New! View global litigation for patent families

JP2002151090A - Cell for solid polymer type fuel battery - Google Patents

Cell for solid polymer type fuel battery

Info

Publication number
JP2002151090A
JP2002151090A JP2000345220A JP2000345220A JP2002151090A JP 2002151090 A JP2002151090 A JP 2002151090A JP 2000345220 A JP2000345220 A JP 2000345220A JP 2000345220 A JP2000345220 A JP 2000345220A JP 2002151090 A JP2002151090 A JP 2002151090A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
reaction
layer
polymer
fuel
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000345220A
Other languages
Japanese (ja)
Inventor
Eiki Ito
Toshiro Kobayashi
Takuya Moriga
栄基 伊藤
敏郎 小林
卓也 森賀
Original Assignee
Mitsubishi Heavy Ind Ltd
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • Y02E60/52Fuel cells characterised by type or design
    • Y02E60/521Proton Exchange Membrane Fuel Cells [PEMFC]

Abstract

PROBLEM TO BE SOLVED: To make water management easy to catty out, and to improve CO- resistant nature.
SOLUTION: In a cell for solid polymer type fuel batteries, in which a solid high polymer film is sandwiched of its fuel pole side and its air pole with a reaction layer, a battery reaction is controlled by providing one of means at least of making concentration of the catalyst smaller than the concentration in other domains of the above reaction layer 6a, or making concentration of the electrolyte high polymer larger than the concentration in other domains of the above reaction layer 6a, in the above reaction layer domain X near a reaction gas entrance of a fuel pole side.
COPYRIGHT: (C)2002,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、固体高分子型燃料電池(PEFC:Polymer Elecrolyt The present invention relates to a solid polymer electrolyte fuel cell (PEFC: Polymer Elecrolyt
e Fuel Cell)用セルに関する。 On e Fuel Cell) for the cell.

【0002】 [0002]

【従来の技術】周知の如く、固体高分子型燃料電池の基本構成は、図1に示すようになっている。 As BACKGROUND ART known, the basic construction of the polymer electrolyte fuel cell is as shown in FIG. この燃料電池1は、PEFC用セル2と、このセル2の両端側に配置されてセル2を挟持するセパレータ3a,3bと、前記セル2とセパレータ3a,3b間に配置された拡散層4 The fuel cell 1 includes a PEFC cell 2, the separator 3a for holding the cells 2 are arranged on both end sides of the cell 2, 3b and the cell 2 and separators 3a, diffusion layer 4 disposed between 3b
とから構成されている。 It is composed of a.

【0003】前記PEFC用セル2は、固体高分子膜5 [0003] The PEFC cell 2, a polymer film 5
と、該膜5の両側に配置された反応層6a,6bとから構成されている。 When the reaction layer 6a disposed on both sides of the membrane 5, and a 6b. 前記拡散層4は、カーボンペーパ7 The diffusion layer 4, carbon paper 7
と、この一方の主面に形成されたスラリー層8とから構成されている。 When, and a formed slurry layer 8 Prefecture on the main surface of this one. 前記セパレータ3aのセル側には水素ガスを流すための溝9が形成され、他方のセパレータ3b Wherein the cell side of the separator 3a is formed a groove 9 for flowing hydrogen gas, the other separator 3b
には空気を流すための溝10が形成されている。 A groove 10 for the flow of air are formed in the.

【0004】こうした構成のPEFCにおいて、前記セルは、触媒(例えばPt)と電解質高分子を混合したインキを固体高分子膜の両面に塗付した後、乾燥することにより形成される。 [0004] In PEFC of this configuration, the cell, after the catalyst (e.g. Pt) and ink mixed with polyelectrolyte was subjected coated on both surfaces of the solid polymer membrane is formed by drying.

【0005】従来、PEFC用セルの具体的な例としては、触媒及びイオノマー(電解質内高分子)からなる多孔性反応層を両面に施与されたポリマー電解質膜を含むポリマー−電解質燃料電池用膜−電極単位が知られている(特開平11−329452)。 Conventionally, as a specific example of a PEFC cell, catalyst and ionomer consisting (the electrolyte polymer) porous reaction layer to a polymer comprising a polymer electrolyte membrane applied to both sides - electrolyte fuel cell membrane - electrode unit is known (JP-A-11-329452).

【0006】ところで、こうしたセルの反応層では触媒及びイオノマーの濃度が均一に形成されているため、水管理、耐CO性の向上が困難となるという問題があった。 [0006] In the reaction layer of such cells for the concentration of catalyst and ionomer is uniformly formed, water management, there is a problem that improvement of the CO resistance becomes difficult. つまり、アノード(燃料極)側では反応ガスの入口で電池反応が大きく発生して水をひきつれるため、高分子成分が乾燥気味になる。 That is, an anode for cell reaction at the inlet of the reaction gas in the (fuel electrode) side is large occurs to take along the water, polymer component is rather dry. 一方、カソード(空気極)側では上流で水が多く発生し、下流に貯まりやすくなる。 On the other hand, the cathode water is often generated upstream in (air electrode) side, easily accumulate downstream.

【0007】このことは、第6回燃料電池シンポジウム(「固体高分子燃料電池の電流密度分布測定と解析」、 [0007] This sixth fuel cell Symposium ( "polymer fuel analysis and current density distribution measuring battery"
豊橋技術科学大学・富家俊充他4名等)による発表によっても明らかである。 It is clear also by the announcement by the Toyohashi University of Technology, Fuka Toshimitsu four others, etc.).

【0008】 [0008]

【発明が解決しようとする課題】本発明はこうした事情を考慮してなされたもので、燃料極側の反応ガス入口近くの前記反応層領域では、触媒の濃度を前記反応層の他の領域における濃度より小さくするか、あるいは電解質高分子の濃度を前記反応層の他の領域における濃度より大きくするか、の少なくともいずれか一方の手段を講じて電池反応を抑制することにより、反応層全領域における触媒、電解質高分子の濃度を均一化し、もって水管理をしやすくし、かつ耐CO性を向上しえる固体高分子型燃料電池用セルを提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention has been made in consideration of these circumstances, and in the reaction layer region of the reaction gas inlet near the fuel electrode side, the concentration of the catalyst in the other regions of the reaction layer or less than the concentration, or whether the concentration of the polyelectrolyte is higher than the concentration in the other regions of the reaction layer, by suppressing the battery reaction taken at least one means, in the reaction layer the entire region the catalyst was uniformly the concentration of the electrolyte polymer, has been easier to water management, and an object thereof to provide a polymer electrolyte fuel cell which can improve the CO resistance.

【0009】 [0009]

【課題を解決するための手段】本発明は、固体高分子膜の燃料極側及び空気極側を反応層で挟持した固体高分子型燃料電池用セルにおいて、燃料極側の反応ガス入口近くの前記反応層領域では、触媒の濃度を前記反応層の他の領域における濃度より小さくするか、あるいは電解質高分子の濃度を前記反応層の他の領域における濃度より大きくするか、の少なくともいずれか一方の手段を講じることにより電池反応を抑制することを特徴とする固体高分子型燃料電池用セルである。 The present invention SUMMARY OF] is the fuel electrode side and the polymer electrolyte fuel cell which sandwiches an air electrode side in the reaction layer of a solid polymer membrane, the fuel electrode side reaction gas inlet near wherein in the reaction layer region, or the concentration of the catalyst is less than the concentration in the other regions of the reaction layer, or whether the concentration of the polyelectrolyte is higher than the concentration in the other regions of the reaction layer, at least one of the other hand the take steps of a polymer electrolyte fuel cell, characterized by suppressing the battery reaction.

【0010】 [0010]

【発明の実施の形態】以下、本発明について更に詳しく説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail. 本発明においては、下記1)、2)、3)のいずれかの手段を講じることが必要である。 In the present invention, the following 1), 2), it is necessary that either take steps 3). 1)燃料極側の反応ガス入口近くの前記反応層領域では、触媒の濃度を前記反応層の他の領域における濃度より小さくすること。 1) In the reaction layer region of the reaction gas inlet near the fuel electrode side, to the concentration of the catalyst less than the concentration in the other regions of the reaction layer. 2)燃料極側の反応ガス入口近くの前記反応層領域では、電解質高分子の濃度を前記反応層の他の領域における濃度より大きくすること。 2) In the reaction layer region of the reaction gas inlet near the fuel electrode side, to be greater than the concentration of the concentration of the electrolyte polymer in the other regions of the reaction layer. 3)上記1)及び2)の両方。 Both 3) above 1) and 2).

【0011】また、本発明においては、上述したように、燃料極側の反応ガス入口近くの前記反応層領域における触媒、電解質高分子の夫々の濃度を適宜制御する以外に、空気極側の反応ガス出口近くの前記反応層領域では、触媒の濃度を前記反応層の他の領域における濃度より大きくするか、あるいは電解質高分子の濃度を前記反応層の他の領域における濃度より小さくするか、の少なくともいずれか一方の手段を講じることにより電池反応を促進させることが好ましい。 [0011] In the present invention, as described above, the catalyst in the reaction layer region of the reaction gas inlet near the fuel electrode side, in addition to appropriately control the concentration of each of the polyelectrolyte, the reaction on the air electrode side in the reaction layer region near the gas outlet, or the concentration of the catalyst is greater than the concentration in the other regions of the reaction layer, or whether the concentration of the polyelectrolyte is less than the concentration in the other regions of the reaction layer, the it is preferable to accelerate the cell reactions by least one of the take measures.

【0012】本発明において、上記のように、燃料極側の反応ガス入口近くの前記反応層領域における触媒、電解質高分子の夫々の濃度、空気極側の反応ガス入口近くの前記反応層における触媒、電解質高分子の夫々の濃度を調整するのは次のような理由による。 [0012] In the present invention, as described above, the catalyst in the reaction layer region of the reaction gas inlet near the fuel electrode side, the concentration of each of the electrolyte polymer, the catalyst in the reaction layer of the reaction gas inlet near the air electrode-side , by such as the following reasons to adjust the concentration of each of the electrolyte polymer.

【0013】燃料極側の反応ガス入口近くの前記反応層領域における触媒、電解質高分子の夫々の濃度を調節することにより、燃料極側の反応ガス入口近くでの加湿用水の消費を抑制してセル面内で均一な加湿を行うことができるとともに、空気極側への泳動水を抑制することで空気極側の過加湿を抑制し、面内で均一な発電を実現させることができ、空気極側の反応ガス入口近くの前記反応層における触媒、電解質高分子の夫々の濃度を調整することにより、空気極側の反応ガス出口での水生成を抑制しセパレータ溝にたまる水を減少させることができ、 The catalyst in the reaction layer region of the reaction gas inlet near the fuel electrode side, by adjusting the concentration of each of the electrolyte polymer, to suppress the consumption of humidifying water in the reaction gas inlet near the fuel electrode side it is possible to perform uniform humidification in the cell surface, to suppress over-humidification of the air electrode side by suppressing the migration water to the air electrode side, it is possible to achieve uniform power generation in the plane, the air the catalyst in the reaction layer of the reaction gas inlet near the electrode side, by adjusting the concentration of each of the electrolyte polymer, reducing the water accumulated in suppressing the separator groove water generated in the reaction gas outlet of the air electrode side It can be,
面内で均一な発電を実現させることができるからである。 This is because it is possible to achieve uniform power generation in the plane.

【0014】 [0014]

【実施例】以下、本発明の実施例に係る固体高分子型燃料電池(PEFC)用セルについてその製造方法を併記して説明する。 EXAMPLES Hereinafter, the polymer electrolyte fuel cell (PEFC) cell according to an embodiment of the present invention will be described with also shown a manufacturing method.

【0015】(実施例1)まず、カーボンブラックに、 [0015] (Example 1) First, the carbon black,
平均粒径3〜4nmの白金合金粒子を54重量%担持したものを、アノード側電極の触媒,カーボンブラックに、平均粒径2〜3nmの白金粒子を45重量%担持したものをカソード側電極の触媒とした。 What was 54 wt% on a platinum alloy particles having an average particle diameter of 3 to 4 nm, the catalyst of the anode electrode, the carbon black, those 45 wt% platinum supported particles having an average particle diameter 2~3nm the cathode as a catalyst. 次に、この触媒粉末をイオン交換水に分散した後、エタノールに分散させた。 Then, after dispersing the catalyst powder in deionized water, it was dispersed in ethanol. つづいて、この分散溶液にパーフルオロスルホン酸樹脂溶液(商品名:SE−5112、DuPont社製)を混合してスラリを製作した。 Subsequently, a perfluorosulfonic acid resin solution to this dispersion solution: was (trade name SE-5112, DuPont Co.) were mixed to prepare a slurry.

【0016】次に、固体高分子膜(Nafion膜、商品名:N112、DuPont社製)を水平になるように配置して、これに前記スラリをエアスプレ法にて塗布した。 Next, solid polymer membrane (Nafion membrane, product name: N112, DuPont Co.) was arranged so as to be horizontal, and applying the slurry at Easupure method thereto. この時、カソード側の白金担持量は0.4〜0. At this time, the amount of platinum supported on the cathode side from 0.4 to 0.
5[mg/cm ]となるように調節した。 5 was adjusted to [mg / cm 2]. 一方、アノード側は、白金担持量が0.4〜0.5[mg/c On the other hand, the anode side, the amount of platinum supported is 0.4 to 0.5 [mg / c
m ]となるように調節したが、流路長方向にガス入り口から1/6(範囲としては1/24〜1/3)の面積に相当する部分は0.2〜0.3[mg/cm ]となるように、またこの部分のカーボンブラックとパーフルオロスルホン酸樹脂との重量比(C/N)は平均部分の1/3〜1/2となるように調合した(つまり、パーフルオロスルホン酸樹脂を多くした)。 Was adjusted to be 2, the portion corresponding to the area of the flow path length direction from the gas inlet 1/6 (as the range 1 / 24-1 / 3) is 0.2 to 0.3 [mg / as a cm 2], a weight ratio of carbon black and perfluorosulfonic acid resin of this part (C / N) was prepared as a 1 / 3-1 / 2 of the average portion (i.e., par and many fluorosulfonic acid resin). この後、これをホットプレスすることで反応層と高分子膜接合体を得た。 Thereafter, to obtain a reaction layer and the polymer membrane assembly by which the hot pressing.

【0017】このようにして得られたPEFC用セルは、ステレンレス製のセパレータ間に上面にテトラフルオロエチレンにより撥水化されたカーボンペーパを介して挟持して、発電試験を行った。 The PEFC cell obtained in this way is sandwiched through the water-repellent and carbon paper by tetrafluoroethylene upper surface between Suterenresu separator made of, a power generation test was performed. また、アノードには水素ガスを、カソードには空気を、夫々水素利用率70 Further, the hydrogen gas to the anode, the cathode air, respectively hydrogen utilization rate of 70
%、空気利用率40%となるように供給した。 %, It was supplied as a 40% air utilization.

【0018】このようにして製造される実施例1に係るPEFC用セルは、白金担持量を、アノード側に位置する反応層入口付近(図2の斜線部分X)でその他の反応層領域よりも0.2〜0.3[mg/cm ]と少なくした構成となっている。 The PEFC cell is according to the first embodiment thus is manufactured, the amount of platinum supported, in the reaction layer near the inlet located on the anode side (hatched portion in FIG. 2 X) than the other reaction layer area 0.2 to 0.3 and has a [mg / cm 2] and the least configuration. なお、図2中、付番11は水素ガス供給用穴、付番12は水素ガス排出用穴を夫々示し、矢印は水素ガスの流れを示す。 In FIG. 2, the numbering 11 is a hydrogen gas supply holes numbering 12, shows s respectively a hydrogen gas discharge hole, arrows indicate the flow of hydrogen gas.

【0019】(実施例2)まず、カーボンブラックに、 [0019] (Example 2) First, the carbon black,
平均粒径3〜4nmの白金合金粒子を54重量%担持したものを、アノード側電極の触媒,カーボンブラックに、平均粒径2〜3nmの白金粒子を45重量%担持したものをカソード側電極の触媒とした。 What was 54 wt% on a platinum alloy particles having an average particle diameter of 3 to 4 nm, the catalyst of the anode electrode, the carbon black, those 45 wt% platinum supported particles having an average particle diameter 2~3nm the cathode as a catalyst. 次に、この触媒粉末をイオン交換水に分散した後、エタノールに分散させた。 Then, after dispersing the catalyst powder in deionized water, it was dispersed in ethanol. つづいて、この分散溶液にパーフルオロスルホン酸樹脂溶液(商品名:SE−5112、Dupont社製)を混合してスラリを製作した。 Subsequently, a perfluorosulfonic acid resin solution to this dispersion solution: was (trade name SE-5112, Dupont Co., Ltd.) were mixed to prepare a slurry.

【0020】次に、固体高分子膜(Nafion膜、商品名:N112、DuPont社製)を水平になるように配置して、これに前記スラリをエアスプレ法にて塗布した。 Next, solid polymer membrane (Nafion membrane, product name: N112, DuPont Co.) was arranged so as to be horizontal, and applying the slurry at Easupure method thereto. この時、アノード側の白金担持量は0.4〜0. At this time, the amount of platinum supported on the anode side is 0.4 to 0.
5[mg/cm ]となるように調節した。 5 was adjusted to [mg / cm 2]. 一方、カソード側は、白金担持量が0.4〜0.5[mg/c On the other hand, the cathode side, the platinum supporting amount is 0.4 to 0.5 [mg / c
m ]となるように調節したが、流路長方向にガス出口から1/6(範囲としては1/24〜1/3)の面積に相当する部分は0.5〜0.6[mg/cm ]となるように調節した。 Was adjusted to be 2, the portion corresponding to the area of the flow path length direction from gas outlet 1/6 (as the range 1 / 24-1 / 3) is 0.5 to 0.6 [mg / It was adjusted so that the cm 2]. この後、これをホットプレスすることで反応層と高分子膜接合体を得た。 Thereafter, to obtain a reaction layer and the polymer membrane assembly by which the hot pressing.

【0021】このようにして得られたPEFC用セルは、ステレンレス製のセパレータ間に上面にテトラフルオロエチレンにより撥水化されたカーボンペーパを介して挟持して、発電試験を行った。 [0021] Thus PEFC cell thus obtained is, by clamping through the water-repellent and carbon paper by tetrafluoroethylene upper surface between Suterenresu separator made of, a power generation test was performed. また、アノードには水素ガスを、カソードには空気を、夫々水素利用率70 Further, the hydrogen gas to the anode, the cathode air, respectively hydrogen utilization rate of 70
%、空気利用率40%となるように供給した。 %, It was supplied as a 40% air utilization.

【0022】このようにして製造される実施例2に係るPEFC用セルは、白金担持量を、カソード側に位置する反応層出口付近(図3の斜線部分Y)でその他の反応層領域よりも0.5〜0.6[mg/cm ]と多くした構成となっている。 The PEFC cell is according to the second embodiment produced in this manner, the amount of platinum supported, in the vicinity of the reaction layer outlet located on the cathode side (hatched portion in FIG. 3 Y) than the other reaction layer area 0.5 to 0.6 and has a [mg / cm 2] with many configuration.

【0023】(実施例3)まず、カーボンブラックに、 [0023] (Example 3) First, the carbon black,
平均粒径3〜4nmの白金合金粒子を54重量%担持したものを、アノード側電極の触媒,カーボンブラックに、平均粒径2〜3nmの白金粒子を45重量%担持したものをカソード側電極の触媒とした。 What was 54 wt% on a platinum alloy particles having an average particle diameter of 3 to 4 nm, the catalyst of the anode electrode, the carbon black, those 45 wt% platinum supported particles having an average particle diameter 2~3nm the cathode as a catalyst. 次に、この触媒粉末をイオン交換水に分散した後、エタノールに分散させた。 Then, after dispersing the catalyst powder in deionized water, it was dispersed in ethanol. つづいて、この分散溶液にパーフルオロスルホン酸樹脂溶液(商品名:SE−5112、Dupont社製)を混合してスラリを製作した。 Subsequently, a perfluorosulfonic acid resin solution to this dispersion solution: was (trade name SE-5112, Dupont Co., Ltd.) were mixed to prepare a slurry.

【0024】次に、固体高分子膜(商品名:N112、 Next, a solid polymer film (trade name: N112,
DuPont社製)を水平になるように配置して、これに前記スラリをエアスプレ法にて塗布した。 The DuPont) arranged so as to be horizontal, and applying the slurry at Easupure method thereto. この時、カソード側の白金担持量は0.4〜0.5[mg/c At this time, the amount of platinum supported on the cathode side 0.4 to 0.5 [mg / c
]となるように調節したが、流路長方向にガス出口から1/6(範囲としては1/24〜1/3)の面積に相当する部分は0.5〜0.6[mg/cm ]となるように調節した。 was adjusted to be m 2], the portion corresponding to the area of the flow path length direction from gas outlet 1/6 (as the range 1 / 24-1 / 3) is 0.5 to 0.6 [mg / cm 2] was adjusted to be. 一方、アノード側は、白金担持量が0.4〜0.5[mg/cm ]となるように調節したが、流路長方向にガス入口から1/6(範囲としては1 On the other hand, the anode side is platinum support amount was adjusted to 0.4~0.5 [mg / cm 2], 1 is the flow path length direction 1/6 (ranging from the gas inlet
/24〜1/3)の面積に相当する部分は0.2〜0. / 24-1 / 3) is a portion corresponding to the area of ​​0.2 to 0.
3[mg/cm ]となるように、またこの部分のカーボンブラックとパーフルオロスルホン酸樹脂との重量比(C/N)は平均部分の1/3〜1/2となるように調合した(つまり、パーフルオロスルホン酸樹脂を多くした)。 3 so that [mg / cm 2], a weight ratio of carbon black and perfluorosulfonic acid resin of this part (C / N) was prepared as a 1 / 3-1 / 2 of the average part (that is, to increase the perfluorosulfonic acid resin). この後、これをホットプレスすることで反応層と高分子膜接合体を得た。 Thereafter, to obtain a reaction layer and the polymer membrane assembly by which the hot pressing.

【0025】このようにして得られたPEFC用セルは、ステレンレス製のセパレータ間に上面にテトラフルオロエチレンにより撥水化されたカーボンペーパを介して挟持して、発電試験を行った。 [0025] Thus PEFC cell thus obtained is, by clamping through the water-repellent and carbon paper by tetrafluoroethylene upper surface between Suterenresu separator made of, a power generation test was performed. また、アノードには水素ガスを、カソードには空気を、夫々水素利用率70 Further, the hydrogen gas to the anode, the cathode air, respectively hydrogen utilization rate of 70
%、空気利用率40%となるように供給した。 %, It was supplied as a 40% air utilization.

【0026】このようにして製造される実施例3に係るPEFC用セルは、白金担持量を、アノード側に位置する反応層入口付近でその他の反応層領域よりも0.2〜 [0026] 0.2 to PEFC for cell according to the third embodiment is manufactured in this way, the amount of supported platinum, than other reaction layer region in the reaction layer near the inlet located on the anode side
0.3[mg/cm ]と少なくし、かつ空気極側に位置する反応層出口付近でその他の反応層領域よりも0. 0.3 [mg / cm 2] and less, and than the other reaction layer region near the reaction layer outlet positioned on the air electrode side 0.
5〜0.6[mg/cm ]と多くした構成となっている。 5 to 0.6 and has a [mg / cm 2] with many configuration.

【0027】(比較例)まず、カーボンブラックに、平均粒径3〜4nmの白金合金粒子を54重量%担持したものを、アノード側電極の触媒,カーボンブラックに、 [0027] (Comparative Example) First, a carbon black, a material obtained by 54 wt% on a platinum alloy particles having an average particle diameter of 3 to 4 nm, the catalyst of the anode electrode, the carbon black,
平均粒径2〜3nmの白金粒子を45重量%担持したものをカソード側電極の触媒とした。 What was 45 wt% platinum supported particles having an average particle diameter 2~3nm as a catalyst of the cathode. 次に、この触媒粉末をイオン交換水に分散した後、エタノールに分散させた。 Then, after dispersing the catalyst powder in deionized water, it was dispersed in ethanol. つづいて、この分散溶液にパーフルオロスルホン酸樹脂溶液(商品名:SE−5112、Dupont社製)を混合してスラリを製作した。 Subsequently, a perfluorosulfonic acid resin solution to this dispersion solution: was (trade name SE-5112, Dupont Co., Ltd.) were mixed to prepare a slurry.

【0028】次に、固体高分子膜(商品名:N112、 [0028] Next, a solid polymer film (trade name: N112,
Dupont社製)を水平になるように配置して、これに前記スラリをエアスプレ法にて塗布した。 The Dupont Co.) was arranged to be horizontal, and applying the slurry at Easupure method thereto. この時、カソード側の白金担持量は0.4〜0.5[mg/c At this time, the amount of platinum supported on the cathode side 0.4 to 0.5 [mg / c
]となるように調節し、アノード側は白金担持量が0.4〜0.5[mg/cm ]となるように調節した。 adjusted to be m 2], the anode was adjusted to the amount of platinum supported is 0.4~0.5 [mg / cm 2]. この後、これをホットプレスすることで反応層と高分子膜接合体を得た。 Thereafter, to obtain a reaction layer and the polymer membrane assembly by which the hot pressing.

【0029】このようにして得られたPEFC用セルは、ステレンレス製のセパレータ間に上面にテトラフルオロエチレンにより撥水化されたカーボンペーパを介して挟持して、発電試験を行った。 [0029] Thus PEFC cell thus obtained is, by clamping through the water-repellent and carbon paper by tetrafluoroethylene upper surface between Suterenresu separator made of, a power generation test was performed. また、アノードには水素ガスを、カソードには空気を、夫々水素利用率70 Further, the hydrogen gas to the anode, the cathode air, respectively hydrogen utilization rate of 70
%、空気利用率40%となるように供給した。 %, It was supplied as a 40% air utilization.

【0030】このようにして製造される比較例に係るP [0030] P according to the comparative example is manufactured in this way
EFC用セルは、白金担持量を、アノード側及びカソード側ともに0.4〜0.5[mg/cm ]と同じ量にした構成となっている。 EFC cell is a platinum content, and both the anode side and the cathode side in a configuration in which the same amount of 0.4~0.5 [mg / cm 2].

【0031】上記実施例1〜3及び比較例1によるセル電圧(V)を調べたところ、比較例が0.65Vであるのに対し、実施例1〜3は夫々0.68V,0.68 [0031] Examination of the cell voltage (V) according to the above Examples 1-3 and Comparative Example 1, while Comparative Example is 0.65V, Examples 1-3 respectively 0.68V, 0.68
V,0.72Vと高いセル電圧が得られることが確認された。 V, 0.72V and high cell voltages that were obtained. これより、本発明は比較例と比べて、反応層全領域における触媒、電解質高分子の濃度を均一化でき、もって水管理をしやすくし、かつ耐CO性を向上できることが明らかである。 From this, as compared the present invention and comparative examples, the catalyst in the reaction layer the entire region, can equalize the concentration of the electrolyte polymer, has been easier to water management, and it is clear that it is possible to improve the CO resistance.

【0032】なお、上記実施例では、アノード側の反応ガス入口、カソード側の反応ガス出口近くの反応層領域における触媒の量を調整することにより電池反応を抑制する場合について述べたが、これに限らず、この他、アノード側の反応ガス入口、カソード側の反応ガス出口近くの反応層領域における電解質高分子の量を調整することにより電池反応を促進してもよい。 [0032] In the above embodiment, the reaction gas inlet of the anode side has dealt with the case of suppressing the cell reaction by adjusting the amount of catalyst in the reaction layer region of the reaction gas outlet near the cathode side, to not limited, the addition, the reaction gas inlet of the anode side may facilitate cell reaction by adjusting the amount of polyelectrolyte in the reaction layer region of the reaction gas outlet near the cathode side.

【0033】 [0033]

【発明の効果】以上詳記したように本発明によれば、燃料極側の反応ガス入口近くの前記反応層領域では、触媒の濃度を前記反応層の他の領域における濃度より小さくするか、あるいは電解質高分子の濃度を前記反応層の他の領域における濃度より大きくするか、の少なくともいずれか一方の手段を講じて電池反応を抑制することにより、反応層全領域における触媒、電解質高分子の濃度を均一化し、もって水管理をしやすくし、かつ耐CO性を向上しえる固体高分子型燃料電池用セルを提供できる。 According to the present invention as Shoki according to the present invention above, in the reaction layer region of the reaction gas inlet near the fuel electrode side, the concentration of catalyst less than the concentration in the other regions of the reaction layer or, Alternatively or concentration of the electrolyte polymer is greater than the concentration in the other regions of the reaction layer, the by suppressing cell reaction taken at least one of the means, the catalyst in the reaction layer the entire region, of the polyelectrolyte to equalize the concentration, have been easy to water management, and can provide a polymer electrolyte fuel cell which can improve the CO resistance.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】図1はPEFCの説明図。 FIG. 1 is PEFC illustration.

【図2】本発明に係るPEFC用セルの燃料極側に位置する反応層の状態の説明図。 Explanatory view showing a state of a reaction layer located on the fuel electrode side of the PEFC cell according to the present invention; FIG.

【図3】本発明に係るPEFC用セルの空気極側に位置する反応層の状態の説明図。 Explanatory view showing a state of a reaction layer located on the air electrode side of the PEFC cell according to the present invention; FIG.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…燃料電池、 2…PEFC用セル、 3a,3b…セパレータ、 4…拡散層、 5…固体高分子膜、 6a,6b…反応層、 7…カーボンペーパー、 8…スラリー層、 9,10…溝、 11…水素ガス供給用穴、 12…水素ガス排出用穴。 1 ... fuel cell, 2 ... PEFC cell, 3a, 3b ... separator, 4 ... diffusion layer, 5 ... solid polymer membrane, 6a, 6b ... reaction layer, 7 ... carbon paper, 8 ... slurry layer, 9, 10 ... groove, 11 ... hydrogen gas supply holes, 12 ... hydrogen gas discharge hole.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森賀 卓也 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 Fターム(参考) 5H018 AA06 AS02 AS03 BB08 EE03 EE05 EE17 HH05 5H026 AA06 HH05 ────────────────────────────────────────────────── ─── front page of the continuation (72) inventor Moriga Takuya Hiroshima, Hiroshima Prefecture, Nishi-ku, Kan'onshin-cho, chome No. 6 No. 22 Mitsubishi Heavy Industries, Ltd., Hiroshima Institute in the F-term (reference) 5H018 AA06 AS02 AS03 BB08 EE03 EE05 EE17 HH05 5H026 AA06 HH05

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 固体高分子膜の燃料極側及び空気極側を反応層で挟持した固体高分子型燃料電池用セルにおいて、 燃料極側の反応ガス入口近くの前記反応層領域では、触媒の濃度を前記反応層の他の領域における濃度より小さくするか、あるいは電解質高分子の濃度を前記反応層の他の領域における濃度より大きくするか、の少なくともいずれか一方の手段を講じることにより電池反応を抑制することを特徴とする固体高分子型燃料電池用セル。 1. A polymer electrolyte membrane fuel electrode side and the polymer electrolyte fuel cell which sandwiches an air electrode side reaction layer, the reaction gas inlet near the fuel electrode side and in the reaction layer region, the catalyst or less than the concentration of the concentration in the other regions of the reaction layer, or whether the concentration of the polyelectrolyte is higher than the concentration in the other regions of the reaction layer, the battery reaction by at least one of the take steps polymer electrolyte fuel cell, characterized in that to suppress.
  2. 【請求項2】 空気極側の反応ガス出口近くの前記反応層領域では、触媒の濃度を前記反応層の他の領域における濃度より大きくするか、あるいは電解質高分子の濃度を前記反応層の他の領域における濃度より小さくするか、の少なくともいずれか一方の手段を講じることにより電池反応を促進させることを特徴とする請求項1記載の固体高分子型燃料電池用セル。 Wherein in the reaction layer region near the reaction gas outlet of the air electrode side, the other or the concentration of the catalyst is greater than the concentration in the other regions of the reaction layer, or the concentration of the polyelectrolyte said reaction layer or less than the concentration in the region, at least one solid polymer fuel cell of claim 1, wherein the accelerating the cell reaction by one take steps.
JP2000345220A 2000-11-13 2000-11-13 Cell for solid polymer type fuel battery Pending JP2002151090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000345220A JP2002151090A (en) 2000-11-13 2000-11-13 Cell for solid polymer type fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000345220A JP2002151090A (en) 2000-11-13 2000-11-13 Cell for solid polymer type fuel battery

Publications (1)

Publication Number Publication Date
JP2002151090A true true JP2002151090A (en) 2002-05-24

Family

ID=18819289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000345220A Pending JP2002151090A (en) 2000-11-13 2000-11-13 Cell for solid polymer type fuel battery

Country Status (1)

Country Link
JP (1) JP2002151090A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078975A (en) * 2003-09-01 2005-03-24 Matsushita Electric Ind Co Ltd Polymer electrolyte membrane-electrode junction and polymer electrolyte fuel cell using this
EP1575105A2 (en) 2004-03-11 2005-09-14 Honda Motor Co., Ltd. Polymer electrolyte fuel cell
JP2008243548A (en) * 2007-03-27 2008-10-09 Toyota Central R&D Labs Inc Electrode catalyst layer for fuel cell, and its manufacturing method
WO2008153145A1 (en) 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Film-electrode assembly, film-electrode gas diffusion layer assembly having the same, solid state polymer fuel cell, and film-electrode assembly manufacturing method
WO2008153152A1 (en) 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Membrane-electrode assembly, and membrane-electrode-(gas diffusion layer) assembly and solid polymer fuel cell each comprising the same
US7612665B2 (en) 2003-09-19 2009-11-03 Ntn Corporation Wireless sensor system and bearing assembly having built-in wireless sensor
JP2010251331A (en) * 2003-11-03 2010-11-04 General Motors Corp <Gm> Variable catalytic amount based on flow region shape
US7851095B2 (en) 2004-05-26 2010-12-14 Johnson Matthey Public Limited Company Anode structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078975A (en) * 2003-09-01 2005-03-24 Matsushita Electric Ind Co Ltd Polymer electrolyte membrane-electrode junction and polymer electrolyte fuel cell using this
JP4493954B2 (en) * 2003-09-01 2010-06-30 パナソニック株式会社 Polymer electrolyte membrane - electrode assembly and a polymer electrolyte fuel cell using the same
US7612665B2 (en) 2003-09-19 2009-11-03 Ntn Corporation Wireless sensor system and bearing assembly having built-in wireless sensor
JP2010251331A (en) * 2003-11-03 2010-11-04 General Motors Corp <Gm> Variable catalytic amount based on flow region shape
US7601454B2 (en) 2004-03-11 2009-10-13 Honda Motor Co. Ltd. Polymer electrolyte fuel cell
EP1575105A2 (en) 2004-03-11 2005-09-14 Honda Motor Co., Ltd. Polymer electrolyte fuel cell
US7851095B2 (en) 2004-05-26 2010-12-14 Johnson Matthey Public Limited Company Anode structure
JP2008243548A (en) * 2007-03-27 2008-10-09 Toyota Central R&D Labs Inc Electrode catalyst layer for fuel cell, and its manufacturing method
US20100062305A1 (en) * 2007-03-27 2010-03-11 Satoshi Kadotani Electrode catalyst layer for fuel cell and method of producing the same
WO2008123486A1 (en) 2007-03-27 2008-10-16 Toyota Jidosha Kabushiki Kaisha Electrode catalyst layer for fuel cell and method for producing the same
WO2008153145A1 (en) 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Film-electrode assembly, film-electrode gas diffusion layer assembly having the same, solid state polymer fuel cell, and film-electrode assembly manufacturing method
WO2008153152A1 (en) 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Membrane-electrode assembly, and membrane-electrode-(gas diffusion layer) assembly and solid polymer fuel cell each comprising the same

Similar Documents

Publication Publication Date Title
Chen et al. Novel gas diffusion layer with water management function for PEMFC
Gamburzev et al. Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC)
Liu et al. Development of novel self-humidifying composite membranes for fuel cells
US5523177A (en) Membrane-electrode assembly for a direct methanol fuel cell
Antolini et al. Effects of the cathode gas diffusion layer characteristics on the performance of polymer electrolyte fuel cells
US20040115517A1 (en) Electrode for solid polymer fuel cell
Watanabe et al. Self‐humidifying polymer electrolyte membranes for fuel cells
US20040045816A1 (en) Solids supporting mass transfer for fuel cells and other applications and solutions and methods for forming
Matsumoto et al. Very High Performance Alkali Anion‐Exchange Membrane Fuel Cells
US20040131919A1 (en) Polymer electrolyte fuel cell
Antolini et al. Effects of the carbon powder characteristics in the cathode gas diffusion layer on the performance of polymer electrolyte fuel cells
US20020037449A1 (en) Membrane electrode unit for polymer electrolyte fuel cells and a process for the production thereof
Antoine et al. Catalyst gradient for cathode active layer of proton exchange membrane fuel cell
Yoon et al. Effect of pore structure of catalyst layer in a PEMFC on its performance
Wang et al. Durability studies on performance degradation of Pt/C catalysts of proton exchange membrane fuel cell
JPH09265993A (en) Solid polymer type fuel cell
JP2006004879A (en) Gas diffusion electrode and solid polymer electrolyte fuel cell
JPH0652871A (en) Solid highpolymer fuel cell
Yoon et al. Effects of channel configurations of flow field plates on the performance of a PEMFC
Hwang et al. Influence of properties of gas diffusion layers on the performance of polymer electrolyte-based unitized reversible fuel cells
JP2000058073A (en) Fuel cell
JP2002110191A (en) Direct methanol fuel cell
JP2005026174A (en) Solid polymer type fuel cell
JP2006252948A (en) Humidity adjusting film
JPH10270056A (en) Anode electrode catalyst for solid polymer fuel cell