride-PMMA composite", JOURNAL OF MATERIALS CHEMISTRY, vol. 6, no. 8, JPN6010005663, 1996, pages 1451 - 1453, XP000633855, ISSN: 0001531341, DOI: 10.1039/jm9960601451 *
O.I.MICIC ET AL.: "Synthesis, structure, and optical properties of colloidal GaN quantum dots", APPLIED PHYSICS LETTERS, vol. 75, no. 4, JPN6010005666, 26 July 1999 (1999-07-26), pages 478 - 480, XP012024434, ISSN: 0001531342, DOI: 10.1063/1.124414 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077245A (en) * 2005-09-13 2007-03-29 Sharp Corp Semiconductor phosphor particle and method for producing the same
JP4896126B2 (en) * 2006-03-28 2012-03-14 シャープ株式会社 Group 13 nitride semiconductor phosphor and method for producing the same

Similar Documents

Publication Publication Date Title
JP4936338B2 (en) Semiconductor nanoparticle phosphor
US8247073B2 (en) Core-shell nanocrystal comprising a non-semiconductor buffer layer, method for preparing the same and electronic device comprising the same
US7862796B2 (en) Method of preparing cadmium sulfide nanocrystals emitting light at multiple wavelengths, and cadmium sulfide nanocrystals prepared by the method
JP5158375B2 (en) Semiconductor nanoparticle phosphor
KR20080033112A (en) Nanocrystalline phosphor and coated nanocrystalline phosphor as well as method of preparing coated nanocrystalline phosphor
US9985173B2 (en) II-III-N semiconductor nanoparticles and method of making same
JP2002097100A (en) Method for producing high quality semiconductor nanocrystal doped with manganese
JP4761357B2 (en) Semiconductor particle phosphor and method for producing the same
US9637682B2 (en) Interfused nanocrystals and method of preparing the same
US20240178349A1 (en) Quantum dot structure and method of producing a quantum dot structure
JP4587390B2 (en) Semiconductor particle phosphor and method for producing the same
WO2007111082A1 (en) Group 13 nitride semiconductor particle phosphor and method for manufacturing same
JP2002220213A (en) Method for syntheszing iiib family nitrogen compound
Chichibu et al. Band gap bowing and exciton localization in strained cubic In x Ga 1− x N films grown on 3C-SiC (001) by rf molecular-beam epitaxy
US7850943B2 (en) Method of preparing cadmium sulfide nanocrystals emitting light at multiple wavelengths, and cadmium sulfide nanocrystals prepared by the method
JP4538646B2 (en) Method for producing highly efficient phosphor
KR101912819B1 (en) Organic-inorganic hybrid quantum dot
Stroyuk et al. Exploring Highly Efficient Broadband Self‐Trapped‐Exciton Luminophors: from 0D to 3D Materials
KR100525723B1 (en) Method for forming GaN nanorods by hydride vapor phase epitaxial growth method
Mahalingam et al. Mg2+‐Doped GaN Nanoparticles as Blue‐Light Emitters: A Method to Avoid Sintering at High Temperatures
KR100525724B1 (en) Method for forming p-GaN nanorods
Šimek et al. Synthesis of InN nanoparticles by rapid thermal ammonolysis
Zhao Epitaxial growth, optical properties and structural studies of GaN nanorods and related heterostructures
Asahi et al. Gas source MBE growth of GaN-related novel semiconductors
Hong et al. A study on splitting of the valence band for a AgInS 2/GaAs epilayer using photocurrent measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090805

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090805

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629