JP2002111434A - Quartz vibrator of larmor vibration - Google Patents

Quartz vibrator of larmor vibration

Info

Publication number
JP2002111434A
JP2002111434A JP2000304645A JP2000304645A JP2002111434A JP 2002111434 A JP2002111434 A JP 2002111434A JP 2000304645 A JP2000304645 A JP 2000304645A JP 2000304645 A JP2000304645 A JP 2000304645A JP 2002111434 A JP2002111434 A JP 2002111434A
Authority
JP
Japan
Prior art keywords
vibration
small
vibrating
lame
crystal resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000304645A
Other languages
Japanese (ja)
Inventor
Hidenori Ashizawa
Katsuya Mizumoto
Hiromoto Yuki
勝也 水本
宏元 結城
英紀 芦沢
Original Assignee
River Eletec Kk
リバーエレテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by River Eletec Kk, リバーエレテック株式会社 filed Critical River Eletec Kk
Priority to JP2000304645A priority Critical patent/JP2002111434A/en
Publication of JP2002111434A publication Critical patent/JP2002111434A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a quartz vibrator of Larmor vibration enabling to suppress unnecessary vibrations, enabling to obtain a stable vibration mode with suppressing an increasing of equivalent resistance even if the size is downsized and also fitting for mass production. SOLUTION: In the quartz vibrator, outline vibrations around boundary of a small vibration part 27 with reference to vibration nodes 31a-31d at four corners of each vibration part 27 are occurred by inputting electric field to make adjacent small exciting electrodes 26 be opposite in polarity along with forming more than one vibration part 27 having roughly same shape as the electrodes 26 by arranging a plurality of square shaped electrodes 26 in the cross direction on both sides of a square shaped vibration board 21 which is cut from a quartz ore.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、輪郭振動(ラーメ
振動)を行う水晶振動子に係り、特に、輪郭振動する振
動板が複数の小振動部で配列形成されたラーメ振動水晶
振動子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal resonator that performs contour vibration (lame vibration), and more particularly to a Lame vibration crystal resonator in which a diaphragm that performs contour vibration is formed by a plurality of small vibrating portions. It is.
【0002】[0002]
【従来の技術】現在、数MHz〜十数MHz帯の周波数
領域で最も広く利用されている水晶振動子の振動モード
として、厚みすべり振動モードがある。この厚みすべり
振動を実現するためには、水晶原石のX軸を回転軸とし
て、Z軸から約35°15′だけ傾けたATカット角で
水晶基板を切断し、振動部となる部分を所定形状に加工
している。このようにして製造された水晶振動子は、一
般にATカット厚みすべり水晶振動子と呼ばれる。この
ATカット厚みすべり水晶振動子は、広い温度範囲に亙
って周波数変動が少ないといった優れた周波数温度特性
を持つ。
2. Description of the Related Art At present, a thickness shear vibration mode is one of the most widely used vibration modes of a quartz oscillator in a frequency range of several MHz to several tens of MHz. In order to realize this thickness-shear vibration, the quartz substrate is cut at an AT cut angle inclined by about 35 ° 15 ′ from the Z axis, using the X axis of the quartz crystal as the rotation axis, and the portion to be a vibrating part is formed in a predetermined shape. Has been processed. The crystal resonator manufactured in this manner is generally called an AT-cut thickness-sliding crystal resonator. This AT-cut thickness-sliding crystal resonator has excellent frequency-temperature characteristics such that frequency fluctuation is small over a wide temperature range.
【0003】これに対して、輪郭振動(ラーメ振動)を
伴う水晶振動子(ラーメ振動水晶振動子)がいくつか考
案あるいは実用化されている。このラーメ振動水晶振動
子は、X軸を中心にY軸をZ軸に向けて36°〜42°
の範囲で傾斜させたY’軸からなるXY’平面で切り出
されたLQ2Tカット水晶基板が用いられる。このLQ
2Tカット水晶基板は所定形状に精度よく加工すること
によって理論計算通りの特性が得られやすく、量産性に
優れた特徴を持っている。
[0003] On the other hand, several quartz oscillators (Lame oscillation quartz oscillators) accompanied by contour oscillation (Lame oscillation) have been devised or put into practical use. This Lame vibrating crystal resonator is 36 ° to 42 ° with the Y axis directed to the Z axis with the X axis as the center.
LQ2T cut quartz substrate cut out on the XY ′ plane composed of the Y ′ axis inclined in the range described above is used. This LQ
The 2T cut quartz substrate is easily processed into a predetermined shape to obtain characteristics as calculated theoretically, and has excellent mass productivity.
【0004】このラーメ振動水晶振動子1は、図7に示
すように、前記水晶原石からカットされた水晶基板を加
工した最小構成の振動部からなる振動板2と、この振動
板2を支持する支持脚3と、電極端子4a,4bが設け
られる支持部5とで構成されている。図7(a)は電極
端子4aを基準にした面からみた平面図であり、図7
(b)は電極端子4bを基準にした面からみた平面図
で、前記(a)の裏面側に相当する、また、図7(c)
は前記ラーメ振動水晶振動子1の断面形状を示す。振動
板2は薄い正方形の板状片で、例えば10MHzの振動
周波数にする場合、1辺が約240μmに形成される。
この振動板2の角部2箇所(2b,2d)が両方の支持
脚3に接続され、電極端子4a,4bが形成された支持
部5に連結されている。前記振動板2の表裏面には一対
の励振電極6が形成され、前記支持部5に設けられたそ
れぞれの電極端子4a,4bと導通結合されている。こ
の表裏の励振電極6には極性の異なった電界が印加さ
れ、ラーメ振動は前記振動板2の4つの節点2a〜2d
を基準にして行われる。
As shown in FIG. 7, the lame vibrating crystal resonator 1 supports a vibrating plate 2 composed of a vibrating part having a minimum configuration formed by processing a quartz substrate cut from the above-described rough quartz, and the vibrating plate 2. It comprises a support leg 3 and a support portion 5 on which electrode terminals 4a and 4b are provided. FIG. 7A is a plan view seen from a surface based on the electrode terminal 4a, and FIG.
FIG. 7B is a plan view seen from the surface based on the electrode terminal 4b, and corresponds to the back surface side of FIG.
Indicates the cross-sectional shape of the Lame vibrating crystal resonator 1. The vibration plate 2 is a thin square plate-like piece. When the vibration frequency is set to, for example, 10 MHz, one side is formed to be about 240 μm.
Two corner portions (2b, 2d) of the diaphragm 2 are connected to both support legs 3, and are connected to a support portion 5 on which electrode terminals 4a, 4b are formed. A pair of excitation electrodes 6 are formed on the front and back surfaces of the diaphragm 2, and are electrically connected to the respective electrode terminals 4a and 4b provided on the support portion 5. Electric fields having different polarities are applied to the excitation electrodes 6 on the front and back sides, and the Lame vibration is caused by the four nodes 2 a to 2 d of the diaphragm 2.
Is performed on the basis of
【0005】上記図7は1枚の振動板2に対して1つの
振動部が形成された最低次の振動モードの水晶振動子で
あるが、図8に示したラーメ振動水晶振動子11は、長
方形状の振動板12に3つの小振動部13a〜13cを
一列に配列させた3次の振動モードを有したものとなっ
ている。このように、振動の次数を増やすことで、振動
精度が高く、等価抵抗の少ない水晶振動子ができる(1
995年5月18日EMシンポジウム「エッチング法に
よって形成されたラーメモード水晶振動子」参照)。
FIG. 7 shows a crystal oscillator of the lowest vibration mode in which one vibrating portion is formed for one vibration plate 2. The Lame vibrating crystal oscillator 11 shown in FIG. It has a tertiary vibration mode in which three small vibration parts 13a to 13c are arranged in a line on a rectangular vibration plate 12. As described above, by increasing the order of vibration, a crystal resonator having high vibration accuracy and low equivalent resistance can be obtained (1).
EM Symposium, May 18, 995, "Lame Mode Quartz Crystal Formed by Etching").
【0006】上記図7及び図8に示した振動板2,12
の支持は、等価抵抗値の上昇やQ値の低下が生じないよ
うに振動の節点2a〜2d,12a〜12dで行ってい
る。また、前記ラーメ振動水晶振動子11の場合は、小
振動部13a〜13cの四隅に節点を持った正方形状を
なし、隣接する辺の長さの比が1であるときラーメ振動
する。
The diaphragms 2 and 12 shown in FIGS.
Are supported at the vibration nodes 2a to 2d and 12a to 12d so that the equivalent resistance value does not increase and the Q value does not decrease. Further, in the case of the above-mentioned lame vibrating crystal resonator 11, the small vibrating portions 13a to 13c are square in shape with nodes at four corners, and perform lame vibration when the ratio of the lengths of adjacent sides is one.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上記数
MHz〜十数MHz帯の周波数領域で最も多く用いられ
ている厚みすべり振動水晶振動子においては、必要とす
る振動周波数領域以外での不要な振動(スプリアス)の
発生や、素子の小型化に伴い振動面が小さくなることに
よる等価抵抗の悪化を招いている。
However, in the thickness-shear vibrating crystal resonator most frequently used in the frequency range of several MHz to several tens of MHz, unnecessary vibrations other than the required vibration frequency range are required. (Spurious) is generated, and the equivalent surface resistance is deteriorated due to the reduction of the vibration surface as the element is downsized.
【0008】これに対してLQ2Tカット水晶振動子の
振動周波数fは、振動部の1辺の長さをa(μm)とす
ると、f(MHz)=2400/aで表わされるため、
振動板の広さのみに依存し、厚さは振動周波数に影響し
ない。一方、等価抵抗に関しては、振動板の厚さが薄い
方が小さくなることが知られている。しかし、薄く加工
するには加工精度や強度との兼ね合いで限界がある。
On the other hand, the vibration frequency f of the LQ2T cut crystal resonator is represented by f (MHz) = 2400 / a, where a (μm) is the length of one side of the vibrating portion.
It depends only on the width of the diaphragm, the thickness does not affect the vibration frequency. On the other hand, it is known that the equivalent resistance decreases as the thickness of the diaphragm decreases. However, there is a limit to thin processing in view of processing accuracy and strength.
【0009】前記厚みすべり振動水晶振動子の代わり
に、図7,図8に示したようなラーメ振動水晶振動子
1,11にすれば、その構造上の違いからスプリアスの
発生は小さくなることが知られている。しかし、素子を
小型化すると、振動板2,12の広さが十分確保できな
いことから、等価抵抗の大幅な改善は図れない。また、
ラーメ振動においては、高精度且つ安定した発振特性を
出すためには精密な加工精度を必要とするため、数MH
z〜十数MHzの振動周波数特性を持ったラーメ振動水
晶振動子の量産化はほとんどされていなかった。
If instead of the above-described thickness-shear vibrating crystal resonator, the lame-vibrating crystal vibrators 1 and 11 as shown in FIGS. 7 and 8 are used, the occurrence of spurious components may be reduced due to the structural difference. Are known. However, when the element is downsized, the diaphragms 2 and 12 cannot be sufficiently widened, so that the equivalent resistance cannot be significantly improved. Also,
In Lame vibration, precise machining accuracy is required in order to obtain high-precision and stable oscillation characteristics.
The mass production of the Lame vibrating crystal resonator having the vibration frequency characteristic of z to several tens of MHz has been hardly performed.
【0010】また、ラーメ振動水晶振動子において、振
動部が縦方向に一列に連結した1×n構造の振動板を備
えたものもあるが、十MHz付近の周波数においては十
分な振動エネルギーが得られず、等価抵抗値の低減には
限界があった。このことから、図8に示したような1×
3配列以上の振動板を備えたラーメ振動水晶振動子は製
造されていなかった。
[0010] Some Lame vibrating quartz resonators have a 1 × n vibrating plate in which vibrating portions are connected in a line in the vertical direction. However, sufficient vibration energy is obtained at a frequency around 10 MHz. However, there was a limit in reducing the equivalent resistance value. From this, 1 × as shown in FIG.
A Lame vibrating crystal resonator having three or more diaphragms has not been manufactured.
【0011】そこで、本発明の目的は、スプリアスが発
生することなく、また、小型化したときにおいても等価
抵抗の増加を抑えることで安定した振動モードが得ら
れ、且つ量産にも適したラーメ振動水晶振動子を提供す
ることにある。
Therefore, an object of the present invention is to provide a stable vibration mode without generating spurious components and suppressing an increase in equivalent resistance even when the size is reduced, and which is suitable for mass production. It is to provide a crystal oscillator.
【0012】[0012]
【課題を解決するための手段】上記課題を解決するため
に、本発明の請求項1に係るラーメ振動水晶振動子は、
両面に励振電極が形成された四角形状の振動板の四隅が
振動の節点となってラーメ振動する水晶振動子におい
て、前記励振電極が正方形状の小励振電極を縦及び横方
向に複数配列して形成されると共に、前記隣接する小励
振電極に印加する電界を逆極性としたことを特徴とす
る。
In order to solve the above-mentioned problems, a Lame vibrating crystal resonator according to claim 1 of the present invention comprises:
In a quartz crystal resonator in which four corners of a rectangular diaphragm having excitation electrodes formed on both sides are vibration nodes and Lame oscillation occurs, the excitation electrodes are arranged in a plurality of square-shaped small excitation electrodes in the vertical and horizontal directions. And the electric field applied to the adjacent small excitation electrode has a reverse polarity.
【0013】この発明によれば、振動板に正方形状の小
励振電極を複数配列形成されたことで、等価抵抗値が小
さい高次のラーメ振動水晶振動子の量産が容易となる。
また、隣接する小励振電極に対して交互に逆極性の電界
を印加するようにしたことで、配列の中心部の水晶とし
て輪郭がない振動板においても、四方に隣接した極性の
異なる電界の影響で輪郭部の振動が低下することがな
い。このため、振動板の外周部と中心部との振動の差が
小さく、均一な振動特性を得ることができる。また、基
本の振動周波数を持つ小振動部を縦及び横方向に平面的
に複数配列形成させたことで、全体としての振動面を大
きくとることができ、等価抵抗の低減化が図られる。
According to the present invention, since a plurality of square-shaped small excitation electrodes are formed on the diaphragm, mass production of a high-order Lame vibrating crystal resonator having a small equivalent resistance becomes easy.
In addition, by applying an electric field of opposite polarity alternately to adjacent small excitation electrodes, the influence of electric fields of different polarities adjacent to each other even on a diaphragm with no contour as a crystal at the center of the array. Therefore, the vibration of the contour does not decrease. Therefore, the difference in vibration between the outer peripheral portion and the central portion of the diaphragm is small, and uniform vibration characteristics can be obtained. Further, by forming a plurality of small vibrating portions having a basic vibration frequency in a plane in the vertical and horizontal directions, a large vibrating surface can be obtained as a whole, and the equivalent resistance can be reduced.
【0014】請求項2の発明は、請求項1記載のラーメ
振動水晶振動子において、前記振動板が、縦及び横方向
に奇数個配列した小振動部からなることを特徴とする。
According to a second aspect of the present invention, in the lame vibrating crystal resonator according to the first aspect, the vibrating plate comprises an odd number of small vibrating portions arranged in the vertical and horizontal directions.
【0015】この発明によれば、振動板に形成される小
振動部が縦及び横方向に奇数個配列されているため、振
動板全体の歪み方が上下左右対称となり、振動中におけ
る重心の移動がなくなる。また、振動板から外に漏れる
振動エネルギーもなくなるため、等価抵抗が低減する。
According to the present invention, since the odd number of small vibrating portions formed on the diaphragm are arranged in the vertical and horizontal directions, the distortion of the entire diaphragm is vertically and horizontally symmetrical, and the center of gravity shifts during vibration. Disappears. Further, there is no vibration energy leaking out of the diaphragm, so that the equivalent resistance is reduced.
【0016】請求項3の発明は、請求項1又は2記載の
ラーメ振動水晶振動子において、前記小励振電極が形成
された直下の振動板面が四隅に節点を有した個別の小振
動部を構成し、この小振動部同士が隣接し合う境界辺で
輪郭振動を得ることを特徴とする。
According to a third aspect of the present invention, there is provided the lame vibrating crystal resonator according to the first or second aspect, wherein the diaphragm surface immediately below the small excitation electrode is formed with individual small vibrating portions having nodes at four corners. This is characterized in that a contour vibration is obtained at a boundary side where the small vibration portions are adjacent to each other.
【0017】この発明によれば、正方形状且つ同形の小
励振電極を振動板両面に均等に配列形成したことで、前
記小励振電極と同形の小振動部が連続形成される。この
ため、各小振動部の四隅の節点同士の連続性が確保さ
れ、この小振動部同士が隣接し合う境界辺での正確な輪
郭振動が得られる。
According to the present invention, the small excitation electrodes having the same shape as the small excitation electrodes are continuously formed by uniformly arranging the small excitation electrodes of the same shape on the both sides of the diaphragm. For this reason, continuity between the nodes at the four corners of each small vibrating portion is ensured, and accurate contour vibration can be obtained at the boundary side where the small vibrating portions are adjacent to each other.
【0018】請求項4の発明は、請求項1又は2記載の
ラーメ振動水晶振動子において、前記小励振電極間に印
加する電圧を、前記小振動部の四隅の節点近辺から供給
することを特徴とする。
According to a fourth aspect of the present invention, in the Lame vibrating crystal resonator according to the first or second aspect, the voltage applied between the small excitation electrodes is supplied from the vicinity of the four corner nodes of the small vibration part. And
【0019】この発明によれば、隣接する小励振電極が
逆極性であるため、同極性の小励振電極同士は、斜め配
列されることになる。したがって、各小励振電極の下に
形成された小振動部の四隅の節点を介して配線パターン
を形成すれば、最短距離で導通が可能となる。このた
め、小励振電極部以外での余分なコンデンサ容量を最小
限に抑え、雑音の少ない良質な振動モードを得ることが
できる。
According to the present invention, since the adjacent small excitation electrodes have opposite polarities, the small excitation electrodes having the same polarity are obliquely arranged. Therefore, if the wiring pattern is formed through the four corner nodes of the small vibrating portion formed below each small excitation electrode, conduction can be made at the shortest distance. Therefore, it is possible to minimize the extra capacitance of the capacitor other than the small excitation electrode portion and obtain a high-quality vibration mode with little noise.
【0020】請求項5の発明は、請求項1又は2記載の
ラーメ振動水晶振動子において、前記各小励振電極が、
各小振動部に対して70%以上の面積比で平面形成され
たことを特徴とする。
According to a fifth aspect of the present invention, in the lame vibrating crystal resonator according to the first or second aspect, each of the small excitation electrodes is
It is characterized in that each small vibrating part is formed in a plane with an area ratio of 70% or more.
【0021】この発明によれば、各小振動部は、配列形
成された小励振電極の面積に応じた大きさで規定され
る。小励振電極をできるだけ大きくすることで、隣り合
う小振動部との電界方向による境界が明確になり、水晶
としての輪郭のない中央付近の小振動部でも振幅の大き
い振動を発生させることができると共に、等価抵抗も低
減することができる。逆に電極面積が50%以下では隣
り合う小振動部との境界条件がはっきりせず、ラーメ振
動を発生させるのが難しくなる。このため、各小振動部
同士の連続性を持たせるためには小励振電極を隙間なく
配列させた方がよいが、絶縁や配線パターンを形成する
ための隙間を設けなければならない。各小励振電極が、
各小振動部に対して70%以上の面積比で平面形成する
ことで絶縁及び配線を可能とした上、振幅の大きいラー
メ振動を発生させることができるので等価抵抗値の低減
を図ることができる。
According to the present invention, each small vibration portion is defined by a size corresponding to the area of the small excitation electrodes arranged and formed. By making the small excitation electrode as large as possible, the boundary of the adjacent small vibrating part in the direction of the electric field becomes clear, and a large amplitude vibration can be generated even in the small vibrating part near the center without a contour as quartz. , The equivalent resistance can also be reduced. Conversely, if the electrode area is 50% or less, the boundary condition between adjacent small vibrating parts is not clear, and it is difficult to generate Lame vibration. For this reason, in order to provide continuity between the respective small vibrating parts, it is preferable to arrange the small excitation electrodes without gaps, but it is necessary to provide gaps for forming insulation and wiring patterns. Each small excitation electrode
By forming a plane with an area ratio of 70% or more with respect to each small vibrating portion, insulation and wiring can be performed, and large amplitude Lame vibration can be generated, so that the equivalent resistance value can be reduced. .
【0022】[0022]
【発明の実施の形態】以下、添付図面に基づいて本発明
に係るラーメ振動水晶振動子の実施形態を詳細に説明す
る。図1及び図2は本発明のラーメ振動水晶振動子であ
って、振動板が3×3配列の小振動部からなる第1実施
形態の平面図、図3は前記ラーメ振動水晶振動子の側面
図、図4は前記ラーメ振動水晶振動子を構成する小振動
部の振動形態を示す作用図、図5は前記第1実施形態に
おける振動板全体の振動形態を示す作用図、図6は本発
明のラーメ振動水晶振動子であって、5×5配列の小振
動部からなる振動板を有した第2実施形態における振動
形態を示す作用図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a Lame vibrating crystal resonator according to the present invention will be described in detail with reference to the accompanying drawings. 1 and 2 are plan views of a Lame vibrating crystal resonator according to a first embodiment of the present invention, in which a vibrating plate includes small vibrating portions arranged in a 3 × 3 array. FIG. 3 is a side view of the Lame vibrating crystal resonator. FIGS. 4 and 5 are operation diagrams showing the vibration mode of the small vibrating portion constituting the Lame vibrating crystal resonator, FIG. 5 is an operation diagram showing the vibration mode of the entire diaphragm in the first embodiment, and FIG. 6 is the present invention. FIG. 8 is an operation diagram showing a vibration mode in a second embodiment having a diaphragm composed of small vibrating portions in a 5 × 5 array.
【0023】水晶振動子はその振動モードに応じて、水
晶原石のX軸(電気軸),Y軸(機械軸),Z軸(光
軸)の各結晶軸から所定の傾きで切断された水晶基板を
様々な形状に打ち抜き、特定の振動モードを持った水晶
振動子を形成する。
According to the vibration mode, the quartz crystal is cut at a predetermined inclination from the crystal axes of the X-axis (electric axis), Y-axis (mechanical axis), and Z-axis (optical axis) of the quartz crystal. The substrate is punched into various shapes to form a crystal resonator having a specific vibration mode.
【0024】本発明のラーメ振動水晶振動子は、前記水
晶原石からある結晶方位を持った水晶基板で形成され
る。特に、X軸を中心にY軸をZ軸に向けて36°〜4
2°の範囲で傾斜させたY’軸からなるXY’平面で切
り出された水晶基板であって、この水晶基板をさらにX
Y’平面内で45°回転して切り出されたLQ2Tカッ
ト水晶基板が安定した振動特性を持ったラーメ振動水晶
振動子に適している。
The Lame vibrating crystal resonator according to the present invention is formed of a crystal substrate having a certain crystal orientation from the quartz crystal. In particular, when the Y-axis is directed to the Z-axis around the X-axis,
A quartz substrate cut out on an XY ′ plane consisting of a Y ′ axis inclined at a range of 2 °, and this quartz substrate is further cut by X
The LQ2T cut quartz substrate cut out by rotating 45 ° in the Y ′ plane is suitable for a Lame vibrating quartz resonator having stable vibration characteristics.
【0025】その形状は図1〜図3に示すように、四隅
に振動の節点22a,22b,22c,22dを有する
四角形状の振動板21と、前記4個所の節点22a〜2
2dを支持する支持脚23a,23b,23c,23d
と、前記支持脚23a〜23dに対して一体的に打ち抜
き形成された支持部24とから構成され、支持部24に
は一対の電極端子25a,25bが形成される。符号1
9は打ち抜き加工された空隙部で、振動板21の各辺に
沿って4箇所空けられている。
As shown in FIGS. 1 to 3, the shape of the diaphragm 21 is a rectangular diaphragm 21 having vibration nodes 22a, 22b, 22c, and 22d at four corners, and the four nodes 22a to 22a.
Support legs 23a, 23b, 23c, 23d supporting 2d
And a support portion 24 integrally formed by punching the support legs 23a to 23d. The support portion 24 has a pair of electrode terminals 25a and 25b. Sign 1
Reference numeral 9 denotes a punched void portion, which is provided at four places along each side of the diaphragm 21.
【0026】前記振動板21には図1の拡大図に示すよ
うな小励振電極26が複数配列形成されている。そし
て、この配列された個々の小励振電極26部分が個別の
小振動部27となる。本実施例におけるラーメ振動水晶
振動子20は、携帯電子機器の基本周波数として多く用
いられている10MHz帯の振動周波数を想定したとき
の構成例である。図1は電極端子25aから延びる配線
パターンが形成された面からみた平面図で、図2は電極
端子25bから延びる配線パターンが形成された面から
みた平面図である。なお、図2は図1のラーメ振動水晶
振動子20を正面からみたときの形状及び配置を表わし
ている。また、図3は前記図1及び図2のA−A線に沿
った断面形状を表す。(以下、図1を表面、図2を裏面
とする。)基本の小振動部27は1辺L3,L4が24
0μmの正方形で、振動板21は前記小振動部27を縦
横方向に3個ずつ計9個分配列したときの大きさ(L
1,L2が720μmの正方形)となっている。小励振
電極26は小振動部27となる振動板21の表裏面に形
成される。したがって、振動の節点はそれぞれの小振動
部27の四隅31a〜31dと振動板21全体の四隅2
2a〜22dに設定される。
A plurality of small excitation electrodes 26 as shown in the enlarged view of FIG. Then, the individual small excitation electrodes 26 arranged as described above become individual small vibration parts 27. The Lame vibrating crystal resonator 20 in the present embodiment is a configuration example when assuming a vibration frequency in a 10 MHz band that is often used as a basic frequency of a portable electronic device. FIG. 1 is a plan view as viewed from a surface on which a wiring pattern extending from the electrode terminal 25a is formed, and FIG. 2 is a plan view as viewed from a surface on which a wiring pattern extending from the electrode terminal 25b is formed. FIG. 2 shows the shape and arrangement of the lame vibrating crystal resonator 20 of FIG. 1 when viewed from the front. FIG. 3 shows a cross-sectional shape along the line AA in FIGS. (Hereinafter, FIG. 1 is referred to as a front surface and FIG. 2 is referred to as a back surface.) The basic small vibration portion 27 has 24 sides L3 and L4.
The vibration plate 21 is a square having a size of 0 μm, and the diaphragm 21 has a size (L
1, L2 is a square of 720 μm). The small excitation electrodes 26 are formed on the front and back surfaces of the vibration plate 21 serving as the small vibration part 27. Therefore, the nodes of vibration are the four corners 31a to 31d of each small vibration part 27 and the four corners 2 of the entire diaphragm 21.
2a to 22d are set.
【0027】前記各小振動部27の表裏面に設けられた
小励振電極26には、それぞれ極性の異なった電極端子
25a,25bから延びる導通路27a,27bを介し
て電界が付加される。これらの電界の付加は、同一平面
上で隣接する小振動部27は互いに逆極性の電界が発生
するように設定される。例えば、3×3配列の振動板2
1においては、電極端子25aから供給される電界は、
図1の表側の導通路27aを通して小励振電極(A1,
C1,E1,G1,I1)及び表裏面とを導通させる回
し込みパターン28を介して図2の裏側の小励振電極
(B2,D2,F2,H2)に供給される。一方、電極
端子25bから供給される電界は、図2の裏側の小励振
電極(A2,C2,E2,G2,I2)及び表裏面とを
導通させる回し込みパターン29を介して図1の表側の
小励振電極(B1,D1,F1,H1)に供給される。
このように、小励振電極の各辺を境に、隣接する小励振
電極の電界が常に逆極性になるようにパターン形成され
ているため、各小振動部27の四隅の節点を基点として
小振動部27同士の境界辺が交互に膨らんだり、凹んだ
りするといった歪みが生じることになる。これにより、
所望の振動周波数を得る。前記小励振電極26同士や表
と裏面との回し込みパターン28,29を形成する際に
は配線パターンの引き回しによるコンデンサ容量を極力
低減させるように、最短距離を選んでパターン形成す
る。なお、同極性を持った小励振電極26同士は斜め位
置に配されるため、ちょうど小振動部27の節点を介し
たスター状の結線パターンとなる。本発明のラーメ振動
水晶振動子の振動周波数fは上記示したように、各小振
動部27の1辺の長さL3,L4によって決定されるこ
とから、L3,L4=a(μm)とすると、f(MH
z)=2400/aで表わされる。このため、振動板2
1に配列させる個数と振動周波数とは関係ないが、振動
部全体の面が広くなることで、等価抵抗の減少効果が表
れ、水晶振動子の特性改善が図られる。
An electric field is applied to the small excitation electrodes 26 provided on the front and back surfaces of the small vibrating portions 27 via conduction paths 27a and 27b extending from electrode terminals 25a and 25b having different polarities. The addition of these electric fields is set so that adjacent small vibrating portions 27 on the same plane generate electric fields of opposite polarities. For example, a diaphragm 2 having a 3 × 3 arrangement
In 1, the electric field supplied from the electrode terminal 25a is
The small excitation electrode (A1,
C1, E1, G1, I1) and the small excitation electrodes (B2, D2, F2, H2) on the back side of FIG. On the other hand, the electric field supplied from the electrode terminal 25b is transmitted through the small excitation electrodes (A2, C2, E2, G2, I2) on the back side of FIG. It is supplied to the small excitation electrodes (B1, D1, F1, H1).
As described above, the pattern is formed such that the electric field of the adjacent small excitation electrode always has the opposite polarity at each side of the small excitation electrode. Distortions such as alternate swelling or denting of the border sides between the portions 27 occur. This allows
Obtain the desired vibration frequency. When forming the wiring patterns 28 and 29 between the small excitation electrodes 26 and between the front and rear surfaces, the shortest distance is selected and formed so as to minimize the capacitance of the capacitor due to the wiring pattern. Since the small excitation electrodes 26 having the same polarity are arranged at oblique positions, they form a star-shaped connection pattern via the nodes of the small vibration part 27. As described above, since the vibration frequency f of the Lame vibrating crystal resonator of the present invention is determined by the lengths L3 and L4 of one side of each small vibrating portion 27, it is assumed that L3 and L4 = a (μm). , F (MH
z) = 2400 / a. For this reason, the diaphragm 2
Although there is no relation between the number arranged in one and the vibration frequency, the effect of reducing the equivalent resistance appears by widening the surface of the whole vibrating portion, and the characteristics of the crystal resonator are improved.
【0028】前記小励振電極26を形成する面積は、各
小振動部27全体の50%以上であれば実用上問題のな
い等価抵抗値になるが、70%以上にすれば格段の等価
抵抗低減効果が期待できる。ただし、各小励振電極26
間には絶縁や配線パターンを形成する隙間を確保しなけ
ればならないため、80〜90%に形成するのが望まし
い。
If the area where the small excitation electrode 26 is formed is 50% or more of the entire small vibrating portion 27, the equivalent resistance value will be practically no problem, but if it is 70% or more, the equivalent resistance is significantly reduced. The effect can be expected. However, each small excitation electrode 26
Since a gap for forming insulation and a wiring pattern must be secured between them, it is desirable to form the gap at 80 to 90%.
【0029】支持脚23a〜23dは、前記振動板21
の4個所の節点22a〜22dを支持すると同時に、電
極端子25a,25bからの電荷を各小振動部27の小
励振電極26と導通する導通路となるもので、幅の狭い
板状片で形成される。
The supporting legs 23a to 23d are
At the same time as supporting the four nodes 22a to 22d, and at the same time, forming a conduction path for conducting the electric charges from the electrode terminals 25a and 25b to the small excitation electrode 26 of each small vibrating portion 27. Is done.
【0030】前記支持脚23a〜23dを介して振動板
21が支持部24に一体形成されている。この支持脚2
3a〜23dは振動板21の節点となる四隅の角部で行
うことで、振動が妨げられずに良好な発振特性を得るこ
とができるが、振動板の各小振動部27の節点で支持し
ても実用上問題のない発振特性が得られる。
The diaphragm 21 is formed integrally with the support 24 via the support legs 23a to 23d. This support leg 2
By performing the steps 3a to 23d at the four corners of the diaphragm 21 which are the nodal points, good oscillation characteristics can be obtained without obstructing the vibration, but the vibration is supported at the nodes of the small vibrating parts 27 of the diaphragm. However, oscillation characteristics that are practically no problem are obtained.
【0031】上記各小振動部27の振動形態を模式的に
示したものが図4である。振動現象としては、電極部2
5a,25bから支持脚23a〜23dを介して小振動
部27の各辺32a〜32dに電界を加えることで、各
辺32a〜32dが振動の節点31a〜31dを基準に
して、図中点線で示したように(a)及び(b)のよう
に撓む。このような(a),(b)の動作を連続的に繰
り返すことで一定の周期を持った振動が得られる。正確
で安定した振動現象を得るためには、各節点31a〜3
1dの振動幅がゼロになるように設計するのが望まし
い。
FIG. 4 schematically shows the vibration mode of each of the small vibrating sections 27. As shown in FIG. As the vibration phenomenon, the electrode part 2
By applying an electric field from 5a, 25b to the sides 32a to 32d of the small vibrating portion 27 via the support legs 23a to 23d, the sides 32a to 32d are represented by dotted lines in the drawing with reference to the vibration nodes 31a to 31d. It bends as shown in (a) and (b). By repeating such operations (a) and (b) continuously, a vibration having a constant cycle can be obtained. In order to obtain an accurate and stable vibration phenomenon, each of the nodes 31 a to 31 a
It is desirable to design the vibration width of 1d to be zero.
【0032】上記振動を組合わせると図5に示すような
振動形態になる。このように、各小振動部27の四隅の
節点31a〜31dを基準にして対向する辺が外側に膨
らんだり、内側に凹んだりする動作が隣接する小振動部
27の辺に伝播することで、振動板21全体として高次
の振動モードが得られる。このときの発振周波数は、各
小振動部27の1辺の長さに依存するため、振動板21
全体としての振動周波数は変わらないが、振動面が広く
なることで、等価抵抗値が減少する。
When the above vibrations are combined, a vibration form as shown in FIG. 5 is obtained. As described above, the opposing sides bulge outward or dent inward based on the nodes 31a to 31d at the four corners of each small vibrating section 27, and propagate to the sides of the adjacent small vibrating sections 27, A higher-order vibration mode is obtained as the whole diaphragm 21. Since the oscillation frequency at this time depends on the length of one side of each small vibrating portion 27, the vibration plate 21
Although the vibration frequency as a whole does not change, the equivalent resistance value decreases as the vibration surface increases.
【0033】上記ラーメ振動水晶振動子20において、
10MHzの振動周波数を得るための理想的な設計例
は、図1に基づくと、各小振動部27の1辺の長さL
3,L4=240μm、前記小振動部27の配列は3×
3の正方配列で、振動板21の1辺の長さL1,L2=
720μm、小振動部27と小励振電極26の面積比=
10:9である。
In the above-mentioned Lame vibrating crystal resonator 20,
An ideal design example for obtaining a vibration frequency of 10 MHz is based on FIG.
3, L4 = 240 μm, the arrangement of the small vibrating parts 27 is 3 ×
3 and the lengths L1 and L2 of one side of the diaphragm 21 =
720 μm, area ratio of small vibrating part 27 and small excitation electrode 26 =
10: 9.
【0034】図6は本発明のラーメ振動水晶振動子の第
2実施形態を示したもので、振動板21に形成する小振
動部27の数を縦及び横方向に増やして5×5構成にし
たものである。この構成例における水晶振動子も上記3
×3構成の水晶振動子と同じような10MHzの振動周
波数を想定したものである。各小振動部27の1辺の長
さは240μmで、振動板の1辺の長さが1200μm
となる。このように、単一の振動板に形成する小振動部
27を増やしたことで、前記3×3構成のラーメ振動水
晶振動子よりもさらに等価抵抗値の減少を図ることがで
きる。
FIG. 6 shows a second embodiment of the Lame vibrating crystal resonator according to the present invention. The number of small vibrating portions 27 formed on the diaphragm 21 is increased in the vertical and horizontal directions to form a 5 × 5 structure. It was done. The quartz oscillator in this configuration example also has
It is assumed that a vibration frequency of 10 MHz, which is the same as that of a crystal resonator having a × 3 configuration, is assumed. The length of one side of each small vibration part 27 is 240 μm, and the length of one side of the diaphragm is 1200 μm.
Becomes As described above, by increasing the number of the small vibrating portions 27 formed on a single diaphragm, the equivalent resistance value can be further reduced as compared with the Lame vibrating crystal resonator having the 3 × 3 configuration.
【0035】上記5×5構成のラーメ振動水晶振動子に
ついて周波数特性を調べたところ振動周波数f=11.
870MHzでの共振現象が確認できた。また、このと
きの等価抵抗R1=4.7kΩである。また、同時に作
製した1×5構成のラーメ振動水晶振動子については、
共振現象が確認できないほどに等価抵抗値が増大してい
ることから、本実施例のラーメ振動水晶振動子の等価抵
抗低減効果の確認ができた。今回測定に用いられた水晶
振動子は試作段階であるので、上記数値となったが、振
動周波数の誤差範囲は±10ppmで、等価抵抗は10
0Ω程度まで低減させることが可能である。
The frequency characteristics of the lame vibrating quartz crystal resonator having the 5 × 5 configuration were examined.
A resonance phenomenon at 870 MHz was confirmed. The equivalent resistance R1 at this time is 4.7 kΩ. In addition, for the 1 × 5 configuration of the lame vibrating crystal resonator manufactured at the same time,
Since the equivalent resistance value has increased so that the resonance phenomenon cannot be confirmed, the effect of reducing the equivalent resistance of the Lame vibrating crystal resonator of the present example was confirmed. Since the crystal unit used in this measurement was in the prototype stage, the above values were obtained. However, the error range of the oscillation frequency was ± 10 ppm, and the equivalent resistance was 10%.
It can be reduced to about 0Ω.
【0036】このように、小振動部27の配列数を増や
すほど等価抵抗の減少効果が期待できる。本案のような
十数MHz近辺の振動周波数を持つような水晶振動子で
あれば、パッケージサイズを考慮して5×5構成程度が
適当である。これより高い振動周波数の水晶振動子を設
計する場合は、小振動部27の1辺の長さが小さくなる
ので、より高次のラーメ振動水晶振動子の製造が可能と
なる。したがって、小型化と共に生産性の向上が図られ
る。
As described above, the effect of reducing the equivalent resistance can be expected as the number of the small vibrating portions 27 is increased. In the case of a crystal resonator having a vibration frequency around ten and several MHz as in the present invention, a configuration of about 5 × 5 is appropriate in consideration of the package size. In the case of designing a crystal resonator having a higher vibration frequency, the length of one side of the small vibrating portion 27 is reduced, so that a higher-order Lame vibration crystal resonator can be manufactured. Therefore, productivity is improved as well as miniaturization.
【0037】上記実施例で示したようなラーメ振動水晶
振動子は、水晶原石から切り出された平板状の振動片を
打ち抜いて所定形状の支持脚及び振動板を形成する。こ
の形成は化学的エッチングやパウダービームによる切削
加工法が使用される。
The Lame vibrating crystal resonator as shown in the above embodiment is formed by punching a flat vibrating piece cut out of a rough quartz crystal to form supporting legs and a vibrating plate of a predetermined shape. For this formation, a chemical etching or a cutting method using a powder beam is used.
【0038】なお、本実施例では小振動部27が3×
3、5×5といった奇数正方配列構成の例を示したが、
3×5といった奇数長方配列としてもよい。このような
縦横共に奇数配列にすると振動板の中心部に必ず1つの
小振動部が位置するため、振動板全体としてみたときの
振動バランスが良好となる。また、水晶振動子パッケー
ジの大きさや発振精度に応じて、2×2や4×4といっ
た偶数正方配列や、2×3、3×4といった長方配列構
成も可能である。ただし、正確なラーメ振動を行うため
には構成要素である各小振動部27の形状は正方形で、
それぞれの輪郭振動形態が均一となるようにしなければ
ならない。
In this embodiment, the small vibrating portion 27 is 3 ×
Although an example of an odd square array configuration such as 3, 5 × 5 is shown,
An odd rectangular array such as 3 × 5 may be used. If the arrangement is odd in both the vertical and horizontal directions, one small vibrating portion is always located at the center of the diaphragm, so that the vibration balance as a whole as a whole becomes good. Further, depending on the size and oscillation accuracy of the crystal resonator package, an even square arrangement such as 2 × 2 or 4 × 4 or a rectangular arrangement such as 2 × 3 or 3 × 4 is also possible. However, in order to perform accurate rame vibration, the shape of each small vibration part 27 which is a component is square,
Each contour vibration form must be uniform.
【0039】[0039]
【発明の効果】以上説明したように、従来の厚みすべり
振動系の水晶振動子では厚さ方向の振動といっしょに輪
郭部の振動を伴ったスプリアスが発生するため、純粋な
振動特性が得られなかったが、本案のラーメ振動水晶振
動子のように、輪郭振動系のラーメ振動水晶振動子を利
用したことで、スプリアスの発生が少なく、安定した発
振特性が得られた。
As described above, in the conventional crystal oscillator of the thickness-shear vibration system, spurious vibration accompanied by the vibration of the contour is generated together with the vibration in the thickness direction, so that a pure vibration characteristic can be obtained. However, the use of the Lame vibrating crystal resonator of the contour vibration system as in the Lame vibrating crystal resonator of the present invention resulted in less spurious generation and stable oscillation characteristics.
【0040】また、小振動部27を3×3あるいは5×
5のように同一面上に複数配列成形したので、振動面が
広くなり、それに伴って等価抵抗の減少効果が図られ
た。
The small vibrating section 27 is 3 × 3 or 5 ×
Since a plurality of arrays were formed on the same surface as in No. 5, the vibration surface was widened, and an effect of reducing the equivalent resistance was achieved.
【0041】また、前記ラーメ振動水晶振動子が、他の
振動モードの水晶振動子に比べ設計が容易であることか
ら、工数が掛からず安定した製品の量産化が可能となっ
た。
Further, since the design of the Lame vibrating quartz resonator is easier than that of other vibrating mode quartz resonators, it is possible to mass-produce a stable product without any man-hours.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明のラーメ振動水晶振動子の第1実施形態
における表側の平面図である。
FIG. 1 is a plan view of a front side of a Lame vibrating crystal resonator according to a first embodiment of the present invention.
【図2】上記ラーメ振動水晶振動子の裏面であって、上
記表側からみたときの平面図である。
FIG. 2 is a plan view of the back surface of the Lame vibrating crystal resonator when viewed from the front side.
【図3】上記図1及び図2におけるラーメ振動水晶振動
子のA−A線に沿った断面図である。
FIG. 3 is a cross-sectional view taken along line AA of the Lame vibrating crystal resonator in FIGS. 1 and 2;
【図4】上記ラーメ振動水晶振動子を構成する各小振動
部の振動形態を示す作用図である。
FIG. 4 is an operation diagram showing a vibration mode of each small vibrating portion constituting the above-mentioned Lame vibrating crystal resonator.
【図5】上記ラーメ振動水晶振動子の振動板全体の振動
形態を示す作用図である。
FIG. 5 is an operation diagram showing a vibration mode of the entire diaphragm of the Lame vibrating crystal resonator.
【図6】本発明のラーメ振動水晶振動子の第2実施形態
における振動モードを示す作用図である。
FIG. 6 is an operation diagram showing a vibration mode in a second embodiment of the Lame vibrating crystal resonator according to the present invention.
【図7】従来のラーメ振動水晶振動子の平面図である。FIG. 7 is a plan view of a conventional Lame vibrating crystal resonator.
【図8】上記他のラーメ振動水晶振動子の平面図であ
る。
FIG. 8 is a plan view of the above-mentioned other Lame vibrating crystal resonator.
【符号の説明】[Explanation of symbols]
21 振動板 26 小励振電極 27 小振動部 31a〜31d 節点 21 diaphragm 26 small excitation electrode 27 small vibration part 31a-31d node
フロントページの続き (72)発明者 結城 宏元 山梨県韮崎市富士見ケ丘2丁目1−11 リ バーエレテック株式会社内 Fターム(参考) 5J108 AA01 BB02 CC04 CC10 CC11 DD03 FF04 Continuation of the front page (72) Inventor Hiromoto Yuki 2-1-1-11 Fujimigaoka, Nirasaki-shi, Yamanashi F-term in River Eletech Corporation (reference) 5J108 AA01 BB02 CC04 CC10 CC11 DD03 FF04

Claims (5)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 両面に励振電極が形成された四角形状の
    振動板の四隅が振動の節点となってラーメ振動する水晶
    振動子において、 前記励振電極が正方形状の小励振電極を縦及び横方向に
    複数配列して形成されると共に、前記隣接する小励振電
    極に印加する電界を逆極性としたことを特徴とするラー
    メ振動水晶振動子。
    1. A quartz vibrator in which four corners of a rectangular vibration plate having excitation electrodes formed on both surfaces thereof vibrate as lame vibrations at four corners, wherein the excitation electrode is formed by vertically and horizontally extending a small excitation electrode having a square shape. Wherein the electric field applied to the adjacent small excitation electrodes has an opposite polarity.
  2. 【請求項2】 前記振動板が、縦及び横方向に奇数個配
    列した小振動部からなることを特徴とする請求項1記載
    のラーメ振動水晶振動子。
    2. The Lame vibrating crystal resonator according to claim 1, wherein the vibrating plate comprises an odd number of small vibrating portions arranged in the vertical and horizontal directions.
  3. 【請求項3】 前記小励振電極が形成された直下の振動
    板面が四隅に節点を有した個別の小振動部を構成し、こ
    の小振動部同士が隣接し合う境界辺で輪郭振動を得るこ
    とを特徴とする請求項1又は2記載のラーメ振動水晶振
    動子。
    3. A vibration plate immediately below the small excitation electrode is formed as an individual small vibrating portion having nodes at four corners, and the small vibrating portion obtains a contour vibration at a boundary side adjacent to each other. The lame vibrating crystal resonator according to claim 1 or 2, wherein:
  4. 【請求項4】 前記小励振電極間に印加する電圧を、前
    記小振動部の四隅の節点近辺から供給することを特徴と
    する請求項1又は2記載のラーメ振動水晶振動子。
    4. The Lame vibrating crystal resonator according to claim 1, wherein a voltage applied between the small excitation electrodes is supplied from the vicinity of four corner nodes of the small vibration part.
  5. 【請求項5】 前記各小励振電極が、各小振動部に対し
    て70%以上の面積比で平面形成されたことを特徴とす
    る請求項1又は2記載のラーメ振動水晶振動子。
    5. The crystal oscillator according to claim 1, wherein each of said small excitation electrodes is formed in a plane with an area ratio of 70% or more with respect to each of said small vibration parts.
JP2000304645A 2000-10-04 2000-10-04 Quartz vibrator of larmor vibration Pending JP2002111434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000304645A JP2002111434A (en) 2000-10-04 2000-10-04 Quartz vibrator of larmor vibration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000304645A JP2002111434A (en) 2000-10-04 2000-10-04 Quartz vibrator of larmor vibration

Publications (1)

Publication Number Publication Date
JP2002111434A true JP2002111434A (en) 2002-04-12

Family

ID=18785658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000304645A Pending JP2002111434A (en) 2000-10-04 2000-10-04 Quartz vibrator of larmor vibration

Country Status (1)

Country Link
JP (1) JP2002111434A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2839964A1 (en) * 2002-05-24 2003-11-28 Centre Nat Rech Scient Production of a microsystem structure with lateral gaps using sacrificial layers for the deposition of mobile add-on structural elements with two degrees of freedom and an insulating layer
JP2004242254A (en) * 2003-02-10 2004-08-26 River Eletec Kk Crystal vibrator and manufacturing method
JP2005094727A (en) * 2002-11-11 2005-04-07 Piedekku Gijutsu Kenkyusho:Kk Crystal resonator, crystal unit, crystal oscillator and manufacturing method of these
JP2005244702A (en) * 2004-02-27 2005-09-08 Kyocera Kinseki Corp Crystal resonator
JP2006020138A (en) * 2004-07-02 2006-01-19 River Eletec Kk Piezoelectric vibrator
JP2008160840A (en) * 2006-12-22 2008-07-10 Commiss Energ Atom Mechanical oscillator formed of network of elementary oscillators
WO2008084763A1 (en) * 2007-01-12 2008-07-17 Epson Toyocom Corporation Contour resonator
JP2008545333A (en) * 2005-06-30 2008-12-11 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh MEMS resonator array structure and its operation and method of use
JP2010232943A (en) * 2009-03-27 2010-10-14 Epson Toyocom Corp Contour vibration chip
US8089201B2 (en) 2007-01-12 2012-01-03 Seiko Epson Corporation Contour resonator
JP2012151651A (en) * 2011-01-19 2012-08-09 River Eletec Kk Piezoelectric vibrator
JP2013102346A (en) * 2011-11-08 2013-05-23 Nippon Dempa Kogyo Co Ltd Crystal oscillator
JP2020501447A (en) * 2016-12-22 2020-01-16 株式会社村田製作所 Corner-coupled resonator array

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126009A (en) * 1987-11-11 1989-05-18 Seiko Keiyo Kogyo Kk Small-sized crystal vibrator
JPH07162053A (en) * 1993-12-07 1995-06-23 Yasuyoshi Nakamura Piezoelectric device
JPH08181361A (en) * 1994-12-26 1996-07-12 Yasuyoshi Nakamura Piezoelectric device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126009A (en) * 1987-11-11 1989-05-18 Seiko Keiyo Kogyo Kk Small-sized crystal vibrator
JPH07162053A (en) * 1993-12-07 1995-06-23 Yasuyoshi Nakamura Piezoelectric device
JPH08181361A (en) * 1994-12-26 1996-07-12 Yasuyoshi Nakamura Piezoelectric device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100969A1 (en) * 2002-05-24 2003-12-04 Centre National De La Recherche Scientifique (Cnrs) Method of producing a microsystem structure with lateral gaps and corresponding microsystem structure
FR2839964A1 (en) * 2002-05-24 2003-11-28 Centre Nat Rech Scient Production of a microsystem structure with lateral gaps using sacrificial layers for the deposition of mobile add-on structural elements with two degrees of freedom and an insulating layer
JP2005094727A (en) * 2002-11-11 2005-04-07 Piedekku Gijutsu Kenkyusho:Kk Crystal resonator, crystal unit, crystal oscillator and manufacturing method of these
JP2004242254A (en) * 2003-02-10 2004-08-26 River Eletec Kk Crystal vibrator and manufacturing method
JP2005244702A (en) * 2004-02-27 2005-09-08 Kyocera Kinseki Corp Crystal resonator
JP4597548B2 (en) * 2004-02-27 2010-12-15 京セラキンセキ株式会社 Crystal oscillator
JP4571830B2 (en) * 2004-07-02 2010-10-27 リバーエレテック株式会社 Piezoelectric vibrator
JP2006020138A (en) * 2004-07-02 2006-01-19 River Eletec Kk Piezoelectric vibrator
JP4859924B2 (en) * 2005-06-30 2012-01-25 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh MEMS resonator array structure and its operation and method of use
JP2008545333A (en) * 2005-06-30 2008-12-11 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh MEMS resonator array structure and its operation and method of use
JP2008160840A (en) * 2006-12-22 2008-07-10 Commiss Energ Atom Mechanical oscillator formed of network of elementary oscillators
WO2008084763A1 (en) * 2007-01-12 2008-07-17 Epson Toyocom Corporation Contour resonator
US8089201B2 (en) 2007-01-12 2012-01-03 Seiko Epson Corporation Contour resonator
JP2010232943A (en) * 2009-03-27 2010-10-14 Epson Toyocom Corp Contour vibration chip
JP2012151651A (en) * 2011-01-19 2012-08-09 River Eletec Kk Piezoelectric vibrator
JP2013102346A (en) * 2011-11-08 2013-05-23 Nippon Dempa Kogyo Co Ltd Crystal oscillator
JP2020501447A (en) * 2016-12-22 2020-01-16 株式会社村田製作所 Corner-coupled resonator array

Similar Documents

Publication Publication Date Title
JP2002111434A (en) Quartz vibrator of larmor vibration
JP2004135357A (en) Quartz resonator, quartz unit, crystal oscillator, and manufacturing method thereof
JP5531319B2 (en) Crystal resonator, crystal unit, and crystal oscillator manufacturing method
EP2493072A2 (en) GT-cut quartz crystal resonator
JP2003273703A (en) Quartz vibrator and its manufacturing method
JP2010187307A (en) At cut quartz resonator and manufacturing method thereof
JP2005094733A (en) Resonator, resonator unit, oscillator, electronic apparatus and manufacturing method thereof
JP3749917B2 (en) Manufacturing method of crystal oscillator
JP2003273696A (en) Method for manufacturing crystal unit and method of manufacturing crystal oscillator
JP4665242B2 (en) Contour vibration piezoelectric device
JP2004215205A (en) Crystal unit and crystal oscillator
JP4074934B2 (en) Crystal oscillator and manufacturing method thereof
JP2005094732A (en) Crystal resonator, crystal unit and crystal oscillator
JP2019192960A (en) Piezoelectric vibrator
JP2004023780A (en) Breadthwise longitudinal crystal vibrator and crystal unit
JP2005094734A (en) Resonator, resonator unit, oscillator, and electronic apparatus
JP2005094726A (en) Crystal unit, manufacturing method thereof and crystal oscillator
JP2003273647A (en) Crystal oscillator and method of manufacturing the same
JP2003273695A (en) Crystal unit and crystal oscillator
JP2004215204A (en) Crystal oscillator, and method of manufacturing crystal oscillator
JP5275054B2 (en) AT cut crystal unit
JP2003273701A (en) Quartz oscillator
JP2003273699A (en) Crystal unit and crystal oscillator
JP4697196B6 (en) Crystal unit and crystal oscillator manufacturing method
JP2003273700A (en) Crystal oscillator, and method of manufacturing crystal oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803