JP2002084002A - Light source device - Google Patents

Light source device

Info

Publication number
JP2002084002A
JP2002084002A JP2000270291A JP2000270291A JP2002084002A JP 2002084002 A JP2002084002 A JP 2002084002A JP 2000270291 A JP2000270291 A JP 2000270291A JP 2000270291 A JP2000270291 A JP 2000270291A JP 2002084002 A JP2002084002 A JP 2002084002A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
light
surface
output
lights
opposite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2000270291A
Other languages
Japanese (ja)
Inventor
Toshimichi Nakamura
Osamu Saito
Motoyoshi Sanki
利道 中村
基至 参木
修 齋藤
Original Assignee
Nippon Leiz Co Ltd
日本ライツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To obtain high luminance light by outputting well-balanced mixed lights as parallel lights from an output surface.
SOLUTION: A light emitting surface 4 of a semiconductor light emitting element 3 is mounted on the direction opposite to an output surface 5 of a light source device 1. Light is outputted in the direction opposite to the output surface 5. The light is reflected on a reflecting surface 6 which is constituted in arcuately recessed form and positioned opposite to the output surface 5. Wavelength converting part 7 is disposed between the light emitting surface 4 and the reflecting surface 6. A light subjected to wavelength conversion by the wavelength converting part 7 and the original light are present. Lights wherein the lights are mixed are outputted in parallel from the output surface 5.
COPYRIGHT: (C)2002,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】この発明は、半導体発光素子の発光面を光源装置の出射面と反対方向に載置し、出射面と反対に光を出射させ、円弧状にした出射面と反対に位置する反射面で反射させ、一部はそのまま出射面より出射し、一部は発光面(出射面)と反射面との間に設けた波長変換部で波長変換された光を反射面で反射させ出射したり、反射面で反射された光を波長変換して出射させるとともに出射面からは混合された平行光線を出射することができる光源装置に関する。 TECHNICAL FIELD The present invention is a light emitting surface of the semiconductor light emitting element is placed on the exit surface opposite direction of the light source device, light is emitted to the opposite exit face, as opposed to the emission surface which is arcuately is reflected by the reflecting surface located, a portion thereof is emitted from intact emitting surface, partly reflecting the light whose wavelength is converted by the wavelength converter provided between the light emitting surface (exit surface) and the reflection surface by the reflecting surface or emitted by, it relates to a light source device capable of emitting a mixed parallel rays of light reflected by the reflecting surface from the exit surface with be emitted wavelength conversion.

【0002】 [0002]

【従来の技術】従来の光源装置は、一般に砲弾型等が多く、またディスプレ等に用いる場合には単に半導体発光素子を発光色が赤色(Red)、青色(Blue)および緑色(Green)の所謂RBGの三つの半導体発光素子を用いたり、白色光を得るために半導体発光素子を波長変換材(蛍光材)で被覆したり、波長変換材(蛍光材)を混入させた透明樹脂等で被覆した光源装置は知られている。 BACKGROUND OF THE INVENTION Conventional light source device, a so-called generally bullet type or the like is large and also simply luminous color of the semiconductor light-emitting device in the case of using the Display like red (Red), blue (Blue) and green (Green) or using three semiconductor light emitting elements of the RBG, or covering the semiconductor light-emitting device in order to obtain white light in the wavelength conversion member (fluorescent material), was coated with a wavelength conversion material transparent resin (fluorescent material) is mixed, etc. light source device is known.

【0003】さらに、半導体発光素子自身の発光色から他発光色を得るために、例えば特開平7−99345号公報に開示されているように、リードフレームのカップ状に形成した底部上に半導体発光素子を載置し、カップ内部に半導体発光素子の発光波長を他の波長に変換する蛍光物質を含有した樹脂で包囲して異なる発光色を得る発光ダイオードは知られている。 [0003] Further, in order to obtain other emission color from the emission color of the semiconductor light-emitting device itself, for example, as disclosed in JP-A-7-99345, the semiconductor light-emitting on a bottom portion formed in a cup-like lead frame placing the element, light-emitting diodes to obtain an emission color different surrounds a resin containing a fluorescent substance for converting an emission wavelength to another wavelength of the semiconductor light emitting element inside the cup are known.

【0004】また、同様に半導体発光素子の発光波長を他の波長に変換してLEDランプ単体で白色の発光色を得るために、青色発光の半導体発光素子等を波長変換材料が含有された樹脂全体でランプ形状に包囲した方法も知られている。 [0004] Similarly, the emission wavelength of the semiconductor light emitting device in order to obtain a white luminescent color LED lamp itself is converted to another wavelength, the resin wavelength conversion material is contained semiconductor light-emitting element or the like blue light how was surrounded by the lamp shape as a whole are also known.

【0005】 [0005]

【発明が解決しようとする課題】従来の光源装置は、一般に砲弾型等が多く、また白色光を得る場合には単に半導体発光素子を発光色が赤色(Red)、青色(Blu THE INVENTION Problems to be Solved by the conventional light source apparatus, generally bullet-shaped or the like is large and also the emission color simply semiconductor light-emitting device in the case of obtaining white light is red (Red), blue (Blu
e)および緑色(Green)の所謂RBGの三つの半導体発光素子を用いたり、青色発光の半導体発光素子を波長変換材(蛍光材)で被覆したり、波長変換材(蛍光材)を混入させた透明樹脂等で青色発光の半導体発光素子を被覆したりするので、赤色、青色および緑色発光色の半導体発光素子を3つ用いたランプを1ユニットとして使用している。 Or using three semiconductor light emitting element of a so-called RBG of e) and green (Green), or covering the semiconductor light-emitting element of blue emission at a wavelength conversion material (fluorescent material), was mixed wavelength conversion material (phosphor material) since or covering the semiconductor light-emitting element of blue emission with a transparent resin or the like, using red, three with lamp a semiconductor light-emitting element of blue and green light emitting color as one unit. このため、光源装置が大型化になってしまう課題がある。 Therefore, there is a problem that the light source device becomes large. また、波長変換材(蛍光材)を半導体発光素子に直接被覆したりすると、半導体発光素子からの微量な紫外線帯に寄った短い波長に依って、半導体発光素子等の劣化を促進する恐れがあるとともに半導体発光素子と波長変換材(蛍光材)との距離が短いために波長変換にばらつきが出てしまう課題がある。 Also, when or directly coated wavelength converting material (fluorescent material) to the semiconductor light emitting device, depending on the short wavelength closer to small amount of ultraviolet band from the semiconductor light emitting element, there is a possibility of promoting the deterioration of the semiconductor light emitting element there is a problem that will come out variations in the wavelength-converted into the distance between the semiconductor light emitting element and the wavelength conversion member (fluorescent material) is short with.

【0006】さらに、半導体発光素子自身の発光色から他発光色を得るために、例えば特開平7−99345号公報に開示されているように、リードフレームのカップ状に形成した底部上に半導体発光素子を載置し、カップ内部に半導体発光素子の発光波長を他の波長に変換する蛍光物質を含有した樹脂で包囲して異なる発光色を得る発光ダイオードでは、半導体発光素子と波長変換材(蛍光材)との距離が短いために波長変換にばらつきが出てしまう課題がある。 Furthermore, in order to obtain other emission color from the emission color of the semiconductor light-emitting device itself, for example, as disclosed in JP-A-7-99345, the semiconductor light-emitting on a bottom portion formed in a cup-like lead frame placing the device, the emission wavelength of the semiconductor light-emitting element in the light emitting diode to obtain an emission color different surrounds a resin containing a fluorescent substance for converting the other wavelengths inside the cup, the semiconductor light emitting element and the wavelength conversion member (fluorescent for the distance between the materials) is short there is a problem that will come out variations in wavelength conversion.

【0007】また、同様に半導体発光素子の発光波長を他の波長に変換してLEDランプ単体で白色の発光色を得るために、青色発光の半導体発光素子等を波長変換材料が含有された樹脂全体でランプ形状に包囲した方法では、波長変換材料の使用量が多くなってしまうとともに波長変換材料の分散分布の安定性や輝度の低下に課題がある。 [0007] Similarly, the emission wavelength of the semiconductor light emitting device in order to obtain a white luminescent color LED lamp itself is converted to another wavelength, the resin wavelength conversion material is contained semiconductor light-emitting element or the like blue light the whole method surrounds the lamp shape, there is a problem in the decreased stability and brightness of dispersion distribution of the wavelength converting material with the use of the wavelength converting material becomes much.

【0008】本発明は、このような課題を解決するためになされたもので、半導体発光素子の発光面を光源装置の出射面と反対方向に載置し、出射面と反対に光を出射させ、円弧状にした出射面と反対に位置する反射面で反射させ、一部はそのまま出射面より出射し、一部は発光面(出射面)と反射面との間に設けた波長変換部で波長変換された光を反射面で反射させ出射したり、反射面で反射された光を波長変換して出射させるとともに出射面からは混合された平行光線を出射することができる光源装置を提供することにある。 [0008] The present invention has been made to solve such problems, a light emitting surface of the semiconductor light emitting element is placed on the exit surface opposite direction of the light source device, light is emitted to the opposite exit face , is reflected by the reflecting surface located opposite the exit surface which is arcuately, partially emitted from intact emitting surface, some of the wavelength conversion portion provided between the light emitting surface (exit surface) and the reflecting surface or emitted is reflected by the reflecting surface of the wavelength converted light, to provide a light source device capable of emitting a mixed parallel rays of light reflected by the reflecting surface from the exit surface with be emitted wavelength conversion It lies in the fact.

【0009】 [0009]

【課題を解決するための手段】上記課題を解決するために請求項1に係る光源装置は、半導体発光素子の発光面が光源装置から光を出射する出射面と逆方向および出射面と平行に位置し、出射面の反対に位置する反射面を円弧状凹型にするとともに反射面と出射面の裏側面との間または反射面と発光面との間に波長変換部を設け、発光面からの出射光を反射面で平行性または集光性な単色光と波長変換部で波長変換された単色光とを出射させることを特徴とする。 A light source apparatus according to claim 1 to solve the above problems SUMMARY OF THE INVENTION are parallel to the exit face and the opposite direction and the exit surface of the light emitting surface of the semiconductor light emitting element emits light from the light source device position is provided with a wavelength converting portion or between the reflection surface and the light emitting surface of the rear surface of the reflecting surface and the exit surface while arcuately concave reflecting surface positioned opposite the emission surface, from the light emitting surface characterized in that to emit the monochromatic light whose wavelength is converted by the parallel or converging light-monochromatic light and the wavelength conversion unit the outgoing light by the reflection surface.

【0010】請求項1に係る光源装置は、半導体発光素子の発光面が光源装置から光を出射する出射面と逆方向および出射面と平行に位置し、出射面の反対に位置する反射面を円弧状凹型にするとともに反射面と出射面の裏側面との間または反射面と発光面との間に波長変換部を設け、発光面からの出射光を反射面で平行性または集光性な単色光と波長変換部で波長変換された単色光とを出射させるので、出射面からの光線が平行光線であるとともに調和のとれた混合色光を得ることができる。 [0010] The light source apparatus according to claim 1, positioned parallel to the exit face and the opposite direction and the exit surface of the light emitting surface of the semiconductor light emitting element emits light from the light source device, a reflecting surface positioned opposite the output surface the wavelength converting portion or between the reflection surface and the light emitting surface of the rear surface of the reflecting surface and the exit surface while the arcuate concave provided, parallelism of light emitted from the light emitting surface by the reflecting surface or I light collecting since monochromatic light and the wavelength conversion unit to emit a monochromatic light whose wavelength is converted, it is possible to light from the emission surface to obtain a mixed color light harmonious with parallel rays.

【0011】また、請求項2に係る光源装置は、反射面が鏡面状または微細凸凹面状またはハイブリットレンズ形状の円弧状凸をなし、表面部側に反射材が設けられることを特徴とする。 Further, the light source apparatus according to claim 2, the reflecting surface forms a circular arc shape convex mirror surface or finely uneven surface shape or a hybrid lens shape, wherein the reflective material is provided on the surface side.

【0012】請求項2に係る光源装置は、反射面が鏡面状または微細凸凹面状またはハイブリットレンズ形状の円弧状凸をなし、表面部側に反射材が設けられるので、 [0012] The light source device according to claim 2, reflective surface an arc shape convex mirror surface or finely uneven surface shape or a hybrid lens shape, the reflection member is provided on the surface side,
半導体発光素子からの発光する光を無駄無く有効に反射し、出射面から遠くまで明るく投射することができる。 And without waste effectively reflect light emitted from the semiconductor light emitting element can be projected bright from the exit surface far.

【0013】さらに、請求項3に係る光源装置は、出射面が鏡面状または格子状突起または微細凸凹面状またはフレネルレンズ状の形状をなすことを特徴とする。 Furthermore, the light source apparatus according to claim 3, exit surface is equal to or forming a mirror-like or lattice-like projections or finely uneven surface shape or a Fresnel lens shape.

【0014】請求項3に係る光源装置は、出射面が鏡面状または格子状突起または微細凸凹面状またはフレネルレンズ状の形状をなすので、反射面からの光線をより遠くに放射したり、波長変換部で波長変換された単色光と変換されない単色光とを効率よく混合し、輝度を均一にできる。 [0014] The light source apparatus according to claim 3, since the exit surface forms a mirror-like or lattice-like projections or finely uneven surface shape or a Fresnel lens shape, or radiation farther the light from the reflecting surface, the wavelength a monochromatic light that is not converted to the wavelength converting monochromatic light conversion unit efficiently mixed, can be made uniform brightness.

【0015】また、請求項4に係る光源装置は、波長変換部がイットリウム・アルミニウム・ガーネット系材料からなり、当該材料が微細な面積を有するドット形状で均一に設けられるかまたは出射面の周辺部と対向する部分にドットが多く設けられることを特徴とする。 Further, the light source apparatus according to claim 4, the wavelength conversion portion is made of yttrium-aluminum-garnet material, the material is the periphery of the or emission surface is uniformly disposed in a dot shape with a fine area wherein the dots are provided more to a portion facing the.

【0016】請求項4に係る光源装置は、波長変換部がイットリウム・アルミニウム・ガーネット系材料からなり、当該材料が微細な面積を有するドット形状で均一に設けられるかまたは出射面の周辺部と対向する部分にドットが多く設けられるので、輝度の高い混合色光を均一に出射することができる。 The light source apparatus according to claim 4, the wavelength conversion portion is made of yttrium-aluminum-garnet material, the peripheral portion and the opposite or exit surface the material is uniformly provided in a dot shape with a fine area since dots are formed much in a portion, it can be uniformly emitted with high luminance mixed color light.

【0017】さらに、請求項5に係る光源装置は、反射面に被着された反射材が反射率の高い金属材料または円弧状凹型の部分に設けられる屈折率の小さい透明樹脂材料からなることを特徴とする。 Furthermore, the light source apparatus according to claim 5, a reflective material which is deposited on the reflective surface is a small transparent resin material having a refractive index provided on the metal material having high or arcuate concave portions reflectance and features.

【0018】請求項5に係る光源装置は、反射材が反射面に被着された反射率の高い金属材料または円弧状凹型の部分に設けられる屈折率の小さい透明樹脂材料からなるので、半導体発光素子の発光面からの光線を反射面で効率良く反射することができる。 The light source according to claim 5 apparatus, the reflector is made of a small transparent resin material having a refractive index provided on the metal material having high or arcuate concave portion of reflectivity is deposited on the reflecting surface, the semiconductor light emitting it can be efficiently reflected by the reflective surface light from the light emitting surface of the device.

【0019】 [0019]

【発明の実施の形態】以下、本発明の実施の形態を添付図面に基づいて説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, will be explained based on the embodiment of the present invention in the accompanying drawings. なお、本発明は、半導体発光素子の発光面を光源装置の出射面とは反対方向に載置し、発光面に対向する部分に円弧状の反射面を設けるとともに発光面と反射面との間に波長変換部を設けて、単色の発光色を得るとともに出射面から均一で明るい平行光を出射する光源装置を提供するものである。 The present invention is a light emitting surface of the semiconductor light-emitting device is placed in the direction opposite to the emission surface of the light source device, between the light emitting surface and the reflective surface provided with an arc-shaped reflection surface in the portion facing the light emitting surface provided a wavelength conversion portion, there is provided a light source device which emits uniform and bright collimated light from the exit surface with obtaining a monochromatic luminescent color.

【0020】図1(a)は本発明に係る光源装置の外観を示す斜視図、図1(b)は同光源装置の断面図、図2 [0020] FIG. 1 (a) is a perspective view showing the appearance of a light source device according to the present invention, and FIG. 1 (b) is a sectional view of the light source device, FIG. 2
は本発明に係る光源装置の他の例を示す断面図、図3〜 Sectional view showing another example of the light source apparatus according to the present invention, FIG. 3
図6は本発明に係る光源装置の他の例を示す部分断面図、図7は本発明に係る光源装置を複数用いてユニット化した集合光源装置の斜視図である。 Figure 6 is another partial cross-sectional view showing an example of a light source device according to the present invention, FIG. 7 is a perspective view of the set light source device unitized with a plurality of light source device according to the present invention.

【0021】図1(a),(b)に示すように、本発明に係る光源装置1は、円筒形状の外観をなし、モールドケース2、半導体発光素子3、半導体発光素子発光面4、出射面5、反射面6、波長変換部7、リードワイヤ8およびリード端子9を有している。 [0021] FIG. 1 (a), (b), the light source apparatus 1 according to the present invention, without the appearance of cylindrical, molded case 2, the semiconductor light-emitting element 3, the semiconductor light emitting element emitting surface 4, emission surface 5, the reflecting surface 6, the wavelength conversion portion 7, and a lead wire 8 and the lead terminal 9. なお、図示した本例の光源装置1は、円筒形状の外観をなしているが、矩形状等の他の形状であってもよい。 The light source device 1 of the present example shown, although without the appearance of a cylindrical shape, may be other shapes of rectangular shape or the like.

【0022】モールドケース2は、変成ポリアミド、ポリブチレンテレフタレート、ナイロン46や芳香族系ポリエステル等からなる液晶ポリマなどの絶縁性の有る材料に、光の反射性を良くするためにチタン酸バリウム等の白色粉体を混入させたものを、加熱し圧力を加えて射出成型により形成される。 The molded case 2, modified polyamides, polybutylene terephthalate, the insulating resistant material such as a liquid crystal polymer of nylon 46 and aromatic polyester, of barium titanate in order to improve the reflectivity of light those obtained by mixing the white powder, is formed by injection molding heated under pressure.

【0023】また、モールドケース2には、光源装置1 Further, the molded case 2, the light source device 1
の最終出射光となる出射面5からリード端子9のある方向に向かって円弧状凹型の開口部が成形されており、この円弧状凹型の開口部の表面が反射面6を形成している。 Of which from the exit surface 5 at a final exit light opening of the arc-shaped concave in the direction of a lead terminal 9 it is molded, the surface of the opening of the arc-shaped concave and forms a reflecting surface 6.

【0024】半導体発光素子3は、InGaAlPやI [0024] The semiconductor light-emitting element 3, InGaAlP and I
nGaAlNおよびInGaN系の半導体発光素子等が用いられる。 A semiconductor light-emitting device of nGaAlN and InGaN system is used. 特にInGaAlNおよびInGaN系の半導体発光素子等を半導体発光素子3として用いれば、 Unless using the InGaAlN and InGaN-based semiconductor light-emitting element or the like as a semiconductor light-emitting element 3,
青色発光の発光色が得られる。 The emission color of the blue light emission can be obtained.

【0025】また、半導体発光素子3は、素子のチップの発光面4をモールドケース2の出射面5とは反対方向の反射面6方向に出射面5と平行に載置(後側)し、リードワイヤ8を光源装置1の後方にあるリード端子9に電気的に接続する。 Further, the semiconductor light-emitting element 3, the light-emitting surface 4 of the element chip and the exit surface 5 of the molded case 2 parallel to placing the exit face 5 to the reflecting surface 6 direction in the opposite direction (rear side), electrically connected to the lead terminals 9 with the lead wires 8 to the rear of the light source device 1.

【0026】出射面5は、モールドケース2の反射面6 The exit surface 5, the reflecting surface 6 of the molded case 2
側の垂直な一端面をなし、図3に示すような鏡面状、図4に示すような微細凸凹面状5a、図5に示すようなフレネルレンズ状の形状5c、図6に示すような格子状突起5bが施されている。 No vertical end surface of the side mirror surface as shown in FIG. 3, the fine uneven surface shape 5a as shown in FIG. 4, a Fresnel lens shape 5c as shown in FIG. 5, the grating as shown in FIG. 6 Jo projections 5b is applied. そして、例えば図5に示すように半導体発光素子3の発光面4からの光線を反射面6で反射し、そのまま出射面5方向に進む光と、発光面4からの光線を波長変換部7で波長変換された光を反射面6 Then, for example, reflected by the reflecting surface 6 a light beam from the light emitting surface 4 of the semiconductor light-emitting element 3, as shown in FIG. 5, the light traveling directly to the exit surface 5 direction, the wavelength conversion portion 7 light rays from the light emitting surface 4 reflecting surface 6 a wavelength converted light
で反射し、出射面5方向に進む光と、発光面4からの光線を反射面6で反射し、出射面5方向に進む間に波長変換部7で波長変換された光とを鏡面状の出射面5によってそのまま出射させることができる。 In reflecting the light traveling on the exit surface 5 direction, light rays from the light-emitting surface 4 is reflected by the reflecting surface 6, and a light whose wavelength is converted by the wavelength converting portion 7 while traveling on the emission surface 5 direction of specular it can be directly emitted by the emission face 5.

【0027】同様に出射面5を格子状突起や微細凸凹面状にすることによって、全体としての光束が広がらないようにしながら格子状突起や微細凸凹面状の各部分でのレンズ効果を利用して光束を遠くに達するようにすることができる。 [0027] Similarly by the emission face 5 in a lattice-like projection and a fine uneven surface shape, utilizing the lens effect of the lattice-shaped projections or fine uneven surface shape each portion of the while allowing the light beam does not spread as a whole it can be made to reach the distant light flux Te.

【0028】さらに、同様に出射面5をフレネルレンズ状の形状にすることによって、光線の全体を平行に遠くまで達するようにすることができる。 Furthermore, by making the emission face 5 in a Fresnel lens shape similarly, it is possible to reach the entire light far in parallel.

【0029】反射面6は、モールドケース2の出射面5 The reflecting surface 6 may exit surface 5 of the molded case 2
と反対の位置に円弧状凹型に成形され、その表面が図4 Formed into an arc shape concave in the opposite position and, Figure 4 is a surface
または図6に示すような鏡面状や図5に示すような微細凸凹面状6bまたは図3に示すようなハイブリットレンズ形状の円弧状凸6aをなしている。 Or have an arc shape convex 6a hybrid lens shape as shown in a fine uneven surface shape 6b or Fig. 3, as shown in mirror-like and 5 as shown in FIG. なお、図示しないが、反射面6の表面部に反射率の高い例えばAl,C Although not shown, a high reflectivity in the surface portion of the reflecting surface 6, for example Al, C
o,Cr等の金属からなる反射材で被着したり、円弧状凹型の部分に屈折率の小さい透明樹脂材料(例えば屈折率n=1.5程度(具体的にはn=1.547、1.5 o, or deposited with a reflective material composed of a metal such as Cr, less transparent resin material having a refractive index in an arc-shaped concave portion (e.g., a refractive index n = about 1.5 (more specifically, n = 1.547, 1.5
03)のエポキシ樹脂や屈折率n=1.7程度のアクリル樹脂)を被着または充填して設けるようにしてもよい。 03) an epoxy resin and a refractive index of about n = 1.7 acrylic resin) may be provided deposited or filled with the. これにより、半導体発光素子3からの光線を効率良く出射面5方向へ反射するとともに微細凸凹面状やハイブリットレンズ形状の円弧状凸によりある程度の散乱をさせて波長変換部7に当たる確率を高くさせる。 Thus, by the degree of scattering by arcuate convex fine uneven surface shape or a hybrid lens shape with reflected to efficiently exit surface 5 direction a light beam from the semiconductor light emitting element 3 to increase the probability that corresponds to the wavelength conversion unit 7. なお、 It should be noted that,
上記屈折率の小さい透明樹脂材料としてアクリル樹脂(屈折率n=1.7程度)とエポキシ樹脂(屈折率n= Acrylic resin (refractive index of about n = 1.7) and an epoxy resin (refractive index as small transparent resin material of the above refractive index n =
1.503)を用いた場合、両者の角度の差としては5.6度程度である。 When using the 1.503), the difference between the two angles is about 5.6 degrees.

【0030】波長変換部7は、無機系の蛍光顔料や有機系の蛍光染料等からなり、これら蛍光材料等を図3に示すようなドット状(格子状)に無色透明なシートに印刷した物や、図4に示すような無色透明なエポキシ樹脂やシリコーン樹脂等に混合分散させた物を半導体発光素子3の発光面4と反射面6との間や光源装置1の出射面5 The wavelength conversion unit 7 is made of an inorganic fluorescent pigments and organic fluorescent dyes of, those printed colorless transparent sheet thereto a fluorescent material or the like to Figure 3 shows such a dot pattern (grid pattern) and exit surface 5 between and the light source device 1 of the things that were mixed and dispersed in a colorless transparent epoxy resin or silicone resin as shown in FIG. 4 and the light emitting surface 4 of the semiconductor light-emitting element 3 and the reflecting surface 6
の裏側面と反射面6との間に設ける。 Provided between the rear surface of the reflecting surface 6. また、波長変換部7は、図2に示すように、出射面5と反射面6との間で、かつ半導体発光素子3の発光面4と出射面5との間に設けるようにしてもよい。 The wavelength conversion unit 7, as shown in FIG. 2, between the exit face 5 and the reflecting surface 6, and may be provided between the light-emitting surface 4 and the exit surface 5 of the semiconductor light-emitting element 3 .

【0031】また、波長変換部7は、微細な面積を有するドット形状を均一に設けるようにすれば、色のバラツキをなくすことができる。 Further, the wavelength conversion unit 7, if as uniform provided a dot shape with a fine area can be eliminated color variation of. この他、波長変換部7は、上記ドット形状を出射面5の周辺部と対向する部分に多く設けてもよい。 In addition, the wavelength conversion portion 7 may be provided more on the periphery portion facing the exit surface 5 of the dot shape. この場合、反射面6と出射面5との距離が、出射面5の周辺部ほど近くなるので、光のエネルギーが強いことと、波長変換部7よりも外側での反射光(反射面)が有る(この光はLEDの横方向からの漏光(例えば青色光))ために、出射面5直前の周辺部での光を他より黄色がかった光にし、最終的に調和させることができる。 In this case, the distance between the reflecting surface 6 and the exit surface 5, so becomes closer toward the periphery portion of the exit surface 5, and the energy of the light is strong, light reflected from the outer surface (reflection surface) there than the wavelength converter 7 (the light is leaked light from the lateral LED (e.g., blue light)) for, in the light other than yellow light was bought at the exit surface 5 immediately before the peripheral portion can be finally harmonized.

【0032】波長変換部7は、半導体発光素子3の発光色を他の異なる色に変換し、例えば緑色発光の半導体発光素子3からの光を赤色蛍光顔料や赤色蛍光染料を用いた波長変換部7に投射すると黄色系の光が得られる。 The wavelength conversion unit 7 converts the emission color of the semiconductor light-emitting element 3 in different colors other, for example, a wavelength conversion unit light using a red fluorescent pigment or a red fluorescent dye from the green emission of the semiconductor light-emitting element 3 7 yellow light can be obtained when projected on.

【0033】さらに、青色発光の半導体発光素子3からの光を緑色蛍光顔料や緑色蛍光染料を用いた波長変換部7に投射すると青緑色系の光が得られる。 Furthermore, blue-green light is obtained when projecting the light from the semiconductor light-emitting element 3 of the blue emission in the wavelength converting portion 7 with a green fluorescent pigment or a green fluorescent dye.

【0034】なお、波長変換部7を構成する蛍光顔料としては、例えば赤色蛍光顔料にはY [0034] As the fluorescent pigment constituting the wavelength converting part 7, the example red fluorescent pigment Y 23 :EuやY 2 O 3: Eu or Y
(P,V)O 4 :Eu等、緑色蛍光顔料にはZn 2 Si (P, V) O 4: Eu or the like, the green fluorescent pigment Zn 2 Si
4 :Mn等、また橙色蛍光顔料にはCaSiO 3 :P O 4: Mn, etc., and the orange fluorescent pigment CaSiO 3: P
b,MnやY 3 Al 512系等が用いられる。 b, Mn or Y 3 Al 5 O 12 system or the like is used.

【0035】さらに、波長変換部7は、半導体発光素子3等の発光した光の吸収により励起され、エネルギ準位の低い基底状態からエネルギ準位の高い励起状態に遷移し、基底状態に戻る時に電子エネルギを振動や回転等の熱エネルギに変化することなく発光して放出する物であり、一般にストークスの法則の様に、半導体発光素子3 Furthermore, the wavelength converting unit 7 is excited by emission absorption of light such as semiconductor light-emitting element 3, a transition from a low ground state of energy level to a higher excited state of energy levels, when returning to the ground state is intended to emission to release without changing the thermal energy, such as vibration or rotation of the electron energy, generally as the Stokes law, the semiconductor light-emitting element 3
の発光波長よりも波長変換材料からの発光波長のほうが長い発光や2段階的な電子励起が励起過程に含まれ、反ストークスな半導体発光素子3の発光波長よりも波長変換材料からの発光波長のほうが短い発光をも含まれる。 Whichever of the emission wavelength from the wavelength converting material than the emission wavelength is longer emission or 2 stepwise electron excitation included in excitation process, the emission wavelength from the wavelength converting material than the emission wavelength of the Anti-Stokes semiconductor light-emitting element 3 more is also included in the short emission.

【0036】また、波長変換部7は、ドット状(格子状)に無色透明なシートに印刷するための蛍光材料と印刷用(インク)樹脂との混合分散する比率および蛍光材料と無色透明なエポキシ樹脂やシリコーン樹脂等に混合分散する比率によって、蛍光材料が存在しない部分を透過した半導体発光素子3本来の色調と波長変換部7の蛍光材料で波長変換された色調との混合によって色度図等に示される色調が得られる。 Further, the wavelength conversion unit 7, the ratio and the fluorescent material and the colorless transparent epoxy mixed dispersion of dots for printing a fluorescent material to be printed on a transparent colorless sheet (lattice-like) (ink) resin the ratio of mixing and dispersing the resin and silicone resin, chromaticity diagram, etc. by mixing with color whose wavelength is converted by the fluorescent material of the semiconductor light-emitting element 3 original colors and the wavelength conversion portion 7 that has passed through the portion where the fluorescent material is not present color tone shown in is obtained.

【0037】例えば青色発光の半導体発光素子3からの光を橙色蛍光顔料や橙色蛍光染料を混入した波長変換部7に投射すると、青色光と橙色光との混合によって白色光が得られる。 [0037] For example, when the light from the semiconductor light-emitting element 3 of the blue emission are projected to the wavelength conversion unit 7 mixed with orange fluorescent pigment and an orange fluorescent dye, white light is obtained by mixing the blue light and orange light. この場合、蛍光材料が多ければ橙色の色調が濃い光が得られ、蛍光材料が少なければ青色の色調の濃い光が得られる。 In this case, The more fluorescent material obtained orange color dark light, the less fluorescent material dark light of blue shades obtained.

【0038】なお、波長変換部7は、変換材料と非変換部(無色)の面積比を、色の変換効率が悪い場合を考慮して0.4〜0.7:1に設定することができる。 [0038] The wavelength conversion unit 7, the area ratio of the conversion material and the non-conversion unit (colorless), taking into account the case where the color conversion efficiency is poor 0.4-0.7: be set to 1 it can. 単純には、50:50(青色50:黄色50)で良いが、この比率は濃度が100%の変換材料を使用した事になり、実際は接着材等で薄くなるとともに、完全に100 Simply, 50: 50: although good for (blue 50 yellow 50), with this ratio becomes that concentration was used 100% conversion material actually becomes thinner with an adhesive or the like, completely 100
%の変換材料では光が透過しないので、例えば印刷により薄く塗る。 % The conversion material because light is not transmitted, paint thinner for example by printing.

【0039】リードワイヤ8は、金属等の導電性の良い金属線などからなり、半導体発光素子3等のアノード電極およびカソード電極をボンダによって電気的接続をする。 The lead wire 8 is made of such good conductivity metal wire such as a metal, the electrical connection by bonder an anode electrode and a cathode electrode of a semiconductor light-emitting element 3. また、同様な目的で細いリードフレームを用いてリードフレームを直接リード端子9に電気的接続しても良い。 Further, it may be electrically connected directly to the lead terminal 9 of the lead frame by using a thin lead frame with the same purpose.

【0040】リード端子9は、導電性および弾性力のある燐青銅等の銅合金材またはアルミニウム等からなり、 The lead terminal 9 is made of a copper alloy or aluminum or the like phosphor bronze or the like having conductivity and elasticity,
リードワイヤ8と電気的に接続される。 Electrically connected to the lead wires 8. なお、半導体発光素子3をリードフレームにダイボンディングして設け、リード端子9を上記リードフレームからモールドケース2より直接取り出しても良い。 Incidentally, provided die bonding the semiconductor light-emitting element 3 to the leadframe, the lead terminals 9 may be taken out directly from the molded case 2 from the lead frame.

【0041】尚、モールドケース2に設けた円弧状凹部の開口部の空間には、エポキシ樹脂やシリコーン樹脂を充填し、光の損失を減少させるようにすることができる。 It should be noted that the space of the opening of the arc-shaped recess formed in the mold case 2, can be filled with epoxy resin or silicone resin, so as to reduce the loss of light.

【0042】また、波長変換部7部分や半導体発光素子3等のみをエポキシ樹脂やシリコーン樹脂等で固定し、 Further, only the wavelength conversion portion 7 parts or semiconductor light-emitting element 3 or the like and fixed with an epoxy resin or a silicone resin,
円弧状凹型の開口部の空間に樹脂等を充填しないエアギャップタイプの場合には、円弧状凹型の開口部の内部に真空、空気、ガス充填等をして放熱や半導体発光素子3 In the case of air gap type that does not fill the resin in the arc-shaped concave space of the opening, the vacuum in the interior of the arc-shaped concave openings, air, heat radiation by the gas filling, etc. and a semiconductor light-emitting element 3
の劣化を防ぐことも可能である。 It is also possible to prevent the deterioration.

【0043】また、図7に示すように、光源装置1を多数集合させたような大光量の光源とすることができる。 Further, as shown in FIG. 7, can be a large amount of light of the light source as the light source device 1 is a number set.
この場合、個々の光源装置1をモールドケース2を1つのケース10に挿入し、ケース10内部で電気的接続を行う。 In this case, the individual light source device 1 by inserting the molded case 2 to one of the case 10, an electrical connection inside the case 10.

【0044】また別の構成として、最初から大きな1つの光源装置1をモールドケース2に円弧状凹型の空間を多数形成し、これら各々円弧凹型に反射面6を成形するとともに各々円弧状凹型に波長変換部7および半導体発光素子3等を設けてケース10内部で電気的接続を行う。 [0044] As another configuration, a large number to form an arc-shaped concave space large one light source device 1 to the molded case 2 from the beginning, the wavelength in each arcuate concave with shaping the reflecting surface 6 to these respective arcuate concave an electrical connection inside the case 10 provided with the conversion unit 7 and the semiconductor light-emitting element 3 and the like.

【0045】尚、この場合には各々円弧状凹型に異なる半導体発光素子3や異なる波長変換部7等を用いたり、 [0045] Incidentally, or with each semiconductor light-emitting element 3 different arcuately concave and different wavelength converting unit 7, etc. In this case,
波長変換部7のみ色々の蛍光材等を用いることによりマルチカラに対応することも可能である。 It is also possible to correspond to Maruchikara the use of the wavelength conversion portion 7 only different fluorescer such.

【0046】 [0046]

【実施例】本発明に係る光源装置の実施例について説明する。 EXAMPLES described embodiment of the light source device according to the present invention. YAG(イットリウム・アルミニウム・ガーネット)系の蛍光顔料である(Y,Gd) 3 (Al,Ga) YAG is a fluorescent pigment (yttrium aluminum garnet) -based (Y, Gd) 3 (Al , Ga)
512 :Ceの(Y,Gd) 3 (Al,Ga) 512とCeとの原子量比を各種変え、この比率が1:4の時に、さらに蛍光顔料の平均粒度を8μm程度にした物を無色透明なエポキシ樹脂と重量比1:1に調整した波長変換材料混入樹脂を無色透明なシートにドット状(格子状)に印刷した波長変換部7をモールドケース2に設けた円弧状凹型の反射面6と出射面5の後方に出射面5と平行に載置した青色発光の半導体発光素子3との間に設けて光源装置を作製した。 5 O 12: changing (Y, Gd) 3 (Al , Ga) 5 O 12 and various atomic weight ratio of Ce to Ce, the ratio is 1: when the 4 and further the average particle size of the fluorescent pigment to about 8μm things a colorless transparent epoxy resin in a weight ratio of 1: arcuate concave to the adjusted wavelength converting material mixed resin is provided a wavelength conversion portion 7 printed in a dot shape (lattice shape) colorless transparent sheet molded case 2 to 1 to prepare a light source device provided between the reflective surface 6 and the blue light-emitting semiconductor light-emitting element 3 parallel to placing the exit face 5 to the rear of the exit surface 5. これにより、半導体発光素子3からの青色発光色の一部が波長変換部7の蛍光材に当たり橙色に変換した光線と青色発光色のそのままの光線とが反射面6で反射して再度、青色発光色の一部が波長変換部7の蛍光材に当たり橙色に変換した光線とそのままの青色発光色の光線とが、これら反射面6と出射面5 Thus, the raw beam part of the blue emission color of the light beam and the blue light emitting color which is converted into orange Upon fluorescer of the wavelength conversion portion 7 from the semiconductor light-emitting element 3 is again reflected by the reflecting surface 6, the blue light-emitting ray and has a neat blue emission color of light some colors are converted to orange Upon fluorescer of the wavelength conversion portion 7, the exit surface 5 and these reflecting surfaces 6
との間で混合し、白色の光を得ることができた。 Mixed with the, it was possible to obtain white light.

【0047】なお、この実施例に青色発光の半導体発光素子は豊田合成(株)のE1C00−1BA01を用いた。 [0047] The semiconductor light emitting element of blue emission in this example was used E1C00-1BA01 Toyoda Gosei Corporation.

【0048】このように、本発明に係る光源装置は、半導体発光素子3の発光面4を光源装置1の出射面5と反対方向に載置し、出射面5と反対に光を出射させ、円弧状凹型にした出射面5と反対に位置する反射面6で光を反射させるとともに発光面4と反射面6との間に波長変換部7を設けて、一部はそのままの光と一部は波長変換部7で波長変換された光とによって混合された光を出射面5から平行に出射することができる。 [0048] Thus, the light source apparatus according to the present invention, the light-emitting surface 4 of the semiconductor light-emitting element 3 is placed in the opposite direction to the exit surface 5 of the light source device 1, light is emitted to the opposite exit face 5, It provided a wavelength conversion portion 7 between the light-emitting surface 4 and the reflecting surface 6 causes the reflected light by the reflecting surface 6 located opposite to the exit surface 5 which is arcuately concave part and as a part of the light It may be parallel to emit light mixed by the light whose wavelength is converted by the wavelength conversion unit 7 from the exit surface 5.

【0049】 [0049]

【発明の効果】以上のように、請求項1に係る光源装置は、半導体発光素子の発光面が光源装置から光を出射する出射面と逆方向および出射面と平行に位置し、出射面の反対に位置する反射面を円弧状凹型にするとともに反射面と出射面の裏側面との間または反射面と発光面との間に波長変換部を設け、発光面からの出射光を反射面で平行性または集光性な単色光と波長変換部で波長変換された単色光とを出射させるので、出射面からの光線が平行光線であるとともに調和のとれた混合色光を得ることができ、しかも各色彩の光とともに輝度の高い光を得ることができる。 As is evident from the foregoing description, the light source apparatus according to claim 1, the light emitting surface of the semiconductor light emitting element is positioned parallel to the exit face and the opposite direction and the exit surface for emitting light from the light source device, the emission surface the wavelength converting portion or between the reflection surface and the light emitting surface of the rear surface of the reflecting surface and an exit surface with a reflecting surface located on the opposite arcuately concave provided, the light emitted from the light emitting surface by the reflecting surface since it emits a monochromatic light whose wavelength is converted by the parallel or converging light-monochromatic light and the wavelength conversion unit may be light from the exit surface to obtain a mixed color light harmonious with a parallel beam, yet with light of each color can be obtained with high intensity light.

【0050】また、請求項2に係る光源装置は、反射面が鏡面状または微細凸凹面状またはハイブリットレンズ形状の円弧状凸をなし、表面部側に反射材が設けられるので、半導体発光素子からの発光する光を無駄無く有効に反射し、出射面から遠くまで明るく投射することができるとともに少ない数の半導体発光素子で輝度を高くすることができ、省エネに対応できる。 [0050] Further, the light source apparatus according to claim 2, the reflecting surface forms a circular arc shape convex mirror surface or finely uneven surface shape or a hybrid lens shape, the reflection member is provided on the surface side, the semiconductor light emitting element of the emitted light without waste effectively reflected, it is possible to increase the luminance by the number of the semiconductor light emitting element less it is possible to project a bright far from the exit surface, it corresponds to the energy saving.

【0051】さらに、請求項3に係る光源装置は、出射面が鏡面状または格子状突起または微細凸凹面状またはフレネルレンズ状の形状をなすので、反射面からの光線をより遠くに放射したり、波長変換部で波長変換された単色光と変換されない単色光とを効率よく混合し、輝度を均一にでき、消費電力の低減等コストパフォーマンスにすぐれる。 [0051] Further, the light source apparatus according to claim 3, since the exit surface forms a mirror-like or lattice-like projections or finely uneven surface shape or a Fresnel lens shape, radiates farther the light from the reflective surface or and a monochromatic light that is not converted to the wavelength converting monochromatic light in the wavelength conversion portion is mixed efficiently be uniform brightness, excellent reduction like cost of power consumption.

【0052】また、請求項4に係る光源装置は、波長変換部がイットリウム・アルミニウム・ガーネット系材料からなり、当該材料が微細な面積を有するドット形状で均一に設けられるかまたは出射面の周辺部と対向する部分にドットが多く設けられるので、輝度の高い混合色光を均一に出射することができ、少ない数の半導体発光素子で白色光を得ることができる。 [0052] Further, the light source apparatus according to claim 4, the wavelength conversion portion is made of yttrium-aluminum-garnet material, the material is the periphery of the or emission surface is uniformly disposed in a dot shape with a fine area since dots are formed much in the portion facing the can be uniformly emitted with high luminance mixed color light, white light can be obtained with a small number of semiconductor light-emitting device.

【0053】さらに、請求項5に係る光源装置は、反射材が反射面に被着された反射率の高い金属材料または円弧状凹型の部分に設けられる屈折率の小さい透明樹脂材料からなるので、半導体発光素子の発光面からの光線を反射面で効率良く反射することができ、しかも少ない数の半導体発光素子で輝度を高くすることができるので、 [0053] Further, the light source apparatus according to claim 5, since the reflection member is made of a small transparent resin material having a refractive index provided on the metal material having high or arcuate concave portion of reflectivity is deposited on the reflecting surface, the light from the light emitting surface of the semiconductor light-emitting element can be efficiently reflected by the reflecting surface, yet with a small number of semiconductor light-emitting device it is possible to increase the brightness,
省エネに対応できる。 Energy conservation can cope.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】(a)本発明に係る光源装置の外観を示す斜視図 (b)同光源装置の断面図 [1] (a) cross-sectional view of a perspective view (b) the light source device showing the appearance of a light source device according to the present invention

【図2】本発明に係る光源装置の他の例を示す断面図 Sectional view showing another example of the light source apparatus according to the present invention; FIG

【図3】本発明に係る光源装置の他の例を示す部分断面図 Partial cross-sectional view showing another example of the light source apparatus according to the present invention; FIG

【図4】本発明に係る光源装置の他の例を示す部分断面図 Partial cross-sectional view showing another example of a light source device according to the present invention; FIG

【図5】本発明に係る光源装置の他の例を示す部分断面図 Partial cross-sectional view showing another example of the light source apparatus according to the present invention; FIG

【図6】本発明に係る光源装置の他の例を示す部分断面図 Partial cross-sectional view showing another example of the light source apparatus according to the present invention; FIG

【図7】本発明に係る光源装置を複数用いてユニット化した集合光源装置の斜視図 Perspective view of a light source device using a plurality unitized set light source device according to the present invention; FIG

【符号の説明】 DESCRIPTION OF SYMBOLS

1…光源装置、2…モールドケース、3…半導体発光素子、4…発光面、5…出射面、5a…微細凸凹面状、5 1 ... light source apparatus, 2 ... molded case, 3 ... semiconductor light-emitting device, 4 ... light-emitting surface, 5 ... exit surface, 5a ... fine uneven surface shape, 5
b…格子状突起、5c…フレネルレンズ状、6…反射面、6a…ハイブリットレンズ形状の円弧状凸、6b… b ... grid-like projections, 5c ... Fresnel lens shape, 6 ... reflecting surface, 6a ... arcuate convex hybrid lens shape, 6b ...
微細凸凹面状、7…波長変換部、8…リードワイヤ、9 Fine uneven surface shape, 7 ... wavelength converter, 8 ... lead wire, 9
…リード端子、10…ケース。 ... lead terminal, 10 ... case.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 利道 東京都多摩市永山6−22−6 日本デンヨ ー株式会社内 Fターム(参考) 5F041 AA11 DA16 DA25 DA26 DA43 DA56 DA58 EE17 EE23 EE25 ────────────────────────────────────────────────── ─── front page of the continuation (72) inventor Nakamura, Tama City, Tokyo Toshimichi Nagayama 6-22-6 Japan Den'yo over Co., Ltd. in the F-term (reference) 5F041 AA11 DA16 DA25 DA26 DA43 DA56 DA58 EE17 EE23 EE25

Claims (5)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 リードフレーム上に設けた半導体発光素子と、当該半導体発光素子を樹脂で被覆して成形モールドしてなる光源装置において、 前記光源装置は、前記半導体発光素子の発光面が前記光源装置から光を出射する出射面と逆方向および前記出射面と平行に位置し、前記出射面の反対に位置する反射面を円弧状凹型にするとともに前記反射面と前記出射面の裏側面との間または前記反射面と前記発光面との間に波長変換部を設け、前記発光面からの出射光を前記反射面で平行性または集光性な単色光と前記波長変換部で波長変換された単色光とを出射させることを特徴とする光源装置。 And 1. A semiconductor light emitting element provided on the lead frame, the light source device in which the semiconductor light-emitting element and mold coated with a resin, the light source device, the light emitting surface of the semiconductor light emitting element said light source device located in parallel to the output surface and the opposite direction and the emission surface for emitting light from, as well as in an arc shape concave reflection surface positioned opposite the exit surface of the rear surface of the emission surface and the reflective surface a wavelength converting portion is provided or between the reflection surface and the light emitting surface, which is wavelength-converted by the parallelism of light emitted from the light emitting surface by the reflection surface or light collecting monochromatic light and the wavelength converting portion a light source device, characterized in that emit monochromatic light.
  2. 【請求項2】 前記反射面は、鏡面状または微細凸凹面状またはハイブリットレンズ形状の円弧状凸をなし、表面部側に反射材が設けられることを特徴とする請求項1 Wherein said reflective surface according to claim 1, characterized in that an arc-shaped convex mirror surface or finely uneven surface shape or a hybrid lens shape, on the surface side reflector is provided
    記載の光源装置。 The light source device according.
  3. 【請求項3】 前記出射面は、鏡面状または格子状突起または微細凸凹面状またはフレネルレンズ状の形状をなすことを特徴とする請求項1又は2記載の光源装置。 Wherein the exit surface, mirror-like or lattice-like projections or the light source apparatus according to claim 1 or 2, wherein the forming the fine uneven surface shape or a Fresnel lens shape.
  4. 【請求項4】 前記波長変換部は、イットリウム・アルミニウム・ガーネット系材料からなり、当該材料が微細な面積を有するドット形状で均一に設けられるかまたは前記出射面の周辺部と対向する部分に前記ドットが多く設けられることを特徴とする請求項1〜3のいずれかに記載の光源装置。 Wherein said wavelength converting portion is made of yttrium-aluminum-garnet material, the the peripheral portion facing the portion of or the emission surface is uniformly disposed in a dot shape to which the material has a fine area the light source device according to any one of claims 1 to 3, characterized in that the dots are provided many.
  5. 【請求項5】 前記反射材は、前記反射面に被着された反射率の高い金属材料または前記円弧状凹型の部分に設けられる屈折率の小さい透明樹脂材料からなることを特徴とする請求項2〜4のいずれかに記載の光源装置。 Wherein said reflective material is claims, characterized in that it consists of small transparent resin material having a refractive index provided on the reflective surface deposited a highly reflective metal material or the arcuate concave portion the light source device according to any one of 2-4.
JP2000270291A 2000-09-06 2000-09-06 Light source device Abandoned JP2002084002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000270291A JP2002084002A (en) 2000-09-06 2000-09-06 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000270291A JP2002084002A (en) 2000-09-06 2000-09-06 Light source device

Publications (1)

Publication Number Publication Date
JP2002084002A true true JP2002084002A (en) 2002-03-22

Family

ID=18756753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000270291A Abandoned JP2002084002A (en) 2000-09-06 2000-09-06 Light source device

Country Status (1)

Country Link
JP (1) JP2002084002A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092430A (en) * 2001-09-19 2003-03-28 Stanley Electric Co Ltd Light emitting device
WO2003081685A1 (en) * 2002-03-26 2003-10-02 Shin-Etsu Handotai Co.,Ltd. Visible light emitting device
JP2006524351A (en) * 2003-04-24 2006-10-26 カール ツアイス エスエムエス ゲゼルシャフト ミット ベシュレンクテル ハフツング In particular inspection device of an object such as a mask for microlithography
JP2009206428A (en) * 2008-02-29 2009-09-10 Stanley Electric Co Ltd Semiconductor light emitting device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348368U (en) * 1989-09-19 1991-05-09
JPH0955540A (en) * 1995-08-11 1997-02-25 Iwasaki Electric Co Ltd Light emitting apparatus
WO1998005078A1 (en) * 1996-07-29 1998-02-05 Nichia Chemical Industries, Ltd. Light emitting device and display device
JPH1097200A (en) * 1997-05-20 1998-04-14 Nichia Chem Ind Ltd Light source
JPH10150222A (en) * 1996-11-19 1998-06-02 Iwasaki Electric Co Ltd Reflective-type light emitting diode and light emitting diode array
JPH1126813A (en) * 1997-06-30 1999-01-29 Toyoda Gosei Co Ltd Light emitting diode lamp
JPH11266035A (en) * 1998-03-17 1999-09-28 Sanyo Electric Co Ltd Light source device
JP2000077723A (en) * 1998-09-01 2000-03-14 Hewlett Packard Co <Hp> Semiconductor device provided with light-emitting semiconductor
JP2000081847A (en) * 1999-09-27 2000-03-21 Toshiba Corp Picture display device and light emitting device
JP2001230451A (en) * 2000-02-15 2001-08-24 Sharp Corp Light emitting diode

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348368U (en) * 1989-09-19 1991-05-09
JPH0955540A (en) * 1995-08-11 1997-02-25 Iwasaki Electric Co Ltd Light emitting apparatus
WO1998005078A1 (en) * 1996-07-29 1998-02-05 Nichia Chemical Industries, Ltd. Light emitting device and display device
JPH10150222A (en) * 1996-11-19 1998-06-02 Iwasaki Electric Co Ltd Reflective-type light emitting diode and light emitting diode array
JPH1097200A (en) * 1997-05-20 1998-04-14 Nichia Chem Ind Ltd Light source
JPH1126813A (en) * 1997-06-30 1999-01-29 Toyoda Gosei Co Ltd Light emitting diode lamp
JPH11266035A (en) * 1998-03-17 1999-09-28 Sanyo Electric Co Ltd Light source device
JP2000077723A (en) * 1998-09-01 2000-03-14 Hewlett Packard Co <Hp> Semiconductor device provided with light-emitting semiconductor
JP2000081847A (en) * 1999-09-27 2000-03-21 Toshiba Corp Picture display device and light emitting device
JP2001230451A (en) * 2000-02-15 2001-08-24 Sharp Corp Light emitting diode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092430A (en) * 2001-09-19 2003-03-28 Stanley Electric Co Ltd Light emitting device
WO2003081685A1 (en) * 2002-03-26 2003-10-02 Shin-Etsu Handotai Co.,Ltd. Visible light emitting device
JP2006524351A (en) * 2003-04-24 2006-10-26 カール ツアイス エスエムエス ゲゼルシャフト ミット ベシュレンクテル ハフツング In particular inspection device of an object such as a mask for microlithography
JP2011199302A (en) * 2003-04-24 2011-10-06 Carl Zeiss Sms Gmbh Apparatus for inspecting object, especially mask in microlithography
JP4818099B2 (en) * 2003-04-24 2011-11-16 カール ツァイス エスエムエス ゲーエムベーハー In particular inspection device of an object such as a mask for microlithography
JP2009206428A (en) * 2008-02-29 2009-09-10 Stanley Electric Co Ltd Semiconductor light emitting device

Similar Documents

Publication Publication Date Title
US6890234B2 (en) LED cross-linkable phosphor coating
US7279719B2 (en) Light emitting diode
US7534002B2 (en) Lighting device
US20030038295A1 (en) Light emitting device with fluorescent member excited by semiconductor light emitting element
US7722211B2 (en) Light engine
US7138660B2 (en) Light emitting device
US6856087B2 (en) Full-color display device
EP1081771B1 (en) Method of fabricating a light emitting device
JP2927279B2 (en) Light emitting diode
US20120140436A1 (en) Solid-state lamps with light guide and photoluminescence material
US7005667B2 (en) Broad-spectrum A1(1-x-y)InyGaxN light emitting diodes and solid state white light emitting devices
US20120086034A1 (en) Solid-state light emitting devices and signage with photoluminescence wavelength conversion
US7791092B2 (en) Multiple component solid state white light
US20090114929A1 (en) White light emitting device
EP1103759A2 (en) Full-color light source unit
JP2009218274A (en) Semiconductor light-emitting device
JP2007035885A (en) Light emitting device and illumination device employing it
US20070246714A1 (en) LED package
US7922355B1 (en) Solid state lighting device having effective light mixing and control
US20100301353A1 (en) Led lighting device having a conversion reflector
JP2006032726A (en) Light emitting device
US20050211992A1 (en) Light emitting diode
JP2002076434A (en) Light emitting device
JP2004071908A (en) Light emitting device
JP2003142737A (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20100730