JP2002188985A - Instrument and method for measuring specific gravity, and method of manufacturing planographic printing plate - Google Patents

Instrument and method for measuring specific gravity, and method of manufacturing planographic printing plate

Info

Publication number
JP2002188985A
JP2002188985A JP2000386365A JP2000386365A JP2002188985A JP 2002188985 A JP2002188985 A JP 2002188985A JP 2000386365 A JP2000386365 A JP 2000386365A JP 2000386365 A JP2000386365 A JP 2000386365A JP 2002188985 A JP2002188985 A JP 2002188985A
Authority
JP
Japan
Prior art keywords
specific gravity
liquid
pressure
tank
pressure receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000386365A
Other languages
Japanese (ja)
Inventor
Masahiko Warashina
雅彦 藁科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2000386365A priority Critical patent/JP2002188985A/en
Publication of JP2002188985A publication Critical patent/JP2002188985A/en
Pending legal-status Critical Current

Links

Landscapes

  • Printing Plates And Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure specific gravity of a treating liquid continuously without controlling a liquid level in a specific gravity measuring vessel. SOLUTION: A high-pressure receiving housing 26 and a low-pressure receiving housing 40 are attached, with 1000 mm of level difference, to the measuring vessel 18 to which an etchant L of a specific gravity measuring object is fed. A differential pressure corresponding to the level difference 1000 mm is detected by a differential pressure transmitter 30, resulting from a difference between liquid pressures applied to the both housings 26, 40. A computing part 46 computes the specific gravity of the liquid based on the differential pressure and the level difference. A reference water is not required as is required in a conventional specific gravity measuring instrument. The specific gravity is thereby measured accurately and continuously since free from water level fluctuation of the reference water and temperature fluctuation of the reference water. Specific gravity measurement is not affected substantially by fluctuation of an etchant flow rate because the flow rate of the etchant L to the measuring vessel 18 is not required to be held constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、処理液の比重を測
定する比重測定装置及び比重測定方法、並びにこの比重
測定結果からアルミ製ウェブの処理液濃度を制御する平
版印刷版の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a specific gravity measuring device and a specific gravity measuring method for measuring a specific gravity of a processing liquid, and a method of manufacturing a lithographic printing plate for controlling the concentration of a processing liquid in an aluminum web from the specific gravity measurement result.

【0002】[0002]

【従来の技術】平版印刷版用の支持体、例えば、アルミ
ニウムの薄板(以下「ウェブ」という)は、表面が粗面
化処理され、砂目と称する微細な凹凸が形成される。こ
の粗面化処理により、感光液が塗布された後の感光性平
版印刷版としてのウェブの保水性、親水性、耐印刷性、
印刷適性が向上する。
2. Description of the Related Art A support for a lithographic printing plate, for example, a thin plate of aluminum (hereinafter referred to as "web") is subjected to a surface roughening treatment to form fine irregularities called grain. By this surface roughening treatment, the water retention of the web as a photosensitive lithographic printing plate after the photosensitive liquid is applied, hydrophilicity, printing resistance,
Printability is improved.

【0003】現在、ウエブの粗面化方法の1つとして、
図3に示すように、砂目立て処理したウェブWを酸また
はアルカリ等のエッチング液Lをノズル10から噴射し
て化学的にエッチングする方法がある。
At present, one of the methods for roughening a web is as follows.
As shown in FIG. 3, there is a method of chemically etching the grained web W by spraying an etchant L such as an acid or an alkali from a nozzle 10.

【0004】しかし、エッチング工程において、エッチ
ング液Lの組成が経時的に変化してしまうので、エッチ
ング液Lは比重測定装置80により濃度管理を行なう必
要がある。
However, in the etching process, the composition of the etching solution L changes with time, so that the concentration of the etching solution L needs to be controlled by a specific gravity measuring device 80.

【0005】ここで、比重測定装置80の測定原理を説
明する。比重測定装置80は、比重測定槽82を備えて
おり、比重測定槽82には循環タンク12のエッチング
液Lが送液ポンプ14によって送られる。
Here, the measurement principle of the specific gravity measuring device 80 will be described. The specific gravity measuring device 80 includes a specific gravity measuring tank 82, and the etching liquid L in the circulation tank 12 is sent to the specific gravity measuring tank 82 by the liquid sending pump 14.

【0006】比重測定槽82の低部側面には差圧測定器
84が取付けられており、この差圧測定器84の高圧ダ
イアフラムの測定ポイントから1000mmの位置にエ
ッチング液のオーバーフロー部が形成されている。この
オーバーフロー部からオーバーフロー槽86へエッチン
グ液がオーバーフローすることにより、エッチング液の
液面から差圧測定器84までの液柱が1000mmに保
たれる。
A differential pressure measuring device 84 is attached to the lower side surface of the specific gravity measuring tank 82. An overflow portion of the etching solution is formed at a position 1000 mm from a measuring point of the high pressure diaphragm of the differential pressure measuring device 84. I have. When the etchant overflows from the overflow section into the overflow tank 86, the liquid column from the level of the etchant to the differential pressure measuring device 84 is maintained at 1000 mm.

【0007】また、オーバフロー槽86と併設して基準
水槽88が設けられている。この基準水槽88へ基準水
を給水して、オーバーフロー部からオーバーフロー槽9
0へオーバーフローさせることで、基準水の水面とエッ
チング液の液面がレベルとされ、この基準水槽88から
基準水が配管92を介して差圧測定器84の低圧ダイア
フラムへ送られる。
A reference water tank 88 is provided alongside the overflow tank 86. The reference water is supplied to the reference water tank 88 and the overflow tank 9 is supplied from the overflow section.
By overflowing to 0, the level of the reference water and the level of the etching liquid are set to the level, and the reference water is sent from the reference water tank 88 to the low-pressure diaphragm of the differential pressure measuring device 84 via the pipe 92.

【0008】差圧測定器84には、高圧側ダイアフラム
と低圧側ダイヤフラムとの間にはオイルが封入されてお
り、中央部にはセンタダイヤフラムが設けられている。
高圧側ダイアフラムがエッチング液の液圧で、また、低
圧側ダイヤフラムが基準水の水圧で歪むと、圧力差に応
じてオイルを介しセンタダイヤフラムが歪む。このセン
タダイヤフラムの歪み量がストレートゲージにより電気
的に差圧として取り出され、演算部94において、10
00mmの高さのエッチング液と基準液との差圧から比
重が算出される。
In the differential pressure measuring device 84, oil is sealed between the high pressure side diaphragm and the low pressure side diaphragm, and a center diaphragm is provided at the center.
When the high-pressure side diaphragm is distorted by the liquid pressure of the etching liquid and the low-pressure side diaphragm is distorted by the water pressure of the reference water, the center diaphragm is distorted via oil according to the pressure difference. The amount of distortion of the center diaphragm is electrically extracted as a differential pressure by a straight gauge,
The specific gravity is calculated from the pressure difference between the etching liquid having a height of 00 mm and the reference liquid.

【0009】ところで、エッチング液の比重を正確に測
定するためには、エッチング液の液面及び基準水面の変
動を抑え、また、オイルの温度変化による膨張変化を無
くすため基準水の水温の変動を抑えなければならない。
By the way, in order to accurately measure the specific gravity of the etching solution, fluctuations in the liquid level of the etching solution and the reference water surface are suppressed, and fluctuations in the water temperature of the reference water are prevented in order to eliminate the expansion change due to the temperature change of the oil. Must be suppressed.

【0010】しかし、水面や液面の変動を抑えることは
容易でなく、循環タンク12の液面レベル変動や比重測
定槽82への配管の詰まり等で、エッチング液の流量を
一定に保持することが困難である。このため、エッチン
グ液の比重を連続して測定することができない。
However, it is not easy to suppress the fluctuation of the water surface and the liquid surface, and it is necessary to keep the flow rate of the etching liquid constant due to the fluctuation of the liquid surface level of the circulation tank 12 and the clogging of the pipe to the specific gravity measuring tank 82. Is difficult. Therefore, the specific gravity of the etchant cannot be measured continuously.

【0011】[0011]

【発明が解決しようとする課題】本発明は、比重測定槽
での液面を管理する必要がなく、正確に連続して処理液
の比重を測定し、平版印刷版の処理液品質を保証するこ
とを課題とする。
SUMMARY OF THE INVENTION According to the present invention, there is no need to control the liquid level in a specific gravity measuring tank, and the specific gravity of the processing liquid is accurately and continuously measured to guarantee the quality of the processing liquid of a lithographic printing plate. That is the task.

【0012】[0012]

【課題を解決するための手段】請求項1に記載の発明
は、比重測定対象となる液が送水される測定槽と、前記
測定槽の下方に取付けられ液圧を受ける高圧受圧部と、
前記測定槽の上方に前記高圧受圧部と高低差Hをおいて
取付けられ液圧を受ける低圧受圧部と、前記高圧受圧部
での圧と前記低圧受圧部での液圧の差圧を検出する差圧
測定手段と、前記差圧と高低差Hに基づき液の比重を求
める演算手段と、を有することを特徴としている。
According to a first aspect of the present invention, there is provided a measuring tank to which a liquid to be measured for specific gravity is fed, a high-pressure receiving unit attached below the measuring tank and receiving a liquid pressure;
A low-pressure receiving section mounted above the measuring tank at a height difference H from the high-pressure receiving section and receiving a hydraulic pressure; and detecting a differential pressure between the pressure at the high-pressure receiving section and the hydraulic pressure at the low-pressure receiving section. It is characterized by comprising a differential pressure measuring means, and an arithmetic means for calculating the specific gravity of the liquid based on the differential pressure and the height difference H.

【0013】上記構成では、比重測定対象となる液が送
水される測定槽に、高低差Hをおいて高圧受圧部と低圧
受圧部が取付けられている。この高圧受圧部と低圧受圧
部が受ける液圧の差から高低差Hに対応する差圧が差圧
測定手段によって検出される。次に、演算手段が、差圧
と高低差Hに基づき液の比重を演算する。
In the above configuration, the high-pressure receiving portion and the low-pressure receiving portion are attached to the measuring tank to which the liquid to be measured for specific gravity is supplied with a height difference H. The differential pressure corresponding to the height difference H is detected by the differential pressure measuring means from the difference between the hydraulic pressures received by the high pressure receiving portion and the low pressure receiving portion. Next, the calculating means calculates the specific gravity of the liquid based on the differential pressure and the height difference H.

【0014】この構成では、従来の比重測定装置のよう
に基準水を必要としない。このため、基準水の水面レベ
ルの変動、基準水の温度変動が発生する余地がないの
で、比重を連続して正確に測定できる。
In this configuration, unlike the conventional specific gravity measuring device, reference water is not required. For this reason, there is no room for the fluctuation of the water level of the reference water and the fluctuation of the temperature of the reference water, so that the specific gravity can be continuously and accurately measured.

【0015】また、測定槽への液の流量を一定に保持す
る必要がなく、低圧受圧部の位置まで液高があればよい
ので、液流量変動による比重測定への影響は殆ど見られ
ない。
Further, it is not necessary to keep the flow rate of the liquid to the measuring tank constant, and it is sufficient that the liquid height is as high as the position of the low-pressure receiving portion. Therefore, there is almost no influence on the specific gravity measurement due to the fluctuation of the liquid flow rate.

【0016】請求項2に記載の発明は、比重測定対象と
なる液が送水される測定槽に高低差Hをおいて設けられ
た高圧受圧部と低圧受圧部での液圧の差圧と前記高低差
Hから、液の比重を求めることを特徴としている。
According to a second aspect of the present invention, the pressure difference between the high pressure receiving portion and the low pressure receiving portion provided with a height difference H in a measuring tank to which the liquid to be measured for specific gravity is fed is determined by the difference between the pressure difference between the high and low pressure receiving portions. It is characterized in that the specific gravity of the liquid is obtained from the height difference H.

【0017】請求項3に記載の発明は、版印刷版の支持
体に感光層を形成するまでの前処理としての化学的エッ
チング工程において、循環タンク内の処理液を測定槽に
送水し、測定槽に高低差Hをおいて設けられた高圧受圧
部と低圧受圧部での液圧の差圧と前記高低差Hから、処
理液の比重を求めて循環タンク内の処理液の濃度を制御
することを特徴としている。
According to a third aspect of the present invention, in a chemical etching step as a pre-treatment until a photosensitive layer is formed on a support of a printing plate, a treatment liquid in a circulation tank is sent to a measurement tank to measure the same. The specific gravity of the processing liquid is determined from the pressure difference between the high and low pressure receiving sections provided with a height difference H in the tank and the high and low pressure receiving sections, and the concentration of the processing liquid in the circulation tank is controlled. It is characterized by:

【0018】上記構成では、補充水の追加等によって、
循環タンクから測定槽へ送る処理液の流量が変動して
も、比重測定に殆ど影響を与えない。このため、処理液
の比重を正確に制御することができる。
In the above configuration, the replenishment water is added, etc.
Even if the flow rate of the processing solution sent from the circulation tank to the measurement tank fluctuates, it hardly affects the specific gravity measurement. Therefore, the specific gravity of the processing liquid can be accurately controlled.

【0019】[0019]

【発明の実施の形態】以下、図面を参照して本実施の形
態に係る比重測定装置を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a specific gravity measuring apparatus according to the present embodiment will be described with reference to the drawings.

【0020】図1及び図2に示すように、比重測定装置
16は、測定槽18を備えている。測定槽18の底面に
は送液管20が接続されており、循環タンク12から送
液ポンプ14によってエッチング液が送られてくる。
As shown in FIGS. 1 and 2, the specific gravity measuring device 16 has a measuring tank 18. A liquid sending pipe 20 is connected to the bottom surface of the measuring tank 18, and an etching solution is sent from the circulation tank 12 by a liquid sending pump 14.

【0021】測定槽18の側面下方には開口部22が形
成されている。この開口部22を高圧ダイヤフラム24
で封止するような状態で高圧受圧ハウジング26が取付
けられている。そして、高圧ダイヤフラム24がエッチ
ング液の液圧を受けて歪む構成である。
An opening 22 is formed below the side surface of the measuring tank 18. This opening 22 is connected to a high-pressure diaphragm 24.
The high-pressure receiving housing 26 is attached in such a state that the housing is sealed by the above. The high-pressure diaphragm 24 is distorted by the pressure of the etching solution.

【0022】また、高圧受圧ハウジング26には、シー
ル液が封入されたキャピラリ28が接続されている。こ
のキャピラリ28の他方は、差圧伝送器30に接続され
ている。これにより、高圧ダイヤフラム24の歪みに対
応した液圧がシール液を介して差圧伝送器30へ伝達さ
れる。
A high pressure receiving housing 26 is connected to a capillary 28 filled with a sealing liquid. The other end of the capillary 28 is connected to a differential pressure transmitter 30. Thereby, the hydraulic pressure corresponding to the distortion of the high-pressure diaphragm 24 is transmitted to the differential pressure transmitter 30 via the seal liquid.

【0023】差圧伝送器30の中央部には、液室32が
形成されている。液室32はセンタダイヤフラム34で
2つに仕切られており、一方の液室がキャピラリ28の
シール液によって歪む中間ダイヤフラム35で閉じられ
ている。
A liquid chamber 32 is formed at the center of the differential pressure transmitter 30. The liquid chamber 32 is divided into two by a center diaphragm 34, and one of the liquid chambers is closed by an intermediate diaphragm 35 which is distorted by the sealing liquid of the capillary 28.

【0024】一方、測定槽18の側面上方には開口部3
6が形成されている。この開口部36を低圧ダイヤフラ
ム38で封止するような状態で低圧受圧ハウジング40
が取付けられている。この低圧受圧ハウジング40の低
圧ダイヤフラム38の中心部と高圧受圧ハウジング26
の高圧ダイヤフラム24の中心部との高低差Hは100
0mmとされている。
On the other hand, an opening 3 is provided above the side surface of the measuring tank 18.
6 are formed. In a state where the opening 36 is sealed with a low-pressure diaphragm 38, a low-pressure receiving housing 40 is provided.
Is installed. The center of the low-pressure diaphragm 38 of the low-pressure receiving housing 40 and the high-pressure receiving housing 26
The height difference H from the center of the high-pressure diaphragm 24 is 100
0 mm.

【0025】また、低圧受圧ハウジング40には、シー
ル液が封入されたキャピラリ42が接続されている。こ
のキャピラリ42の他方は、センタダイヤフラム34で
仕切られた差圧伝送器30の液室32の他方側に中間ダ
イヤフラム37を介して接続されている。
The low pressure receiving housing 40 is connected to a capillary 42 filled with a sealing liquid. The other end of the capillary 42 is connected to the other side of the liquid chamber 32 of the differential pressure transmitter 30 separated by the center diaphragm 34 via an intermediate diaphragm 37.

【0026】これにより、センタダイヤフラム34が低
圧受圧ハウジング40側の液圧と高圧受圧ハウジング2
6側の液圧との差圧を受けて歪むと、この歪み量がスト
レインゲージ44の抵抗変化として電気的に差圧として
取り出される。そして、演算部46では、高低差Hが1
000mmのときの水(比重1.0)の差圧と比較さ
れ、表示部48にエッチング液の比重として表示され
る。また、送液管20には、電導計50が設けられてお
り、ここで測定した電導度と比重からエッチング液の濃
度が演算部46で演算される。
As a result, the center diaphragm 34 is connected to the liquid pressure on the low pressure receiving housing 40 side and the high pressure receiving housing 2.
When it is distorted by receiving a pressure difference from the fluid pressure on the 6 side, the amount of this strain is electrically extracted as a differential pressure as a resistance change of the strain gauge 44. Then, in the arithmetic unit 46, the height difference H is 1
It is compared with the differential pressure of water (specific gravity 1.0) at 000 mm, and is displayed on the display unit 48 as the specific gravity of the etching solution. Further, a conductivity meter 50 is provided in the liquid sending pipe 20, and the concentration of the etching solution is calculated by the calculation unit 46 from the measured conductivity and specific gravity.

【0027】そして、測定された濃度に基づき、循環タ
ンク12内のエッチング液の濃度が連続して管理される
一方、測定槽18の天井部まで上昇したエッチング液
は、戻り管52を通じて循環タンク12へ戻される。ま
た、循環タンク12には、供給管54が接続されてい
る。供給管54の端末は分岐しており、その分岐管には
ノズル10が取付けられている。このノズル10から、
循環ポンプ56で循環タンク12から送られてきたエッ
チング液がウェブWに吹付けられ、化学的にエッチング
処理される。
The concentration of the etching solution in the circulation tank 12 is continuously controlled based on the measured concentration, while the etching solution that has risen to the ceiling of the measurement tank 18 is returned to the circulation tank 12 through the return pipe 52. Returned to Further, a supply pipe 54 is connected to the circulation tank 12. The end of the supply pipe 54 is branched, and the nozzle 10 is attached to the branch pipe. From this nozzle 10,
The etching solution sent from the circulation tank 12 by the circulation pump 56 is sprayed on the web W and chemically etched.

【0028】ウェブWは、エッチング処理槽58に配置
されたパスロール60で搬送され、ノズル10から吹付
けられたエッチング液はエッチング処理槽58に回収さ
れる。回収されたエッチング液は、回収管62を通じて
循環タンク12へ戻される。
The web W is conveyed by a pass roll 60 disposed in the etching tank 58, and the etching solution sprayed from the nozzle 10 is collected in the etching tank 58. The collected etching liquid is returned to the circulation tank 12 through the collection pipe 62.

【0029】次に、本形態に係る比重測定装置16と従
来の比重測定装置80との性能の違いを説明する。
Next, the difference in performance between the specific gravity measuring device 16 according to the present embodiment and the conventional specific gravity measuring device 80 will be described.

【0030】実験条件として、エッチング液としてカセ
イソーダ26±1%、アルミ濃度6.5±0.5%を使
用し、比重を1.409とした。エッチング液の液温は
76℃±0.5℃、周囲の環境温度は25℃、基準水の
水温は18℃〜40℃、基準水槽へ給水される基準水流
量変動1L±0.5L/分とした。
The experiment conditions were as follows: 26 ± 1% of caustic soda and an aluminum concentration of 6.5 ± 0.5% as an etching solution, and the specific gravity was 1.409. The temperature of the etching solution is 76 ° C. ± 0.5 ° C., the ambient temperature is 25 ° C., the temperature of the reference water is 18 ° C. to 40 ° C., and the reference water flow fluctuation supplied to the reference water tank is 1 L ± 0.5 L / min. And

【0031】[0031]

【表1】 [Table 1]

【0032】表1に示すように、比重:1.409のエ
ッチング液に対して、本形態の比重測定装置では、1.
408〜1.412の誤差範囲で測定している。一方、
従来の比重測定装置では、1.405〜1.413の誤
差範囲で測定している。
As shown in Table 1, the specific gravity measuring apparatus according to the present embodiment has the following characteristics:
The measurement was performed within an error range of 408 to 1.412. on the other hand,
In the conventional specific gravity measurement device, measurement is performed within an error range of 1.405 to 1.413.

【0033】上記結果が示すように、本形態の比重測定
装置では、基準水の水温変化、基準水槽へ給水される基
準水流量変動による影響を受ける余地がなく、また、測
定槽へ送水されるエッチング液の液流量変動の影響を受
け難いことが判る。
As shown by the above results, in the specific gravity measuring apparatus of this embodiment, there is no room to be affected by the change of the reference water temperature and the fluctuation of the reference water flow rate supplied to the reference water tank, and the water is sent to the measurement tank. It turns out that it is hard to be affected by the fluctuation of the flow rate of the etching solution.

【0034】次に、測定槽へ送水されるエッチング液の
液流量に対する比重測定時間との関係を表2に示す。
Next, Table 2 shows the relationship between the flow rate of the etching solution sent to the measuring tank and the specific gravity measurement time.

【0035】[0035]

【表2】 [Table 2]

【0036】上記の表に示すように、エッチング液の液
流量を増やすことで、比重測定時間を短縮できることが
判る。しかし、従来の比重測定装置では、測定槽へ流入
する流量を増やすと液面レベルの変動が大きいため流量
を増やせないが、本形態の比重測定装置では、液面レベ
ルの変動が小さいため、流量を増やして比重の測定時間
を短くすることができる。
As shown in the above table, it can be seen that the specific gravity measurement time can be reduced by increasing the flow rate of the etching solution. However, in the conventional specific gravity measuring device, if the flow rate flowing into the measuring tank is increased, the flow rate cannot be increased due to large fluctuations in the liquid level, but in the specific gravity measuring apparatus of the present embodiment, the flow rate cannot be increased because the liquid level level is small. Can be increased to shorten the measurement time of the specific gravity.

【0037】なお、本形態では、比重測定装置がエッチ
ング工程で使用される例を説明したが、パミス粒度範
囲:15〜40μm、比重測定範囲:1.1〜1.3の
グレイン工程や、硫酸濃度:15%、アルミ濃度0.7
%、比重測定範囲:1.1〜1.3のAD工程にも使用
できる。また、平版印刷版の製造方法に限定されず、連
続して処理液の比重を測定する必要があるプラント等で
も適用できる。
In this embodiment, the example in which the specific gravity measuring device is used in the etching step has been described. However, the grain size range of the pumice particle size range: 15 to 40 μm, the specific gravity measurement range: 1.1 to 1.3, Concentration: 15%, Aluminum concentration 0.7
%, Specific gravity measurement range: 1.1 to 1.3. In addition, the present invention is not limited to the method of manufacturing a lithographic printing plate, and can be applied to a plant or the like that needs to continuously measure the specific gravity of a processing solution.

【0038】次に、平版印刷版の製造方法を概略的に説
明する。
Next, a method of manufacturing a lithographic printing plate will be schematically described.

【0039】電解粗面化処理されたウェブは水洗された
後、35℃の10重量%水酸化ナトリウム水溶液中に浸
漬され、アルミニウム溶解量が1g/m2 になるように
エッチングした後、水洗した。次に、50℃30重量%
の硫酸水溶液中に浸漬し、デスマットした後、水洗され
る。
The web having been subjected to electrolytic surface roughening was washed with water, immersed in a 10% by weight aqueous solution of sodium hydroxide at 35 ° C., etched so that the amount of aluminum dissolved was 1 g / m 2 , and washed with water. . Next, at 50 ° C. 30% by weight
After being immersed in an aqueous sulfuric acid solution and desmutted, it is washed with water.

【0040】さらに、35℃の硫酸20重量%水溶液
(アルミニウム0.8重量%含有)中で直流電流を用い
て、多孔性陽極酸化皮膜形成処理を行った。すなわち電
流密度13A/dm2 で電解を行い、電解時間の調節に
より陽極酸化皮膜重量2.7g/m2 とした。ジアゾ樹
脂と結合剤を用いたネガ型感光性平版印刷版を作成する
為に、この支持体を水洗後、70℃のケイ酸ナトリウム
の3重量%水溶液に30秒間浸漬処理し、水洗乾燥し
た。
Further, a porous anodic oxide film forming treatment was performed in a 20% by weight aqueous sulfuric acid solution (containing 0.8% by weight of aluminum) at 35 ° C. using a direct current. That is, electrolysis was performed at a current density of 13 A / dm 2 , and the anodic oxide film weight was adjusted to 2.7 g / m 2 by adjusting the electrolysis time. To prepare a negative photosensitive lithographic printing plate using a diazo resin and a binder, the support was washed with water, immersed in a 3% by weight aqueous solution of sodium silicate at 70 ° C. for 30 seconds, washed with water and dried.

【0041】以上のようにして得られたアルミニウム支
持体は、マクベスRD920反射濃度計で測定した反射
濃度は0.30で、JIS B00601に規定する中
心線平均粗さRaは0.58μmであった。
[0041] The thus-obtained aluminum support, Macbeth RD920 reflection density was measured with a reflection densitometer 0.30, the center line average roughness R a as defined in JIS B00601 is 0.58μm met Was.

【0042】次に上記支持体にメチルメタクリレート/
エチルアクリレート/2−アクリルアミド−2−メチル
プロパンスルホン酸ナトリウム共重合体(平均分子量約
6万)(モル比50/30/20)の1.0重量%水溶
液をロールコーターにより乾燥後の塗布量が0.05g
/m2 になるように塗布した。
Next, methyl methacrylate /
A 1.0% by weight aqueous solution of ethyl acrylate / 2-acrylamide-2-methylpropane sodium sulfonate copolymer (average molecular weight: about 60,000) (molar ratio: 50/30/20) was dried by a roll coater to obtain an applied amount of 1.0% by weight. 0.05g
/ M 2 .

【0043】さらに、下記感光液−1をバーコーターを
用いて塗布し、110℃で45秒間乾燥させた。乾燥塗
布量は2.0g/m2 であった。 感光液−1 ジアゾ樹脂−1 0.50g 結合剤−1 5.00g スチライトHS−2(大同工業(株)製) 0.10g ビクトリアピュアブルーBOH 0.15g トリクレジルホスフェート 0.50g ジピコリン酸 0.20g FC−430(3M社製界面活性剤) 0.05g 溶剤 1−メトキシ−2−プロパノール 25.00g 乳酸メチル 12.00g メタノール 30.00g メチルエチルケトン 30.00g 水 3.00g
Further, the following photosensitive solution-1 was applied using a bar coater and dried at 110 ° C. for 45 seconds. The dry coating amount was 2.0 g / m 2 . Photosensitive solution-1 Diazo resin-1 0.50 g Binder-1 5.00 g Stylite HS-2 (manufactured by Daido Kogyo Co., Ltd.) 0.10 g Victoria Pure Blue BOH 0.15 g Tricresyl phosphate 0.50 g Dipicolinic acid 0 .20 g FC-430 (Surfactant manufactured by 3M) 0.05 g Solvent 1-methoxy-2-propanol 25.00 g Methyl lactate 12.00 g Methanol 30.00 g Methyl ethyl ketone 30.00 g Water 3.00 g

【0044】上記のジアゾ樹脂―1は、次ぎのようにし
て得たものである。まず、4−ジアゾジフェニルアミン
硫酸塩(純度99.5%)29.4gを25℃にて、9
6%硫酸70mlに徐々に添加し、かつ20分間攪拌し
た。これに、パラホルムアルデヒド(純度92%)3.
26gを約10分かけて徐々に添加し、該混合物を30
℃にて、4時間攪拌し、縮合反応を進行させた。なお、
上記ジアゾ化合物とホルムアルデヒドとの縮合モル比は
1:1である。この反応生成物を攪拌しつつ氷水2リッ
トル中に注ぎ込み、塩化ナトリウム130gを溶解した
冷濃厚水溶液で処理した。この沈澱物を吸引濾過により
回収し、部分的に乾燥した固体を1リットルの水に溶解
し、濾過し、氷で冷却し、かつ、ヘキサフルオロリン酸
カリ23gを溶解した水溶液で処理した。最後に、この
沈澱物を濾過して回収し、かつ風乾して、ジアゾ樹脂−
1gを得た。
The above diazo resin-1 was obtained as follows. First, 29.4 g of 4-diazodiphenylamine sulfate (99.5% purity) was added at 25 ° C to 9
It was slowly added to 70 ml of 6% sulfuric acid and stirred for 20 minutes. To this, paraformaldehyde (purity 92%) 3.
26 g was added gradually over about 10 minutes, and the mixture was added to 30
The mixture was stirred at 4 ° C. for 4 hours to allow the condensation reaction to proceed. In addition,
The condensation molar ratio of the diazo compound and formaldehyde is 1: 1. The reaction product was poured into 2 liters of ice water with stirring, and treated with a cold concentrated aqueous solution in which 130 g of sodium chloride was dissolved. The precipitate was collected by suction filtration and the partially dried solid was dissolved in 1 liter of water, filtered, cooled with ice and treated with an aqueous solution of 23 g of potassium hexafluorophosphate. Finally, the precipitate is recovered by filtration and air-dried to give the diazo resin-
1 g was obtained.

【0045】結合剤−1は、2−ヒドロキシエチルメタ
クリレート/アクリロニトリル/メチルメタクリレート
/メタクリル酸共重合体(重量比50/20/26/
4、平均分子量75,000、酸含量0.4meq/
g)の水不溶性、アルカリ水可溶性の皮膜形成性高分子
である。
Binder-1 was 2-hydroxyethyl methacrylate / acrylonitrile / methyl methacrylate / methacrylic acid copolymer (weight ratio 50/20/26 /
4, average molecular weight 75,000, acid content 0.4 meq /
g) is a water-insoluble, alkaline water-soluble film-forming polymer.

【0046】スチライトHS−2(大同工業(株)製)
は、結合剤よりも感脂性の高い高分子化合物であって、
スチレン/マレイン酸モノ−4−メチル−2−ペンチル
エステル=50/50(モル比)の共重合体であり、平
均分子量は約100,000であった。
Stylite HS-2 (manufactured by Daido Industry Co., Ltd.)
Is a polymer compound having a higher oil sensitivity than the binder,
It was a copolymer of styrene / mono-4-methyl-2-pentyl maleate = 50/50 (molar ratio), and the average molecular weight was about 100,000.

【0047】[0047]

【発明の効果】本発明は上記構成としたので、比重測定
槽での液面を管理する必要がなく、正確に連続して処理
液の比重を測定し、平版印刷版の処理液品質を保証する
ことができる。
Since the present invention has the above-mentioned structure, there is no need to control the liquid level in the specific gravity measuring tank, and the specific gravity of the processing liquid is accurately and continuously measured to assure the quality of the processing liquid of the lithographic printing plate. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本形態に係る比重測定装置が使用されたエッチ
ング工程を示すブロック図である。
FIG. 1 is a block diagram showing an etching process in which a specific gravity measuring device according to an embodiment is used.

【図2】本形態に係る比重測定装置の要部を説明する断
面図である。
FIG. 2 is a cross-sectional view illustrating a main part of the specific gravity measuring device according to the embodiment.

【図3】従来の比重測定装置が使用されたエッチング工
程を示すブロック図である。
FIG. 3 is a block diagram showing an etching process using a conventional specific gravity measuring device.

【符号の説明】[Explanation of symbols]

18 測定槽 26 高圧受圧ハウジング(高圧受圧部) 30 差圧伝送器(差圧測定手段) 40 低圧受圧ハウジング(低圧受圧部) 46 演算部(演算手段) 18 Measurement tank 26 High pressure receiving housing (high pressure receiving part) 30 Differential pressure transmitter (differential pressure measuring means) 40 Low pressure receiving housing (low pressure receiving part) 46 Operation part (operation means)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 比重測定対象となる液が送水される測定
槽と、前記測定槽の下方に取付けられ液圧を受ける高圧
受圧部と、前記測定槽の上方に前記高圧受圧部と高低差
Hをおいて取付けられ液圧を受ける低圧受圧部と、前記
高圧受圧部での液圧と前記低圧受圧部での液圧の差圧を
検出する差圧測定手段と、前記差圧と高低差Hに基づき
液の比重を求める演算手段と、を有することを特徴とす
る比重測定装置。
1. A measuring tank to which a liquid to be measured for specific gravity is supplied, a high-pressure receiving section mounted below the measuring tank and receiving a hydraulic pressure, and a high-pressure difference H above the measuring tank. A low-pressure receiving portion mounted and receiving hydraulic pressure, a differential-pressure measuring means for detecting a differential pressure between the hydraulic pressure at the high-pressure receiving portion and the hydraulic pressure at the low-pressure receiving portion, Calculating means for calculating the specific gravity of the liquid based on the specific gravity.
【請求項2】 比重測定対象となる液が送水される測定
槽に高低差Hをおいて設けられた高圧受圧部と低圧受圧
部での液圧の差圧と前記高低差Hから、液の比重を求め
ることを特徴とする比重測定方法。
2. A liquid pressure difference between a high-pressure receiving portion and a low-pressure receiving portion provided with a height difference H in a measuring tank to which a liquid to be measured as a specific gravity is fed, and the height difference H, A specific gravity measuring method characterized by determining a specific gravity.
【請求項3】 平版印刷版の支持体に感光層を形成する
までの前処理としての化学的処理工程において、循環タ
ンク内の処理液を測定槽に送水し、測定槽に高低差Hを
おいて設けられた高圧受圧部と低圧受圧部での液圧の差
圧と前記高低差Hから、処理液の比重を求めて循環タン
ク内の処理液の濃度を制御することを特徴とする平版印
刷版の製造方法。
3. In a chemical treatment step as a pretreatment before a photosensitive layer is formed on a support of a lithographic printing plate, a treatment liquid in a circulation tank is fed to a measurement tank, and a height difference H is set in the measurement tank. Lithographic printing, wherein the specific gravity of the processing liquid is determined from the pressure difference between the high and low pressure receiving sections provided and the height difference H to determine the specific gravity of the processing liquid and the concentration of the processing liquid in the circulation tank is controlled. Plate production method.
JP2000386365A 2000-12-20 2000-12-20 Instrument and method for measuring specific gravity, and method of manufacturing planographic printing plate Pending JP2002188985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000386365A JP2002188985A (en) 2000-12-20 2000-12-20 Instrument and method for measuring specific gravity, and method of manufacturing planographic printing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000386365A JP2002188985A (en) 2000-12-20 2000-12-20 Instrument and method for measuring specific gravity, and method of manufacturing planographic printing plate

Publications (1)

Publication Number Publication Date
JP2002188985A true JP2002188985A (en) 2002-07-05

Family

ID=18853474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000386365A Pending JP2002188985A (en) 2000-12-20 2000-12-20 Instrument and method for measuring specific gravity, and method of manufacturing planographic printing plate

Country Status (1)

Country Link
JP (1) JP2002188985A (en)

Similar Documents

Publication Publication Date Title
US4840713A (en) Process for the electrochemical roughening of aluminum for use in printing plate supports
EP0239082B1 (en) Light-sensitive composition
US4229266A (en) Process for anodically oxidizing aluminum and use of the material so prepared as a printing plate support
EP0230995B1 (en) Light-sensitive composition
US4211619A (en) Process for anodically oxidizing aluminum and use of the material so prepared as a printing plate support
FI82905C (en) AV PAO MEKANISKT ELLER ELEKTROKEMISKT SAETT UPPRUGGAT ALUMINUM FRAMSTAELLT SKIV, - FOLIE, - ELLER BANDFORMAT MATERIAL, FOERFARANDE FOER DESS FRAMSTAELLNING OCH DESS ANVAENDNING SOM BAERARMATERIAL FOER OFFSETTRYC
US4482434A (en) Process for electrochemically roughening aluminum for printing plate supports
US4427766A (en) Hydrophilic coating of salt type nitrogen polymer on aluminum support materials for offset printing plates and process for manufacture and use with light sensitive layer thereon
JPH0314916B2 (en)
US4172772A (en) Printing plates
EP0278766A2 (en) Improvements in or relating to printing plate precursors
US4468295A (en) Process for electrochemically roughening aluminum for printing plate supports
US4661219A (en) Process for the electrochemical roughening of aluminum for use in printing plate supports
US4482444A (en) Process for electrochemically modifying electrochemically roughened aluminum support materials and the use of these materials in the manufacture of offset printing plates
JP2002188985A (en) Instrument and method for measuring specific gravity, and method of manufacturing planographic printing plate
JPH01177541A (en) Production of planographic printing plate
US4686021A (en) Lithographic support and process of preparing the same
JP2648976B2 (en) Photosensitive lithographic printing plate
CA1189378A (en) Electrochemical developing process for reproduction layers
US5302460A (en) Support material for offset-printing plates in the form of a sheet, a foil or a web process for its production and offset-printing plate comprising said material
CA1225613A (en) Printing plates made by treating anodized aluminum with silicate and carboxylate composition
US4650739A (en) Process for post-treating aluminum oxide layers with aqueous solutions containing phosphoroxo anions in the manufacture of offset printing plates with radiation sensitive layer and printing plates therefor
JPH0450846A (en) Photosensitive planographic printing plate
CN216445475U (en) Electrolytic tank for stabilizing working condition of electrolytic manganese
CN215264507U (en) Water flow regulating and controlling system of intelligent multi-parameter water quality monitor