JP2002155938A - Hydrostatic gas bearing - Google Patents

Hydrostatic gas bearing

Info

Publication number
JP2002155938A
JP2002155938A JP2001018848A JP2001018848A JP2002155938A JP 2002155938 A JP2002155938 A JP 2002155938A JP 2001018848 A JP2001018848 A JP 2001018848A JP 2001018848 A JP2001018848 A JP 2001018848A JP 2002155938 A JP2002155938 A JP 2002155938A
Authority
JP
Japan
Prior art keywords
gas
moving body
gas bearing
hydrostatic
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001018848A
Other languages
Japanese (ja)
Inventor
Takuma Tsuda
拓真 津田
Shinji Shinohara
慎二 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2001018848A priority Critical patent/JP2002155938A/en
Publication of JP2002155938A publication Critical patent/JP2002155938A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrostatic gas bearing used in vacuum minimizing an increase of an outgassing amount during moving of a movable body. SOLUTION: The outgassing amount during moving is reduced by applying a gas molecule sticking amount reducing treatment such as coating a material with a low gas molecule sticking probability on a guide shaft surface of a fixed body or a movable body surface or both.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空中において使
用される静圧気体軸受に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrostatic gas bearing used in a vacuum.

【0002】[0002]

【従来の技術】従来、真空中にて使用される静圧気体軸
受において、移動体と、それに対向する固定体表面に求
められる形状精度としては、浮上隙間及びラビリンスシ
ール隙間の大きさに影響を与えない程度の平面度のみが
求められており、表面の細孔については特に考慮されて
いなかった。また、固定体のガイド軸及び移動体の材質
の選定においては、搭載される装置の到達真空度に影響
を及ぼさないよう、真空環境に一定時間以上暴露され続
けた際のガス放出量が小さいという特性のみが考慮され
ていた。
2. Description of the Related Art Conventionally, in a static pressure gas bearing used in a vacuum, the shape accuracy required for a moving body and a surface of a fixed body opposed thereto is affected by the size of a floating gap and a labyrinth seal gap. Only the degree of flatness that is not provided is required, and no particular consideration has been given to the pores on the surface. In selecting the guide shaft of the fixed body and the material of the moving body, the amount of gas released when exposed to the vacuum environment for a certain period of time or more is small so as not to affect the ultimate vacuum of the mounted device. Only characteristics were considered.

【0003】[0003]

【発明が解決しようとする課題】従来の技術において製
作された静圧気体軸受は、軸受装置からのガス放出量が
静止状態においては規定の放出量を下回っている場合で
も、移動体が動作を始めると同時に軸受装置からのガス
放出量が急激に増大し、真空チャンバー内の到達圧を著
しく悪化させる場合がある。その理由は以下の通りであ
る。即ち、例えば移動体側にエアパッドを設けた静圧気
体軸受けにおいては、固定体表面のうち移動体に覆われ
た部分は、静止状態において高圧の浮上気体に曝されて
おり、その部分には多量の気体分子が付着する。その後
移動体が移動し、該表面が真空環境へ露出すると、ガイ
ド軸表面に付着した多量の気体分子が外部に放出され、
結果ガス放出量の急激な増大として検出される。例えば
EB露光装置内に搭載された静圧気体軸受において上述
の圧力上昇が発生した場合は、急激な圧力上昇は露光パ
ターンの精度を悪化させ、場合によっては電子ビーム源
にダメージを与えてしまうおそれもある。尚、固定体側
にエアパッドを設けた構造の静圧気体軸受けについて
も、移動体表面に気体分子が付着するため、移動時には
同様の問題が発生する。
In a hydrostatic gas bearing manufactured in the prior art, the moving body operates even when the amount of gas released from the bearing device is smaller than a specified amount in a stationary state. At the same time as starting, the amount of gas released from the bearing device sharply increases, and the ultimate pressure in the vacuum chamber may be significantly deteriorated. The reason is as follows. That is, for example, in a static pressure gas bearing provided with an air pad on the moving body side, a portion of the fixed body surface covered with the moving body is exposed to high pressure floating gas in a stationary state, and a large amount of Gas molecules adhere. Thereafter, when the moving body moves and the surface is exposed to a vacuum environment, a large amount of gas molecules attached to the surface of the guide shaft are released to the outside,
As a result, it is detected as an abrupt increase in gas emission. For example, when the above-mentioned pressure rise occurs in the static pressure gas bearing mounted in the EB exposure apparatus, the sudden pressure rise deteriorates the accuracy of the exposure pattern, and may possibly damage the electron beam source. There is also. In the case of a static pressure gas bearing having a structure in which an air pad is provided on the fixed body side, a similar problem occurs during movement because gas molecules adhere to the surface of the moving body.

【0004】本発明は、上記課題を解決するためになさ
れたもので、本発明の目的は、移動体の移動中における
ガス放出量増加を少量に抑えた静圧気体軸受を提供する
ものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a hydrostatic gas bearing which suppresses an increase in the amount of gas released during movement of a moving body. .

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明は、対向する移動体、固定体で構成され、真空
中で使用される静圧気体軸受において、固定体のガイド
軸表面または移動体表面、もしくはその両方に気体分子
付着量低減処理が施されたことを特徴とする。固定体の
ガイド軸表面に対して気体付着量を低減するための表面
処理を施したので、前記移動体移動時のガス放出量増加
を少量に抑えるものである。本発明は、前記表面処理の
対象を前記固定体表面に限定するものではなく、軸受け
構成部材の内、高圧の浮上気体にさらされた直後、移動
により真空環境に曝される部材に対して処理を行うこと
でその効果が得られる。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to a hydrostatic gas bearing which comprises a moving body and a fixed body opposed to each other and is used in a vacuum. The method is characterized in that the surface of the moving body or both of them are subjected to a gas molecule adhesion amount reduction treatment. Since the surface treatment for reducing the amount of adhering gas is performed on the surface of the guide shaft of the fixed body, an increase in the amount of gas released during the movement of the moving body is suppressed to a small amount. The present invention does not limit the object of the surface treatment to the surface of the fixed body. Among the bearing components, immediately after being exposed to a high-pressure floating gas, a member that is exposed to a vacuum environment by movement is treated. The effect is obtained.

【0006】また、気体付着量を低減するための表面処
理として、固定体のガイド軸表面又は移動体表面、もし
くはその両方をより気体付着確率の低い素材にてコーテ
ィングするものである。この方法により、軸受表面の気
体付着確率は低減する。また、セラミックス表面の細孔
はコーティングによって埋められ平滑な面となるため、
気体分子の付着量は更に低減されることとなる。例えば
Al2O3表面に、CVDによるTiCコーティングを施すこと
で、気体分子付着の中でも特に問題となるH2Oの付着量
を二桁程度低く抑えることが可能となる。
Further, as a surface treatment for reducing the amount of gas adhesion, the surface of the guide shaft of the fixed body, the surface of the movable body, or both are coated with a material having a lower gas adhesion probability. By this method, the gas adhesion probability on the bearing surface is reduced. In addition, the pores on the ceramic surface are filled with a coating and become a smooth surface,
The amount of gas molecules attached will be further reduced. For example
By applying the TiC coating by CVD to the surface of Al 2 O 3 , it is possible to suppress the amount of H 2 O attached, which is particularly problematic in gas molecule attachment, by about two orders of magnitude.

【0007】また、TiCの膜は導電性のため、EB露光
装置内に搭載される静圧気体軸受においては、電子によ
る帯電防止の効果も期待できる。
[0007] Further, since the TiC film is conductive, an effect of preventing electrification by electrons can be expected in the static pressure gas bearing mounted in the EB exposure apparatus.

【0008】本発明の好ましい態様としては、高密度で
表面に細孔の少ないセラミックスからなる固定体のガイ
ド軸又は移動体、もしくはその両方を製作し、上述の細
孔の影響によるガス放出量増加を低減するものである。
通常、セラミックスの表面には無数の細孔が存在するた
め、表面が高圧気体に曝された際には該細孔内に気体が
充填される。このため、移動体が移動し該表面が真空に
曝されると、細孔内に充填された気体はゆっくりと真空
チャンバー内に放出され、真空チャンバーの到達真空度
を悪化させてしまう。また、細孔内にはセラミックス加
工時に研削液などの汚物が残りやすく、該汚物には気体
の付着量も大きいため、これらが深刻なガス放出源とな
ることもある。細孔の少ないセラミックスは、平均粒子
径が1μm以下の微粒原料粉にてセラミックスを製作す
る、焼成前にホットプレス処理を施し緻密化させる、通
常のアルミナセラミックスにHIP処理を行う等の方法に
て得ることができる。なお、セラミックス表面における
細孔面接の理論密度が1%以下であることが望ましい。
According to a preferred embodiment of the present invention, a guide shaft and / or a moving body of a fixed body made of ceramics having a high density and a small number of pores on the surface are manufactured, or both are increased to increase the amount of gas release due to the influence of the pores. Is to be reduced.
Normally, the surface of ceramics has numerous pores, and when the surface is exposed to high-pressure gas, the pores are filled with gas. For this reason, when the moving body moves and the surface is exposed to vacuum, the gas filled in the pores is slowly released into the vacuum chamber, which deteriorates the ultimate vacuum degree of the vacuum chamber. In addition, dirt such as a grinding fluid tends to remain in the pores during the processing of ceramics, and the dirt has a large amount of gas attached thereto, so that these may become serious gas emission sources. Ceramics with a small number of pores can be manufactured using fine raw material powder with an average particle size of 1 μm or less, by hot pressing before firing to densify, or by performing HIP processing on ordinary alumina ceramics. Obtainable. It is desirable that the theoretical density of the pore interview on the ceramic surface be 1% or less.

【0009】また、本発明に好適な静圧気体軸受の浮上
気体として、固体との相互作用が少なく表面への付着量
の少ないアルゴン等の不活性気体を採用し、移動時のガ
ス放出量を低減するものである。アルゴンを使用した場
合には更に、気体分子量が通常の気体(N2とO2)よりも
大きいため、ラビリンスシール部のコンダクタンスが小
さくなり、良好なシール性能が得られる効果もある。
In addition, an inert gas such as argon having little interaction with a solid and having a small amount of adhesion to a surface is adopted as a floating gas of the hydrostatic gas bearing suitable for the present invention, and the amount of gas released during movement is reduced. It is to reduce. When argon is used, the gas molecular weight is larger than that of ordinary gases (N 2 and O 2 ), so that the conductance of the labyrinth seal portion is reduced, and there is an effect that good sealing performance can be obtained.

【0010】[0010]

【発明の実施の形態】本発明による好適な実施例を以下
に示す。図1は、本発明の静圧軸受機構の一実施例を表
す斜視図である。移動体1がガイド軸2aに対して微少
な隙間を有しながら取付けられ、浮上気体の供給によ
り、摩擦なしに左右に移動可能となっている。ガイド軸
2aの左右端には支柱2bが設けられ図示しない定盤に
固定される。支柱2bは、定盤に固定されることに限定
されるわけではなく、水平方向に位置する本発明の静圧
軸受の各支柱2bを、それぞれ直角する方向に、平行に
ならんだ他の静圧軸受(図示せず)の移動体上に固定さ
れてもよく、この場合、水平方向に位置する静圧軸受の
移動体は二次元的に移動可能となる。他の移動体上に固
定する場合には、支柱2bなしに、ガイド軸端を直接移
動体に固定してもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments according to the present invention will be described below. FIG. 1 is a perspective view showing an embodiment of the hydrostatic bearing mechanism of the present invention. The moving body 1 is attached to the guide shaft 2a with a small gap, and can be moved left and right without friction by supplying a floating gas. Support columns 2b are provided at the left and right ends of the guide shaft 2a, and are fixed to a surface plate (not shown). The struts 2b are not limited to being fixed to the surface plate, and each of the struts 2b of the hydrostatic bearing of the present invention located in the horizontal direction is parallel to the other static pressure in a direction perpendicular to each other. It may be fixed on a moving body of a bearing (not shown). In this case, the moving body of the hydrostatic bearing positioned in the horizontal direction can move two-dimensionally. When fixed on another moving body, the guide shaft end may be directly fixed to the moving body without the support 2b.

【0011】本発明の静圧軸受の一実施例であり、ガイ
ド軸2a表面にコーティング3を付した例を表す断面図
を図2に示す。ガイド軸2aの外周に気体付着確率の低
い素材にてコーティング3を施した。
FIG. 2 is a sectional view showing an embodiment of the hydrostatic bearing of the present invention, in which a coating 3 is applied to the surface of a guide shaft 2a. The coating 3 was applied to the outer periphery of the guide shaft 2a using a material having a low gas adhesion probability.

【0012】真空チャンバーの真空度の圧力について
は、使用条件によっても異なるが、10−3Pa〜10
−4Pa以下にすることが求められており、さらに10
−5Pa程度以下の真空環境下での動作も将来予想され
る。なお、ここでいう気体分子付着量を低減するとは、
上述した真空環境下において、付着した気体分子が真空
中に放出されても装置を使用する上で支障を来たすまで
圧力上昇させることがない程度まで、気体分子がガイド
軸等に付着しないように、気体分子の付着量を低減する
ことを意味する。たとえば、従来においては、移動体が
移動して新たに露出したガイド軸の表面には、露出した
瞬間1mあたり10−6モル前後の気体分子が付着し
ている。この気体分子が真空中に放出し、真空環境下で
の静圧気体軸受の使用に悪影響を及ぼすのである。一
方、本発明の静圧気体軸受では、気体分子付着量を1m
あたり10−8モル前後まで低減させることができ、
真空環境下での静圧気体軸受の使用に支障を来たすこと
がない。
[0012] The pressure of the degree of vacuum in the vacuum chamber varies depending on the use conditions, but is in the range of 10 -3 Pa to 10 Pa.
-4 Pa or less, and 10
Operation in a vacuum environment of about −5 Pa or less is also expected in the future. In addition, reducing the amount of gas molecules attached here means
Under the above-described vacuum environment, so that the gas molecules do not adhere to the guide shaft, etc., to the extent that the pressure does not increase until the adhering gas molecules are released into a vacuum, which does not hinder the use of the apparatus. This means reducing the amount of gas molecules attached. For example, in the related art, gas molecules of about 10 −6 mol per 1 m 2 is attached to the newly exposed surface of the guide shaft when the moving body moves. These gas molecules are released into the vacuum and adversely affect the use of the hydrostatic gas bearing in a vacuum environment. On the other hand, in the hydrostatic gas bearing of the present invention, the gas molecule adhesion amount is 1 m.
Can be reduced to about 10 −8 mol per 2 ;
The use of the hydrostatic gas bearing in a vacuum environment is not hindered.

【0013】本発明による性能の向上を示す。従来の静
圧気体軸受を約4×10-4Paの真空チャンバー内に設置
し、浮上気体として空気を使用し動作させたときの真空
チャンバーの真空度変化を図3に示した。縦軸は、真空
チャンバー内の圧力を示す。横軸は、時間を示し、まず
軸受移動体が静止した状態で記録開始し、2秒後に移動
体の移動を開始(速度55m/s)し、その後約4秒間
移動を続けて移動体を停止した。そして、測定開始から
20秒後(移動体を呈ししてから約14秒後)に記録を
終了した。図3に示すように、従来の静圧気体軸受を使
用した場合は、移動開始と同時に真空チャンバー圧力が
上昇し始め、約1×10−3Paにまで達してしまう。
そして測定から20秒後においても元の圧力に戻らなか
った。これは、気体分子がガイド軸に付着し、移動体が
移動することでガイド軸が真空チャンバー内に露出し、
付着した気体分子が真空中に放出されたためである。な
お、移動速度をさらに速くした場合、真空チャンバー内
の圧力は速度に比例して上昇する。
[0013] The performance improvement according to the present invention is shown. FIG. 3 shows a change in the degree of vacuum of the vacuum chamber when a conventional static pressure gas bearing was installed in a vacuum chamber of about 4 × 10 −4 Pa and operated using air as a floating gas. The vertical axis indicates the pressure in the vacuum chamber. The horizontal axis indicates time. First, the recording is started with the bearing moving body stationary, the movement of the moving body is started after 2 seconds (at a speed of 55 m / s), and then the moving body is stopped for about 4 seconds. did. Then, the recording was terminated 20 seconds after the start of the measurement (about 14 seconds after the mobile object was presented). As shown in FIG. 3, when the conventional static pressure gas bearing is used, the vacuum chamber pressure starts to increase at the same time as the movement starts, and reaches about 1 × 10 −3 Pa.
The pressure did not return to the original value even 20 seconds after the measurement. This is because gas molecules adhere to the guide shaft and the moving body moves, exposing the guide shaft to the inside of the vacuum chamber,
This is because the attached gas molecules were released into the vacuum. When the moving speed is further increased, the pressure in the vacuum chamber increases in proportion to the speed.

【0014】次に、本発明請求項4に係る静圧気体軸受
にて測定を行った結果を図4に示した。固定体表面をTi
Cにてコーティングし、図3と同条件の元で測定を行っ
たところ、移動によるチャンバー圧力の上昇は検出され
ない程度にまで減少している。コーティング材としては
TiCに限らず、SiCでもよいし、Al等の金属を蒸着しても
よい。
Next, FIG. 4 shows the results of measurements made with the hydrostatic gas bearing according to claim 4 of the present invention. Fix the fixed body surface with Ti
When coated with C and measured under the same conditions as in FIG. 3, an increase in the chamber pressure due to the movement was reduced to such a degree that it could not be detected. As a coating material
Not limited to TiC, SiC may be used, or a metal such as Al may be deposited.

【0015】これに対し、本発明請求項5に係る静圧気
体軸受にて同様の測定を行った結果を図5に示した。固
定体の材料として細孔を少量に抑えたHIP処理済みのア
ルミナセラミックスを使用し、図3と同条件の元で測定
を行ったところ、チャンバー圧力の上昇は従来品(図
3)の約1/10程度まで減少した。
On the other hand, FIG. 5 shows the result of the same measurement performed on the hydrostatic gas bearing according to claim 5 of the present invention. Using HIP-treated alumina ceramics with a small amount of pores as the material of the fixed body and measuring it under the same conditions as in Fig. 3, the chamber pressure increased by about 1% compared to the conventional product (Fig. 3). It decreased to about / 10.

【0016】本実施例においては、エアパッドを移動体
側に設けたため、前記表面処理はガイド軸表面に対して
のみ行われているが、エアパッドを固定体側に設けた構
造の静圧気体軸受けにおいては移動体表面に対する表面
処理が有効となる。更に前記表面処理はガイド軸、移動
体の片側に限定されるものではなく、ガイド軸、移動体
の両方に処理を行ってもよい。
In this embodiment, since the air pad is provided on the moving body side, the surface treatment is performed only on the surface of the guide shaft. However, in the static pressure gas bearing having the structure in which the air pad is provided on the fixed body side, the surface is moved. Surface treatment on the body surface is effective. Further, the surface treatment is not limited to one side of the guide shaft and the moving body, and the surface treatment may be performed on both the guide shaft and the moving body.

【0017】なお、上述したセラミックス表面にTiC
コーティングを施す具体的な方法としては、たとえば、
セラミックスを900℃まで過熱した状態で、その周囲
にてTiClとCHの混合ガスをプラズマ状態にし
て、セラミックス表面にTiC膜を生成させる、プラズ
マCVDといわれる手法で行うことができる。
The above ceramic surface is made of TiC.
As a specific method of applying the coating, for example,
In a state in which the ceramic is heated to 900 ° C., a mixed gas of TiCl 4 and CH 4 is brought into a plasma state around the ceramic and a TiC film is formed on the ceramic surface, which can be performed by a method called plasma CVD.

【0018】また、細孔の少ないセラミックスがHIP
処理による製作される具体的な方法としては、たとえ
ば、焼成済みのアルミナセラミックスを1、650℃、
100MPaという高温高圧のアルゴン気体中に10時
間保持する方法がある。
Further, ceramics having few pores are HIP
As a specific method of manufacturing by processing, for example, a fired alumina ceramic is heated at 1,650 ° C.
There is a method in which the gas is kept in a high-temperature and high-pressure argon gas of 100 MPa for 10 hours.

【0019】[0019]

【発明の効果】本発明は上記構成により次の効果を発揮
する。固定体のガイド軸表面または移動体表面もしくは
その両方に対して気体付着量を低減するための表面処理
を施したので、移動時のガス放出量増加を少量に抑える
ことのできる静圧気体軸受が提供できる。
According to the present invention, the following effects are exhibited by the above configuration. Since the surface treatment to reduce the amount of gas adhering to the guide shaft surface of the fixed body and / or the moving body surface has been performed, a hydrostatic gas bearing that can suppress the increase in the amount of gas released during movement to a small amount. Can be provided.

【0020】また、固定体のガイド軸表面又は移動体表
面又はその両方をより気体付着確率の低い素材、特に、
導電性を有するTiCを物理蒸着にてAl23表面にコ
ーティングを行うことで、気体分子付着の中でも特に問
題となるH2Oの付着量を二桁程度低く抑えることが可能
な静圧気体軸受が提供できる。
In addition, the surface of the guide shaft of the fixed body and / or the surface of the movable body may be made of a material having a lower gas adhesion probability, in particular,
Hydrostatic pressure gas that can suppress the amount of H 2 O attached, which is particularly problematic in gas molecule attachment, by about two orders of magnitude by coating conductive AlC on the Al 2 O 3 surface by physical vapor deposition. Bearings can be provided.

【0021】また、固定体のガイド軸または移動体もし
くはその両方を高密度で表面に細孔の少ないセラミック
スで製作したので、細孔の影響によるガス放出量増加が
低減できる静圧気体軸受が提供できる。
Further, since the guide shaft and / or the movable body of the fixed body are made of ceramics having a high density and a small number of pores on the surface, a static pressure gas bearing which can reduce an increase in gas emission due to the influence of the pores is provided. it can.

【0022】また、静圧気体軸受の浮上気体として、固
体との相互作用が少なく表面への付着量の少ないアルゴ
ン等の不活性気体を採用することとしたので、移動時の
ガス放出量を低減できる静圧気体軸受が提供できる。
In addition, an inert gas such as argon having little interaction with a solid and having a small amount of adhesion to a surface is adopted as a floating gas of the static pressure gas bearing, so that the amount of gas released during movement is reduced. A static pressure gas bearing that can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による静圧軸受機構の一実施例を表す斜
視図である。
FIG. 1 is a perspective view illustrating an embodiment of a hydrostatic bearing mechanism according to the present invention.

【図2】本発明請求項4によるガイド軸へのコーティン
グの一実施例を表す断面図である。
FIG. 2 is a sectional view showing an embodiment of coating on a guide shaft according to claim 4 of the present invention.

【図3】従来の真空用静圧気体軸受を真空チャンバー内
で動作させたときのチャンバー圧力変化を示すグラフで
ある。
FIG. 3 is a graph showing a change in chamber pressure when a conventional static pressure gas bearing for vacuum is operated in a vacuum chamber.

【図4】本発明請求項4に係る静圧気体軸受にて、図3
と同様の測定を行ったグラフである。
4 shows a hydrostatic gas bearing according to claim 4 of the present invention; FIG.
It is the graph which performed the same measurement as.

【図5】本発明請求項5に係る静圧気体軸受にて、図3
と同様の測定を行ったグラフである。
5 shows a hydrostatic gas bearing according to claim 5 of the present invention; FIG.
It is the graph which performed the same measurement as.

【符号の説明】[Explanation of symbols]

1…移動体 2…固定体 2a…ガイド軸 2b…支柱 3…コーティング DESCRIPTION OF SYMBOLS 1 ... Moving body 2 ... Fixed body 2a ... Guide shaft 2b ... Prop 3. Coating

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 対向する移動体、固定体で構成され、
真空中で使用される静圧気体軸受において、前記固定体
のガイド軸表面に気体分子付着量低減処理が施されたこ
とを特徴とする静圧気体軸受。
Claims: 1. An object comprising: a moving body and a fixed body facing each other;
A hydrostatic gas bearing used in a vacuum, wherein a treatment for reducing the amount of adhering gas molecules is performed on a guide shaft surface of the fixed body.
【請求項2】 対向する移動体、固定体で構成され、
真空中で使用される静圧気体軸受において、前記移動体
表面に気体分子付着量低減処理が施されたことを特徴と
する静圧気体軸受。
2. It comprises a moving body and a fixed body facing each other,
A hydrostatic gas bearing used in a vacuum, wherein the surface of the moving body is subjected to a gas molecule adhesion amount reduction treatment.
【請求項3】 対向する移動体、固定体で構成され、
真空中で使用される静圧気体軸受において、前記固定体
のガイド軸表面及び前記移動体表面に気体分子付着量低
減処理が施されたことを特徴とする静圧気体軸受。
3. It comprises a moving body and a fixed body facing each other,
A hydrostatic gas bearing used in a vacuum, wherein the surface of the guide shaft of the fixed body and the surface of the moving body are subjected to a gas molecule adhesion amount reduction treatment.
【請求項4】 前記気体分子付着量低減処理の方法と
して、気体分子付着確率の低い素材によるコーティング
を採用したことを特徴とする請求項1〜3いずれかに記
載の静圧気体軸受。
4. The hydrostatic gas bearing according to claim 1, wherein a coating of a material having a low probability of gas molecule adhesion is employed as the method of reducing the gas molecule adhesion amount.
【請求項5】 気体分子付着確率の低い素材として、
導電性を有する素材を採用したことを特徴とする請求項
4に記載の静圧気体軸受。
5. As a material having a low probability of gas molecule adhesion,
The hydrostatic gas bearing according to claim 4, wherein a material having conductivity is employed.
【請求項6】 気体分子付着確率の低い素材として、
TiCを採用したことを特徴とする請求項5に記載の静圧
気体軸受。
6. A material having a low gas molecule adhesion probability,
The hydrostatic gas bearing according to claim 5, wherein TiC is adopted.
【請求項7】 対向する移動体、固定体で構成され、
真空中で使用される静圧気体軸受において、前記固定体
のガイド軸を細孔の少ないセラミックスにて製作したこ
とを特徴とする静圧気体軸受。
7. It comprises a moving body and a fixed body facing each other,
A hydrostatic gas bearing used in a vacuum, wherein the guide shaft of the fixed body is made of ceramics having few pores.
【請求項8】 対向する移動体、固定体で構成され、
真空中で使用される静圧気体軸受において、前記移動体
を細孔の少ないセラミックスにて製作したことを特徴と
する静圧気体軸受。
8. It comprises a moving body and a fixed body facing each other,
A hydrostatic gas bearing used in a vacuum, wherein the moving body is made of ceramics having few pores.
【請求項9】 対向する移動体、固定体で構成され、
真空中で使用される静圧気体軸受において、前記固定体
のガイド軸及び前記移動体を細孔の少ないセラミックス
にて製作したことを特徴とする静圧気体軸受。
9. It comprises a moving body and a fixed body facing each other,
A hydrostatic gas bearing used in a vacuum, wherein the guide shaft of the fixed body and the moving body are made of ceramics having few pores.
【請求項10】 前記細孔の少ないセラミックスがH
IP処理にて製作したことを特徴とする請求項7から9
に記載の静圧気体軸受。
10. The ceramic having a small number of pores is H
10. The device according to claim 7, wherein the device is manufactured by IP processing.
A hydrostatic gas bearing according to item 1.
【請求項11】 浮上気体として、アルゴン等の不活
性気体を使用した請求項1〜10のいずれかに記載の静
圧気体軸受。
11. The hydrostatic gas bearing according to claim 1, wherein an inert gas such as argon is used as the floating gas.
JP2001018848A 2000-02-01 2001-01-26 Hydrostatic gas bearing Pending JP2002155938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001018848A JP2002155938A (en) 2000-02-01 2001-01-26 Hydrostatic gas bearing

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000024313 2000-02-01
JP2000269703 2000-09-06
JP2000-24313 2000-09-06
JP2000-269703 2000-09-06
JP2001018848A JP2002155938A (en) 2000-02-01 2001-01-26 Hydrostatic gas bearing

Publications (1)

Publication Number Publication Date
JP2002155938A true JP2002155938A (en) 2002-05-31

Family

ID=27342205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001018848A Pending JP2002155938A (en) 2000-02-01 2001-01-26 Hydrostatic gas bearing

Country Status (1)

Country Link
JP (1) JP2002155938A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349576A (en) * 2003-05-23 2004-12-09 Canon Inc Stage system, static-pressure bearing device, method for positioning, exposure system, and method of manufacturing device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180114A (en) * 1986-01-31 1987-08-07 Kyocera Corp Static pressure gas linear guide apparatus
JPH01210614A (en) * 1988-02-16 1989-08-24 Nippon Telegr & Teleph Corp <Ntt> Squeeze bearing
JPH03270666A (en) * 1990-03-19 1991-12-02 Ibiden Co Ltd Spindle motor
JPH04145220A (en) * 1990-10-08 1992-05-19 Toshiba Ceramics Co Ltd Moving body supporting device
JPH06117538A (en) * 1992-10-01 1994-04-26 Ebara Corp Vacuum container
JPH09166143A (en) * 1995-12-18 1997-06-24 Ntn Corp Hydrostatic air bearing spindle
JPH10299779A (en) * 1997-04-25 1998-11-10 Kyocera Corp Static pressure gas bearing device
JPH1162965A (en) * 1997-08-19 1999-03-05 Nippon Steel Corp Static pressure guide device and moving body
JP2000346070A (en) * 1999-06-03 2000-12-12 Toto Ltd Static pressure gas bearing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180114A (en) * 1986-01-31 1987-08-07 Kyocera Corp Static pressure gas linear guide apparatus
JPH01210614A (en) * 1988-02-16 1989-08-24 Nippon Telegr & Teleph Corp <Ntt> Squeeze bearing
JPH03270666A (en) * 1990-03-19 1991-12-02 Ibiden Co Ltd Spindle motor
JPH04145220A (en) * 1990-10-08 1992-05-19 Toshiba Ceramics Co Ltd Moving body supporting device
JPH06117538A (en) * 1992-10-01 1994-04-26 Ebara Corp Vacuum container
JPH09166143A (en) * 1995-12-18 1997-06-24 Ntn Corp Hydrostatic air bearing spindle
JPH10299779A (en) * 1997-04-25 1998-11-10 Kyocera Corp Static pressure gas bearing device
JPH1162965A (en) * 1997-08-19 1999-03-05 Nippon Steel Corp Static pressure guide device and moving body
JP2000346070A (en) * 1999-06-03 2000-12-12 Toto Ltd Static pressure gas bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349576A (en) * 2003-05-23 2004-12-09 Canon Inc Stage system, static-pressure bearing device, method for positioning, exposure system, and method of manufacturing device

Similar Documents

Publication Publication Date Title
US7189002B2 (en) Hydrostatic gas bearing, hydrostatic gas bearing device for use in vacuum environment, and gas recovering method for hydrostatic gas bearing device
JP2009522104A (en) Improvements on thin film getter devices
US20080062610A1 (en) Electrostatic chuck device
JP2002155938A (en) Hydrostatic gas bearing
JP4430157B2 (en) Static pressure gas bearing
JP2016194157A (en) Low pressure plasma spray coating including oxide dispersion
JPH06283124A (en) Charged beam device
JPH0994911A (en) Rigid carbon film molded product
JPH1153731A (en) Magnetic disk and its production
JP2009257594A (en) Static pressure gas bearing
Krupp Recent results in particle adhesion: UHV measurements, light-modulated adhesion and the effect of adsorbates
JP2005211734A (en) Organic material applying apparatus and organic material applying method using the same apparatus
JP2003329039A (en) Ceramic member
JP4016418B2 (en) Positioning device
JP2002206533A (en) Gas bearing for vacuum device
JP3898380B2 (en) Vacuum slide device
US4196022A (en) Surface hardening method
JP2003163256A (en) Stage device available in vacuum
JPH11278919A (en) Plasma-resistant member
KR20240100759A (en) Parts for semiconductor manufacturing process and manufacturing method thereof
JP4766289B2 (en) Silicon carbide sintered body and manufacturing method thereof
JPS583977A (en) Sputtering device
Hashiba et al. Gas desorption and adsorption properties of carbon based material used for cathode ray tube
JP2022039956A (en) Member for manufacturing semiconductor and manufacturing method for the same
JPS5557246A (en) Electron-ray contracting apparatus and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100712