JP2002145987A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device

Info

Publication number
JP2002145987A
JP2002145987A JP2000346032A JP2000346032A JP2002145987A JP 2002145987 A JP2002145987 A JP 2002145987A JP 2000346032 A JP2000346032 A JP 2000346032A JP 2000346032 A JP2000346032 A JP 2000346032A JP 2002145987 A JP2002145987 A JP 2002145987A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
weight
total
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000346032A
Other languages
Japanese (ja)
Other versions
JP4639461B2 (en
Inventor
Shigeyuki Maeda
重之 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2000346032A priority Critical patent/JP4639461B2/en
Publication of JP2002145987A publication Critical patent/JP2002145987A/en
Application granted granted Critical
Publication of JP4639461B2 publication Critical patent/JP4639461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin composition which has excellent flowability and excellent curability and can give cured products that can achieve V-0 on a UL-94 vertical test without containing a flame retardant, hardly warps when subjected to a soldering treatment, and has excellent soldering crack resistance. SOLUTION: This epoxy resin composition for sealing area mounting type semiconductors is characterized by containing (a) an epoxy resin of formula (1), (b) an epoxy resin brained by the glycidyl-etherification of a mixture of phenolic compounds of formulas (2), and (3), a resin curing agent containing a resin curing agent of formula (4) in an amount of 30 to 100 wt.% based on the total resin curing agents, an inorganic filler, and a curing accelerator as essential components. Therein, the contents of the components (a) and (b) are 30 to 70 wt.% and 30 to 70 wt.%, respectively, based on the total epoxy resins, and the equivalent ratio of the epoxy groups in the total epoxy resins to the phenolic hydroxyl groups in the total resin curing agents is 0.5 to 2. The inorganic filler is contained in an amount of 75 to 95 wt.% based on the total epoxy resin composition, and the curing accelerator is contained in an amount of 0.4 to 25 pts.wt. per 100 pts.wt. of the sum of the total epoxy resin and the total resin curing agents.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プリント配線板や
金属リードフレームの片面に半導体素子を搭載し、その
搭載面側の実質的に片面のみを樹脂封止されたいわゆる
エリア実装型半導体装置に適した半導体封止用エポキシ
樹脂組成物、及びこれを用いた半導体装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called area mounting type semiconductor device in which a semiconductor element is mounted on one surface of a printed wiring board or a metal lead frame, and substantially only one of the mounting surfaces is resin-sealed. The present invention relates to a suitable epoxy resin composition for semiconductor encapsulation and a semiconductor device using the same.

【0002】[0002]

【従来の技術】近年の電子機器の小型化、軽量化、高性
能化の市場動向において、半導体素子の高集積化が年々
進み、又、半導体装置の表面実装化が促進されるなか
で、新規にエリア実装型半導体装置が開発され、従来構
造の半導体装置から移行し始めている。エリア実装型半
導体装置としてはBGA(ボールグリッドアレイ)或い
は更に小型化を追求したCSP(チップスケールパッケ
ージ)等が代表的であるが、これらは従来QFP、SO
Pに代表される表面実装型半導体装置では限界に近づい
ている多ピン化・高速化への要求に対応するために開発
されたものである。構造としては、BT樹脂/銅箔回路
基板(ビスマレイミド・トリアジン樹脂/ガラスクロス
基板)に代表される硬質回路基板、或いはポリイミド樹
脂フィルム/銅箔回路基板に代表されるフレキシブル回
路基板の片面上に半導体素子を搭載し、その半導体素子
搭載面、即ち基板の片面のみがエポキシ樹脂組成物等で
成形・封止されている。又、基板の半導体素子搭載面の
反対面には半田ボールを2次元的に並列して形成し、半
導体装置を実装する回路基板との接合を行う特徴を有し
ている。更に、半導体素子を搭載する基板としては、上
記の有機回路基板以外にもリードフレーム等の金属基板
を用いる構造も開発されている。
2. Description of the Related Art In recent years, in the market trend of miniaturization, weight reduction and high performance of electronic equipment, high integration of semiconductor elements has been progressing year by year, and surface mounting of semiconductor devices has been promoted. In recent years, area-mounted semiconductor devices have been developed, and are beginning to shift from semiconductor devices having conventional structures. A typical example of an area-mounted semiconductor device is a BGA (ball grid array) or a CSP (chip scale package) pursuing further miniaturization.
The surface-mount type semiconductor device represented by P has been developed in order to meet the demand for more pins and higher speed, which is approaching the limit. As the structure, on one side of a rigid circuit board represented by a BT resin / copper foil circuit board (bismaleimide / triazine resin / glass cloth board) or a flexible circuit board represented by a polyimide resin film / copper foil circuit board A semiconductor element is mounted, and only the semiconductor element mounting surface, that is, only one side of the substrate is molded and sealed with an epoxy resin composition or the like. Further, on the surface opposite to the semiconductor element mounting surface of the substrate, solder balls are formed two-dimensionally in parallel, and are characterized in that they are joined to a circuit board on which a semiconductor device is mounted. Further, as a substrate on which a semiconductor element is mounted, a structure using a metal substrate such as a lead frame has been developed in addition to the above-described organic circuit substrate.

【0003】これらエリア実装型半導体装置の構造は、
基板の半導体素子搭載面のみをエポキシ樹脂組成物で封
止し、半田ボール形成面側は封止しないという片面封止
の形態をとっている。リードフレーム等の金属基板等で
は、半田ボール形成面でも数十μm程度の封止樹脂層が
存在することもあるが、半導体素子搭載面では数百μm
から数mm程度の封止樹脂層が形成されるため、実質的
に片面封止となっている。このため、有機基板や金属基
板とエポキシ樹脂組成物の硬化物との間での熱膨張・熱
収縮の不整合、或いはエポキシ樹脂組成物の成形硬化時
の硬化収縮による影響で、これらの半導体装置では成形
直後から反りが発生しやすい。更に、これらの半導体装
置を実装する回路基板上に半田接合を行う場合、200
℃以上の加熱工程を経るが、この際にも半導体装置の反
りが発生し、多数の半田ボールが平坦とならず、半導体
装置を実装する回路基板から浮き上がってしまい、電気
的接合の信頼性が低下する問題が起こる。
The structure of these area-mounted semiconductor devices is as follows:
A single-sided sealing configuration is adopted in which only the semiconductor element mounting surface of the substrate is sealed with the epoxy resin composition and the solder ball forming surface is not sealed. On a metal substrate such as a lead frame, a sealing resin layer of about several tens of μm may be present even on the surface on which the solder ball is formed, but several hundred μm on the surface on which the semiconductor element is mounted.
Since a sealing resin layer having a thickness of about several mm is formed, substantially single-sided sealing is achieved. For this reason, these semiconductor devices may be affected by mismatch of thermal expansion and thermal shrinkage between the organic substrate or the metal substrate and the cured product of the epoxy resin composition, or the effect of curing shrinkage during molding and curing of the epoxy resin composition. In this case, warpage tends to occur immediately after molding. Further, when soldering is performed on a circuit board on which these semiconductor devices are mounted, 200
Although the semiconductor device undergoes a heating process at a temperature of ℃ or more, warping of the semiconductor device also occurs at this time, and many solder balls do not become flat and rise from the circuit board on which the semiconductor device is mounted, and the reliability of the electrical connection is reduced. Deteriorating problems occur.

【0004】基板上の実質的に片面のみをエポキシ樹脂
組成物で封止した半導体装置において、反りを低減する
には、基板の熱膨張係数とエポキシ樹脂組成物の硬化物
の熱膨張係数とを近づけること、及びエポキシ樹脂組成
物の硬化物の硬化収縮量を小さくすることの二つの方法
が重要である。基板としては、有機基板ではBT樹脂や
ポリイミド樹脂のような高いガラス転移温度(以下、T
gという)を有する樹脂が広く用いられており、これら
はエポキシ樹脂組成物の成形温度である170℃近辺よ
りも高いTgを有する。従って、成形温度から室温まで
の冷却過程では有機基板の線膨張係数(以下、α1とい
う)の領域のみで収縮する。従って、エポキシ樹脂組成
物の硬化物も、Tgが高く且つα1が有機基板と同じ
で、更に硬化収縮量がゼロであれば、反りはほぼゼロで
あると考えられる。このため、多官能型エポキシ樹脂と
多官能型フェノール樹脂との組み合わせによりTgを高
くし、無機充填材の配合量でα1を合わせる手法が既に
提案されている。
In a semiconductor device in which substantially only one surface on a substrate is sealed with an epoxy resin composition, in order to reduce warpage, the thermal expansion coefficient of the substrate and the thermal expansion coefficient of a cured product of the epoxy resin composition are determined. Two approaches are important: approaching the same and reducing the amount of cure shrinkage of the cured product of the epoxy resin composition. As a substrate, an organic substrate has a high glass transition temperature (hereinafter, referred to as T) such as BT resin or polyimide resin.
g) are widely used and have a Tg higher than around 170 ° C., which is the molding temperature of the epoxy resin composition. Therefore, during the cooling process from the molding temperature to room temperature, the organic substrate contracts only in the region of the linear expansion coefficient (hereinafter referred to as α1). Accordingly, if the cured product of the epoxy resin composition has a high Tg, the same α1 as that of the organic substrate, and the curing shrinkage is zero, the warpage is considered to be almost zero. For this reason, a method has already been proposed in which Tg is increased by combining a polyfunctional epoxy resin and a polyfunctional phenol resin, and α1 is adjusted by the amount of the inorganic filler.

【0005】又、赤外線リフロー、ベーパーフェイズソ
ルダリング、半田浸漬等の手段での半田処理による半田
接合を行う場合、エポキシ樹脂組成物の硬化物並びに有
機基板からの吸湿により半導体装置内部に存在する水分
が高温で急激に気化することによる応力で半導体装置に
クラックが発生したり、有機基板の半導体素子搭載面と
エポキシ樹脂組成物の硬化物との界面で剥離が発生する
こともあり、エポキシ樹脂組成物の低応力化・低吸湿化
とともに、有機基板との接着性も求められる。従来のB
GAやCSP等のエリア実装型半導体装置には、反りの
低減のためにトリフェノールメタン型エポキシ樹脂とト
リフェノールメタン型フェノール樹脂を樹脂成分とする
エポキシ樹脂組成物が用いられてきた。このエポキシ樹
脂組成物は、Tgが高く、硬化性、熱時曲げ強度に優れ
た特性を有しているが、硬化物の吸湿率が高く、又、エ
ポキシ樹脂組成物の溶融粘度が比較的高く、無機充填材
の高充填化には限界があり、低吸湿化が不十分で、耐半
田クラック性には問題があった。
[0005] When soldering is performed by soldering by means such as infrared reflow, vapor phase soldering, or solder immersion, moisture present inside the semiconductor device due to moisture absorption from the cured epoxy resin composition and the organic substrate. Cracks occur in the semiconductor device due to stress caused by rapid vaporization at high temperatures, and peeling may occur at the interface between the semiconductor element mounting surface of the organic substrate and the cured epoxy resin composition. In addition to low stress and low moisture absorption of products, adhesion to organic substrates is also required. Conventional B
In area-mounted semiconductor devices such as GA and CSP, a triphenolmethane-type epoxy resin and an epoxy resin composition containing a triphenolmethane-type phenol resin as a resin component have been used to reduce warpage. This epoxy resin composition has a high Tg, curability, and properties having excellent flexural strength when heated. However, the moisture absorption of the cured product is high, and the melt viscosity of the epoxy resin composition is relatively high. However, there is a limit in increasing the amount of the inorganic filler, and there is a problem in that the moisture absorption is insufficient and the solder crack resistance is poor.

【0006】一方、従来のQFPやSOP等の表面実装
型半導体装置では、半田実装時のクラックや各素材界面
での剥離防止のために、ビフェニル型エポキシ樹脂に代
表されるような結晶性エポキシ樹脂を使用して無機充填
材の高充填化を図っているが、トリフェノールメタン型
エポキシ樹脂を用いたエポキシ樹脂組成物の硬化物と比
較すると熱時曲げ強度が低く、かつ硬化が遅いのが問題
であった。そこで、反りが小さく、硬化性、熱時曲げ強
度に優れ、かつ低吸湿性により耐半田クラック性に優れ
るエポキシ樹脂組成物を得るため、トリフェノールメタ
ン型エポキシ樹脂と結晶性エポキシ樹脂の特徴を生かす
べく、エポキシ樹脂組成物の製造時に両方のエポキシ樹
脂を適正量併用したり、予め両方のエポキシ樹脂を溶融
混合したものを用いても、トリフェノールメタン型エポ
キシ樹脂を用いた時の反りが小さく、硬化性、熱時曲げ
強度に優れるという特徴と、結晶性エポキシ樹脂を用い
て無機充填材の高充填化を図った時の耐半田クラック性
に優れるという特徴とを両立することはできておらず、
不十分であった。
On the other hand, in a conventional surface mount type semiconductor device such as QFP or SOP, a crystalline epoxy resin such as a biphenyl type epoxy resin is used in order to prevent cracks at the time of solder mounting and peeling at interfaces between materials. Is used to increase the filling of inorganic fillers, but the problem is that the flexural strength when heated is lower and curing is slower than the cured epoxy resin composition using a triphenolmethane-type epoxy resin. Met. Therefore, in order to obtain an epoxy resin composition having a small warpage, excellent curability, excellent bending strength under heat, and excellent solder crack resistance due to low moisture absorption, the characteristics of the triphenolmethane type epoxy resin and the crystalline epoxy resin are utilized. Therefore, even when using an appropriate amount of both epoxy resins at the time of the production of the epoxy resin composition, or using a pre-melted mixture of both epoxy resins, the warpage when using a triphenolmethane type epoxy resin is small, It has not been possible to achieve both the characteristics of excellent curability and bending strength under heat, and the characteristic of excellent solder crack resistance when using a crystalline epoxy resin to increase the filling of inorganic fillers. ,
It was not enough.

【0007】又、これらのエポキシ樹脂組成物中には、
難燃性を確保するために難燃剤としてハロゲン系難燃剤
と酸化アンチモンが配合されている。ところが、環境・
衛生の点からハロゲン系難燃剤、酸化アンチモンを使用
しない難燃性に優れたエポキシ樹脂組成物の開発が要求
されている。この要求に対して、水酸化アルミニウムや
水酸化マグネシウム等の水酸化物、硼素系化合物が検討
されてきたが、多量に配合しないと難燃性の効果が発現
せず、又、不純物が多く耐湿性に問題があることから実
用化されていない。又、赤燐系の難燃剤は少量の添加で
効果があり、エポキシ樹脂組成物の難燃化に有用である
が、赤燐は微量の水分と反応しホスフィンや腐食性の燐
酸を生じるため耐湿性に問題があり、耐湿性に対する要
求が極めて厳しい半導体封止用エポキシ樹脂組成物には
使用できない。このため、赤燐粒子を水酸化アルミニウ
ム、金属酸化物、その他無機化合物、熱硬化性樹脂等の
有機化合物で被膜し、赤燐の安定化を図っているが、依
然耐湿性に問題があり、ハロゲン系難燃剤、酸化アンチ
モンを使用せずに難燃性、耐湿性を両立出来るエポキシ
樹脂組成物がないのが実状である。又、環境・衛生の点
以外でも、ハロゲン系難燃剤、酸化アンチモンを含むエ
ポキシ樹脂組成物で封止された半導体装置を高温下で保
管した場合、これらの難燃性成分から熱分解したハロゲ
ン化物が遊離し、半導体素子の接合部を腐食し、半導体
装置の信頼性を損なうという不具合が知られており、こ
の様な点からもハロゲン系難燃剤、酸化アンチモンを使
用しない難燃性に優れたエポキシ樹脂組成物の開発が要
求されている。この様に、半導体装置を高温下(例えば
185℃)に保管した後の半導体素子の接合部(ボンデ
ィングパッド部)の耐腐食性のことを、高温保管特性と
いい、この高温保管特性を改善する手法としては、五酸
化二アンチモンを使用する方法(特開昭55−1469
50号公報)や、酸化アンチモンと有機ホスフィンとを
組み合わせる方法(特開昭61−53321号公報)等
が提案され、効果が確認されているが、最近の半導体装
置に対する高温保管特性の高い要求特性を満足させるこ
とが困難になってきている。
Further, in these epoxy resin compositions,
In order to ensure flame retardancy, a halogen-based flame retardant and antimony oxide are blended as flame retardants. However, the environment
From the viewpoint of hygiene, there is a demand for the development of an epoxy resin composition having excellent flame retardancy without using a halogen-based flame retardant and antimony oxide. To meet this demand, hydroxides such as aluminum hydroxide and magnesium hydroxide, and boron compounds have been studied. However, if not added in large amounts, the flame retardant effect is not exhibited, and there are many impurities and moisture resistance. It has not been put to practical use due to its problem in nature. A red phosphorus-based flame retardant is effective when added in a small amount, and is useful for making an epoxy resin composition flame-retardant. However, red phosphorus reacts with a small amount of water to generate phosphine and corrosive phosphoric acid, so that moisture resistance is low. However, it cannot be used for epoxy resin compositions for semiconductor encapsulation, which have extremely severe requirements for moisture resistance. For this reason, red phosphorus particles are coated with an organic compound such as aluminum hydroxide, metal oxides, other inorganic compounds, and thermosetting resins to stabilize the red phosphorus, but there is still a problem with moisture resistance. In fact, there is no epoxy resin composition that can achieve both flame retardancy and moisture resistance without using a halogen-based flame retardant or antimony oxide. In addition to environmental and sanitary considerations, when a semiconductor device sealed with an epoxy resin composition containing a halogen-based flame retardant and antimony oxide is stored at a high temperature, a halide thermally decomposed from these flame-retardant components is used. Is known to cause corrosion of the joints of the semiconductor elements, thereby deteriorating the reliability of the semiconductor device. From such a point, it is excellent in flame retardancy without using a halogen-based flame retardant and antimony oxide. Development of epoxy resin compositions is required. As described above, the corrosion resistance of the bonding portion (bonding pad portion) of the semiconductor element after storing the semiconductor device at a high temperature (for example, 185 ° C.) is called a high-temperature storage characteristic, and the high-temperature storage characteristic is improved. As a method, a method using diantimony pentoxide (JP-A-55-1469) is used.
No. 50) and a method of combining antimony oxide and an organic phosphine (Japanese Patent Application Laid-Open No. 61-53321) have been proposed and their effects have been confirmed. Is becoming difficult to satisfy.

【0008】[0008]

【発明が解決しようとする課題】本発明は、成形後や半
田処理時の反りが小さく、耐半田クラック性、流動性、
硬化性に優れ、かつ難燃剤を配合せずにUL−94垂直
試験においてV−0を達成できる、エリア実装型半導体
装置に適した半導体封止用エポキシ樹脂組成物、及びこ
れを用いた半導体装置を提供するものである。
DISCLOSURE OF THE INVENTION The present invention has a small warpage after molding or soldering, and has resistance to solder cracking, fluidity,
An epoxy resin composition for semiconductor encapsulation suitable for area-mount type semiconductor devices, which has excellent curability and can achieve V-0 in a UL-94 vertical test without blending a flame retardant, and a semiconductor device using the same. Is provided.

【0009】[0009]

【課題を解決するための手段】本発明は、[1](A)
一般式(1)で示されるエポキシ樹脂(a)、(B)式
(2)で示されるフェノール化合物と式(3)で示され
るフェノール化合物とを混合しグリシジルエーテル化し
たエポキシ樹脂(b)、(C)一般式(4)で示される
樹脂硬化剤を全樹脂硬化剤中に30〜100重量%含む
樹脂硬化剤、(D)無機充填材、及び(E)硬化促進剤
を必須成分とし、(a)が全エポキシ樹脂中に30〜7
0重量%であり、(b)が全エポキシ樹脂中に30〜7
0重量%であり、全エポキシ樹脂中のエポキシ基と全樹
脂硬化剤中のフェノール性水酸基の当量比が0.5〜2
であり、無機充填材が全エポキシ樹脂組成物中に75〜
95重量%であり、硬化促進剤が全エポキシ樹脂と全樹
脂硬化剤との合計量100重量部当たり0.4〜25重
量部であることを特徴とするエリア実装型半導体封止用
エポキシ樹脂組成物。
Means for Solving the Problems The present invention provides [1] (A)
An epoxy resin (a) represented by the general formula (1), (B) an epoxy resin (b) mixed with a phenol compound represented by the formula (2) and a phenol compound represented by the formula (3), and glycidyl etherified; (C) a resin curing agent containing 30 to 100% by weight of a resin curing agent represented by the general formula (4) in all resin curing agents, (D) an inorganic filler, and (E) a curing accelerator as essential components, (A) is 30 to 7 in all epoxy resins
0% by weight, and (b) is 30 to 7 in the total epoxy resin.
0% by weight, and the equivalent ratio of epoxy groups in all epoxy resins to phenolic hydroxyl groups in all resin curing agents is 0.5 to 2
And the inorganic filler in the total epoxy resin composition is 75 to
95% by weight, wherein the curing accelerator is 0.4 to 25 parts by weight per 100 parts by weight of the total amount of all epoxy resins and all resin curing agents object.

【化4】 (式中のR1、R2は、炭素数1〜4のアルキル基で、
aは0〜3の整数、bは0〜4の整数で、互いに同一で
あっても異なっていてもよい。 nは平均値で、1〜1
0の正数。)
Embedded image (Wherein R1 and R2 are alkyl groups having 1 to 4 carbon atoms,
a is an integer of 0 to 3 and b is an integer of 0 to 4, which may be the same or different. n is an average value, 1 to 1
Positive number of 0. )

【0010】[0010]

【化5】 Embedded image

【0011】[0011]

【化6】 (式中のR3、R4は、炭素数1〜4のアルキル基で、
cは0〜3の整数、dは0〜4の整数で、互いに同一で
あっても異なっていてもよい。 nは平均値で、1〜1
0の正数。) [2]全エポキシ樹脂組成物中に含有される臭素原子及
びアンチモン原子が、それぞれ0.1重量%未満である
第[1]項記載の半導体封止用エポキシ樹脂組成物、
[3]基板の片面に半導体素子が搭載され、この半導体
素子が搭載された基板面側の実質的に片面のみが第
[1]項、又は第[2]項記載のエポキシ樹脂組成物を
用いて封止されていることを特徴とする半導体装置、を
提供するものである。
Embedded image (R3 and R4 in the formula are alkyl groups having 1 to 4 carbon atoms,
c is an integer of 0 to 3 and d is an integer of 0 to 4, which may be the same or different. n is an average value, 1 to 1
Positive number of 0. [2] The epoxy resin composition for semiconductor encapsulation according to [1], wherein bromine atoms and antimony atoms contained in the entire epoxy resin composition are each less than 0.1% by weight,
[3] A semiconductor element is mounted on one surface of a substrate, and substantially only one surface on the substrate surface side on which the semiconductor element is mounted uses the epoxy resin composition described in [1] or [2]. And a semiconductor device characterized by being sealed.

【0012】[0012]

【発明の実施の形態】本発明では、特定のエポキシ樹脂
と特定の樹脂硬化剤を組み合わせることにより、成形後
や半田処理時の反りが小さく、耐半田クラック性、流動
性、硬化性に優れ、かつ難燃剤を配合せずにUL−94
垂直試験においてV−0を達成できるエポキシ樹脂組成
物が得られることを見出した。本発明に用いる一般式
(1)で示されるエポキシ樹脂は、分子中にビフェニル
誘導体を含むノボラック構造であり、一般式(4)で示
される樹脂硬化剤は、分子中にナフタレン誘導体を含む
ノボラック構造の樹脂であり、エポキシ樹脂、樹脂硬化
剤の分子中にビフェニル誘導体やナフタレン誘導体等の
芳香族環を含むものである。エポキシ樹脂及び樹脂硬化
剤にビフェニル誘導体やナフタレン誘導体のような芳香
族環が含まれると、分子間の結合エネルギーが大きくな
り、燃焼による分解が起こり難くなるため難燃性が発現
する。又、エポキシ樹脂あるいは樹脂硬化剤の分子中に
芳香族環の数がより多いもの、即ちナフタレン誘導体よ
りもアントラセン誘導体を含む方が燃え難くなり、難燃
性は向上するが、軟化点が高くなり過ぎて流動性に問題
があり、ビフェニル誘導体、ナフタレン誘導体が難燃性
と流動性のバランスが良く最適である。又、本発明のエ
ポキシ樹脂、及び樹脂硬化剤が疎水性の芳香族環を有し
ていることと、架橋間距離が汎用のオルソクレゾールノ
ボラック型エポキシ樹脂やフェノールノボラック樹脂と
比較すると大きいために吸湿率が比較的低いこと等によ
り、本発明のエポキシ樹脂組成物を用いた半導体装置
は、実装時の半田処理下でも高い信頼性を得ることがで
きる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, by combining a specific epoxy resin and a specific resin curing agent, warpage after molding and soldering is small, and solder crack resistance, fluidity and curability are excellent. UL-94 without flame retardant
It was found that an epoxy resin composition capable of achieving V-0 in a vertical test was obtained. The epoxy resin represented by the general formula (1) used in the present invention has a novolak structure containing a biphenyl derivative in the molecule, and the resin curing agent represented by the general formula (4) has a novolak structure containing a naphthalene derivative in the molecule. And an aromatic resin such as a biphenyl derivative or a naphthalene derivative in the molecule of an epoxy resin or a resin curing agent. When the epoxy resin and the resin curing agent contain an aromatic ring such as a biphenyl derivative or a naphthalene derivative, the bonding energy between the molecules increases, and decomposition by combustion hardly occurs, so that flame retardancy is exhibited. Further, those having a larger number of aromatic rings in the molecule of the epoxy resin or the resin curing agent, that is, those containing an anthracene derivative than a naphthalene derivative are more difficult to burn, and the flame retardancy is improved, but the softening point is increased. There is a problem in fluidity, and biphenyl derivatives and naphthalene derivatives are optimal because of good balance between flame retardancy and fluidity. In addition, the epoxy resin of the present invention and the resin curing agent have a hydrophobic aromatic ring, and the distance between crosslinks is larger than that of a general-purpose ortho-cresol novolak type epoxy resin or phenol novolak resin, so that moisture absorption is caused. Due to the relatively low rate, the semiconductor device using the epoxy resin composition of the present invention can achieve high reliability even under soldering during mounting.

【0013】本発明で用いる一般式(1)で示されるエ
ポキシ樹脂(a)は、分子中にビフェニル誘導体を含む
ノボラック構造のエポキシ樹脂であり、具体的には、フ
ェノール類とビス(メトキシメチレン)ビフェノール類
とをフリーデル・クラフツ・アルキル化反応させて得ら
れたフェノール樹脂を、グリシジルエーテル化させて得
られるエポキシ樹脂である。一般式(1)中のnは平均
値で、1〜10であり、nが10を超えると、粘度が高
くなり過ぎ、流動性が低下するので好ましくない。
The epoxy resin (a) represented by the general formula (1) used in the present invention is a novolak structure epoxy resin containing a biphenyl derivative in the molecule. Specifically, phenols and bis (methoxymethylene) It is an epoxy resin obtained by subjecting a phenol resin obtained by a Friedel-Crafts alkylation reaction with biphenols to glycidyl etherification. N in the general formula (1) is an average value of 1 to 10, and if n exceeds 10, the viscosity becomes too high and the fluidity decreases, which is not preferable.

【0014】本発明で用いる式(2)で示されるフェノ
ール化合物と式(3)で示されるフェノール化合物とを
混合しグリシジルエーテル化したエポキシ樹脂(b)
は、優れた流動性、硬化性を付与する。式(2)と、式
(3)のフェノール化合物の混合比としては、重量比で
10/90〜90/10が好ましい。本発明のエポキシ
樹脂(b)の合成方法については特に限定しないが、例
えば、混合した式(2)、式(3)のフェノール化合物
を過剰のエピクロルヒドリンに溶解した後、水酸化ナト
リウム、水酸化カリウム等のアルカリ金属水酸化物の存
在下で50〜150℃、好ましくは60〜120℃で1
〜10時間反応させる方法が挙げられる。反応終了後、
過剰のエピクロルヒドリンを留去し、残留物をトルエ
ン、メチルイソブチルケトン等の溶剤に溶解し、濾過
し、水洗して無機塩を除去し、次いで溶剤を留去するこ
とにより目的のエポキシ樹脂(b)を得ることができ
る。生成したエポキシ樹脂(b)の塩素イオン、ナトリ
ウムイオン、その他フリーのイオンは極力少ないことが
望ましい。
Epoxy resin (b) obtained by mixing the phenol compound represented by the formula (2) and the phenol compound represented by the formula (3) and glycidyl etherifying the mixture.
Imparts excellent fluidity and curability. The mixing ratio of the phenol compound of the formula (2) to the phenol compound of the formula (3) is preferably 10/90 to 90/10 by weight. The method for synthesizing the epoxy resin (b) of the present invention is not particularly limited. For example, after dissolving the mixed phenolic compounds of the formulas (2) and (3) in an excess of epichlorohydrin, sodium hydroxide, potassium hydroxide At 50 to 150 ° C, preferably 60 to 120 ° C in the presence of an alkali metal hydroxide such as
For 10 to 10 hours. After the reaction,
Excess epichlorohydrin is distilled off, the residue is dissolved in a solvent such as toluene or methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the solvent is distilled off to obtain the desired epoxy resin (b). Can be obtained. It is desirable that the generated epoxy resin (b) has as few chlorine ions, sodium ions and other free ions as possible.

【0015】エポキシ樹脂(a)が全エポキシ樹脂中に
30〜70重量%であり、エポキシ樹脂(b)が全エポ
キシ樹脂中に30〜70重量%となる様に調整すると、
エポキシ樹脂組成物中に臭素化エポキシ樹脂、酸化アン
チモンを配合しなくてもV−0レベルの難燃性を得易く
なる。エポキシ樹脂(a)が、全エポキシ樹脂中に30
重量%未満だと良好な難燃性が得られず、70重量%を
越えると流動性が悪くなる。又、エポキシ樹脂(b)
が、全エポキシ樹脂中に30重量%未満だと流動性が悪
くなり、70重量%を越えると良好な難燃性が得られな
い。エポキシ樹脂(a)とエポキシ樹脂(b)の特性を
最大限に引き出すためには、全エポキシ樹脂中にそれぞ
れ30重量%以上含まれることが好ましく、これにより
優れた流動性、耐湿信頼性、難燃性が得られる。エポキ
シ樹脂(a)、エポキシ樹脂(b)の特性を損なわない
範囲で、他のエポキシ樹脂を併用できる。併用できるエ
ポキシ樹脂としては、例えば、ビスフェノールA型エポ
キシ樹脂、ビスフェノールF型エポキシ樹脂、スチルベ
ン型エポキシ樹脂、フェノールノボラック型エポキシ樹
脂、オルソクレゾールノボラック型エポキシ樹脂、ナフ
トールノボラック型エポキシ樹脂、トリフェノールメタ
ン型エポキシ樹脂、ジシクロペンタジエン変性フェノー
ル型エポキシ樹脂、テルペン変性フェノール型エポキシ
樹脂、ハイドロキノン型エポキシ樹脂等が挙げられる
が、これらに限定されるものではない。
When the epoxy resin (a) is adjusted to 30 to 70% by weight in the total epoxy resin and the epoxy resin (b) is adjusted to 30 to 70% by weight in the total epoxy resin,
Even without adding a brominated epoxy resin or antimony oxide in the epoxy resin composition, it becomes easy to obtain V-0 level flame retardancy. The epoxy resin (a) has 30% of the total epoxy resin.
If it is less than 70% by weight, good flame retardancy cannot be obtained, and if it exceeds 70% by weight, the fluidity becomes poor. Also, epoxy resin (b)
However, if the total epoxy resin content is less than 30% by weight, the fluidity is poor, and if it exceeds 70% by weight, good flame retardancy cannot be obtained. In order to maximize the properties of the epoxy resin (a) and the epoxy resin (b), it is preferable that each of the epoxy resins is contained in an amount of 30% by weight or more in all the epoxy resins. Flammability is obtained. Other epoxy resins can be used together as long as the properties of the epoxy resin (a) and the epoxy resin (b) are not impaired. Examples of epoxy resins that can be used in combination include bisphenol A epoxy resin, bisphenol F epoxy resin, stilbene epoxy resin, phenol novolak epoxy resin, orthocresol novolak epoxy resin, naphthol novolak epoxy resin, and triphenolmethane epoxy. Examples include resins, dicyclopentadiene-modified phenol-type epoxy resins, terpene-modified phenol-type epoxy resins, and hydroquinone-type epoxy resins, but are not limited thereto.

【0016】本発明で用いる一般式(4)で示される樹
脂硬化剤は、剛直なα−ナフトール骨格(ナフタレン誘
導体)を1分子中に少なくとも2個以上有するため、こ
れを用いたエポキシ樹脂組成物の硬化物の吸湿率が低く
なるという特性を有している。更にβ−ナフトール骨格
を有する樹脂硬化剤と比較すると、硬化時のエポキシ樹
脂組成物の硬化収縮率が小さく、接着強度の低下あるい
は硬化物のTgの低下等が生じ難いという特徴を有して
いる。更に、一般式(4)で示される樹脂硬化剤を全樹
脂硬化剤中に30重量%以上、好ましくは80重量%以
上含有することにより、エポキシ樹脂組成物で封止され
た半導体装置は、耐半田クラック性に優れ、反りが小さ
くなる。30重量%未満だと、硬化収縮率を低減できな
いため反りが大きくなり、更に併用する樹脂硬化剤によ
っては、吸水率が高くなるため、耐半田クラック性が低
下するので好ましくない。又、一般式(4)中のnは平
均値で、1〜10であり、nが10を越えると、トラン
スファー成形時の流動性が低下し、成形性が劣化する傾
向があるので好ましくない。一般式(4)で示される樹
脂硬化剤と他の樹脂硬化剤を併用する場合は、例えばフ
ェノールノボラック樹脂、クレゾールノボラック樹脂、
ジシクロペンタジエン変性フェノール樹脂、フェノール
アラルキル樹脂、テルペン変性フェノール樹脂、トリフ
ェノールメタン化合物等が挙げられる。
Since the resin curing agent represented by the general formula (4) used in the present invention has at least two rigid α-naphthol skeletons (naphthalene derivatives) in one molecule, an epoxy resin composition using the same Has the property that the moisture absorption of the cured product is reduced. Furthermore, when compared with a resin curing agent having a β-naphthol skeleton, the epoxy resin composition has a characteristic that the curing shrinkage of the epoxy resin composition at the time of curing is small, and a decrease in adhesive strength or a decrease in Tg of the cured product is unlikely to occur. . Further, by including the resin curing agent represented by the general formula (4) in the entire resin curing agent in an amount of 30% by weight or more, preferably 80% by weight or more, the semiconductor device sealed with the epoxy resin composition can have a high resistance. Excellent solder cracking properties and reduced warpage. If the amount is less than 30% by weight, the curing shrinkage cannot be reduced, so that the warpage increases. Further, depending on the resin curing agent used in combination, the water absorption increases, and the solder cracking resistance decreases, which is not preferable. Further, n in the general formula (4) is an average value of 1 to 10, and if n exceeds 10, the fluidity during transfer molding tends to decrease and moldability tends to deteriorate, which is not preferable. When a resin curing agent represented by the general formula (4) is used in combination with another resin curing agent, for example, a phenol novolak resin, a cresol novolak resin,
Examples thereof include a dicyclopentadiene-modified phenol resin, a phenol aralkyl resin, a terpene-modified phenol resin, and a triphenolmethane compound.

【0017】全エポキシ樹脂のエポキシ基と樹脂硬化剤
のフェノール性水酸基の当量比は0.5〜2が好まし
い。0.5未満であっても、2を越えても、エポキシ樹
脂組成物の硬化性の低下、あるいは硬化物のTgの低下
等が起こるので好ましくない。
The equivalent ratio of the epoxy groups of all epoxy resins to the phenolic hydroxyl groups of the resin curing agent is preferably 0.5 to 2. If it is less than 0.5 or more than 2, it is not preferable because the curability of the epoxy resin composition is lowered, or the Tg of the cured product is lowered.

【0018】本発明で用いる無機充填材の種類について
は特に制限はなく、一般に封止材料に用いられているも
のを使用することができる。例えば、溶融破砕シリカ、
溶融球状シリカ、結晶シリカ、2次凝集シリカ、アルミ
ナ、チタンホワイト、水酸化アルミニウム等が挙げら
れ、特に溶融球状シリカが好ましい。球状シリカの粒子
の形状としては、流動性改善のために限りなく真球状で
あり、かつ粒度分布がブロードであることが好ましい。
無機充填材の含有量としては、成形性と信頼性のバラン
スから、全エポキシ樹脂組成物中に75〜95重量%が
好ましい。75重量%未満だと、反りが大きくなり、良
好な信頼性が得られず、95重量%を越えると、成形性
に問題が生じるので好ましくない。無機充填材は、予め
十分に混合しておくことが好ましい。又、必要に応じて
カップリング剤やエポキシ樹脂あるいは樹脂硬化剤で予
め処理して用いても良く、処理の方法としては、溶剤を
用いて混合した後に溶媒を除去する方法や、直接無機充
填材に添加し混合機を用いて処理する方法等がある。
The kind of the inorganic filler used in the present invention is not particularly limited, and those generally used for a sealing material can be used. For example, fused silica,
Examples thereof include fused spherical silica, crystalline silica, secondary aggregated silica, alumina, titanium white, and aluminum hydroxide. Particularly preferred is fused spherical silica. The shape of the spherical silica particles is preferably infinitely spherical in order to improve fluidity, and the particle size distribution is preferably broad.
From the balance of moldability and reliability, the content of the inorganic filler is preferably 75 to 95% by weight in the entire epoxy resin composition. If the amount is less than 75% by weight, the warpage increases, and good reliability cannot be obtained. If the amount exceeds 95% by weight, problems arise in moldability, which is not preferable. It is preferable that the inorganic filler is sufficiently mixed in advance. If necessary, it may be used after previously treating with a coupling agent, an epoxy resin or a resin curing agent. Examples of the treatment method include a method of removing the solvent after mixing with a solvent, and a method of directly using an inorganic filler. And processing using a mixer.

【0019】本発明で用いる硬化促進剤としては、エポ
キシ基とフェノール性水酸基との硬化反応を促進させる
ものであればよく、一般に封止材料に用いられているも
のを広く用いることができる。例えば、1,8−ジアザ
ビシクロ(5,4,0)ウンデセン−7、トリフェニル
ホスフィン、ベンジルジメチルアミン、2−メチルイミ
ダゾール等が挙げられ、これらは単独でも混合して用い
てもよい。硬化促進剤の含有量としては、エポキシ樹脂
と樹脂硬化剤との合計量100重量部あたり0.4〜2
5重量部が好ましい。0.4重量部未満だと、加熱成形
時に十分な硬化性が得られないおそれがある。一方、2
5重量部を越えると、硬化が速すぎて成形時に流動性の
低下により充填不良等が生じるおそれがある。
As the curing accelerator used in the present invention, any one can be used as long as it promotes a curing reaction between an epoxy group and a phenolic hydroxyl group, and those generally used for a sealing material can be widely used. For example, 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, benzyldimethylamine, 2-methylimidazole and the like can be mentioned, and these may be used alone or as a mixture. The content of the curing accelerator is 0.4 to 2 per 100 parts by weight of the total amount of the epoxy resin and the resin curing agent.
5 parts by weight are preferred. If the amount is less than 0.4 parts by weight, sufficient curability may not be obtained during heat molding. Meanwhile, 2
If the amount exceeds 5 parts by weight, curing may be too fast and poor filling may occur due to a decrease in fluidity during molding.

【0020】本発明のエポキシ樹脂組成物は、(A)〜
(E)成分の他、必要に応じて臭素化エポキシ樹脂、酸
化アンチモン等の難燃剤を含有することは差し支えない
が、半導体装置の150〜200℃の高温下での電気特
性の安定性が要求される用途では、臭素原子、アンチモ
ン原子の含有量が、全エポキシ樹脂組成物中にそれぞれ
0.1重量%未満であることが好ましく、完全に含まれ
ない方がより好ましい。臭素原子が0.1重量%以上だ
と、高温下に保管した場合、難燃剤成分から熱分解した
臭素化物が遊離することにより半導体素子の接合部を腐
食し、半導体装置の信頼性を損なう可能性がある。又、
環境保護の観点からも、臭素原子、アンチモン原子のそ
れぞれの含有量が0.1重量%未満で、極力含有されて
いないことが望ましい。本発明のエポキシ樹脂組成物
は、(A)〜(E)成分の他、必要に応じて酸化ビスマ
ス水和物等の無機イオン交換体、γ−グリシドキシプロ
ピルトリメトキシシラン等のカップリング剤、カーボン
ブラック、ベンガラ等の着色剤、シリコーンオイル、シ
リコーンゴム等の低応力化成分、天然ワックス、合成ワ
ックス、高級脂肪酸及びその金属塩類もしくはパラフィ
ン等の離型剤、酸化防止剤等の各種添加剤を適宜配合し
てもよい。本発明のエポキシ樹脂組成物は、(A)〜
(E)成分、及びその他の添加剤等をミキサーを用いて
常温混合し、ロール、ニーダー、押出機等の混練機で溶
融混練し、冷却後粉砕して得られる。本発明のエポキシ
樹脂組成物を用いて、半導体素子等の電子部品を封止
し、半導体装置を製造するには、トランスファーモール
ド、コンプレッションモールド、インジェクションモー
ルド等の成形方法で硬化成形すればよい。特に、本発明
のエポキシ樹脂組成物は、エリア実装型半導体装置用に
適している。
The epoxy resin composition of the present invention comprises (A)
In addition to the component (E), a flame retardant such as a brominated epoxy resin or antimony oxide may be contained as necessary, but the semiconductor device must have stable electrical characteristics at a high temperature of 150 to 200 ° C. In such applications, the content of bromine atoms and antimony atoms is preferably less than 0.1% by weight in the total epoxy resin composition, and more preferably not completely contained. When the content of bromine atoms is 0.1% by weight or more, when stored at a high temperature, bromide that is thermally decomposed from the flame retardant component is liberated, thereby corroding the joint of the semiconductor element and possibly impairing the reliability of the semiconductor device. There is. or,
From the viewpoint of environmental protection, it is desirable that the content of each of the bromine atom and the antimony atom is less than 0.1% by weight and that they are not contained as much as possible. The epoxy resin composition of the present invention comprises, in addition to the components (A) to (E), if necessary, an inorganic ion exchanger such as bismuth oxide hydrate and a coupling agent such as γ-glycidoxypropyltrimethoxysilane. , Colorants such as carbon black and red iron oxide, low stress components such as silicone oil and silicone rubber, release agents such as natural wax, synthetic wax, higher fatty acids and their metal salts or paraffin, and various additives such as antioxidants May be appropriately compounded. The epoxy resin composition of the present invention comprises (A)
The (E) component and other additives are mixed at room temperature using a mixer, melt-kneaded with a kneader such as a roll, kneader, extruder, or the like, cooled, and pulverized. In order to manufacture a semiconductor device by encapsulating an electronic component such as a semiconductor element using the epoxy resin composition of the present invention, it is sufficient to cure and mold by a molding method such as a transfer mold, a compression mold, and an injection mold. In particular, the epoxy resin composition of the present invention is suitable for an area mounting type semiconductor device.

【0021】[0021]

【実施例】以下に、実施例を挙げて本発明を更に詳細に
説明するが、本発明はこれらの実施例によりなんら限定
されるものではない。配合割合は重量部とする。 実施例1 式(5)のエポキシ樹脂(軟化点57℃、エポキシ当量274) 2.26重量部
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. The mixing ratio is by weight. Example 1 2.26 parts by weight of an epoxy resin of the formula (5) (softening point: 57 ° C., epoxy equivalent: 274)

【化7】 Embedded image

【0022】 式(2)で示されるフェノール化合物と、式(3)で示されるフェノール化合 物とを1:1(重量比)で混合したものを、グリシジルエーテル化したエポキシ 樹脂(軟化点100℃、エポキシ当量162。以下、エポキシ樹脂B1という) 2.26重量部 式(6)のフェノール樹脂(軟化点85℃、水酸基当量210) 4.68重量部A mixture of a phenol compound represented by the formula (2) and a phenol compound represented by the formula (3) at a weight ratio of 1: 1 is glycidyl-etherified epoxy resin (softening point: 100 ° C.) 2.26 parts by weight of a phenolic resin of the formula (6) (softening point 85 ° C., hydroxyl equivalent 210) 4.68 parts by weight

【化8】 溶融球状シリカ(平均粒径15μm、比表面積2.2m2/g) 88.0重量部 1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという ) 2.00重量部 カーボンブラック 0.30重量部 カルナバワックス 0.50重量部 を、常温でミキサーを用いて混合し、70〜120℃で
2本ロールを用いて混練し、冷却後粉砕してエポキシ樹
脂組成物を得た。得られたエポキシ樹脂組成物を以下の
方法で評価した。
Embedded image Fused spherical silica (average particle diameter 15 μm, specific surface area 2.2 m 2 / g) 88.0 parts by weight 1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU) 2.00 parts by weight Carbon Black 0.30 parts by weight Carnauba wax 0.50 parts by weight was mixed at room temperature using a mixer, kneaded at 70 to 120 ° C. using two rolls, cooled, and ground to obtain an epoxy resin composition. . The obtained epoxy resin composition was evaluated by the following method.

【0023】・スパイラルフロー:EMMI−1−66
に準じたスパイラルフロー測定用の金型を用い、金型温
度175℃、圧力7MPa、硬化時間120秒で測定し
た。単位はcm。 ・硬化トルク:キュラストメータ((株)オリエンテッ
ク・製、JSRキュラストメータIVPS型)を用い、
金型温度175℃、加熱開始90秒後のトルクを求め
た。キュラストメータにおけるトルクは硬化性のパラメ
ータであり、数値の大きい方が硬化性が良好である。単
位はN・m。 ・吸湿率:トランスファー成形機を用いて、金型温度1
75℃、圧力7MPa、硬化時間120秒で直径50m
m、厚さ3mmの円板を成形し、175℃、8時間で後
硬化し、更に85℃、相対湿度60%の環境下で168
時間放置し、重量変化を測定して吸湿率を求めた。単位
は重量%。 ・パッケージ反り量:トランスファー成形機を用いて、
金型温度175℃、圧力7MPa、硬化時間120秒で
352pBGA(基板は厚さ0.56mm、ビスマレイ
ミド・トリアジン/ガラスクロス基板、パッケージサイ
ズは35×35mm、厚さ2.00mm、シリコンチッ
プはサイズ10×10mm、厚さ0.35mm、チップ
と回路基板のボンディングパッドとを25μm径の金線
でボンディングしている。)を成形し、175℃、8時
間で後硬化した。室温に冷却後、パッケージのゲートか
ら対角線方向に、表面粗さ計を用いて高さ方向の変位を
測定し、変位差の最も大きい値を反り量とした。単位は
μm。 ・耐半田クラック性:トランスファー成形機を用いて、
金型温度175℃、注入圧力800N/cm2、硬化時
間120秒で前記の352pBGAを8個成形し、17
5℃、8時間で後硬化した。その後、60℃、相対湿度
60%で120時間処理した後、IRリフロー処理(2
40℃)を行った水準(以下、L2Aという)と、85
℃、相対湿度60%で168時間処理した後、IRリフ
ロー処理(240℃)を行った水準(以下、L2とい
う)の2水準を実施した。処理後の内部の剥離、及びク
ラックの有無を超音波探傷機で観察し、不良パッケージ
の個数を数えた。不良パッケージの個数がn個であると
き、n/8と表示する。 ・難燃性:トランスファー成形機を用いて、金型温度1
75℃、圧力7MPa、120秒で試験片(厚さ1.6
mm)を成形し、175℃、8時間で後硬化した。その
後、 UL−94垂直試験に準じて以下の判定を行っ
た。 難燃性(V−0)の判定:Fmaxが10秒以内、ΣF
が50秒以内、Gmaxが30秒以内。 難燃性(V−1)の判定:Fmaxが30秒以内、ΣF
が250秒以内、Gmaxが60秒以内。 (但し、Fmaxはフレーミング時間の最大値(単位は
秒)、ΣFはフレーミング時間の合計(単位は秒)、G
maxはグローイング時間の最大値(単位は秒)。) ・高温保管特性:トランスファー成形機を用いて、成形
温度175℃、圧力7MPa、硬化時間120秒で16
pDIP(チップサイズ3.0mm×3.5mm)を成
形し、175℃、8時間で後硬化した。その後、高温保
管試験(185℃、1000時間)を行い、配線間の電
気抵抗値が初期値に対し20%上昇したパッケージを不
良と判定した。15個のパッケージ中の不良率を百分率
で示した。単位は%。 ・Br原子、Sb原子の含有量:圧力5.9MPaで直
径40mm、厚さ5〜7mmに圧縮成形し、蛍光X線分
析装置を用いて、全エポキシ樹脂組成物中の臭素原子、
アンチモン原子の含有量を定量した。単位は重量%。
Spiral flow: EMMI-1-66
The measurement was performed at a mold temperature of 175 ° C., a pressure of 7 MPa, and a curing time of 120 seconds using a mold for spiral flow measurement according to the above. The unit is cm. Curing torque: Using a curast meter (manufactured by Orientec Co., Ltd., JSR curast meter IVPS type)
The torque was determined at a mold temperature of 175 ° C. and 90 seconds after the start of heating. The torque in the curast meter is a parameter of curability, and the larger the numerical value, the better the curability. The unit is N · m. -Moisture absorption: mold temperature 1 using a transfer molding machine
50m diameter at 75 ° C, pressure 7MPa, curing time 120 seconds
m, a disk having a thickness of 3 mm, post-curing at 175 ° C. for 8 hours, and 168 ° C. in an environment of 85 ° C. and 60% relative humidity.
It was left for a while and the change in weight was measured to determine the moisture absorption. The unit is% by weight.・ Package warpage: Using a transfer molding machine
352pBGA at mold temperature 175 ° C, pressure 7MPa, curing time 120 seconds (substrate 0.56mm thick, bismaleimide triazine / glass cloth substrate, package size 35x35mm, thickness 2.00mm, silicon chip size A chip and a bonding pad of a circuit board having a size of 10 × 10 mm and a thickness of 0.35 mm were bonded with a gold wire having a diameter of 25 μm), and post-cured at 175 ° C. for 8 hours. After cooling to room temperature, the displacement in the height direction was measured using a surface roughness meter in the diagonal direction from the gate of the package, and the value of the largest displacement difference was defined as the amount of warpage. The unit is μm. -Solder crack resistance: Using a transfer molding machine
At a mold temperature of 175 ° C., an injection pressure of 800 N / cm 2 , and a curing time of 120 seconds, eight 352 pBGAs were molded.
Post-curing was performed at 5 ° C. for 8 hours. Then, after processing at 60 ° C. and a relative humidity of 60% for 120 hours, IR reflow processing (2
40 ° C.) (hereinafter referred to as L2A) and 85%
After treating for 168 hours at 60 ° C. and a relative humidity of 60%, two levels of a level (hereinafter, referred to as L2) subjected to an IR reflow treatment (240 ° C.) were performed. After the treatment, the presence or absence of internal peeling and cracks was observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, it is displayed as n / 8. -Flame retardancy: mold temperature 1 using transfer molding machine
Specimens (thickness 1.6) at 75 ° C, pressure 7MPa, 120 seconds
mm) and was post-cured at 175 ° C. for 8 hours. Thereafter, the following judgment was made according to the UL-94 vertical test. Judgment of flame retardancy (V-0): Fmax within 10 seconds, ΔF
Is within 50 seconds and Gmax is within 30 seconds. Judgment of flame retardancy (V-1): Fmax within 30 seconds, ΔF
Is within 250 seconds and Gmax is within 60 seconds. (However, Fmax is the maximum value of framing time (unit is second), ΔF is the total of framing time (unit is second), G
max is the maximum value of the glowing time (unit: seconds).・ High temperature storage characteristics: Using a transfer molding machine, the molding temperature is 175 ° C., the pressure is 7 MPa, and the curing time is 120 seconds.
pDIP (chip size 3.0 mm × 3.5 mm) was molded and post-cured at 175 ° C. for 8 hours. Thereafter, a high-temperature storage test (185 ° C., 1000 hours) was performed, and the package in which the electric resistance between the wirings increased by 20% from the initial value was determined to be defective. The percentage defective in 15 packages is shown as a percentage. Units%. -Content of Br atom and Sb atom: Compression molded to a diameter of 40 mm and a thickness of 5 to 7 mm at a pressure of 5.9 MPa, and using a fluorescent X-ray analyzer, bromine atoms in all epoxy resin compositions;
The content of antimony atoms was quantified. The unit is% by weight.

【0024】実施例2〜9、比較例1〜9 表1、表2の配合に従い、実施例1と同様にしてエポキ
シ樹脂組成物を得、実施例1と同様にして評価した。結
果を表1、表2に示す。なお、実施例1以外で用いたエ
ポキシ樹脂及びフェノール樹脂の性状を以下に示す。 ・オルソクレゾールノボラック型エポキシ樹脂(軟化点
55℃、エポキシ当量196)、 ・式(7)のフェノール樹脂(軟化点110℃、水酸基
当量98)、
Examples 2 to 9 and Comparative Examples 1 to 9 According to the formulations shown in Tables 1 and 2, an epoxy resin composition was obtained in the same manner as in Example 1, and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2. The properties of the epoxy resin and the phenol resin used in other than Example 1 are shown below. An orthocresol novolak epoxy resin (softening point 55 ° C., epoxy equivalent 196); a phenolic resin of the formula (7) (softening point 110 ° C., hydroxyl equivalent 98);

【化9】 Embedded image

【0025】・式(8)のフェノール樹脂(軟化点70
℃、水酸基当量170)、
A phenolic resin of the formula (8) (softening point 70
° C, hydroxyl equivalent 170),

【化10】 Embedded image

【0026】・式(9)の樹脂硬化剤(軟化点70℃、
水酸基当量190)。
A resin curing agent of the formula (9) (softening point 70 ° C.,
Hydroxyl equivalent 190).

【化11】 Embedded image

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【発明の効果】本発明に従うと、流動性、硬化性に優
れ、かつ難燃剤を配合せずにUL−94垂直試験におい
てV−0を達成できる、エリア実装型半導体装置に適し
た半導体封止用エポキシ樹脂組成物が得られ、これを用
いた半導体装置は、成形後や半田処理時の反りが小さ
く、耐半田クラック性に優れている。
According to the present invention, semiconductor encapsulation which is excellent in fluidity and curability and can achieve V-0 in a UL-94 vertical test without blending a flame retardant, which is suitable for an area-mounted type semiconductor device. An epoxy resin composition for use is obtained, and a semiconductor device using the same has a small warpage after molding or soldering, and is excellent in solder crack resistance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 23/31 Fターム(参考) 4J002 CC033 CD03W CD05X CD06W DE136 DE146 DJ016 EN067 EU097 EU117 EW017 FA086 FD016 FD143 FD157 GQ05 4J036 AA05 AC01 AC02 AC03 AD07 AD08 AF03 AF06 AF22 AJ01 AJ02 AJ03 AJ14 AK19 DA04 DB11 DC02 DC38 DC40 DD07 FA01 FA05 FA06 FB08 JA07 4M109 AA01 BA03 CA05 EA03 EB03 EB04 EB12 EC05 EC20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 23/31 F-term (Reference) 4J002 CC033 CD03W CD05X CD06W DE136 DE146 DJ016 EN067 EU097 EU117 EW017 FA086 FD016 FD143 FD157 GQ05 4J036 AA05 AC01 AC02 AC03 AD07 AD08 AF03 AF06 AF22 AJ01 AJ02 AJ03 AJ14 AK19 DA04 DB11 DC02 DC38 DC40 DD07 FA01 FA05 FA06 FB08 JA07 4M109 AA01 BA03 CA05 EA03 EB03 EB04 EB12 EC05 EC20

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (A)一般式(1)で示されるエポキシ
樹脂(a)、(B)式(2)で示されるフェノール化合
物と式(3)で示されるフェノール化合物とを混合しグ
リシジルエーテル化したエポキシ樹脂(b)、(C)一
般式(4)で示される樹脂硬化剤を全樹脂硬化剤中に3
0〜100重量%含む樹脂硬化剤、(D)無機充填材、
及び(E)硬化促進剤を必須成分とし、(a)が全エポ
キシ樹脂中に30〜70重量%であり、(b)が全エポ
キシ樹脂中に30〜70重量%であり、全エポキシ樹脂
中のエポキシ基と全樹脂硬化剤中のフェノール性水酸基
の当量比が0.5〜2であり、無機充填材が全エポキシ
樹脂組成物中に75〜95重量%であり、硬化促進剤が
全エポキシ樹脂と全樹脂硬化剤との合計量100重量部
当たり0.4〜25重量部であることを特徴とするエリ
ア実装型半導体封止用エポキシ樹脂組成物。 【化1】 (式中のR1、R2は、炭素数1〜4のアルキル基で、
aは0〜3の整数、bは0〜4の整数で、互いに同一で
あっても異なっていてもよい。nは平均値で、1〜10
の正数。) 【化2】 【化3】 (式中のR3、R4は、炭素数1〜4のアルキル基で、
cは0〜3の整数、dは0〜4の整数で、互いに同一で
あっても異なっていてもよい。nは平均値で、1〜10
の正数。)
1. A glycidyl ether obtained by mixing (A) an epoxy resin (a) represented by the general formula (1) and (B) a phenol compound represented by the formula (2) and a phenol compound represented by the formula (3). Epoxy resin (b), (C) a resin curing agent represented by the general formula (4)
A resin curing agent containing 0 to 100% by weight, (D) an inorganic filler,
And (E) a curing accelerator as an essential component, wherein (a) is 30 to 70% by weight in all epoxy resins, (b) is 30 to 70% by weight in all epoxy resins, and The equivalent ratio of the epoxy group to the phenolic hydroxyl group in the total resin curing agent is 0.5 to 2, the inorganic filler is 75 to 95% by weight in the total epoxy resin composition, and the curing accelerator is the total epoxy resin. An epoxy resin composition for area mounting type semiconductor encapsulation, wherein the amount is 0.4 to 25 parts by weight per 100 parts by weight of the total amount of the resin and all the resin curing agents. Embedded image (Wherein R1 and R2 are alkyl groups having 1 to 4 carbon atoms,
a is an integer of 0 to 3 and b is an integer of 0 to 4, which may be the same or different. n is an average value of 1 to 10
Positive number of. ) Embedded image (R3 and R4 in the formula are alkyl groups having 1 to 4 carbon atoms,
c is an integer of 0 to 3 and d is an integer of 0 to 4, which may be the same or different. n is an average value of 1 to 10
Positive number of. )
【請求項2】 全エポキシ樹脂組成物中に含有される臭
素原子及びアンチモン原子が、それぞれ0.1重量%未
満である請求項1記載の半導体封止用エポキシ樹脂組成
物。
2. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein bromine atoms and antimony atoms contained in all the epoxy resin compositions are each less than 0.1% by weight.
【請求項3】 基板の片面に半導体素子が搭載され、こ
の半導体素子が搭載された基板面側の実質的に片面のみ
が請求項1、又は2記載のエポキシ樹脂組成物を用いて
封止されていることを特徴とする半導体装置。
3. A semiconductor element is mounted on one side of a substrate, and substantially only one side on the side of the substrate on which the semiconductor element is mounted is sealed with the epoxy resin composition according to claim 1 or 2. A semiconductor device characterized in that:
JP2000346032A 2000-11-14 2000-11-14 Epoxy resin composition and semiconductor device Expired - Fee Related JP4639461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000346032A JP4639461B2 (en) 2000-11-14 2000-11-14 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000346032A JP4639461B2 (en) 2000-11-14 2000-11-14 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2002145987A true JP2002145987A (en) 2002-05-22
JP4639461B2 JP4639461B2 (en) 2011-02-23

Family

ID=18819967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000346032A Expired - Fee Related JP4639461B2 (en) 2000-11-14 2000-11-14 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4639461B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559149A (en) * 1991-08-30 1993-03-09 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH1143531A (en) * 1996-08-23 1999-02-16 Nippon Kayaku Co Ltd Modified epoxy resin, epoxy resin composition and its cured product
JPH11140277A (en) * 1997-11-10 1999-05-25 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device produced by using the composition
JP2000281877A (en) * 1999-03-30 2000-10-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559149A (en) * 1991-08-30 1993-03-09 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH1143531A (en) * 1996-08-23 1999-02-16 Nippon Kayaku Co Ltd Modified epoxy resin, epoxy resin composition and its cured product
JPH11140277A (en) * 1997-11-10 1999-05-25 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device produced by using the composition
JP2000281877A (en) * 1999-03-30 2000-10-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Also Published As

Publication number Publication date
JP4639461B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP5028756B2 (en) Semiconductor sealing resin composition and semiconductor device
JP2004067717A (en) Epoxy resin composition and semiconductor device
JP2001002755A (en) Epoxy resin composition and semiconductor device
JP2004018790A (en) Epoxy resin composition and semiconductor device
JP2010031233A (en) Semiconductor sealing epoxy resin composition, and one side sealing type semiconductor device produced by sealing semiconductor device using the same
JP4639461B2 (en) Epoxy resin composition and semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JPH10158360A (en) Epoxy resin composition
JP4743932B2 (en) Epoxy resin composition and semiconductor device
JP2002179773A (en) Epoxy resin composition and semiconductor device
JP3390335B2 (en) Semiconductor device
JP4560871B2 (en) Epoxy resin composition and semiconductor device
JP2001040180A (en) Epoxy resin composition and semiconductor device
JP2002080694A (en) Epoxy resin composition and semiconductor device
JP4639427B2 (en) Epoxy resin composition and semiconductor device
JP4524837B2 (en) Epoxy resin composition and semiconductor device
JP2009235164A (en) Semiconductor sealing epoxy resin composition, and single side sealing type semiconductor device manufactured by sealing semiconductor device using the composition
JP2001329142A (en) Epoxy resin composition and semiconductor device
JP2912468B2 (en) Resin composition
JP2006282818A (en) Epoxy resin composition and semiconductor device
JP2004091533A (en) Epoxy resin composition and semiconductor device
JP2007077237A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device by using the same
JP2000281748A (en) Epoxy resin composition and semiconductor device
JP2912467B2 (en) Resin composition
JP2000344858A (en) Epoxy resin composition and semiconductor device sealed therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4639461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees