JP2002137979A - Method of manufacturing liquefied fertilizer for nourishing solution vegetation - Google Patents

Method of manufacturing liquefied fertilizer for nourishing solution vegetation

Info

Publication number
JP2002137979A
JP2002137979A JP2000327438A JP2000327438A JP2002137979A JP 2002137979 A JP2002137979 A JP 2002137979A JP 2000327438 A JP2000327438 A JP 2000327438A JP 2000327438 A JP2000327438 A JP 2000327438A JP 2002137979 A JP2002137979 A JP 2002137979A
Authority
JP
Japan
Prior art keywords
liquid
fertilizer
desorbed
liquid fertilizer
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000327438A
Other languages
Japanese (ja)
Inventor
Tomoyuki Nishigami
智之 西上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Construction Corp
Original Assignee
Toshiba Plant Construction Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Construction Corp filed Critical Toshiba Plant Construction Corp
Priority to JP2000327438A priority Critical patent/JP2002137979A/en
Publication of JP2002137979A publication Critical patent/JP2002137979A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Abstract

PROBLEM TO BE SOLVED: To efficiently manufacture a liquefied fertilizer for nourishing solution vegetation from organic waste. SOLUTION: An organic waste is subjected to methane fermentation under anaerobic condition, and the liquefied fertilizer for nourishing solution vegetation is obtained from supernatant liqueur obtained by desorbing generated gas ingredient.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は土壌を使用しない養
液栽培法において使用される液肥の製造方法に関し、特
に厨芥等や畜産廃棄物などの有機性廃棄物から養液栽培
用液肥を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a liquid fertilizer used in a hydroponic method without using soil, and more particularly to a method for producing a liquid fertilizer for hydroponic culture from organic wastes such as kitchen waste and livestock waste. About the method.

【0002】[0002]

【従来の技術】土壌を使用しない養液栽培法は野菜など
の作物を効率よく大量生産する方法として近年国内でも
広く普及してきた。一般に養液栽培法では水に肥料成分
を溶解した養液を栽培床に循環するが、養液は固形分を
含まず、その肥料成分は栽培作物が根から直接吸収でき
るイオンやキレートの形態で養液中に存在する必要があ
る。化学肥料は取り扱いおよびイオンやキレートの形態
で養液中に存在させることが容易であり、養液栽培法で
も広く使用されている。
2. Description of the Related Art In recent years, hydroponic cultivation methods that do not use soil have become widespread in Japan as a method for efficiently mass-producing crops such as vegetables. Generally, in the nutrient solution cultivation method, a nutrient solution obtained by dissolving a fertilizer component in water is circulated to a cultivation bed, but the nutrient solution does not contain solids, and the fertilizer component is in the form of ions or chelates that can be directly absorbed by the cultivated crop from the root. Must be present in nutrient solution. Chemical fertilizers are easy to handle and present in nutrient solutions in the form of ions and chelates, and are widely used in hydroponic cultivation methods.

【0003】しかし最近、化学肥料の多くは安価な外国
製品を輸入して供給されている。そして土壌栽培、養液
栽培を問わず、輸入した化学肥料で栽培した作物は、消
費された後にその残渣としての厨芥等が家畜糞尿などと
同様に有機性廃棄物として蓄積する。このような有機性
廃棄物の蓄積は雨、地下水などにより循環して最終的に
は土壌に窒素成分として滞留し、それが国内土壌におけ
る窒素過多など環境負荷増大の原因の一つになってい
る。このようなことから、大量に排出される厨芥等や家
畜の糞尿などの有機性廃棄物は、できるだけ肥料として
リサイクルすることが推奨される。
Recently, however, many chemical fertilizers have been supplied by importing inexpensive foreign products. Regardless of soil cultivation or nutrient cultivation, crops cultivated with imported chemical fertilizers accumulate as organic waste after consumption as kitchen waste and the like as livestock manure. Such accumulation of organic waste is circulated by rain, groundwater, etc., and ultimately stays in the soil as a nitrogen component, which is one of the causes of an increase in environmental load such as excessive nitrogen in domestic soil. . For this reason, it is recommended that organic waste such as kitchen waste and livestock excreta discharged in large quantities be recycled as fertilizer as much as possible.

【0004】従来から、有機性廃棄物の処理方法として
は、焼却、埋め立て、堆肥化、または好気性発酵菌によ
る発酵処理などの方法がある。しかし焼却処理は一般に
毒性化学物質を発生し、埋め立てや好気性発酵処理はク
リプトスポジウムや0−157菌などの病原生物の増
殖、アンモニア臭や腐敗臭などの放散等による周辺住民
の健康被害、病気の蔓延、嫌悪感などの問題がある。ま
た酪農などに見られる乾燥ラグーンでの糞尿の貯留や処
理も悪臭問題を生じ、さらにそれら処理設備に雨水が流
入するとクリプトスポジウムなどの病原生物が溢れ出て
周辺環境に蔓延する。
Conventionally, methods for treating organic waste include methods such as incineration, landfill, composting, and fermentation with aerobic fermenters. However, incineration generally generates toxic chemicals, and landfills and aerobic fermentation processes cause the proliferation of pathogenic organisms such as cryptospores and 0-157 bacteria, and the health damage to nearby residents due to emission of ammonia odor and putrefaction odor. There are problems such as the spread of disease and disgust. The storage and treatment of manure in dry lagoons, such as those found in dairy farms, can also cause odor problems, and when rainwater flows into these treatment facilities, pathogenic organisms such as cryptospores overflow and spread to the surrounding environment.

【0005】一方、堆肥化は製造工程が煩雑で、副資材
の投入による容量増加で施設負荷が増加するという問題
があり、さらに未熟堆肥の農地散布による土壌の貧酸素
状態の助長、作物に対する生育阻害物質の発生などの問
題も存在する。そこで最近、有機性廃棄物の処理方法と
して嫌気状態でメタン発酵させる方法が注目されてい
る。この方法は密閉された発酵槽内に有機性廃棄物を含
有する液(有機物含有液)を導入し、そこで嫌気性メタ
ン菌により有機物を発酵させてメタンを主成分とするガ
ス成分を脱離させ、残った脱離液を液肥とする方法であ
る。なお発生したガス成分はガスタンクなどに貯蔵し暖
房用燃料などに利用される。このような嫌気状態でメタ
ン発酵させる方法は、密閉された発酵槽内で有機性廃棄
物が処理されるので、周囲に悪臭や病原生物を拡散する
という問題を発生しないという利点がある。
[0005] On the other hand, composting has a problem that the production process is complicated, the facility load is increased due to an increase in capacity due to the input of auxiliary materials, and furthermore, the application of immature compost to agricultural lands promotes anoxic state of the soil and the growth of crops. There are also problems such as the generation of inhibitors. Therefore, recently, a method of methane fermentation in an anaerobic state has attracted attention as a method of treating organic waste. In this method, a liquid containing organic waste (organic matter-containing liquid) is introduced into a closed fermenter, where the organic matter is fermented by an anaerobic methane bacterium to desorb methane-based gas components. In this method, the remaining liquid is converted into liquid fertilizer. The generated gas component is stored in a gas tank or the like and is used as a heating fuel or the like. The method of methane fermentation in such an anaerobic state has an advantage that since organic waste is treated in a closed fermenter, it does not cause a problem of spreading bad smell or pathogenic organisms around.

【0006】[0006]

【発明が解決しようとする課題】従来、このように嫌気
状態でメタン発酵させて製造した脱離液は、液肥として
土壌に散布する以外に有効な利用方法がなかった。しか
し脱離液を液肥として土壌に散布する場合、ある程度の
経営規模の農地に必要量施肥するには全体として大量の
散布が必要になり、そのためには散布する農地に接近し
た場所に大型の液肥貯蔵施設などを設置する必要があ
る。さらに大量の液肥を脱離液の製造施設から貯蔵施設
まで移送するには専用の大型タンクローリなどの移送手
段も備える必要がある。
Hitherto, there has been no effective use of the desorbed solution produced by methane fermentation in an anaerobic state except for spraying it as liquid fertilizer on soil. However, when the desorbed liquid is applied to the soil as liquid fertilizer, a large amount of liquid fertilizer is required as a whole to apply the required amount to the farmland of a certain level of management scale. It is necessary to set up storage facilities. Further, in order to transfer a large amount of liquid fertilizer from the production facility for the desorbed liquid to the storage facility, it is necessary to provide a transfer means such as a dedicated large tank lorry.

【0007】一方、脱離液製造施設から経済的に移送可
能な地域に脱離液を液肥として受け入れる農地や貯蔵施
設が存在しない場合は、何らかの無害化処理をして河川
放流するなどの二次対策を必要とする。しかし無害化処
理には公共の下水処理と同様な設備とコストがかかると
いう問題がある。そこで本発明者らは種々研究の結果、
多くの施設を考えると全体としては大量消費可能な養液
栽培法に使用する液肥として、製造上環境的に優れた嫌
気状態でメタン発酵して得られた脱離液が有効であると
いう知見を得て本発明を完成した。
On the other hand, if there is no agricultural land or storage facility that accepts the desorbed liquid as liquid fertilizer in an area where it can be economically transported from the desorbed liquid production facility, secondary treatment such as discharging the river after some detoxification treatment is performed. Requires measures. However, the detoxification process has a problem that it requires the same equipment and cost as public sewage treatment. Therefore, the present inventors, as a result of various studies,
Considering many facilities, it has been found that as a liquid fertilizer to be used for hydroponic cultivation methods that can be consumed in large quantities, a desorbed solution obtained by methane fermentation in an anaerobic condition that is environmentally superior in terms of production is effective as a whole. Thus, the present invention has been completed.

【0008】[0008]

【課題を解決するための手段】すなわち本発明は、有機
性廃棄物を嫌気状態でメタン発酵させ、生成するガス成
分を脱離して得られた脱離液から養液栽培用液肥を得る
ことを特徴とする養液栽培用液肥の製造方法である(請
求項1)。本発明によれば、厨芥等の有機性廃棄物を嫌
気状態でメタン発酵させて製造した脱離液から養液栽培
用の液肥を製造する工程を採用しているので、製造過程
で環境を汚染するおそれがない。そして養液栽培で液肥
として使用した脱離液は有機性廃棄物として液肥の製造
工程に還元できるので、有機物サイクルを形成すること
ができ、環境への排出量を抑制することができる。ま
た、養液栽培用の脱離液は有機物系であり、化学肥料の
使用によって発生する諸問題を回避できる。さらに、脱
離液の消費量を拡大できるため、河川放流設備などが不
要になる。
That is, the present invention provides an anaerobic methane fermentation of an organic waste, and a liquid fertilizer for hydroponics from a desorbed liquid obtained by desorbing a gas component produced. A method for producing a liquid fertilizer for hydroponics, which is a feature of the present invention (claim 1). According to the present invention, since a process for producing a liquid fertilizer for hydroponics from a desorbed solution produced by subjecting organic waste such as kitchen waste to methane fermentation in an anaerobic state is adopted, the environment is polluted during the production process. There is no danger. Then, the desorbed liquid used as liquid fertilizer in the hydroponics can be reduced as organic waste to the liquid fertilizer production process, so that an organic substance cycle can be formed and the amount of discharged to the environment can be suppressed. Further, the desorbed liquid for nutrient solution cultivation is an organic substance, and can avoid various problems caused by the use of chemical fertilizer. Furthermore, since the consumption of the desorbed liquid can be increased, a river discharge facility or the like becomes unnecessary.

【0009】上記方法において、脱離液から固形分を除
去して養液栽培用液肥を得ることができる(請求項
2)。このように脱離液に含まれている固形分を除去す
ることにより、養液栽培設備の配管やノズルなどの閉鎖
等の問題を回避できる。上記いずれかの方法において、
脱離液から有機酸を除去して養液栽培用液肥を得ること
ができる(請求項3)。脱離液に含まれている揮発性有
機酸などの有機酸を除去することにより、養液中での発
酵や貧酸素状態など、作物生育の阻害要因の発生を抑制
することができる。
[0009] In the above method, a liquid fertilizer for hydroponics can be obtained by removing solids from the desorbed liquid (claim 2). By removing solids contained in the desorbed liquid in this way, problems such as closing pipes and nozzles of the hydroponic cultivation equipment can be avoided. In any of the above methods,
The liquid fertilizer for hydroponics can be obtained by removing the organic acid from the desorbed solution (claim 3). By removing organic acids such as volatile organic acids contained in the desorbed solution, it is possible to suppress the occurrence of factors that inhibit the growth of crops, such as fermentation in a nutrient solution and an anoxic condition.

【0010】上記いずれかの方法において、脱離液にさ
らに別の肥料成分を添加して養液栽培用液肥を得ること
ができる(請求項4)。このように別の肥料成分を添加
することによって、養液栽培用の液肥における窒素、リ
ン、カリウム、マグネシウムなどの比率を最適に調整す
ることができる。上記肥料成分の添加に際して、肥料成
分にはカルシウム分を含有させないことができる(請求
項5)。カルシウムは液肥濃度が高くなると他の物質と
反応してその沈殿を促進し、養液栽培設備の配管やノズ
ルなどの閉鎖等の問題を生じるが、上記方法によりこれ
を回避することができる。上記いずれかの方法におい
て、脱離液をさらに濃縮して養液栽培用液肥を得ること
ができる(請求項6)。このように脱離液を濃縮する
と、養液栽培施設までの脱離液の移送や保管がより容易
になる。
[0010] In any of the above methods, a liquid fertilizer for hydroponics can be obtained by further adding another fertilizer component to the desorbed liquid. Thus, by adding another fertilizer component, the ratio of nitrogen, phosphorus, potassium, magnesium, and the like in the liquid fertilizer for hydroponics can be optimally adjusted. When adding the fertilizer component, the fertilizer component can be made not to contain calcium (claim 5). When the concentration of liquid fertilizer increases, calcium reacts with other substances to promote its precipitation, which causes problems such as closing pipes and nozzles of the hydroponic cultivation equipment. However, this can be avoided by the above method. In any one of the above methods, the desorbed solution can be further concentrated to obtain a liquid fertilizer for hydroponics (Claim 6). When the desorbed liquid is concentrated in this way, the transfer and storage of the desorbed liquid to the nutrient cultivation facility become easier.

【0011】[0011]

【発明の実施の形態】次に本発明の実施の形態を図面に
より説明する。図1は本発明の方法を実施するプロセス
フロー図である。1は密閉型のメタン発酵槽、2はメタ
ン発酵槽1で生成した脱離液を貯留する脱離液貯留槽、
3は移送ポンプ、4はラグーン、マニュアバック、スラ
リータンクなどの脱離液の養液またはそのスラリーを貯
留する貯留槽、5は混合槽、6は攪拌装置、7は凝集沈
殿剤を貯留するホッパー、8は移送ポンプ、9は加圧浮
上槽、10は加圧浮上槽9に加圧された微細な気泡を供
給するための加圧装置、11は加圧浮上用に加圧空気と
被処理水を混合する混合加圧槽、12は一時貯留槽、1
3は移送ポンプ、14は上向流嫌気性汚泥床槽、15は
上向流嫌気性汚泥床槽14でメタン発酵して生成するバ
イオガスを貯留するバイオガスタンク、16は一時貯留
槽、17は攪拌装置、18は移送ポンプ、19は精密濾
過装置、20は一時貯留槽、21は移送ポンプ、22は
肥料成分濃縮用の逆浸透膜装置、23,24は充填装
置、25は液肥のキュービテナー充填製品、26は濾過
水のキュービテナー充填製品、V1〜V7は開閉弁、R
1、R2は逆止弁、a〜 o2は配管である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a process flow diagram for implementing the method of the present invention. 1 is a closed type methane fermentation tank, 2 is a desorbed liquid storage tank for storing the desorbed liquid generated in the methane fermentation tank 1,
Reference numeral 3 denotes a transfer pump, 4 denotes a storage tank for storing a nutrient solution of desorbed liquid or its slurry, such as a lagoon, manual bag, or slurry tank, 5 denotes a mixing tank, 6 denotes a stirring device, and 7 denotes a hopper that stores a flocculant. , 8 is a transfer pump, 9 is a pressurized levitation tank, 10 is a pressurizing device for supplying pressurized fine bubbles to the pressurized levitation tank 9, 11 is pressurized air for pressurized levitation and treated A mixing pressurized tank for mixing water, 12 is a temporary storage tank, 1
3 is a transfer pump, 14 is an upflow anaerobic sludge bed tank, 15 is a biogas tank for storing biogas produced by methane fermentation in the upflow anaerobic sludge bed tank 14, 16 is a temporary storage tank, 17 is Stirring device, 18 is a transfer pump, 19 is a microfiltration device, 20 is a temporary storage tank, 21 is a transfer pump, 22 is a reverse osmosis membrane device for concentrating fertilizer components, 23 and 24 are filling devices, and 25 is a liquid fertilizer cubbiter filling. Product, 26 is a product filled with cubbiter of filtered water, V1 to V7 are on-off valves, R
1, R2 is a check valve, and a to o2 are pipes.

【0012】メタン発酵槽1には図示しない有機性廃棄
物の養液もしくはスラリーの導入配管と生成ガスの排出
配管が接続され、さらに内部を攪拌する攪拌装置が設け
られる。メタン発酵槽1で生成した養液もしくはスラリ
ー状の脱離液は、配管aからオーバフローして脱離液貯
留槽2に貯留される。脱離液貯留槽2の脱離液は移送ポ
ンプ3で汲み上げられ、配管b1,b2,b5を経て混
合槽5に供給される。脱離液を混合槽5に供給する通常
運転では、開閉弁V1,V2を開け、V3,V4を閉じ
ておく。なお貯留槽4は脱離液の処理容量が一時的に低
下したときなどに、その脱離液を一時的に貯留する場
合、あるいは脱離液の一部を余剰品として開閉弁V6か
ら他の施設(例えば土壌散布用として出荷するための施
設)に供給する場合などに使用され、その際には開閉弁
V2を閉じて開閉弁V3(またはV5,V6)を開け
る。また貯留槽4から混合槽5に脱離液を補給する場合
は開閉弁V4を開ける。
The methane fermentation tank 1 is connected to a pipe for introducing a nutrient solution or slurry for organic waste (not shown) and a pipe for discharging generated gas, and further provided with a stirring device for stirring the inside. The nutrient solution or the slurry-like desorbed liquid generated in the methane fermentation tank 1 overflows from the pipe a and is stored in the desorbed liquid storage tank 2. The desorbed liquid in the desorbed liquid storage tank 2 is pumped up by the transfer pump 3 and supplied to the mixing tank 5 via the pipes b1, b2, and b5. In the normal operation of supplying the desorbed liquid to the mixing tank 5, the on-off valves V1 and V2 are opened, and V3 and V4 are closed. The storage tank 4 is used to temporarily store the desorbed liquid when the processing capacity of the desorbed liquid is temporarily reduced, or to use a part of the desorbed liquid as an excess product to open another valve from the on-off valve V6. It is used when supplying to a facility (for example, a facility for shipping for soil application), in which case the on-off valve V2 is closed and the on-off valve V3 (or V5, V6) is opened. When replenishing liquid is supplied from the storage tank 4 to the mixing tank 5, the on-off valve V4 is opened.

【0013】混合槽5では脱離液を後工程に適合する濃
度(または粘度)になるように配管cからの水をで希釈
すると共に、配管dからpH調整剤を供給してそのpH
値を調整する。一般にメタン発酵により得られた脱離液
のpH値は中性〜弱アルカリ性になっているので、例え
ばリン酸や硫酸のようなpH調整剤を添加し、後工程の
凝集沈殿工程や上向流嫌気性汚泥床法に適したpH値
(前者は沈殿剤による・後者は中性〜弱アリカリ性)に
調整する。さらに混合槽5ではホッパー7から凝集沈殿
剤を供給し、脱離液中の固形分を沈殿させて分離する。
なおホッパー7への凝集沈殿剤は配管eから補給され
る。凝集沈殿剤としてはカルシウム系凝集沈殿剤、例え
ば株式会社マナイテッド.コムから市販されているエコ
ガイアWを使用することができる。沈殿した固形分は混
合槽5の底部からドレン配管(図示せず)などで適宜外
部に排出するが、排出した固形分はメタン発酵槽1に戻
すことができる。
In the mixing tank 5, the desorbed liquid is diluted with water from the pipe c so as to have a concentration (or viscosity) suitable for the subsequent step, and a pH adjuster is supplied from the pipe d to supply the pH adjuster.
Adjust the value. Generally, the pH value of the desorbed solution obtained by methane fermentation is neutral to weakly alkaline, so that a pH adjuster such as phosphoric acid or sulfuric acid is added, and the subsequent coagulation sedimentation step or upward flow The pH value is adjusted to a pH value suitable for the anaerobic sludge bed method (the former is based on a precipitant and the latter is neutral to weakly alkaline). Further, in the mixing tank 5, a coagulating sedimentation agent is supplied from the hopper 7 to precipitate and separate the solid content in the desorbed liquid.
The flocculant to the hopper 7 is supplied from the pipe e. As the coagulating sedimentation agent, a calcium-based coagulating sedimentation agent, for example, Manited Inc. Ecogaia W commercially available from Com. Can be used. The precipitated solid is discharged from the bottom of the mixing tank 5 to the outside through a drain pipe (not shown) or the like. The discharged solid can be returned to the methane fermentation tank 1.

【0014】混合槽5で濃度調整およびpH調整し、さ
らに固形分を分離した脱離液は、移送ポンプ8で配管f
から加圧浮上槽9に供給され、そこで脱離液に残留する
固形分を微細な気泡により浮上させて分離し、配管g3
から図示しない配管によりメタン発酵槽1に戻される。
浮上用の気泡は加圧装置10で発生した加圧空気と配管
g1からの脱離液(被処理水)を混合加圧槽11で混合
してから配管i2より供給される。
The desorbed liquid whose concentration and pH have been adjusted in the mixing tank 5 and further the solid content has been separated is transferred to a pipe f by a transfer pump 8.
To the pressurized flotation tank 9 where the solids remaining in the desorbed liquid are separated by flotation with fine bubbles, and the piping g3
Is returned to the methane fermentation tank 1 by a pipe (not shown).
The air bubbles for floating are supplied from the pipe i2 after the pressurized air generated by the pressurizing device 10 and the desorbed liquid (water to be treated) from the pipe g1 are mixed in the mixing and pressurizing tank 11.

【0015】加圧浮上槽9で処理された脱離液は配管g
2から一時貯留槽12に流出し、さらに移送ポンプ13
を設けた配管g4で上向流嫌気性汚泥床槽14に供給さ
れる。上向流嫌気性汚泥床槽14では嫌気性メタン菌に
より脱離液に含まれている有機酸をメタン発酵して分解
し除去する。上向流嫌気性汚泥床槽14で発生したメタ
ンガスを主成分とするバイオガスは配管h1を経てバイ
オガスタンク15に貯留される。一方、上向流嫌気性汚
泥床槽14で有機酸を除去された脱離液は配管h2から
オーバフローして一時貯留槽16に流出する。一時貯留
槽16では配管iから他の肥料成分、例えばリン酸肥料
やカリ肥料、さらにはマグネシウム肥料が添加され、脱
離液の窒素、リン、カリウム、マグネシウムなどの比率
を養液栽培用の液肥として望ましい範囲に調整する。し
かし脱離液が養液栽培用の液肥に要求される肥料成分の
範囲にある場合には、この肥料添加工程は省略される。
なお一時貯留槽16では攪拌装置17により内養液が均
一な状態に維持される。
The desorbed liquid treated in the pressurized flotation tank 9 is connected to a pipe g
2 to the temporary storage tank 12 and then to the transfer pump 13
Is supplied to the upward-flowing anaerobic sludge bed tank 14 through a pipe g4 provided. In the upward anaerobic sludge bed tank 14, the anaerobic methane bacteria decomposes and removes organic acids contained in the desorbed solution by methane fermentation. The biogas mainly composed of methane gas generated in the upward flow anaerobic sludge bed tank 14 is stored in the biogas tank 15 via the pipe h1. On the other hand, the desorbed liquid from which the organic acid has been removed in the upward anaerobic sludge bed tank 14 overflows from the pipe h2 and flows out to the temporary storage tank 16. In the temporary storage tank 16, other fertilizer components, for example, a phosphate fertilizer, a potassium fertilizer, and further a magnesium fertilizer are added from the pipe i, and the ratio of nitrogen, phosphorus, potassium, magnesium and the like in the desorbed liquid is used as a liquid fertilizer for nutrient cultivation. Adjust to the desired range. However, when the desorbed liquid is within the range of the fertilizer component required for the liquid fertilizer for hydroponics, this fertilizer addition step is omitted.
In the temporary storage tank 16, the internal nutrient solution is maintained in a uniform state by the stirring device 17.

【0016】一時貯留槽16の脱離液は配管j1、移送
ポンプ18および配管j2によって精密濾過装置19に
供給され、そこで残留する固形分、細菌類がさらに分離
除去される。精密濾過装置19は、孔径0.1μmの中
空糸モジュールや平膜モジールのようなフィルタを有す
るもので、フィルタの加圧濾過作用により固形分や細菌
類が分離される。除去した固形分などは適宜開閉弁V7
を開けて配管lから排出し、メタン発酵槽1に戻され
る。精密濾過装置19で固形分や細菌類を除去した脱離
液は配管k1を経て一時貯留槽20に移送され、さらに
配管k2、移送ポンプ21および配管k3で逆浸透膜装
置22に供給される。逆浸透膜装置22は逆浸透膜の分
離作用で脱離液から水分を分離して肥料成分を濃縮する
ものである。
The liquid desorbed from the temporary storage tank 16 is supplied to a microfiltration device 19 by a pipe j1, a transfer pump 18 and a pipe j2, where the remaining solids and bacteria are further separated and removed. The microfiltration device 19 has a filter such as a hollow fiber module or a flat membrane module having a pore diameter of 0.1 μm, and solids and bacteria are separated by the pressure filtration action of the filter. Removed solids etc. can be properly turned on / off valve V7
Is opened and discharged from the pipe l, and returned to the methane fermentation tank 1. The desorbed liquid from which solids and bacteria have been removed by the microfiltration device 19 is transferred to a temporary storage tank 20 via a pipe k1, and further supplied to a reverse osmosis membrane device 22 by a pipe k2, a transfer pump 21 and a pipe k3. The reverse osmosis membrane device 22 separates water from the desorbed liquid by the separation action of the reverse osmosis membrane and concentrates the fertilizer component.

【0017】肥料成分を濃縮された脱離液は養液栽培用
の液肥として配管nから充填装置23に供給され、そこ
で適当な容量の容器に次々と充填されて液肥のキュービ
テナー充填製品25として出荷される。また分離された
濾過水は配管o1から充填装置24に供給され、そこで
同様に適当な容量の容器に次々と充填されて濾過水のキ
ュービテナー充填製品26として出荷される。この濾過
水は例えば養液栽培用の液肥を濃度調整する希釈水など
に利用される。またこの濾過水の少なくとも一部を配管
o2から混合槽5に供給し、脱離液を希釈する希釈水の
一部として使用することもできる。なお、上記の一連の
処理工程は連続的に行うことが望ましいが、バッチ的に
行うこともできる。
The desorbed liquid in which the fertilizer components are concentrated is supplied as liquid fertilizer for nutrient cultivation from a pipe n to a filling device 23, where it is successively filled into containers of an appropriate volume and shipped as a liquid fertilizer cubittainer-filled product 25. Is done. The separated filtered water is supplied from a pipe o1 to a filling device 24, where it is similarly filled one after another in containers of an appropriate volume, and shipped as a cubbiter filled product 26 of the filtered water. The filtered water is used, for example, as dilution water for adjusting the concentration of liquid fertilizer for hydroponics. Further, at least a part of the filtered water can be supplied from the pipe o2 to the mixing tank 5, and used as a part of the dilution water for diluting the desorbed liquid. Note that the above series of processing steps is desirably performed continuously, but may be performed batchwise.

【0018】[0018]

【実施例】図1のプロセスフローと同様なフローの実験
装置を使用して脱離液から養液栽培用の液肥を製造し
た。メタン発酵により得られた脱離液を希釈水で10%
の濃度に調整し、カルシウム系凝集沈殿剤を希釈後の脱
離液に対し0.9%濃度になるように添加した。この状
態で脱離液のpH値は7.2から7.0に低下したので
pH調整剤は特に添加しなかった。次にこのように固形
分の沈殿処理をした脱離液を浮上する微細気泡で処理
し、残留する固形分をさらに除去した後、上向流嫌気性
汚泥床法によりBOD負荷0.5g/L・日の条件下で
有機酸を除去した。その際、メタンと二酸化炭素の比率
が6:4で45ml/g・BOD・日の濃度のバイオガ
スが生成した。一方、処理された脱離液のpH値は7.
5、総有機酸濃度は3mg/l未満、BODは10mg
/l未満であった。
EXAMPLE A liquid fertilizer for hydroponic cultivation was produced from the detached liquid using an experimental apparatus having the same flow as the process flow of FIG. 10% of the desorbed solution obtained by methane fermentation with dilution water
, And a calcium-based coagulant / precipitant was added so as to have a concentration of 0.9% with respect to the desorbed solution after dilution. In this state, the pH value of the desorbed solution dropped from 7.2 to 7.0, so that no pH adjuster was particularly added. Next, the desorbed liquid subjected to the precipitation treatment of the solid content is treated with floating fine bubbles to further remove the remaining solid content, and then the BOD load is 0.5 g / L by an upward anaerobic sludge bed method. -Organic acids were removed under day conditions. At that time, biogas having a concentration of 45 ml / g · BOD · day was produced at a ratio of methane to carbon dioxide of 6: 4. On the other hand, the pH value of the treated effluent was 7.
5. Total organic acid concentration is less than 3mg / l, BOD is 10mg
/ L.

【0019】次に有機酸を除去した脱離液に別の肥料成
分を添加し、窒素、リン、カリウム、マグネシウムの肥
料成分比率を7:2:4:2に調整した。なおカルシウ
ム成分は液肥濃度が高くなると他物質、例えばリン酸な
どと反応して沈殿を促進し、養液栽培設備の配管やノズ
ルなどの閉鎖等の問題を生じるので添加しない。次に肥
料成分を調整した脱離液を精密濾過し、SS濃度が0.
1mg/L未満になるよう精製し、さらに逆浸透膜処理
をして濃縮された液肥と濾過水を1:25の重量比で得
た。なお特に問題となる環境への排気物や放流はなかっ
た。このようにして得られた液肥を使用して養液栽培の
養液を調整し、養液循環させながら作物を育成した。作
物の育成状態はきわめて良好であり、養液が流れる配管
や供給ノズルなどに詰まりなども発生しなかった。
Next, another fertilizer component was added to the desorbed solution from which the organic acid had been removed, and the fertilizer component ratio of nitrogen, phosphorus, potassium, and magnesium was adjusted to 7: 2: 4: 2. When the concentration of liquid fertilizer increases, calcium component reacts with other substances, such as phosphoric acid, to promote precipitation, and causes problems such as closing pipes and nozzles of the hydroponic cultivation equipment. Next, the desorbed liquid prepared from the fertilizer component was subjected to microfiltration, and the SS concentration was set to 0.
Purification was performed to less than 1 mg / L, followed by reverse osmosis membrane treatment to obtain concentrated liquid fertilizer and filtered water at a weight ratio of 1:25. There were no emissions or releases to the environment, which were particularly problematic. Using the liquid fertilizer thus obtained, a nutrient solution for hydroponics was adjusted, and a crop was grown while circulating the nutrient solution. The growing condition of the crop was very good, and no clogging occurred in the pipes and supply nozzles through which the nutrient solution flows.

【0020】[0020]

【発明の効果】以上のように本発明の養液栽培用液肥の
製造方法は、有機性廃棄物を嫌気状態でメタン発酵さ
せ、生成するガス成分を脱離して得られた脱離液から養
液栽培用液肥を得ることを特徴とする。そのため以下の
ような効果を奏する。製造過程で環境を汚染するおそれ
がない。養液栽培で液肥として使用した脱離液は有機性
廃棄物として液肥の製造工程に還元できるので、有機物
サイクルを形成することができ、環境への排出量を抑制
することができる。養液栽培用の脱離液は有機物系であ
り、化学肥料の使用によって発生する諸問題を回避でき
る。脱離液の消費量を拡大できるため、河川放流設備な
どが不要になる。
As described above, in the method for producing a liquid fertilizer for hydroponics according to the present invention, methane fermentation of an organic waste is carried out in an anaerobic state, and a gas component produced is desorbed from the desorbed liquid. It is characterized by obtaining liquid fertilizer for hydroponics. Therefore, the following effects are obtained. There is no risk of polluting the environment during the manufacturing process. The desorbed liquid used as liquid fertilizer in the hydroponics can be reduced as an organic waste to the liquid fertilizer production process, so that an organic substance cycle can be formed and the amount of discharged to the environment can be suppressed. The liquid used for hydroponic cultivation is an organic substance, and can avoid various problems caused by the use of chemical fertilizers. Since the consumption of desorbed liquid can be increased, river discharge facilities are not required.

【0021】上記方法において、脱離液から固形分を除
去して養液栽培用液肥を得ることができ、それによって
養液栽培設備の配管やノズルなどの閉鎖等の問題を回避
できる。さらに上記いずれかの方法において、脱離液か
ら有機酸を除去して養液栽培用液肥を得ることができ、
それによって養液中での発酵や貧酸素状態など、作物生
育の阻害要因の発生を抑制することができる。
In the above method, a solid fertilizer for hydroponic cultivation can be obtained by removing solids from the desorbed liquid, thereby avoiding problems such as closing pipes and nozzles of the hydroponic cultivation equipment. Furthermore, in any of the above methods, it is possible to obtain a liquid fertilizer for hydroponics by removing organic acids from the desorbed solution,
As a result, it is possible to suppress the occurrence of factors that inhibit crop growth, such as fermentation in a nutrient solution and anoxic condition.

【0022】さらに上記いずれかの方法において、脱離
液にさらに別の肥料成分を添加して養液栽培用液肥を得
ることができ、それによって液肥の窒素、リン、カリウ
ム,マグネシウムなどの比率を最適に調整することがで
きる。上記肥料成分の添加に際して、肥料成分にはカル
シウム分を含有させないことができ、それによって液肥
濃度が高くなっても他物質と反応してその沈殿を促進す
ることがないので、養液栽培設備の配管やノズルなどの
閉鎖等の問題を回避できる。さらに上記いずれかの方法
において、脱離液をさらに濃縮して養液栽培用液肥を得
ることができ、それによって養液栽培施設までの脱離液
の移送、および保管がより容易になる。
Further, in any of the above methods, a liquid fertilizer for hydroponics can be obtained by adding another fertilizer component to the desorbed liquid, whereby the ratio of nitrogen, phosphorus, potassium, magnesium, etc. in the liquid fertilizer can be reduced. It can be adjusted optimally. When adding the above fertilizer component, the fertilizer component can be made to contain no calcium component, so that even if the liquid fertilizer concentration increases, it does not react with other substances and promote its precipitation, so that Problems such as closing pipes and nozzles can be avoided. Furthermore, in any one of the above methods, the desorbed liquid can be further concentrated to obtain a liquid fertilizer for hydroponic cultivation, whereby the transfer and storage of the desorbed liquid to the hydroponic cultivation facility become easier.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による養液栽培用液肥の製造方法を実施
するプロセスフロー図。
FIG. 1 is a process flow chart for implementing a method for producing a liquid fertilizer for hydroponics according to the present invention.

【符号の説明】[Explanation of symbols]

1 メタン発酵槽 2 脱離液貯留槽 3 移送ポンプ 4 貯留槽 5 混合槽 6 攪拌装置 7 ホッパー 8 移送ポンプ 9 加圧浮上槽 10 加圧装置 11 混合加圧槽 12 一時貯留槽 13 移送ポンプ 14 上向流嫌気性汚泥床槽 15 バイオガスタンク 16 一時貯留槽 17 攪拌装置 18 移送ポンプ 19 精密濾過装置 20 一時貯留槽 21 移送ポンプ 22 逆浸透膜装置 23 充填装置 24 充填装置 25 液肥のキュービテナー充填製品 26 濾過水のキュービテナー充填製品 V1〜V7 開閉弁 R1、R2 逆止弁 a〜o2 配管 DESCRIPTION OF SYMBOLS 1 Methane fermentation tank 2 Desorption liquid storage tank 3 Transfer pump 4 Storage tank 5 Mixing tank 6 Stirrer 7 Hopper 8 Transfer pump 9 Pressurized floating tank 10 Pressurizing device 11 Mixing pressurized tank 12 Temporary storage tank 13 Transfer pump 14 Countercurrent anaerobic sludge bed tank 15 Biogas tank 16 Temporary storage tank 17 Stirrer 18 Transfer pump 19 Microfiltration device 20 Temporary storage tank 21 Transfer pump 22 Reverse osmosis membrane device 23 Filling device 24 Filling device 25 Liquid fertilizer cubbiter filling product 26 Filtration Water Cubtainer Filled Products V1-V7 On-off valves R1, R2 Check valves a-o2 Piping

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 有機性廃棄物を嫌気状態でメタン発酵さ
せ、生成するガス成分を脱離して得られた脱離液から養
液栽培用液肥を得ることを特徴とする養液栽培用液肥の
製造方法。
1. A liquid fertilizer for hydroponic cultivation, wherein an organic waste is subjected to methane fermentation in an anaerobic state, and a liquid component for hydroponic cultivation is obtained from a desorbed liquid obtained by desorbing generated gas components. Production method.
【請求項2】 脱離液から固形分を除去して養液栽培用
液肥を得る請求項1に記載の養液栽培用液肥の製造方
法。
2. The method for producing a liquid fertilizer for hydroponic cultivation according to claim 1, wherein a solid content is removed from the desorbed liquid to obtain a liquid fertilizer for hydroponic cultivation.
【請求項3】 脱離液から有機酸を除去して養液栽培用
液肥を得る請求項1または請求項2に記載の養液栽培用
液肥の製造方法。
3. The method for producing a liquid fertilizer for hydroponic cultivation according to claim 1, wherein the organic acid is removed from the separated liquid to obtain a liquid fertilizer for hydroponic cultivation.
【請求項4】 脱離液にさらに別の肥料成分を添加して
養液栽培用液肥を得る請求項1ないし請求項3のいずれ
かに記載の養液栽培用液肥の製造方法。
4. The method for producing a liquid fertilizer for hydroponic cultivation according to claim 1, wherein another fertilizer component is further added to the separated liquid to obtain a liquid fertilizer for hydroponic cultivation.
【請求項5】 添加する肥料成分にはカルシウム分を含
有させないことを特徴とする請求項4に記載の養液栽培
用液肥の製造方法。
5. The method for producing liquid fertilizer for hydroponics according to claim 4, wherein the added fertilizer component does not contain calcium.
【請求項6】 脱離液をさらに濃縮して養液栽培用液肥
を得る請求項1ないし請求項5のいずれかに記載の養液
栽培用液肥の製造方法。
6. The method for producing a liquid fertilizer for hydroponics according to claim 1, wherein the liquid obtained is further concentrated to obtain a liquid fertilizer for hydroponics.
JP2000327438A 2000-10-26 2000-10-26 Method of manufacturing liquefied fertilizer for nourishing solution vegetation Pending JP2002137979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000327438A JP2002137979A (en) 2000-10-26 2000-10-26 Method of manufacturing liquefied fertilizer for nourishing solution vegetation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000327438A JP2002137979A (en) 2000-10-26 2000-10-26 Method of manufacturing liquefied fertilizer for nourishing solution vegetation

Publications (1)

Publication Number Publication Date
JP2002137979A true JP2002137979A (en) 2002-05-14

Family

ID=18804457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000327438A Pending JP2002137979A (en) 2000-10-26 2000-10-26 Method of manufacturing liquefied fertilizer for nourishing solution vegetation

Country Status (1)

Country Link
JP (1) JP2002137979A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089362A (en) * 2004-08-23 2006-04-06 Shinya Watabe Method and apparatus for recovering and utilizing malodor component in compost
JP2006312565A (en) * 2005-05-06 2006-11-16 Nagasaki Univ Method and system for manufacturing liquid fertilizer
JP2012066186A (en) * 2010-09-22 2012-04-05 Toshiba Corp Water treatment apparatus
US8327581B2 (en) 2006-12-04 2012-12-11 Makoto Shinohara Method for producing biomineral-containing substance and organic hydroponics method
KR101319118B1 (en) 2008-10-09 2013-11-13 도꾸리쯔 교세이호징 노우교 · 쇼쿠힝 산교 기쥬쯔 소고 겡뀨 기꼬우 Method for production of seed material for microorganisms optimized as catalyst for parallel complex mineralization reaction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089362A (en) * 2004-08-23 2006-04-06 Shinya Watabe Method and apparatus for recovering and utilizing malodor component in compost
JP2006312565A (en) * 2005-05-06 2006-11-16 Nagasaki Univ Method and system for manufacturing liquid fertilizer
US8327581B2 (en) 2006-12-04 2012-12-11 Makoto Shinohara Method for producing biomineral-containing substance and organic hydroponics method
KR101319118B1 (en) 2008-10-09 2013-11-13 도꾸리쯔 교세이호징 노우교 · 쇼쿠힝 산교 기쥬쯔 소고 겡뀨 기꼬우 Method for production of seed material for microorganisms optimized as catalyst for parallel complex mineralization reaction
JP2012066186A (en) * 2010-09-22 2012-04-05 Toshiba Corp Water treatment apparatus

Similar Documents

Publication Publication Date Title
Wang et al. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent
US20020030012A1 (en) Comprehensive waste treatment system and related methods for animal feeding operations to effectively recover waste solids for beneficial re-use and for treatment of wastewater for nutrient removal and recycle, re-use or discharge
KR100723338B1 (en) Recycling disposal plant system for livestock excretions
EP2093196B1 (en) Method for controlling a waste water treatment system using a multiple step constructed wetland
Cheng et al. Swine wastewater treatment in anaerobic digesters with floating medium
KR101830130B1 (en) An autothermal aerobic/anaerobic digestion system in swine farms
CN108892334A (en) A kind of centralized processing of animal waste utilizes system and method
Zheng et al. Pilot-scale experiments on multilevel contact oxidation treatment of poultry farm wastewater using saran lock carriers under different operation model
CA3126294A1 (en) Method and system for treating wastewater
JP2006051493A (en) System and method for treating sludge of sewage or organic waste water
KR100453806B1 (en) High concentrated organic wastewater treatment apparatus and method thereof
JP2002137979A (en) Method of manufacturing liquefied fertilizer for nourishing solution vegetation
KR20140087600A (en) Anaerobic fermentation of the feature-specific customized liquid device manufactur and manufactur method
KR20160034652A (en) Production method and system for fertigation liquid fertilizer using anaerobic digestive fluid
WO2009130396A1 (en) Method for treating and/or pretreating liquid manure or biogas plant reject for the elimination of harmful substances, particularly nitrogen, phosphorus, and odor molecules
KR101543275B1 (en) A manufacturing system of A high quality liquid fertilizer using feces and urine
CN208964733U (en) A kind for the treatment of of swine wastewater system
IL281480A (en) Process and apparatus for the treatment of organic feedstock
KR100725968B1 (en) High efficiency liquid fertilizer producing system
KR100983829B1 (en) Wastewater Treatment by Corrosion of Organics Using Methane Fermentation Tank
KR100735545B1 (en) Method for organic wastewater treatments
KR100361453B1 (en) Naturalized wastewater treatment method using various sludges
Song et al. Anaerobic membrane bioreactors for emerging pollutants removal
CN217051989U (en) Full-amount recycling treatment system for toilet excrement
KR20130096920A (en) Apparatus for liquid fertilizer use livestock excretions