JP2002076327A - Charge transfer device - Google Patents

Charge transfer device

Info

Publication number
JP2002076327A
JP2002076327A JP2000252813A JP2000252813A JP2002076327A JP 2002076327 A JP2002076327 A JP 2002076327A JP 2000252813 A JP2000252813 A JP 2000252813A JP 2000252813 A JP2000252813 A JP 2000252813A JP 2002076327 A JP2002076327 A JP 2002076327A
Authority
JP
Japan
Prior art keywords
charge
detection electrode
region
potential
transfer device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000252813A
Other languages
Japanese (ja)
Inventor
Makoto Monoi
井 誠 物
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000252813A priority Critical patent/JP2002076327A/en
Publication of JP2002076327A publication Critical patent/JP2002076327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the sensitivity of charge detection and the linearity of output. SOLUTION: A charge transfer device is provided with a transfer part and a charge detection part. The transfer part has channel areas 2 and 3 which are formed on a first conduction-type semiconductor substrate 1 for transferring signal charges, and are constituted of second conduction-type semiconductor areas; and transfer electrodes 4b and 4c which are formed on the channel areas through an insulating film, and transfer the signal charges. The charge detection part has a detection electrode 5 which is adjacent to the ends of the channel areas and is formed on the area of the semiconductor substrate through the insulating film, and which converts the signal charges transferred from the transfer part into voltage by the detection electrode so as to detect it. The area of the semiconductor substrate below the detection electrode is the first conduction type. The junction face of the area of the semiconductor substrate below the detection electrode and the channel area is positioned on the same face as the end of the detection electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電荷転送装置に関す
る。
[0001] The present invention relates to a charge transfer device.

【0002】[0002]

【従来の技術】一般に電荷転送装置としてCCD(Char
ge Coupled Device)が用いられている。従来の埋め込
みチャネル型CCD(以下、BCCD(Buried Charge
Coupled Device)ともいう)の構成を図9に示す。この
BCCDは信号電荷を浮遊電極で検出する構造(以下、
FGA(Floating Gate Amplifier)ともいう)を有し
ている。このBCCDは、P型半導体基板1上に形成さ
れた埋め込みチャネル用N型半導体領域2と、このN型
半導体領域2内に設けられて電荷の逆流防止用電位障壁
を形成するための低濃度N型半導体領域3と、N型半導
体領域2および低濃度N型半導体領域3上に絶縁膜(図
示せず)を介して設けられたリセットゲート4aおよび
電荷転送用電極4b,4cと、リセットゲート4aおよ
び電極4bとの間のN型半導体領域2上に絶縁膜(図示
せず)を介して設けられ電荷検出電極5と、この電荷検
出電極によって検出された電荷に比例した電位を出力す
るソースフォロワの出力回路6と、電荷検出用電極5の
電位を設定するためのリセットゲート7とを備えてい
る。
2. Description of the Related Art Generally, a CCD (Charge) is used as a charge transfer device.
ge Coupled Device). Conventional embedded channel type CCD (hereinafter referred to as BCCD (Buried Charge
FIG. 9 shows the configuration of the second embodiment. This BCCD has a structure in which signal charges are detected by a floating electrode (hereinafter, referred to as a "charge").
FGA (Floating Gate Amplifier). The BCCD includes an N-type semiconductor region 2 for a buried channel formed on a P-type semiconductor substrate 1 and a low-concentration N-type semiconductor layer 2 provided in the N-type semiconductor region 2 to form a potential barrier for preventing backflow of charges. Type semiconductor region 3, a reset gate 4a and charge transfer electrodes 4b and 4c provided on the N-type semiconductor region 2 and the low-concentration N-type semiconductor region 3 via an insulating film (not shown), and a reset gate 4a. A charge detection electrode 5 provided on the N-type semiconductor region 2 between the electrode and the electrode 4b via an insulating film (not shown); and a source follower for outputting a potential proportional to the charge detected by the charge detection electrode. And a reset gate 7 for setting the potential of the charge detection electrode 5.

【0003】次に、上記BCCDの動作を図10および
図11を参照して説明する。図10は電荷転送チャネル
の電位分布図であり、図11はリセットゲート4a,7
および電極4b,4c,5に印加される印加パルスの波
形図である。
Next, the operation of the BCCD will be described with reference to FIGS. 10 and 11. FIG. 10 is a potential distribution diagram of the charge transfer channel, and FIG. 11 is a reset gate 4a, 7
FIG. 7 is a waveform diagram of applied pulses applied to electrodes 4b, 4c, and 5.

【0004】時刻T1において、検出電極5下の信号電
荷がリセットゲート4a下に移り、次の信号電荷が転送
電極4c下に転送されてくる。次に時刻T2において、
リセットゲート7がオンし、検出電極5の電位が初期電
位に設定される。時刻T3において、信号電荷は転送電
極4c下から転送電極4b下に移る。そして時刻T4に
おいて、転送電極4b下から検出電極5下に信号電荷が
移り、この信号電荷量に応じて浮遊状態の検出電極5の
電位が変化し、この変化した電位が出力回路6を介して
外部に出力される。
At time T1, the signal charge below the detection electrode 5 moves to below the reset gate 4a, and the next signal charge is transferred below the transfer electrode 4c. Next, at time T2,
The reset gate 7 turns on, and the potential of the detection electrode 5 is set to the initial potential. At time T3, the signal charge moves from below the transfer electrode 4c to below the transfer electrode 4b. At time T4, the signal charge moves from below the transfer electrode 4b to below the detection electrode 5, and the potential of the detection electrode 5 in a floating state changes according to the amount of the signal charge. This changed potential is output via the output circuit 6. Output to the outside.

【0005】[0005]

【発明が解決しようとする課題】このような従来の電荷
転送装置においては、検出電極5下が埋め込みチャネル
構造となっているため、電荷が蓄積されたチャネル部分
が界面より深い基板内部にあり、このチャネル部分と検
出電極5と間の容量が小さくなって電荷検出感度が低く
なるとともに電荷量に応じた電位変化が非線形となると
いう問題が生じる。
In such a conventional charge transfer device, a channel portion in which charges are stored is located inside the substrate deeper than the interface because the buried channel structure is provided below the detection electrode 5. This causes a problem that the capacitance between the channel portion and the detection electrode 5 is reduced, the charge detection sensitivity is reduced, and the change in potential according to the charge amount becomes non-linear.

【0006】特開平2−9139号公報では、埋め込み
チャネルのN型領域を検出電極以外に設け、検出感度と
線形性を向上させることが開示されているが、N型領域
を検出電極に正確に接するように設けることも、その具
体的な方法も開示されておらず、電極転送部から検出電
極間に電位ポケットが形成される為電荷の完全転送が行
われず、非破壊読出しが出来ないという問題があった。
また、検出電極周りのN領域の為容量が増え感度が低下
する恐れもある。
Japanese Patent Application Laid-Open No. 2-9-1139 discloses that an N-type region of a buried channel is provided other than a detection electrode to improve detection sensitivity and linearity. Neither the contact transfer nor the specific method is disclosed, and since a potential pocket is formed between the electrode transfer portion and the detection electrode, the charge is not completely transferred and nondestructive reading cannot be performed. was there.
In addition, there is a possibility that the capacity is increased due to the N region around the detection electrode, and the sensitivity is lowered.

【0007】本発明は上記事情を考慮してなされたもの
であって、電荷検出の感度と出力の線形性を向上させる
ことのできる電荷転送装置を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and has as its object to provide a charge transfer device capable of improving the sensitivity of charge detection and the linearity of output.

【0008】[0008]

【課題を解決するための手段】本発明による電荷転送装
置は、第1導電型の半導体基板に形成されて信号電荷を
転送するための、第2導電型の半導体領域からなるチャ
ネル領域、およびこのチャネル領域上に絶縁膜を介して
形成されて前記信号電荷を転送するための転送電極を有
する転送部と、前記チャネル領域の端部に隣接した、前
記半導体基板の領域上に絶縁膜を介して形成された検出
電極を有し、前記転送部から転送される信号電荷を、前
記検出電極によって電圧に変換して検出する電荷検出部
と、を備え、前記検出電極下の半導体基板の領域は第1
導電型であり、前記検出電極下の半導体基板の前記領域
と前記チャネル領域との接合面は前記検出電極の端部と
ほぼ同一面上に位置するように構成したことを特徴とす
る。
A charge transfer device according to the present invention comprises a channel region formed on a semiconductor substrate of a first conductivity type for transferring a signal charge and comprising a semiconductor region of a second conductivity type; A transfer portion formed on a channel region via an insulating film and having a transfer electrode for transferring the signal charge; and a transfer region adjacent to an end of the channel region, on a region of the semiconductor substrate via an insulating film. A charge detection unit having a detection electrode formed, and converting the signal charge transferred from the transfer unit to a voltage by the detection electrode and detecting the voltage, wherein a region of the semiconductor substrate below the detection electrode is 1
It is of a conductivity type, and is characterized in that a junction surface between the region of the semiconductor substrate below the detection electrode and the channel region is located substantially on the same plane as an end of the detection electrode.

【0009】なお、前記検出電極の電位を設定するため
のリセットゲートトランジスタを有し、このリセットゲ
ートトランジスタのドレイン電位は、前記検出電極下の
前記領域の電位が前記検出電極に隣接する前記転送電極
下の前記チャネル領域の電位より深くなるように設定さ
れることが好ましい。
A reset gate transistor for setting the potential of the detection electrode is provided. The drain potential of the reset gate transistor is such that the potential of the region below the detection electrode is equal to the potential of the transfer electrode adjacent to the detection electrode. It is preferable that the potential is set to be deeper than the potential of the lower channel region.

【0010】なお、前記電荷検出部によって検出された
信号電荷を排出する電荷排出部を更に備えることが好ま
しい。
It is preferable that the apparatus further comprises a charge discharging unit for discharging the signal charges detected by the charge detecting unit.

【0011】[0011]

【発明の実施の形態】以下に、本発明の実施の形態を図
面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】(第1の実施の形態)本発明による電荷転
送装置の第1の実施の形態の構成を図1に示す。この実
施の形態の電荷転送装置は、信号電荷を浮遊電極5で検
出する構造を有している。そして、この電荷転送装置
は、P型半導体基板1上に形成された埋め込みチャネル
用N型半導体領域2と、このN型半導体領域2内に設け
られて電荷の逆流防止用電位障壁を形成するための低濃
度N型半導体領域3と、N型半導体領域2および低濃度
N型半導体領域3上に絶縁膜(図示せず)を介して設け
られたリセットゲート4aおよび電荷転送用電極4b,
4cと、リセットゲート4aおよび電極4bとの間の半
導体基板1の領域上に絶縁膜(図示せず)を介して設け
られ電荷検出電極5と、この電荷検出電極によって検出
された電荷に比例した電位を出力するソースフォロワの
出力回路6と、電荷検出電極5の電位を設定するための
リセットゲート7とを備えている。
(First Embodiment) FIG. 1 shows the configuration of a first embodiment of a charge transfer device according to the present invention. The charge transfer device according to this embodiment has a structure in which a signal charge is detected by the floating electrode 5. This charge transfer device is used to form an N-type semiconductor region 2 for a buried channel formed on a P-type semiconductor substrate 1 and a potential barrier provided in the N-type semiconductor region 2 for preventing backflow of charges. A low-concentration N-type semiconductor region 3, a reset gate 4a and a charge transfer electrode 4b provided on the N-type semiconductor region 2 and the low-concentration N-type semiconductor region 3 via an insulating film (not shown).
4c, a charge detection electrode 5 provided on an area of the semiconductor substrate 1 between the reset gate 4a and the electrode 4b via an insulating film (not shown), and the charge detection electrode 5 is proportional to the charge detected by the charge detection electrode. An output circuit 6 of a source follower for outputting a potential and a reset gate 7 for setting the potential of the charge detection electrode 5 are provided.

【0013】図1から分かるようにこの実施の形態の電
荷転送装置は、電荷検出電極5下の領域がP型半導体基
板となっている以外は、図9に示す従来の電荷転送装置
と同じ構成となっている。
As can be seen from FIG. 1, the charge transfer device of this embodiment has the same configuration as the conventional charge transfer device shown in FIG. 9 except that the region below the charge detection electrode 5 is a P-type semiconductor substrate. It has become.

【0014】このような構成としたことにより、本実施
の形態においては、電荷検出電極5下の領域が表面チャ
ネル型となり、これにより電荷検出の感度と出力の線形
性を従来の場合に比べて向上させることができる。
With such a configuration, in the present embodiment, the region below the charge detection electrode 5 is of a surface channel type, so that the sensitivity of charge detection and the linearity of output are lower than in the conventional case. Can be improved.

【0015】なお、本実施の形態の電荷転送装置を形成
する場合は、半導体領域2および電極4a,4b,4c
を形成する前に電荷検出電極5を形成し、この電荷検出
電極5をマスクにしてイオン注入することにより半導体
領域(チャネル領域)2を形成すれば良い。この半導体
領域2の形成時に半導体領域3上をマスクする必要があ
る。
When the charge transfer device of the present embodiment is formed, the semiconductor region 2 and the electrodes 4a, 4b, 4c
Before the formation of the semiconductor device, the charge detection electrode 5 is formed, and the semiconductor region (channel region) 2 may be formed by ion implantation using the charge detection electrode 5 as a mask. When the semiconductor region 2 is formed, it is necessary to mask the semiconductor region 3.

【0016】(第2の実施の形態)次に本発明による電
荷転送装置の第2の実施の形態の構成を図2に示す。こ
の第2の実施の形態の電荷転送装置は、図1に示す第1
の実施の形態の電荷転送装置において、電荷検出電極5
下にP型半導体領域8を設け構成となっている。この実
施の形態も第1の実施の形態と同様の効果を奏すること
は云うまでもない。
(Second Embodiment) FIG. 2 shows a configuration of a second embodiment of the charge transfer device according to the present invention. The charge transfer device according to the second embodiment is similar to the charge transfer device shown in FIG.
In the charge transfer device according to the embodiment, the charge detection electrode 5
A P-type semiconductor region 8 is provided below. It goes without saying that this embodiment also has the same effects as the first embodiment.

【0017】なお、第2の実施の形態の電荷転送装置の
製造方法は、半導体領域2の形成後に電極4a,4b,
4cを設け、これらの電極4a,4b,4cをマスクと
してイオン注入を行ってP型半導体領域8を形成し、そ
の後に電荷検出電極5を設ければ良い。
Note that the method of manufacturing the charge transfer device according to the second embodiment uses the electrodes 4a, 4b,
4c, ion implantation is performed using these electrodes 4a, 4b, 4c as a mask to form the P-type semiconductor region 8, and then the charge detection electrode 5 may be provided.

【0018】なお、第1の実施の形態においては、検出
電極5下のP型半導体基板1の領域と、チャネルとなる
N型半導体領域2との接合面が検出電極5の端部と同一
面上に位置するように構成することが好ましく、また第
2の実施の形態においては、P型半導体領域8とN型半
導体領域2との接合面が検出電極5の端部と同一面上に
位置するように構成することが好ましい。このように構
成することにより、信号電荷の非破壊読み出しが可能と
なる。
In the first embodiment, the joint surface between the region of the P-type semiconductor substrate 1 under the detection electrode 5 and the N-type semiconductor region 2 serving as a channel is flush with the end of the detection electrode 5. In the second embodiment, it is preferable that the junction surface between the P-type semiconductor region 8 and the N-type semiconductor region 2 is located on the same plane as the end of the detection electrode 5. It is preferable to configure so that With this configuration, non-destructive readout of signal charges becomes possible.

【0019】また、第1および第2の実施の形態におい
ては、リセットゲート7のドレインの電位は検出電極5
下の領域(第1の実施の形態においては半導体基板1、
第2の実施の形態においてはP型半導体領域8)の電位
が、検出電極5に隣接する転送電極4b下のチャネル2
の電位より深くなるように設定されることが好ましい。
Further, in the first and second embodiments, the potential of the drain of the reset gate 7 is
The lower region (the semiconductor substrate 1 in the first embodiment,
In the second embodiment, the potential of the P-type semiconductor region 8) is changed to the level of the channel 2 below the transfer electrode 4b adjacent to the detection electrode 5.
Is preferably set to be deeper than the potential.

【0020】次に第1および第2の実施の形態の電荷転
送装置の平面図を図3に示す。この図3に示すように第
1および第2の実施の形態の電荷転送装置においては、
電荷検出電極5、出力回路6、およびリセットゲート7
からなる電荷検出部は、チャネル領域2、リセットゲー
ト4aおよび電荷転送電極4b,4cからなる電荷転送
部に対して1個だけ設けられた構成となっている。しか
し、図4に示すように電荷検出部を複数個(図4上では
3個)設けるように構成しても良い。なお、図4上では
上段、中段、下段の電荷転送部は接続されて1つの電荷
転送部を構成している。そしてこの図4においては、3
個の出力回路6a,6b,6cの出力が平均化回路8に
おいて平均化されて外部に出力される構成となってい
る。したがって同一の信号電荷に対応した出力回路6
a,6b,6cの出力が平均化されることにより、S/
N比を低減することができる。このS/N比の低減は一
般に出力回路の数の平方根に反比例する。
Next, FIG. 3 is a plan view of the charge transfer device according to the first and second embodiments. As shown in FIG. 3, in the charge transfer devices of the first and second embodiments,
Charge detection electrode 5, output circuit 6, and reset gate 7
Is provided for the charge transfer section including the channel region 2, the reset gate 4a, and the charge transfer electrodes 4b and 4c. However, as shown in FIG. 4, a plurality of charge detection units (three in FIG. 4) may be provided. In FIG. 4, the upper, middle, and lower charge transfer sections are connected to form one charge transfer section. In FIG. 4, 3
The outputs of the output circuits 6a, 6b, 6c are averaged in the averaging circuit 8 and output to the outside. Therefore, the output circuit 6 corresponding to the same signal charge
By averaging the outputs of a, 6b and 6c, S /
The N ratio can be reduced. This reduction in S / N ratio is generally inversely proportional to the square root of the number of output circuits.

【0021】上述の平均化回路8の具体的な構成を図5
に示し、その駆動タイミング図を図6に示す。図5にお
いて各出力回路6a,6b,6cの出力はサンプルホー
ルド回路で保持され、この保持された値は容量結合で平
均化されている。例えば図5において、出力回路6aの
出力と出力回路6bの出力とを平均化するために容量C
3をC3=C1に設定し、更に出力回路6cの出力を加
算するために、容量C4をC4=1/2×C2に設定し
ている。
FIG. 5 shows a specific configuration of the averaging circuit 8 described above.
FIG. 6 shows the driving timing chart. In FIG. 5, the output of each output circuit 6a, 6b, 6c is held by a sample and hold circuit, and the held values are averaged by capacitive coupling. For example, in FIG. 5, a capacitor C is used to average the output of the output circuit 6a and the output of the output circuit 6b.
3 is set to C3 = C1, and the capacitance C4 is set to C4 = 1/2 × C2 in order to further add the output of the output circuit 6c.

【0022】図5に示す平均化回路8においては、出力
回路6a,6b,6cの出力を容量結合で平均化してい
たが、図7に示すように出力回路6a,6b,6cの出
力を一旦電荷に変換し、それらの電荷を合わせて1つの
検出回路FGで検出し、平均化するように構成しても良
い。この図7に示す平均化回路の駆動タイミング図を図
8に示す。
In the averaging circuit 8 shown in FIG. 5, the outputs of the output circuits 6a, 6b and 6c are averaged by capacitive coupling. However, as shown in FIG. 7, the outputs of the output circuits 6a, 6b and 6c are temporarily It may be configured such that the charges are converted into charges, the charges are combined, detected by one detection circuit FG, and averaged. FIG. 8 shows a drive timing chart of the averaging circuit shown in FIG.

【0023】[0023]

【発明の効果】以上述べたように、本発明によれば、電
荷検出の感度と、出力の線形性を向上させることができ
る。
As described above, according to the present invention, the charge detection sensitivity and output linearity can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による電荷転送装置の第1の実施の形態
の構成を示す断面図。
FIG. 1 is a sectional view showing a configuration of a first embodiment of a charge transfer device according to the present invention.

【図2】本発明による電荷転送装置の第2の実施の形態
の構成を示す断面図。
FIG. 2 is a sectional view showing the configuration of a second embodiment of the charge transfer device according to the present invention.

【図3】本発明による電荷転送装置の構成を示す平面
図。
FIG. 3 is a plan view showing a configuration of a charge transfer device according to the present invention.

【図4】本発明による電荷転送装置の変形例を示す回路
図。
FIG. 4 is a circuit diagram showing a modification of the charge transfer device according to the present invention.

【図5】図4に示す電荷転送装置に係る平均化回路の構
成を示す回路図。
FIG. 5 is a circuit diagram showing a configuration of an averaging circuit according to the charge transfer device shown in FIG.

【図6】図5に示す平均化回路の駆動タイミング図。FIG. 6 is a drive timing chart of the averaging circuit shown in FIG. 5;

【図7】平均化回路の他の構成を示す回路図。FIG. 7 is a circuit diagram showing another configuration of the averaging circuit.

【図8】図7に示す平均化回路の駆動タイミング図。FIG. 8 is a drive timing chart of the averaging circuit shown in FIG. 7;

【図9】従来の電荷転送装置の構成を示す断面図。FIG. 9 is a cross-sectional view illustrating a configuration of a conventional charge transfer device.

【図10】図9に示す電荷転送装置の電位分布図。FIG. 10 is a potential distribution diagram of the charge transfer device shown in FIG.

【図11】図9に示す電荷転送装置の駆動タイミング
図。
FIG. 11 is a drive timing chart of the charge transfer device shown in FIG.

【符号の説明】[Explanation of symbols]

1 P型半導体基板 2 埋め込みチャネル(N型半導体領域) 3 低濃度N型半導体領域 4a リセットゲート 4b,4c 電荷転送電極 5 電荷検出電極 6 出力回路 7 リセットゲート Reference Signs List 1 P-type semiconductor substrate 2 Buried channel (N-type semiconductor region) 3 Low-concentration N-type semiconductor region 4 a Reset gate 4 b, 4 c Charge transfer electrode 5 Charge detection electrode 6 Output circuit 7 Reset gate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】第1導電型の半導体基板に形成されて信号
電荷を転送するための、第2導電型の半導体領域からな
るチャネル領域、およびこのチャネル領域上に絶縁膜を
介して形成されて前記信号電荷を転送するための転送電
極を有する転送部と、 前記チャネル領域の端部に隣接した、前記半導体基板の
領域上に絶縁膜を介して形成された検出電極を有し、前
記転送部から転送される信号電荷を、前記検出電極によ
って電圧に変換して検出する電荷検出部と、 を備え、前記検出電極下の半導体基板の領域は第1導電
型であり、 前記検出電極下の半導体基板の前記領域と前記チャネル
領域との接合面は前記検出電極の端部とほぼ同一面上に
位置するように構成したことを特徴とする電荷転送装
置。
1. A channel region formed on a semiconductor substrate of a first conductivity type for transferring a signal charge, comprising a semiconductor region of a second conductivity type, and formed on the channel region via an insulating film. A transfer section having a transfer electrode for transferring the signal charge, and a detection electrode formed via an insulating film on a region of the semiconductor substrate adjacent to an end of the channel region, wherein the transfer section And a charge detection unit that converts the signal charge transferred from the detection electrode into a voltage by the detection electrode and detects the voltage, wherein a region of the semiconductor substrate under the detection electrode is of a first conductivity type, and a semiconductor under the detection electrode is provided. The charge transfer device according to claim 1, wherein a junction surface between the region of the substrate and the channel region is located on substantially the same plane as an end of the detection electrode.
【請求項2】前記検出電極の電位を設定するためのリセ
ットゲートトランジスタを有し、このリセットゲートト
ランジスタのドレイン電位は、前記検出電極下の前記領
域の電位が前記検出電極に隣接する前記転送電極下の前
記チャネル領域の電位より深くなるように設定されるこ
とを特徴とする請求項1記載の電荷転送装置。
2. The transfer electrode according to claim 1, further comprising a reset gate transistor for setting a potential of said detection electrode, wherein a drain potential of said reset gate transistor is such that a potential of said region below said detection electrode is adjacent to said detection electrode. 2. The charge transfer device according to claim 1, wherein the potential is set to be deeper than a potential of the lower channel region.
【請求項3】前記電荷検出部によって検出された信号電
荷を排出する電荷排出部を更に備えたことを特徴とする
請求項1乃至2のいずれかに記載の電荷転送装置。
3. The charge transfer device according to claim 1, further comprising a charge discharging unit configured to discharge a signal charge detected by the charge detecting unit.
JP2000252813A 2000-08-23 2000-08-23 Charge transfer device Pending JP2002076327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000252813A JP2002076327A (en) 2000-08-23 2000-08-23 Charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000252813A JP2002076327A (en) 2000-08-23 2000-08-23 Charge transfer device

Publications (1)

Publication Number Publication Date
JP2002076327A true JP2002076327A (en) 2002-03-15

Family

ID=18742002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000252813A Pending JP2002076327A (en) 2000-08-23 2000-08-23 Charge transfer device

Country Status (1)

Country Link
JP (1) JP2002076327A (en)

Similar Documents

Publication Publication Date Title
KR100256835B1 (en) Single split-gate mos transistor active pixel sensor cell with automatic blooming and wide dynamic range
EP0632506B1 (en) A charge detection amplifier
US5892253A (en) Active pixel sensor cell with balanced blue response and reduced noise
JPH084136B2 (en) Charge transfer device
JP3031815B2 (en) Charge detection element, method of manufacturing the same, and charge transfer detection device
US5477070A (en) Drive transistor for CCD-type image sensor
US6518607B2 (en) Low feed through-high dynamic range charge detection using transistor punch through reset
TW449939B (en) Photodiode structure
US20050051808A1 (en) Dual gate bcmd pixel suitable for high performance cmos image sensor arrays
US4538287A (en) Floating gate amplifier using conductive coupling for charge coupled devices
JPH0771235B2 (en) Driving method for charge detection circuit
JPH0878663A (en) Electric charge detection node of ccd
KR100223826B1 (en) Method of manufacturing ccd
JP2002076327A (en) Charge transfer device
JPH07106553A (en) Solid state image pickup element
US6545301B2 (en) Solid-state image sensor and manufacturing method therefor
JP2950387B2 (en) Charge coupled device
JPH08330573A (en) Charge transfer device
JPH04133336A (en) Charge transfer device
JP3648518B2 (en) Solid-state imaging device
KR100364792B1 (en) Solied state image sensor
JP2965568B2 (en) Charge detection device
JP2708115B2 (en) HCCD
JPH03291946A (en) Solid-state image sensing element
KR100311491B1 (en) Solid state image sensing device and fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204